
Trace Cache: a Low Latency Approach to High Bandwidth

Instruction Fetching

Eric Rotenberg Steve Bennett Jim Smith

April 11, 1996

Abstract

Superscalar processors require su�cient instruction fetch bandwidth to feed their highly par-
allel execution cores. Fetch bandwidth is determined by a number of factors, namely instruction
cache hit rate, branch prediction accuracy, and taken branches in the instruction stream. Taken
branches introduce the problem of noncontiguous instruction fetching: the dynamic instruction
sequence exists in the cache, but the instructions are not in contiguous cache locations. This
report considers the problem of fetching noncontiguous blocks of instructions in a single cycle.

We propose the trace cache, a special instruction cache that captures dynamic instruction
sequences. Each line in the trace cache stores a dynamic code sequence, which may contain
one or more taken branches. Dynamic sequences are built up as the program executes. If a
predicted dynamic sequence exists in the trace cache, it can be fed directly to the decoders.

We investigate other methods for fetching noncontiguous instruction sequences in a single
cycle. The Branch Address Cache [2] and Collapsing Bu�er [1] achieve high bandwidth by
feeding multiple noncontiguous fetch addresses to an interleaved cache and performing complex
alignment on the instructions as they come out of the cache. Inevitably, this approach lengthens
the critical path through the instruction fetch unit. Extra stages in the fetch pipeline increase
branch mispredict recovery time, decreasing overall performance. Our approach moves com-
plexity due to noncontiguous instruction fetching o� the critical path and onto the �ll side of
the trace cache.

We compare the performance of the trace cache against other fetch designs. We �rst consider
simple instruction fetching mechanisms that predict only one branch at a time or fetch only up to
the �rst taken branch. We also consider more aggressive methods that are able to fetch beyond
multiple taken branches. For integer benchmarks, the trace cache improves performance on
average by 34% over the fetch unit limited to one basic block per cycle, and 17% over the fetch
unit limited to multiple contiguous basic blocks. The corresponding improvements for oating
point benchmarks are 16% and 9%. Further, the trace cache consistently performs better than
the other high bandwidth fetch mechanisms studied even if single-cycle fetch latency is assumed

across all mechanisms. Simulations with more realistic latencies for the other high bandwidth
approaches, based on pipeline stages before and after the instruction cache, show that the trace
cache clearly outperforms other approaches: on average, 20% and 10% better than the next
highest performer for integer and oating point benchmarks, respectively.

1

1 Introduction

High performance superscalar processor organizations divide naturally into an instruction fetch

mechanism and an instruction execution mechanism (Figure 1). The fetch and execution mech-

anisms are separated by instruction issue bu�er(s), for example queues, reservation stations, etc.

Conceptually, the instruction fetch mechanism acts as a \producer" which fetches, decodes, and

places instructions into the bu�er. The instruction execution engine is the \consumer" which re-

moves instructions from the bu�er and executes them, subject to data dependence and resource

constraints. Control dependences (branches and jumps) provide a feedback mechanism between

the producer and consumer.

Instruction
Fetch &
Decode

Instruction

branch outcomes/jump addresses

Buffer(s)

Execution
Instruction

Figure 1: Instruction fetch and execute mechanisms separated by instruction bu�ers.

Processors having this organization employ aggressive techniques to exploit instruction-level

parallelism [19]. Wide dispatch and issue paths place an upper bound on peak instruction through-

put. Large issue bu�ers are used to maintain a window of instructions necessary for detecting

parallelism, and a large pool of physical registers provides destinations for all of the in-ight in-

structions issued from the window. To enable concurrent execution of instructions, the execution

engine is composed of many parallel functional units. The fetch engine speculates past multiple

branches in order to supply a continuous instruction stream to the window.

The trend in superscalar design is to scale these techniques: wider dispatch/issue, larger win-

dows, more physical registers, more functional units, and deeper speculation. To maintain this

trend, it is important to balance all parts of the processor { any bottlenecks diminish the bene�t

of aggressive ILP techniques.

In this paper, we are concerned with instruction fetch bandwidth becoming a performance

bottleneck. Instruction fetch performance depends on a number of factors. Instruction cache hit

rate and branch prediction accuracy have long been recognized as important problems in fetch

performance and are well-researched areas. In this paper, we are interested in additional factors

that are only now emerging as processor issue rates exceed four instructions per cycle:

� branch throughput { If only one conditional branch is predicted per cycle, then the window

can grow at the rate of only one basic block per cycle. Predicting multiple branches per cycle

allows the overall instruction throughput to be correspondingly higher.

� noncontiguous instruction alignment { Because of branches and jumps, instructions to be

fetched during any given cycle may not be in contiguous cache locations. Hence, there must

be adequate paths and logic available to fetch and align noncontiguous basic blocks and pass

2

them up the pipeline. That is, it is not enough for the instructions to be present in the cache,

it must also be possible to access them in parallel.

� fetch unit latency { Pipeline latency has a profound impact on processor performance. This

is due to the cost of re�lling the pipeline after incorrect control speculation. In the case of

the fetch unit, we are concerned with the startup cost of redirecting fetching after resolving

a branch mispredict, jump, or instruction cache miss. Inevitably, the need for higher branch

throughput and noncontiguous instruction alignment will increase fetch unit latency; yet ways

must be found to minimize the latency impact.

Table 1 illustrates why branch throughput and noncontiguous instruction alignment need to be

considered. Current fetch units are limited to one branch prediction per cycle, and can therefore

fetch 1 basic block per cycle or up to the maximum instruction fetch width, whichever comes �rst.

The data shows that the average size of basic blocks is around 4 or 5 instructions for integer codes.

While fetching a single basic block each cycle is su�cient for implementations that issue at most

4 instructions per cycle, it is not so for processors with higher peak issue rates. If we introduce

multiple branch prediction [2][1], then the fetch unit can at least fetch multiple contiguous basic

blocks in a cycle. Data for the number of instructions between taken branches shows that the

upper bound on fetch bandwidth is still somewhat limited in this case, due to the frequency of

taken branches. Therefore, if a taken branch is encountered, it is necessary to fetch instructions

down the taken path in the same cycle that the branch is fetched.

Benchmark taken % avg basic block size avg sequential run size

eqntott 86.2% 4.20 4.87

espresso 63.8% 4.24 6.65

xlisp 64.7% 4.34 6.70

gcc 67.6% 4.65 6.88

sc 70.2% 4.71 6.71

compress 60.9% 5.39 8.85

Table 1: Percentage of all dynamic branches that are taken, average basic block size, and average

length of a sequential run of instructions (i.e. number of instructions between taken branches).

1.1 The Trace Cache

The job of the fetch unit is to feed the dynamic instruction stream to the decoder. A problem is

that instructions are placed in the cache in their compiled order. Storing programs in static form

favors fetching code that does not branch or code with large basic blocks. Neither of these cases is

typical of integer code.

We propose a special instruction cache which captures dynamic instruction sequences. This

structure is called a trace cache because each line stores a snapshot, or trace, of the dynamic

instruction stream, as shown in Figure 2. A trace is a sequence of at most n instructions and at

most m basic blocks starting at any point in the dynamic instruction stream. The limit n is the

trace cache line size, and m is the branch predictor throughput. A trace is fully speci�ed by a

starting address and a sequence of up to m� 1 branch outcomes which describe the path followed.

3

The �rst time a trace is encountered, it is allocated a line in the trace cache. The line is �lled as

instructions are fetched from the instruction cache. If the same trace is encountered again in the

course of executing the program, i.e. the same starting address and predicted branch outcomes, it

will be available in the trace cache and is fed directly to the decoder. Otherwise, fetching proceeds

normally from the instruction cache.

tt
A

2nd basic block

1st basic block

3rd basic block (still filling)

A
tt

TRACE CACHETRACE CACHE

to DECODER

DYNAMIC INSTRUCTION STREAM

trace {A:taken,taken} trace {A:taken,taken}

A A
t t

Fill New Trace from Instruction Cache Access existing trace using A and predictions(t,t)

t t

later...

Figure 2: High level view of the trace cache approach. The instruction trace starting at address

A and continuing past 2 taken (t) branches is �lled into the trace cache at the �rst encounter and

later fetched in a single cycle. The address A and 2 branch predictions are used to lookup the trace

in the trace cache.

The trace cache approach relies on dynamic sequences of code being reused. This may be the

case for two reasons:

� temporal locality { like the primary instruction cache, the trace cache can count on instructions

which have been recently used being used again in the near future.

� branch behavior { most branches tend to be biased towards one direction, which is why branch

prediction accuracy is usually high. Thus, it is likely that certain paths through the control

ow graph will be followed frequently.

1.2 Related Prior Work

Three recent studies have focused on high bandwidth instruction fetching and are closely related

to the research reported here. All of these attempt to fetch multiple, possibly noncontiguous basic

blocks each cycle from the instruction cache.

First, Yeh, Marr, and Patt [2] consider a fetch mechanism that provides high bandwidth by

predicting multiple branch target addresses every cycle. The method features a Branch Address

4

Cache, a natural extension of the branch target bu�er [5]. With a branch target bu�er, a single

branch prediction and a BTB hit produces the starting address of the next basic block. Similarly,

a hit in the branch address cache combined with multiple branch predictions produces the start-

ing addresses of the next several basic blocks. These addresses are fed into a highly interleaved

instruction cache to fetch multiple basic blocks in a single cycle.

A second study by Franklin and Dutta [4] uses a similar approach to the branch address cache

(providing multiple branch targets), but with a new method for predicting multiple branches in a

single cycle. Their approach hides multiple individual branch predictions within a single prediction;

e.g. rather than make 2 branch predictions, make 1 prediction that selects from among 4 paths.

This enables the use of more accurate two-level predictors.

Another hardware scheme proposed by Conte, Mills, Menezes, and Patel [1] uses two passes

through an interleaved branch target bu�er. Each pass through the branch target bu�er produces

a fetch address, allowing two nonadjacent cache lines to be fetched. In addition, the interleaved

branch target bu�er enables detection of any number of branches in a cache line. In particular, the

design is able to detect short forward branches within a line and eliminate instructions between

the branch and its target using a collapsing bu�er. The work also proposes compiler techniques to

reduce the frequency of taken branches.

Two previously proposed hardware structures are similar to the trace cache but exist in di�erent

applications. The �ll unit, proposed by Melvin, Shebanow and Patt [17], caches RISC-like instruc-

tions which are derived from a CISC instruction stream. This predecoding eased the problem of

supporting a complex instruction set such as VAX on the HPS restricted dataow engine. Franklin

and Smotherman [4] extended the �ll unit's role to dynamically assemble VLIW-like instruction

words from a RISC instruction stream, which are then stored in a shadow cache. The goal of this

structure is to ease the dependency checking and issue complexity of a wide issue processor.

1.3 Problems with Other Fetch Mechanisms

Recall that the job of the fetch unit is to feed the dynamic instruction stream to the decoder. Unlike

the trace cache approach, previous designs have only the conventional instruction cache, containing

a static form of the program, to work with. Every cycle, instructions from noncontiguous locations

must be fetched from the instruction cache and assembled into the predicted dynamic sequence.

There are problems with this approach:

� Pointers to all of the noncontiguous instruction blocks must be generated before fetching can

begin. This implies a level of indirection, through some form of branch target table (branch

target bu�er, branch address cache, etc.), which translates into an additional pipeline stage

before the instruction cache.

� The instruction cache must support simultaneous access to multiple, noncontiguous cache

lines. This forces the cache to be multiported; if multiporting is done through interleaving,

bank conicts are su�ered.

� After fetching the noncontiguous instructions from the cache, they must be assembled into

the dynamic sequence. Instructions must be shifted and aligned to make them appear con-

tiguous to the decoder. This most likely translates into an additional pipeline stage after the

instruction cache.

The trace cache approach avoids these problems by caching dynamic instruction sequences

themselves, ready for the decoder. If the predicted dynamic sequence exists in the trace cache,

it does not have to be recreated on the y from the instruction cache's static representation.

5

In particular, no additional stages before or after the instruction cache are needed for fetching

noncontiguous instructions. The stages do exist, but not on the critical path of the fetch unit {

rather, on the �ll side of the trace cache. The cost of this approach is redundant instruction storage:

the same instructions may reside in both the primary cache and the trace cache, and there even

might be redundancy among lines in the trace cache.

1.4 Contributions

As with prior work in high bandwidth instruction fetching, this report demonstrates the importance

of fetching past multiple possibly-taken branches each cycle. Unlike other work in the area, we place

equal emphasis on fetch unit latency. The end result is the trace cache as a means for low latency,

high bandwidth instruction fetching.

Another contribution is a detailed simulation study comparing proposed high bandwidth fetch

mechanisms including the trace cache. Previously, the approaches described in Section 1.2 could

not be directly compared due to di�erent experimental setups { di�erent ISAs, processor execution

models, branch predictors, caches, workloads, and metrics.

In the course of this work, many microarchitectural and logic design issues arose. We looked at

design issues for not only the trace cache, but other proposed mechanisms as well. The results of

this detailed study are documented in the Appendix of this report.

1.5 Paper Overview

In the next section the trace cache fetch unit is described in detail. Section 3 follows up with an

analysis of other proposed high bandwidth fetch mechanisms. In Section 4 we describe the simu-

lation methodology including the processor model, workload, and performance metric. Simulation

results are presented in Section 5. As part of the study in Section 5, we compare the trace cache

with previously proposed high performance fetch mechanisms on a \level playing �eld" in terms of

caches, branch prediction methods, execution engines, and performance measures.

6

2 Trace Cache

In Section 1.1 we introduced the concept of the trace cache { an instruction cache which captures

dynamic instruction sequences. We now present a trace cache implementation. Because the trace

cache is not intended to replace the conventional instruction cache or the fetch hardware around

it, we begin with a description of the core fetch mechanism. We then show how the core fetch unit

is augmented with the trace cache.

2.1 Core Fetch Unit

The core fetch unit is implemented using established hardware schemes. It is called interleaved

sequential in [1]. Fetching up to the �rst predicted taken branch each cycle can be done using

the combination of an accurate multiple branch predictor [2], an interleaved branch target bu�er

(BTB) [1][5], a return address stack (RAS) [13], and a 2-way interleaved instruction cache [1][7].

Refer to Figure 3.

The core fetch unit is designed to fetch as many contiguous instructions possible, up to a

maximum instruction limit and a maximum branch limit. The instruction constraint is imposed by

the width of the datapath, and the branch constraint is imposed by the branch predictor throughput.

For demonstration, a fetch limit of 16 instructions and 3 branches is used throughout.

A

taken branch

16-way Interleaved

A

BRANCH TARGET BUFFER

A

fetch
BTB

valid instructions
bit vectors

target
address

Line Size = 16 Instructions

to decoder

INTERCHANGE, SHIFT, MASK

2-Way Interleaved

LOGIC

Instruction Cache

STACK
ADDRESS
RETURN

not taken
branch

1111110000000000
00000000001111111st:

2nd:

address

BRANCH

PREDICTOR

Line Size = 16 Instructions

MULTIPLE

3

"01x"

Figure 3: The core fetch unit.

7

The cache is interleaved so that 2 consecutive cache lines can be accessed; this allows fetching

sequential code that spans a cache line boundary, always guaranteeing a full cache line or up to

the �rst taken branch [7]. This scheme requires minimal complexity for aligning instructions: (1)

logic to swap the order of the two cache lines (interchange switch), (2) a left-shifter to align the

instructions into a 16-wide instruction latch, and (3) logic to mask o� unused instructions.

All banks of the BTB are accessed in parallel with the instruction cache. They serve the role

of (1) detecting branches in the instructions currently being fetched and (2) providing their target

addresses, in time for the next fetch cycle. The BTB must be n-way interleaved, where n is the

number of instructions in a cache line. This is so that all instructions within a cache line can be

checked for branches in parallel [1]. The BTB can detect other types of control transfer instructions

as well. If a jump is detected, the jump address may be predicted. (Jump target predictions are

not considered in this paper, however.) Return addresses can almost always be obtained with no

penalty by using a call/return stack. If the BTB detects a return in the instructions being fetched,

it pops the address at the top of the RAS.

Notice in Figure 3 that the branch predictor is separate from the BTB. This is to allow for

predictors that are more accurate than the 1-bit or 2-bit counters normally stored with each branch

entry in the BTB. While storing counters with each branch achieves multiple branch prediction

trivially, branch prediction accuracy is limited. Branch prediction is fundamental to ILP, and

should have precedence over other factors. For high branch prediction accuracy, we use a 4kB

GAg(14) correlated branch predictor [10]. The 14 bit global branch history register indexes into a

single pattern history table. This predictor was chosen for its accuracy and because it is more easily

extended to multiple branch predictions than other predictors which require address information

[2][4]. It is relatively straightforward to extend the single correlated branch predictor to multiple

predictions each cycle, as proposed in [2]. An actual hardware implementation is shown in Figure 4.

BTB logic combines the BTB hit information with the branch predictions to produce the next

fetch address, and to generate trailing zeroes in the valid instruction bit vectors (if there is a

predicted taken branch). The leading zeroes in the valid instruction bit vectors are determined by

the low-order bits of the current fetch address. The masking logic is controlled by these bit vectors.

Both the interchange and shift logic are controlled by the low-order bits of the current fetch

address. This is a key point: the left-shift amount is known at the beginning of the fetch cycle,

and has the entire cache access to fanout to the shifter datapath. Further, if a transmission gate

barrel shifter is used, instructions pass through only one transmission gate delay with a worst case

capacitive loading of 15 other transmission gates on both input and output. In summary, control

is not on the critical path, and datapath delay is minimal. Therefore, in our simulations we treat

the core fetch unit as a single pipeline stage.

2.2 Adding the Trace Cache

The core fetch unit can only fetch contiguous sequences of instructions, i.e. it cannot fetch past a

taken branch in the same cycle that the branch is fetched. The trace cache provides this additional

capability. The trace cache together with the core fetch unit is shown in Figure 5.

The trace cache is made up of instruction traces, control information, and line-�ll bu�er logic.

The length of a trace is limited in two ways { by number of instructions n and by number of basic

blocks m. The former limit n is chosen based on the peak dispatch rate. The latter limit m is

chosen based on n and the average number of instructions in a basic block. m also determines, or is

constrained by, the number of branch predictions made per cycle. In Figure 5, n = 16 and m = 3.

The control information is similar to the tag array of standard caches but contains additional state

information:

8

k2 2-bit counters)(

shift in
outcomes

update counter
with outcome

k bits()

single prediction

 BRANCH HISTORY REGISTER

PATTERN HISTORY TABLE

(a) Correlating predictor capable of 1 branch prediction per cycle.

b

b
13:2

b

13

b
11:0

b
0

b
1

12:1

b
0

b
0

p
0

p
0

p

b

p
0

p
2

p
1

1

1
214 2-bit counters

212()x 4 arrayarranged in

PATTERN HISTORY TABLE

GLOBAL HISTORY REGISTER

4:1 MUX

4:1 MUX

4:1 MUX

3 branch predictions

(b) Correlating predictor capable of 3 branch predictions per cycle.

Figure 4: Extending the predictor throughput.

� valid bit: indicates this is a valid trace.

� tag: the tag �eld identi�es the starting address of the trace.

� branch ags: there is a single bit for each branch within the trace to indicate the path followed

after the branch (taken/not taken). The mth branch of the trace does not need a ag since

no instructions follow it, hence there are only m� 1 bits instead of m bits.

� branch mask: state is needed to indicate (1) the number of branches in the trace and (2)

whether or not the trace ends in a branch. This is needed for comparing the correct number

of branch predictions against the same number of branch ags, when checking for a trace hit.

This is also needed by the branch predictor to know how many predictions were used. The

�rst dlog2(m + 1)e bits encode the number of branches. One more bit indicates if the last

instruction in the trace is a branch; if true, the branch's corresponding branch ag does not

need to be checked since no instructions follow it.

9

FILL

CONTROL

n instructions

INSTRUCTION LATCH

merge logic
(uses info from decoder)

n instructions

BRANCH

TARGET

BUFFER

BTB logic

next fetch
address

RETURN
ADDRESS
STACK

PREDICTOR

fetchfetch
address

branch
flags

address

mask

address
fall-through

target
address

1 + log (m+1)2

branch

m predictions

1st branch

2nd branch

3rd branch

m-1

HIT LOGIC

2:1 MUX

n instructions

TRACE CACHE

to DECODER

INSTRUCTION CACHE

to TC

PREDICTOR
from

m mask/interchange/shift

CORE FETCH UNIT

LINE-FILL BUFFER

11A

tag

X Y11,1

Figure 5: The trace cache fetch mechanism.

� trace fall-through address: if the last branch in the trace is predicted not taken, this address

is used as the next fetch address.

� trace target address: if the last branch in the trace is predicted taken, this address is used as

the next fetch address.

The trace cache is accessed in parallel with the instruction cache and BTB using the current fetch

address. The predictor generates multiple branch predictions while the caches are accessed. The

fetch address is used together with the multiple branch predictions to determine if the trace read

from the trace cache matches the predicted sequence of basic blocks. Speci�cally, a trace cache

hit requires that (1) the fetch address match the tag and (2) the branch predictions match the

branch ags. The branch mask ensures that the correct number of prediction bits are used in the

comparison. On a trace cache hit, an entire trace of instructions is fed into the instruction latch,

bypassing the instruction cache.

On a trace cache miss, fetching proceeds normally from the instruction cache, i.e. contiguous

instruction fetching. The line-�ll bu�er logic services trace cache misses. In the example in Figure 5,

three basic blocks are fetched one at a time from the instruction cache, since all branches are

predicted taken. The basic blocks are latched one at a time into the line-�ll bu�er; the line-�ll

control logic serves to merge each incoming block of instructions with preceding instructions in the

line-�ll bu�er. Filling is complete when either n instructions have been traced or m branches have

been detected in the trace. At this point the contents of the line-�ll bu�er are written into the

trace cache. The branch ags and branch mask are generated during the line-�ll process, and the

trace target and fall-through addresses are computed at the end of the line-�ll. If the trace does

not end in a branch, the target address is set equal to the fall-through address.

10

There are di�erent classes of control transfer instructions { conditional branches, unconditional

branches, calls or direct jumps, returns, indirect jumps, and traps { yet so far only conditional

branches have been discussed. The complex alternative for handling all of these cases is to add

additional bits to each branch ag to distinguish the type of control transfer instruction. Further,

the line-�ll bu�er must stop �lling a trace when a return, indirect jump, or trap is encountered,

because these control transfer instructions have an indeterminite number of targets, whereas the

predictor can only predict one of two targets. Lastly, the branch mask and the hit logic are made

slightly more complex since unconditional branches and calls should not be involved in prediction

(the outcome is known).

We simplify these complications in two ways. First, the trace cache does not store returns, indi-

rect jumps, or traps at all; the line-�ll bu�er aborts a �ll when it detects any of these instructions.

Second, unconditional branches and calls can be viewed as conditional branches that are extremely

predictable; from this point of view, they can be grouped into the conditional branch class and not

be treated any di�erently. With these two simpli�cations, the trace cache has only to deal with

conditional branches.

The size of a direct mapped trace cache with 64 lines, n = 16, and m = 3 is 712 bytes for

tags/control and 4 kilobytes for instructions (comparable in area to the correlated branch predictor,

4kB). This con�guration is used in the experiments which follow.

2.3 Trace Cache Design Space

The trace cache depicted in Figure 5 is the simplest design among many alternatives. It is the

implementation used in simulations of the trace cache. However, the design space deserves some

attention:

� associativity: The simplest trace cache is direct mapped. However, it can be made more asso-

ciative to reduce conict misses. This will be at the expense of access time and replacement

complexity.

� multiple paths: A downside of the simple trace cache is that from a given starting address,

only one trace can be stored. It might be advantageous to be able to store multiple paths

eminating from a given address. This can be thought of as another form of associativity {

path associativity. Adding path associativity could reduce thrashing between traces that start

at the same address.

� partial matches: An alternative to providing path associativity is to allow partial hits. If

the fetch address matches the starting address of a trace and the �rst few branch predictions

match the �rst few branch ags, provide only a pre�x of the trace. This is in place of the simple

\all or nothing" approach we use. The additional cost of this scheme is that intermediate

basic block addresses must be stored for the same reason that trace target and fall-through

addresses are stored. Also, a new issue is introduced: there is the question of whether or not

a partial hit be treated as a miss.

� other indexing methods: The simple trace cache indexes with the fetch address and includes

branch predictions in the tag match. Alternatively, the index into the trace cache could be

derived by concatenating the fetch address with the branch prediction bits. This e�ectively

achieves path associativity while keeping a direct mapped structure, because di�erent paths

starting at the same address now map to consecutive locations in the trace cache. There is a

severe complication, however, because the number of branches in a trace could be less than

11

m � 1. This implies the index should not use all branch prediction bits to access the trace

cache, yet this is not known in advance. A possible solution is to write the same trace to two

or more consecutive locations, so that either location gives a hit.

� �ll issues: While the line-�ll bu�er is collecting a new trace, the trace cache continues to be

accessed by the fetch unit. This means a miss could occur in the midst of handling a previous

miss. The design options in order of increasing complexity are: ignore any new misses, delay

servicing new misses until the line-�ll bu�er is free, or provide multiple line-�ll bu�ers to

support concurrent misses. Another issue is whether to �ll the trace cache with speculative

traces or to wait for branch outcomes before committing a trace to the cache.

� judicious trace selection: There are likely to be traces that are committed but never reused.

These traces may displace useful traces, causing needless misses. To improve trace cache hit

rates, the design could use a small bu�er to store recent traces; a trace in this bu�er is only

committed to the trace cache after one or more hits to that trace.

� victim trace cache: An alternative to judicious trace selection is to use a victim cache [20].

A victim trace cache may keep valuable traces from being permanently displaced by useless

traces.

12

3 Other High Bandwidth Fetch Mechanisms

In this section we analyze the organization of two previously proposed fetch mechanisms aimed at

fetching and aligning multiple noncontiguous basic blocks each cycle. The analysis compares these

mechanisms against the trace cache, with latency being the key point for comparison.

3.1 Branch Address Cache

The branch address cache fetch mechanism proposed by Yeh, Marr, and Patt [2] is shown in Figure 7.

There are four primary components: (1) a branch address cache (BAC), (2) a multiple branch

predictor, (3) an interleaved instruction cache, and (4) an interchange and alignment network. The

BAC extends the BTB to multiple branches by storing a tree of target and fall-through addresses

as depicted in Figure 6. The depth of the tree depends on the number of branches predicted per

cycle.

1st branch

2nd branch

3rd branch

A

F GED

B C

H I J K L M N O

T

T

T

NT

Figure 6: Each BAC entry stores a portion of the control ow graph.

In Figure 7, light grey boxes represent non-control transfer instructions and dark grey boxes

represent branches; the �elds in the BAC correspond to the tree in Figure 6, as indicated by

the address labels A through O. The diagram depicts the two-stage nature of the design. In the

�rst stage, an entry containing up to 14 basic block addresses is read from the BAC. From these

addresses, up to 3 basic block addresses corresponding to the predicted path are selected. In this

example, the next 3 branches are all predicted taken, corresponding to the sequence of basic blocks

fC,G,Og. In the second stage, the instruction cache reads the three basic blocks indicated by

addresses from the BAC in parallel from its multiple banks. Since the basic blocks may be placed

arbitrarily into the cache banks, they must pass through an alignment network to align them into

dynamic program order and merge them into the instruction latch.

The two stages in this design are pipelined. During the second stage, while basic blocks fC,G,Og
are being fetched from the instruction cache, the BAC begins a new cycle using address O as its

index. In general, the last basic block address indexing into the instruction cache is also the index

into the BAC.

If an address misses in the BAC, an entry is allocated for the portion of the control ow graph

which begins at that address. Branch target and fall-through addresses are �lled in the entry as

paths through the tree are traversed; an entry may contain holes corresponding to branches which

have not yet been encountered.

Though conceptually the design has two pipeline stages, possibly one or more additional pipeline

stages are implied by having the complicated alignment network. The alignment network must (1)

13

interchange the cache lines from numerous banks (with more than two banks, the permutations grow

quickly), and (2) collapse the basic blocks together, eliminating unused intervening instructions.

Though not discussed in [2], logic like the collapsing bu�er [1] discussed in the next section will be

needed to do this.

ALIGNMENT and MASKING NETWORK

bank address latches

instruction latch
OGC

Interleaved Instruction Cache

O

G

C

C G O
3 predictions

14 addresses

select logic

tag CA B

A

N O

(e.g. 111)

Branch Address Cache

Predictor

F

Fill Buffer

G L M

Control Logic
fill buffer

Address Caclculation Logic

Se
co

nd
 S

ta
ge

Fi
rs

t S
ta

ge

Figure 7: The BAC approach to instruction fetching.

14

3.2 Collapsing Bu�er

The instruction fetch mechanism proposed by Conte, Mills, Menezes, Patel [1] is illustrated in

Figure 8. It is composed of (1) an interleaved instruction cache, (2) an interleaved branch target

bu�er (BTB), (3) a multiple branch predictor, (4) special logic after the BTB, and (5) an interchange

and alignment network featuring a collapsing bu�er.

C

BA

BA

CBA

COLLAPSING BUFFER

16-way Interleaved

BRANCH TARGET BUFFER

C

LOGIC
BTB

fetch
address

target
address

MULTIPLE

BRANCH

PREDICTOR

valid instructions
bit vector

intrablock
branch

interblock
branch

2-Way Interleaved
Instruction Cache

to decoder

3

"111"

1st: 0011100011111000
2nd: 0000000111111000

Line Size = 16 InstructionsLine Size = 16 Instructions

INTERCHANGE/MASKING NETWORK

== C

Figure 8: The instruction fetch mechanism proposed by Conte et al [1].

The hardware is similar to the core fetch unit of the trace cache (described in Section 3), but

has two important distinctions. First, the BTB logic is capable of detecting intrablock branches

{ short hops within a cache line. Second, a single fetch goes through two BTB accesses. As will

be described below, this allows fetching beyond one taken interblock branch { a branch out of the

cache line. In both cases, the collapsing bu�er uses control information generated by the BTB logic

to merge noncontiguous basic blocks.

Figure 8 illustrates how three noncontiguous basic blocks labelled A, B, and C are fetched. The

15

fetch address A accesses the interleaved BTB. The BTB indicates that there are two branches in

the cache line, one at the instruction 5 with target address B, the other at the instruction 13 with

target address C. Based on this branch information and branch predictions from the predictor, the

BTB logic indicates which instructions in the fetched line are valid and produces the next basic

block address, C.

The initial BTB lookup produces (1) a bit vector indicating the predicted valid instructions in

the cache line (instructions from basic blocks A and B), and (2) the predicted target address C of

basic block B. The fetch address A and target address C are then used to fetch two nonconsecutive

cache lines from the interleaved instruction cache. This can be done only if the cache lines are in

di�erent banks. In parallel with this instruction cache access, the BTB is accessed again, using

the target address C. This second, serialized lookup determines which instructions are valid in the

second cache line and produces the next fetch address (the predicted successor of basic block C).

When the two cache lines have been read from the cache, they pass through masking and

interchange logic and the collapsing bu�er (which merges the instructions), all controlled by bit

vectors produced by the two passes through the BTB. After this step, the properly ordered and

merged instructions are captured in the instruction latches to be fed to the decoders.

This scheme has several disadvantages. First, the fetch line and successor line must reside in

di�erent cache banks. Bank conicts can be reduced by adding more banks, but this requires a

more complicated, higher latency interchange switch. Second, this scheme does not scale well for

interblock branches; supporting additional interblock branches requires as many additional BTB

accesses, all serialized. Third, the BTB logic requires a serial chain of n address comparators to

detect intrablock branches, where n is the number of BTB banks. Most seriously, however, is that

this fetch mechanism adds a signi�cant amount of logic both before and after the instruction cache.

The instruction fetch pipeline is likely to have three stages, as depicted in Figure 9: (1) initial BTB

lookup and BTB logic, (2) instruction cache access and second BTB lookup, and (3) interchange

switch, masking, and collapsing bu�er. Because the BTB is used in both the �rst and second stages,

a new fetch cycle cannot be initiated until the third stage unless the BTB is dual-ported and the

BTB logic is duplicated.

The collapsing bu�er takes only a single stage if implemented as a bus-based crossbar [1]. Note

that the collapsing bu�er is dependent on control information from the second BTB lookup, so

control fanout logic from the third stage cannot be brought up into the second stage; i.e. there is

truly a third stage.

ICACHE

BTB 2
BTB 1 CB

Figure 9: Stages in the CB approach.

16

4 Simulation Methodology

4.1 Processor Model

Our simulation model follows the basic structure shown in Figure 1 { a fetch engine and an execute

engine decoupled via instruction issue bu�ers. Various fetch engines { trace cache, branch address

cache, and collapsing bu�er { are modeled in detail. The processor execution part of the model

is constrained only by true data dependences. We assume unlimited hardware resources { any

instructions in the instruction bu�ers that have their data available may issue. This is done to

place as much demand on the fetch unit as any implementation will ever achieve, making instruction

fetch the performance bottleneck whenever possible. In e�ect, unlimited register renaming and full

dynamic instruction issue are assumed. Loads and stores are assumed to have oracle address

disambiguation { loads and stores wait for previous stores only if there is a true address conict.

Also, the data cache always hits. The only hardware limitations imposed are the maximum size

of the instruction bu�er and the degree of superscalar dispatch. In all simulations, the size of the

instruction bu�er is 2048 useful instructions and the maximum fetch/dispatch bandwidth is 16

instructions per cycle. In summary, the amount of ILP exploited is limited by 5 factors:

� maximum fetch/dispatch rate (16/cycle)

� maximum size of instruction window (2048)

� true data dependences in the program

� operation latencies

� performance of the fetch engine

It is the last factor that we are interested in and which will vary between simulations.

The instruction pipeline is composed of 4 phases: fetch, dispatch, issue, and execution. The

latency of the fetch phase is varied according to implementation, and the dispatch latency is �xed

at 1 cycle. If all operands are available at or immediately after dispatch, instruction issue takes

only 1 cycle; otherwise issue is delayed until operands arrive. Because of unlimited resources and

unlimited register renaming, issue never stalls due to structural or register WAR/WAW hazards.

After issue, execution takes a certain number of cycles based on the operation. Operation latencies

are shown in Table 2. The minimum pipeline latency from fetch to completion is therefore 4 cycles,

for a fetch unit latency of 1 cycle, no data dependence stalls, and a 1 cycle operation. The retire

stage(s) of the pipeline are hidden due to unlimited result forwarding from the execute stage to the

issue stage.

4.2 Workload

Six integer and six oating point benchmarks from the SPEC suite were used to evaluate the per-

formance of the various fetch mechanisms. The benchmarks were compiled on a Sun SPARCstation

10/30 using \gcc -O4 -static -fschedule-insns -fschedule-insns2" for integer benchmarks and \f77

-O4 -Bstatic -fast -cg89" for oating point benchmarks. SPARC instruction traces were generated

using the Quick Pro�ler and Tracer (QPT) [16] and then fed into the trace-driven processor simula-

tor. Table 3 shows inputs for each of the benchmarks. Benchmarks were simulated for 100 million

instructions.

The foremost problem with trace-driven simulation is that incorrect speculative execution can-

not be simulated, since traces represent only the correct path of execution. This may lead to some

17

OPERATION LATENCIES (cycles)

Integer ALU Operations 1

Loads 2y

Stores 1z

Control Transfer Instructions 1

FP Add/Sub/Mult/Conv 3

FP Div 11/18

FP Sqrt 17/32

all other FP ops 1

y One cycle to compute address, one cycle to access the data cache.
z One cycle to compute address, the rest of the write is hidden; store data can always be bypassed to
dependent loads when available.

Table 2: Operation execution latencies. Note that for loads and stores, data cache misses are

not simulated. Floating point latencies for the most common operations are similar to the MIPS

R10000 [15].

error. For example, cache structures do not see the pollution e�ects caused by fetching and execut-

ing instructions down the wrong path. Further, our execution engine does not see resource usage

due to incorrectly speculated instructions (however, because of unlimited resource assumptions in

the execution model, this latter factor will not produce performance much di�erent from simulation

of incorrect speculation).

BENCHMARK input BENCHMARK input

eqntott int pri 3.eqn doduc doducin

espresso bca.in tomcatv (internal)

compress in nasa7 (internal)

gcc stmt.i mdljdp2 mdlj2.dat

xlisp li-input.lsp swm256 swm256.in

sc loada1 su2cor su2cor.in

Table 3: Benchmarks and their inputs.

4.3 Performance Metric

For measuring performance we use instructions completed per cycle (IPC), which is a direct measure

of performance and is almost certainly the measure that counts most. The harmonic mean is used

to average the performance of benchmarks.

18

5 Results

Table 4 summarizes the trace cache (TC), collapsing bu�er (CB), and branch address cache (BAC)

fetch unit parameters used in all experiments. In the sections which follow, results for the three

high bandwidth implementations are compared. Previously, these methods could not be compared

because the studies used di�erent simulation environments (instruction sets, benchmarks, compilers,

performance metrics) and di�erent hardware con�gurations (execution model, instruction cache,

branch predictor, etc.).

As a base case for comparison, results are also presented for conventional instruction fetching.

The core fetch unit of the trace cache (described in Section 2.1) is used as the base case. We will

call the base case \sequential" (SEQ), since only sequential instructions can be fetched in a given

cycle. To demonstrate the e�ect of branch throughput, two variations of SEQ are simulated: SEQ.1

is limited to one basic block per cycle, and SEQ.3 can fetch up to three contiguous basic blocks.

Simulation parameters for SEQ are the same as those for TC in Table 4, but with the trace cache

not present (and 1 or 3 branch predictions per cycle).

INSTRUCTION SUPPLY MECHANISM

SIMULATION PARAMETER TC CB BAC

instruction fetch limit 16 instructions per cycle

BHR 14 bits

Multiple Branch PHT 214 2-bit counters (4 KB storage)

Predictor # pred/cycle up to 3 predictions each cycle

size 128 KB

associativity direct mapped

Instruction Cache line size 16 instructions 16 instructions 4 instructions

interleave factor 2-way 2-way 8-way

miss penalty 10 cycles

Return Address Stack depth unlimited

size 1024 entries 1024 entries

Branch Target Bu�er associativity direct mapped direct mapped n/a

interleave factor 16-way 16-way

size 64 entries

Trace Cache associativity direct mapped n/a

line size 16 instructions

concurrent �lls 1

size 1024 entries

Branch Address Cache associativity n/a direct mapped

concurrent �lls 1

Table 4: Fetch unit con�gurations.

The simulators only di�er in fetch unit-speci�c hardware. Because of the fundamental di�er-

ences between fetch units, it is di�cult to maintain an area budget over all the schemes. Therefore,

area di�erences must always be kept in mind when comparing the results. Here we comment briey

about area comparisons:

� The trace cache used adds under 5 kB of additional SRAM storage to the core fetch unit,

19

SEQ.3. The SRAM is assumed to have 1 read port and 1 write port.

� Super�cially, the CB fetch unit di�ers from SEQ only in datapath after the instruction cache.

However, the BTB must be dual-ported to support pipelining the CB fetch unit. In the worst

case (replicating cells), a dual-ported BTB has twice the area. The BTB used throughout

takes up about 7 kB of SRAM storage; if we assume 1.5 to 2 times that for dual-porting, add

another 3.5 to 7 kB of storage for the CB fetch unit.

� A large BAC (1024 entries) is used in the experiments because the BAC must perform the

functions of both the TC and BTB. The BTB is a particularly important resource because it

gets most of the base performance. A rough area estimate for the BAC is about 60 kB (464

bits per entry [2]).

The results are split into two sets. The �rst set assumes all fetch units have a latency of 1

cycle, in order to demonstrate each mechanism's ability to deliver bandwidth performance. The

second set shows what happens when the extra pipe stages implied by CB and BAC are actually

simulated.

5.1 Single-Cycle Fetch Latency

The �rst set of results, Table 5 and corresponding graphs in Figures 10 and 11, assumes a fetch

unit latency of 1 cycle for all schemes. This is done to isolate the ability of the fetch mechanisms

to supply instruction bandwidth.

Benchmark SEQ.1 SEQ.3 BAC CB TC

eqntott 3.05 3.30 3.96 4.16 4.24

espresso 3.17 4.10 4.42 4.61 5.20

xlisp 2.63 3.10 3.29 3.43 3.57

gcc 2.16 2.32 2.24 2.47 2.50

sc 3.17 3.64 4.10 4.33 4.43

compress 3.28 3.72 3.82 4.02 4.13

doduc 4.22 4.37 4.15 4.48 4.48

tomcatv 10.5 11.9 12.4 13.9 14.2

nasa7 8.41 8.56 8.52 8.63 10.5

mdljdp2 6.03 7.47 7.09 8.24 8.36

swm256 8.88 9.26 9.19 9.55 9.60

su2cor 4.66 4.77 4.72 4.90 5.02

Table 5: Performance of instruction fetch mechanisms, assuming unit fetch latency for all.

The �rst observation is that SEQ.3 gives a substantial performance boost over SEQ.1. The graph

in Figure 12 shows that fetching past multiple not-taken branches each cycle yields performance

improvement above 7% for all of the integer benchmarks. Half of the integer benchmarks show a

15% or better performance improvement. Only two of the oating point benchmarks show similar

improvement.

The second observation is that for integer benchmarks, fetching past taken branches is a big

win. Adding the TC function to the SEQ.3 mechanism yields as much performance improvement

20

IPC for the Various Fetch Mechanisms, Single-Cycle Latency

1.5

2

2.5

3

3.5

4

4.5

5

5.5

eqntott espresso xlisp gcc sc compress

integer benchmark

IP
C

SEQ.1

SEQ.3

BAC

CB

TC

Figure 10: IPC for the various fetch mechanisms, assuming a fetch unit latency of 1 cycle for all

designs. (integer benchmarks)

as extending SEQ.1 to multiple not-taken branches per cycle, and in some cases signi�cantly more

improvement. Somewhat surprisingly, half of the oating point benchmarks see substantial perfor-

mance improvement (12% or more) with the TC.

The graph in Figure 13 shows the performance improvement that BAC, CB, and TC yield over

SEQ.3 (SEQ.3 is used as the base instead of SEQ.1 because it is aggressive, yet not much more

complex than SEQ.1). One might expect that under the single-cycle fetch latency assumption, the

three approaches would perform similarly. However, TC enjoys a noticeable lead over CB. This

is most likely because the original collapsing bu�er was not designed to handle backward taken

intrablock branches [1], whereas the TC can handle any arbitrary trace. The BAC performs worst

of the three, and in some cases even performs below SEQ.3 { particularly in oating point. There

are two explanations for this behavior:

� Instruction cache bank conicts are the primary performance loss for BAC. Table 6 shows

that BAC is comparable to TC if bank conicts are ignored, again assuming single-cycle fetch

latency for BAC.

� The BAC treats basic blocks as atomic units. As a result, a BAC entry will provide only as

many basic block addresses as will �t within the 16 instruction fetch limit. The consequence

is that given hits in both the TC and BAC, the BAC can never supply more instructions than

the TC. This situation can be remedied by having a wider fetch datapath than the dispatch

datapath, which amounts to prefetching.

21

IPC for the Various Fetch Mechanisms, Single-Cycle Latency

3

5

7

9

11

13

doduc tomcatv nasa7 mdljdp2 swm256 su2cor

floating point benchmark

IP
C

SEQ.1

SEQ.3

BAC

CB

TC

Figure 11: IPC for the various fetch mechanisms, assuming a fetch unit latency of 1 cycle for all

designs. (oating point benchmarks)

Performance Improvement of SEQ.3 over SEQ.1

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

eq
nt

ot
t

es
pr

es
so

xl
is

p

gc
c sc

co
m

pr
es

s

do
du

c

to
m

ca
tv

na
sa

7

m
dl

jd
p2

sw
m

25
6

su
2c

or

benchmark

%
 im

pr
ov

em
en

t i
n

IP
C

Figure 12: Performance improvement of SEQ.3 over SEQ.1.

22

Performance Improvement over SEQ.3, Single-Cycle Latency

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%
eq

nt
ot

t

es
pr

es
so

xl
is

p

gc
c sc

co
m

pr
es

s

do
du

c

to
m

ca
tv

na
sa

7

m
dl

jd
p2

sw
m

25
6

su
2c

or

benchmark

%
 im

pr
ov

em
en

t i
n

IP
C

BAC

CB

TC

Figure 13: Performance improvement of BAC, CB, and TC over SEQ.3, assuming a fetch unit

latency of 1 cycle for all designs.

Benchmark BAC (conicts) BAC (no conicts) TC

eqntott 3.96 4.24 4.24

espresso 4.42 5.34 5.20

xlisp 3.29 3.46 3.57

gcc 2.24 2.36 2.50

sc 4.10 4.48 4.43

compress 3.82 3.93 4.13

Table 6: The performance of BAC is severely limited by instruction cache bank conicts. This table

shows that the performance of BAC is comparable to TC if bank conicts are ignored, assuming

unit fetch latency.

23

5.2 The E�ect of Latency

The e�ect of fetch unit latency is quanti�ed in Table 7 and corresponding graphs in Figures 14

and 15. Since both the CB and BAC schemes add stages before and after the instruction cache, we

give the performance of these schemes as fetch latency is varied from 1 to 3 cycles. Figure 16 shows

that the impact of latency is quite severe. CB and BAC fall well below the performance of TC. For

all but 3 of the benchmarks, BAC with a latency of 2 cycles performs worse than SEQ.3. Likewise,

for over half of the benchmarks, CB with a latency of 3 cycles performs worse than SEQ.3.

The e�ect of latency is more dramatic for integer code than oating point code. Still, only one

benchmark { tomcatv { appears to be tolerant of fetch unit latency.

Benchmark CB CB (L2) CB (L3) BAC BAC (L2) BAC (L3)

eqntott 4.16 3.86 3.60 3.96 3.68 3.44

espresso 4.61 4.34 4.10 4.42 4.17 3.94

xlisp 3.43 3.17 2.95 3.29 3.08 2.89

gcc 2.47 2.25 2.07 2.24 2.07 1.92

sc 4.33 4.00 3.73 4.10 3.64 3.40

compress 4.02 3.83 3.65 3.82 3.65 3.49

doduc 4.48 4.33 4.19 4.15 4.01 3.87

tomcatv 13.9 13.8 13.7 12.4 12.3 12.2

nasa7 8.63 8.27 7.93 8.52 8.18 7.85

mdljdp2 8.24 8.01 7.80 7.09 6.91 6.73

swm256 9.55 9.44 9.31 9.19 9.06 8.92

su2cor 4.90 4.75 4.61 4.72 4.57 4.43

Table 7: Performance of the CB and BAC schemes with latency taken into account. L2 = 2 cycle

fetch latency, L3 = 3 cycle fetch latency.

24

Performance of Various Fetch Mechanisms, Non-unit Latency

1.5

2

2.5

3

3.5

4

4.5

5

5.5

eqntott espresso xlisp gcc sc compress

integer benchmark

IP
C

SEQ.1

SEQ.3

BAC

BAC (L2)

BAC (L3)

CB

CB (L2)

CB (L3)

TC

Figure 14: IPC for the various fetch mechanisms, using realistic latencies for CB and BAC. L2 and

L3 stand for 2 cycle and 3 cycle latency, respectively. (integer benchmarks)

Performance of Various Fetch Mechanisms, Non-unit Latency

3

5

7

9

11

13

doduc tomcatv nasa7 mdljdp2 swm256 su2cor

floating point benchmark

IP
C

SEQ.1

SEQ.3

BAC

BAC (L2)

BAC (L3)

CB

CB (L2)

CB (L3)

TC

Figure 15: IPC for the various fetch mechanisms, using realistic latencies for CB and BAC. L2 and

L3 stand for 2 cycle and 3 cycle latency, respectively. (oating point benchmarks)

25

Performance Improvement over SEQ.3, Non-unit Latency

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

eq
nt

ot
t

es
pr

es
so

xl
is

p

gc
c sc

co
m

pr
es

s

do
du

c

to
m

ca
tv

na
sa

7

m
dl

jd
p2

sw
m

25
6

su
2c

or

benchmark

%
 im

pr
ov

em
en

t i
n

IP
C

BAC (L2)

BAC (L3)

CB (L2)

CB (L3)

TC

Figure 16: Performance improvement of BAC, CB, and TC over SEQ.3, using realistic latencies for

CB and BAC. L2 and L3 stand for 2 cycle and 3 cycle latency, respectively.

26

5.3 Trace Cache E�ectiveness

To determine how e�ective the trace cache is, we must establish the upper bound on its performance

and measure how far short it falls from this bound. The bound is established by an \ideal" fetch

model, de�ned as follows: as long as branch outcomes are predicted correctly and instructions hit

in the instruction cache, up to 3 basic blocks or 16 instructions { whichever comes �rst { can be

fetched every cycle.

Figure 17 shows that there is still performance to be gained by better instruction fetching. TC

falls short of ideal performance due to trace cache and BTB misses. The trace cache used here has

only 64 entries and is direct mapped; adding 2/4-way associativity or simply increasing the number

of entries will narrow the performance gap between TC and ideal. Figure 17 provides incentive to

explore the design space alternatives of Section 2.3 aimed at improving hit rate.

Comparing Trace Cache to Ideal

2

2.5

3

3.5

4

4.5

5

5.5

6

eqntott espresso xlisp gcc sc compress

integer benchmark

IP
C TC

ideal

Figure 17: TC falls short of full performance potential due to trace cache misses and BTB misses.

Trace cache miss rate can be speci�ed in two ways: in terms of traces (trace miss rate) and in

terms of instructions (instruction miss rate). Trace miss rate is the fraction of accesses that do not

�nd a trace present. Instruction miss rate is the fraction of instructions not supplied by the trace

cache. Trace miss rate is a more direct measure of trace cache performance because it indicates the

fraction of fetch cycles that bene�t from higher bandwidth. However, instruction miss rate is also

reported because it corresponds to cache miss rate in the traditional sense. Miss rates are shown

in Table 8.

27

Benchmark trace miss rate instruction miss rate

eqntott 27.4% 7.80%

espresso 41.9% 21.1%

xlisp 64.0% 39.7%

gcc 70.7% 51.2%

sc 50.7% 27.7%

compress 17.8% 6.10%

doduc 66.8% 59.1%

tomcatv 61.2% 59.9%

nasa7 9.80% 2.50%

mdljdp2 14.1% 4.30%

swm256 79.0% 76.1%

su2cor 21.4% 5.80%

Table 8: Trace miss rate and instruction miss rate for a 64 entry direct mapped trace cache.

28

6 Conclusions

Trends in processor organization { wider dispatch/issue, larger instruction windows, and deeper

speculation { expose new instruction fetch performance issues. These are branch throughput,

noncontiguous instruction alignment, and fetch unit latency.

Experiments with real implementations yield the following results:

� For integer code, being able to fetch past multiple not-taken branches improves performance

on average by 14% over a fetch unit that is limited to 1 branch prediction per cycle. For

oating point, the average performance improvement is 7%.

� For integer code, being able to fetch past multiple taken branches improves performance on

average by 17% over a fetch unit that can only fetch contiguous instructions (this result is for

the trace cache implementation). For oating point, the average performance improvement

is 9%.

� The trace cache consistently performs better than either of the other high bandwidth fetch

mechanisms studied { collapsing bu�er and branch address cache { even if unit fetch latency is

assumed across all three. The primary reasons for this are (1) the original CB design does not

handle backward taken intrablock branches and (2) the BAC design su�ers from instruction

cache bank conicts.

� Simulations with more realistic latencies for the CB and BAC designs (based on stages before

and after the instruction cache) clearly show the advantage of using a low latency approach.

Their performance falls well below that of the trace cache, and in some cases a low latency,

lower bandwidth fetch unit does better.

The combined e�ect of multiple branches per cycle and noncontiguous instruction fetching is an

average improvement of 34% for integer benchmarks and 16% for oating point benchmarks, using

the trace cache.

While a small trace cache performs well, comparison with the \ideal" noncontiguous instruction

fetch model shows the potential for even higher performance { additional improvement in the range

of 5% to 30%. This experiment motivates investigation of larger and/or more complex trace cache

designs, such as path associativity, partial matches, judicious trace selection, and victim trace

caches.

In conclusion, it is important to design fetch units capable of fetching past multiple, possibly

taken branches each cycle. However, this additional bandwidth performance should not be achieved

at the expense of longer fetch unit latency. The trace cache is successful in satisfying both of these

requirements.

7 Acknowledgements

This work was supported in part by NSF Grant MIP-9505853 and by the U.S. Army Intelligence

Center and Fort Huachuca under Contract DABT63-95-C-0127 and ARPA order no. D346. The

views and conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the o�cial policies or endorsements, either expressed or implied, of the

U.S. Army Intelligence Center and Fort Huachuca, or the U.S. Government.

Eric Rotenberg is funded by a Graduate Fellowship from IBM.

29

References

[1] T. Conte, et al. , \Optimization of Instruction Fetch Mechanisms for High Issue Rates," Pro-

ceedings of the International Symposium on Computer Architecture, June 1995.

[2] T-Y Yeh, D. Marr and Y. Patt, \Increasing the Instruction Fetch Rate via Multiple Branch

Prediction and a Branch Address Cache," Proceedings of the 7th ACM International Conference

on Supercomputing, July 1993.

[3] M. Franklin and M. Smotherman, \A Fill-Unit Approach to Multiple Instruction Issue," Pro-

ceedings of the 27th Annual International Symposium on Microarchitecture, December 1994.

[4] S. Dutta and M. Franklin, \Control Flow Prediction with Tree-Like Subgraphs for Superscalar

Processors," to appear Micro-28, Nov. 1995.

[5] J. Lee and A. J. Smith, \Branch Prediction Strategies and Branch Target Bu�er Design," IEEE

Computer, January 1984.

[6] J. Losq, \Generalized History Table for Branch Prediction," IBM Technical Disclosure Bulletin,

June 1982.

[7] G. F. Grohoski, \Machine Organization of the IBM RISC System/6000 processor," IBM Journal

of Research and Development, January 1990.

[8] S-T Pan, K. So, and J. T. Rahmeh, \Improving the Accuracy of Dynamic Branch Prediction

Using Branch Correlation," Proceedings of the 5th International Conference on Architectural

Support for Programming Languages and Operating Systems, October 1992.

[9] T-Y Yeh and Y. N. Patt, \Alternative Implementations of Two-Level Adaptive Branch Predic-

tion," Proceedings of the 19th International Symposium on Computer Architecture, May 1992.

[10] T-Y Yeh, \Two-level Adaptive Branch Prediction and Instruction Fetch Mechanisms for High-

Performance Superscalar Processors," PhD Thesis, Department of Electrical Engineering and

Computer Science, University of Michigan, 1993.

[11] T-Y Yeh and Y. N. Patt, \A Comprehensive Instruction Fetch Mechanism for a Processor

Supporting Speculative Execution," .

[12] E. Hao, P. Chang and Y. Patt, \The E�ect of Speculatively Updating Branch History on

Branch Prediction Accuracy, Revisited," Proceedings of the 27th annual International Symposium

on Microarchitecture, December 1994.

[13] D. Kaeli and P. Emma, \Branch History Table Prediction of Moving Target Branches Due to

Subroutine Returns," Proceedings of the 18th International Symposium on Computer Architec-

ture, May 1991.

[14] D. Wall, \Limits of Instruction-Level Parallelism," International Conference on Architectural

Support for Programming Languages and Operating Systems, 1991.

[15] L. Gwennap, \MIPS R10000 Uses Decoupled Architecture," Microprocessor Report, October

1994.

[16] J. Larus, \E�cient Program Tracing," IEEE Computer, May 1993.

30

[17] S. Melvin, M. Shebanow and Y. Patt, "Hardware Support for Large Atomic Units in Dy-

namically Scheduled Machines," Proceedings of the 21st Annual International Symposium on

Microarchitecture, December 1988.

[18] J. E. Smith, \A Study of Branch Prediction Strategies," Proceedings of the 8th Symposium on

computer Architecture, May 1981.

[19] J. E. Smith and G. S. Sohi, \The Microarchitecture of Superscalar Processors," Proceedings

IEEE, December 1995.

[20] N. Jouppi, \Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Bu�ers," Proceedings of the 17th International Symposium on

Computer Architecture, May 1990.

31

A Logic Implementation Issues

This appendix serves as a repository for many of the issues that we encountered in our study of

the various high bandwidth instruction fetch mechanisms. There is no signi�cance to the order

that things are presented, except that several subsections depend on the BTB description, which

is presented �rst. Also, a given section may be relevant to one or more di�erent fetch mechanisms.

A.1 Concerning the Branch Target Bu�er

The branch target bu�er di�ers from its original design in that it must locate branches within a

block of instructions. The conventional branch target bu�er takes a single word address and deter-

mines if there is a branch at that address, a scheme originally intended for single issue processors.

Extending the branch target bu�er to detect multiple branches in a block of instructions is fairly

straightforward. Conte et al. [1] propose an interleaved branch target bu�er where the number of

banks is equal to the number of instructions in a cache line. In this way, all locations in the fetched

cache line can be checked for branches in parallel. (The address of the �rst instruction in the cache

line is used to index the �rst bank; the address of the second instruction indexes the second bank;

and so on.)

Barring misses, the branch target bu�er provides all of the branch information contained in

a cache line. This information must be combined with multiple branch predictions to determine

two things: which instructions in the fetched line are valid and what is the next fetch address.

Matching predictions to their intended branches requires special logic after the branch target bu�er.

Conceptually this logic scans the branch information from the �rst bank to the last bank counting

branches. This counting has an inherent ripple e�ect which is nontrivial for larger cache lines. The

logic diagram in Figure 18 shows a possible implementation where banks are counted in groups of

four to reduce the amount of ripple. If four is not su�cient, even more \lookahead" can be used.

We now present a detailed implementation of the BTB logic. The purpose of this logic is to

combine multiple branch predictions with branch information from the BTB to determine which

instructions in the fetched cache line are valid and to produce the next fetch address.

The implementation assumes a cache line size of 16 instructions and 3 branch predictions per

cycle. The following notation and signals are used in expressions and logic diagrams:

� x: BTB bank number, also instruction position in the cache line. x ranges from 0 to 15.

� hitx: Bank x of the BTB indicates a hit. In other words, there is a branch at instruction

position x of the cache line.

� ADDR5:2: Bits 2 through 5 of the fetch address point to the �rst valid instruction in the

cache line.

� bx: If set, there is a valid branch at instruction position x in the cache line.

� onex: If set, there is at least one valid branch preceding the instruction at position x.

� twox: If set, there are at least two valid branches preceding the instruction at position x.

� threex: If set, there are at least three valid branches preceding the instruction at position x.

� p0: First branch prediction.

� p1: Second branch prediction.

32

� p2: Third branch prediction.

� Mx: Mask bit for the instruction at position x in the cache line.

� SELx: If this signal is set, the target address from bank x of the BTB is used as the next

fetch address.

The outputs of the logic are a bit vector indicating valid instructions and the next fetch address.

The bit vector can be derived from the mask bits Mx. If there is a taken branch, the next fetch

address is selected using the SELx signals. Here are the necessary expressions:

bx = hitx(x � ADDR5:2)(1)

Mx = (p0onex + p1twox + threex) + (x � ADDR5:2)(2)

SELx = bx(onexp0 + onextwoxp0p1 + twoxthreexp0p1p2)(3)

Most of the complexity is in computing onex, twox, and threex for all x. Essentially this involves

counting the number of valid branches from the leftmost bank to the rightmost bank. The ripple

e�ect introduces too long a delay if counting proceeds one bank at a time. Figure 18 shows how

4 banks can be grouped together for counting branches, analogous to carry lookahead logic. The

diagram shows how the ripple path (shaded region) sees only 2 additional gate levels every 4 banks.

33

b A b B Cb Db

b B
b A+

b A
Cb

b A
Db

b A
b B

b B
Cb

b B
Db

Cb
Db

b A
b B

Db

b A
b B

Cb

b A
Cb

Db

b B
Cb

Db

Db
b C

b B
b A

+
+

+

Cb
b B

b A+
+

th
re

e A

tw
o

A

on
e

A

on
e

B

th
re

e B

tw
o

B
on

e
C

tw
o

C

th
re

e C

tw
o

D

th
re

e D

on
e

D

tw
o

O
U

T

th
re

e O
U

T

on
e

O
U

T

on
e

IN

tw
o

IN

th
re

e IN

Figure 18: Counting the number of branches within a group of 4 BTB banks. The shaded region

highlights the critical path. If there are 16 instructions in a cache line, and hence 16 BTB banks,

4 of these logic blocks are daisy-chained together.

34

A.2 Concerning the Multiple Branch Predictor

Predicting the next sequence of basic blocks to be fetched requires predicting the outcomes of

multiple intervening branches. The predictor must also be highly accurate so that the fetch unit

can speculate past many branches to form a large, accurate window of instructions for the execution

engine. The multiple branch predictor used throughout this paper is that proposed by Yeh et al.

[2]. Before describing the multiple branch predictor, it is necessary to briey review the single

branch predictor on which it is based { the correlation predictor [8].

The correlation predictor is shown in Figure 19. Correlation prediction uses the fact that the

outcome of a branch tends to be inuenced by the outcomes of branches preceding it. It is one

of nine Two-level Adaptive Branch Prediction schemes [9] all of which use two levels of history

to achieve high accuracy. The global branch history register (BHR) and the pattern history table

(PHT) reect the two levels of history. A BHR k bits in length keeps a record of the outcomes of

the last k branches. As new branches are encountered, their outcomes are shifted into the least

signi�cant bit of the BHR. The PHT is a table of 2k 2-bit counters, one counter for each possible

pattern in the BHR. To predict the next branch, the BHR is used to index the PHT and a prediction

is made based on the value of the corresponding PHT entry. In summary, the current prediction

depends on (1) the pattern of k preceding branches (the BHR), and (2) the behavior of the branch

the last few times that pattern was encountered (2-bit counter in the PHT). When the outcome of

the branch is known, it is used to update the same 2-bit counter in the PHT (increment if taken,

decrement if not taken).

k2 2-bit counters)(

shift in
outcomes

update counter
with outcome

k bits()

single prediction

 BRANCH HISTORY REGISTER

PATTERN HISTORY TABLE

Figure 19: Correlation branch predictor.

Adapting the predictor for multiple branch predictions in one cycle requires changing both the

physical layout of the PHT and the way that the structures are updated. Conceptually the PHT

must be accessed multiple times, each time using successive shifts of the BHR as an index. It is

impractical to assume that multiple sequential accesses of the PHT can be made in a single cycle.

Figure 20 shows one possible implementation of the multiple branch predictor. There are two key

features. First, the PHT has multiple read ports, one for each prediction. Second, the PHT is

organized such that a row of counters is read from each port. This is because the low order bits

of successive BHR indices are incomplete. These low order bits are only known after accessing the

PHT; they feed a chain of multiplexors after the PHT to make �nal selections. Instead of updating

the structures with branch outcomes, they must be speculatively updated with branch predictions.

The BHR needs to shift in predictions because outcomes are simply unavailable. On the other

hand, speculatively updating the PHT is not a strict requirement, but from a heuristic standpoint

it is preferred over using stale history. In the event that a branch is mispredicted, the structures

35

should be repaired. Repairing the BHR is easily done by maintaining a second, \golden" BHR

which is updated with true branch outcomes; when a misprediction is detected, the golden BHR

is loaded into the speculative BHR (rolling back the state). Repairing entries in the PHT is more

complex; it would be worthwhile to study the performance impact of not repairing PHT entries.

b

b
13:2

b

13

b
11:0

b
0

b
1

12:1

b
0

b
0

p
0

p
0

p

b

p
0

p
2

p
1

1

1
214 2-bit counters

212()x 4 arrayarranged in

PATTERN HISTORY TABLE

GLOBAL HISTORY REGISTER

4:1 MUX

4:1 MUX

4:1 MUX

3 branch predictions

Figure 20: Correlation branch predictor adapted for multiple branch predictions in a cycle.

When fetching from the instruction cache, correct handling of branches requires coordination

of the multiple branch predictor, branch target bu�er, and decode logic after the instruction latch.

The following rules provide this coordination.

� If a branch misses in the branch target bu�er, the branch is automatically predicted not

taken. Since the branch is not detected until the decode stage (a cycle after fetching), the

simplest alternative is to continue fetching sequentially. Even if the predictor predicted a

taken branch, it is treated as not taken.

� The predictor itself does not know when to shift the BHR, and by how many bits, since it

has no knowledge of branches in the fetch stream. The problem is illustrated in Figure 21.

If all branches in the fetched line hit in the branch target bu�er, there is no problem { the

number of bits to shift the BHR by is equal to the number of branches up to and including

the �rst taken branch (Figure 21(a)). However, if some branches do not hit in the branch

target bu�er, the predictor will not know about them until it is too late (the decode stage).

As a consequence, the BHR shifts less bits than required, and could fall behind the fetch

unit in subsequent cycles (Figure 21(b)). The solution is to always keep the BHR ahead

(Figure 21(c)). That is, if the predictor is capable of p predictions per cycle, it should stay

up to p branches ahead of the fetch stream.

� The p predictions must be paired with their respective branches. Again, there is no problem if

all branches in the fetched line hit in the branch target bu�er { the �rst prediction goes to the

�rst branch, the second prediction to the second branch, and so on (Figure 22(a)). However, if

any branch misses in the branch target bu�er, predictions can get \skewed" (Figure 22(b)) {

subsequent branches are assigned predictions intended for previous branches. There is no way

to avoid the problem, although recovery steps can be initiated in the decode stage. However,

to be consistent with the �rst rule above, prediction \skew" is simply tolerated.

36

� If more than p branches are detected in the fetched cache line, only instructions up to the pth

branch are supplied to the decoder. Fetching of instructions after the pth branch is delayed

until the next cycle. This rule is imposed so that the predictor does not fall behind (its

throughput is limited to p predictions per cycle).

Notice that predecode information in the instruction cache pertaining to the number and location

of branches can help the fetch mechanism a great deal.

hit in BTB =

0

1

3

4

2

7

8

9

11

13

12

10

15

14

labeled with

predictions (0 or 1)

fetched branches are

5

6

branch at this

position
=

010predictions

1

0

number of bits to shift BHR by

number BTB hits 3

2

0

0

1

3

3

instructions in fetched line

001

(a) If all branches hit

in the BTB, there is

no problem determining
how many predictions are

made this cycle and there-

fore how many bits to shift
the BHR by.

0

3

1

2

6

7

8

5

4

12

9

14

prediction of this
branch is delayed
1 cycle since it misses
in BTB

consequently,
the prediction
for this branch

11

13

10

15 this cycle
is unavailable

010predictions

0

number of bits to shift BHR by

number BTB hits

0

0

1

3

3

instructions in fetched line

1

1

1

100

(b) In this example the second

branch is undetected in the �rst cy-

cle since it misses in the BTB. As
a result, only 1 prediction is made

in the �rst cycle and the BHR is

shifted by only 1 bit. In the next
cycle, the decoder indicates that

there was a second branch, and in

addition there are 3 new branches.
This calls for 4 new branch predic-

tions, but the predictor can only

provide 3. Not anticipating the sec-

ond branch in the �rst cycle causes

the predictor to fall behind.

1

0

3

5

6

2

8

4

13

7

10

15

14

predictions are
made for these 3
branches in the 1st

9

only the 1st branch
is known about

11

12

cycle, even though

010predictions

1

0

number of bits to shift BHR by

number BTB hits

0

0

1

3

instructions in fetched line

1

3

01-

2

(c) This example shows the pre-

dictor keeping up to 3 branches

ahead of fetching, to anticipate any
branches which are undetected un-

til the decode stage. The predictor

makes 3 predictions and shifts the
BHR by 3 bits in the �rst cycle,

even though only 1 branch is de-

tected by the BTB. Only 2 predic-
tions are needed in the �rst cycle,

so the third prediction is used in

the second cycle.

Figure 21: Determining how many predictions to make and therefore how many bits to shift the

BHR by.

37

b b b

hit hit hit

0 0 1

predictions: 0 0 1

(a) If all branches hit in the BTB, there is no
problem pairing up predictions with their intended

branches.

0

b b b

hit hit

0

predictions: 0 0 1

(b) If a branch misses in the BTB, predictions may
be wrongly assigned to branches.

Figure 22: Assigning predictions to branches and the problem of prediction \skew".

A.3 Next PC MUX

The next fetch address is fed by a very large MUX. The following addresses are candidates for next

fetch address:

� PC feedback { no change in the PC.

� Sequential PC { the PC incremented by the fetch bandwidth.

� Recover PC { feedback from the execution engine which redirects fetching.

� RAS PC { pop return address o� the return address stack if a return is detected.

� trace target { if a trace cache exists, and if it hits, this address is the target of trace.

� trace fall-through { if a trace cache exists, and if it hits, this address is the fall-through of

trace.

� BTB branch targets { if the BTB detects a taken branch, must select the appropriate branch

target from 1 of 16 banks.

By far the critical path exists in the MUX tree used to select 1 of the 16 BTB target addresses,

due to the complexity in generating the SEL15:0 select signals (refer to Section A.1). The select

signals are increasingly timing critical going from bit 0 to bit 15. The datapath in Figure 23 reects

this by skewing the MUX tree such that SEL15:12 goes through minimal logic. The expected critical

path is labelled, though other critical paths may be exposed in the e�ort to reduce the primary

one.

38

TARGET ADDRESSES FROM BTB

fall-through @
TC

target @
TC

SEL15:12

SEL
11:8

SEL7:4

SEL3:0MUX1

MUX2

MUX3

MUX4

PC

MUX5

MUX_OTHER

muxA

muxB

seq. PC

recover PC
RAS

Expected
Critical
Path

Figure 23: The next PC MUX logic.

39

A.4 Logic After the Instruction Cache

A.4.1 Base Instruction Cache

The base instruction cache does not provide any support for fetching across taken branches, yet it

is high performance in one respect: it can always provide a full cache line worth of instructions or

up to the �rst taken branch. In other words, it handles the problem of \falling o�" the edge of a

cache line by two-way interleaving the cache. With two cache banks, two adjacent cache lines can

be accessed.

Three stages of logic are required after the base instruction cache. It will be shown that this

logic adds much less delay than other cache designs which attempt to align noncontiguous blocks

of instructions in the fetch path (these are treated in the following sections).

The three functions that must be performed are (1) masking o� unused instructions, (2) possibly

interchanging the output of the two cache banks, and (3) left-shifting the instructions into the �nal

instruction latch by an arbitrary amount. The �rst two functions are trivial, and thus only the

third function is discussed here.

Figure 24 shows the three functions that are performed. At �rst it might seem that the shifter

function adds another full stage to the fetch unit latency. This is not the case for two reasons:

� Shifting left by an arbitrary amount can be done quite fast using a barrel-shifter. Figure 25

shows a 1-bit slice of the shifter. If there are 16 instructions in a cache line, the 1-bit slice

requires 256 transmission gates. A full shifter requires 32 of these logic blocks (since there

are 32 bits/instruction), for a total of 8,192 transmission gates. The delay is minimal: data

signals pass through only 1 transmission gate, and in the worst case the signals see an input

load of 15 other transmission gates and an output load of 15 other transmission gates. Both

area and capacitive loading can be reduced by precharging the output bus and removing the

p-transistors from the transmission gates.

� The delay through the shifter datapath is small. However, the real problem is with the control

signals S0; S1; S2; : : : ; S15. Each signal feeds 16 transmission gates per bit, for 32 bits: this

means a load of 512 gates. Fortunately, the shift control signals are based solely on ADDR5:2,

the 4 least signi�cant bits of the fetch address. This means the control signals have nearly a

full cycle to fanout to 512 gates, in parallel with the cache access. Assuming the technology

supports driving 3-gates without repowering, a bu�er fanout tree 5 levels deep is su�cient to

drive 512 gates. Thus the control signals will have no problem reaching the shifter before the

instructions arrive.

A.4.2 Collapsing Bu�er

Figure 26 shows a bus-based crossbar implementation of the collapsing bu�er [1]. Not shown are

the control signals required to route instructions into the �nal instruction latch. Somehow the two

valid instruction bit vectors generated from two passes through the BTB logic must be converted

into crossbar switch signals. As will be shown, generating these control signals is nontrivial.

Before describing the control logic, here is some notation:

� Si;j { single bit control signal which routes instruction i of the input into instruction j of the

output.

40

left shifter

0

15

mask mask

interchange

fetch address

Figure 24: Demonstrating logic after the base instruction cache.

� vi { i
th bit of the valid instruction bit vector. If set, there is a valid instruction at position i

of the input.

� onei; twoi; threei; : : : ; fifteeni { there are at least one, two, three, etc. valid instructions

before the ith instruction.

Most of the complexity and critical timing is in generating the one; two; three; : : : signals.

Similar signals are generated by the BTB logic, described earlier in Section A.1. The important

thing to realize is that this logic is essentially keeping count of the number of instructions before a

given position; counting is inherently serial and thus timing critical.

Once the critical one; two; three; : : : signals are generated, they can be used to generate the

actual crossbar switch matrix as follows.

2
6666664

S0;0 S1;0 S2;0 : : : S31;0

S1;1 S2;1 : : : S31;1

S2;2 : : : S31;2

. . .
...

S31;15

3
7777775
=

2
6666664

m0 m1one1 m2one2 : : : m31one31
m1one1 m2one2two2 : : : m31one31two31

m2two2 : : : m31two31three31
. . .

...

m31fifteen31

3
7777775

(4)

After the routing control signals are generated, they are fanned out to the bus drivers.

The following latency problems can be identi�ed with this fetch mechanism:

� First, generating the valid instruction bit masks is even more complicated than the logic

discussed in Section A.1. The reason: handling intrablock branches requires a serial chain

of comparators from one BTB bank to the next [1]. We have not attempted to merge the

comparator logic in with our preexisting BTB logic design.

41

S0 S1 S2 S3 S5S4 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

FROM FIRST CACHE BANK FROM SECOND CACHE BANK

T
O

 I
N

ST
R

U
C

T
IO

N
 L

A
T

C
H

Figure 25: Fast left-shifter design for the base instruction caches. This is a 1-bit slice; hence

there are 32 of these blocks, one for each bit in an instruction word. A complete shifter requires

(256)(32) = 8; 192 transmission gates. The 31 input bits (16 bits from �rst cache bank, 15 bits from

second cache bank) run vertically, and the 16 output bits (which feed the output instruction latch)

run horizontally. Both positive and negative shift control signals are shown as dotted diagonal

lines. The shifter can shift instructions left anywhere from 0 to 15 positions in 1 transmission gate

delay with reasonable loading.

Note that the logic in Section A.1 (which matches multiple predictions to their corresponding

branches) does not exist in the original CB design of [1]. This is because simple 2-bit branch

predictors [18] are embedded with every branch in the BTB. This simple branch predictor is

a serious performance handicap, however.

� The collapsing bu�er crossbar network is driven by the valid instruction bit vectors. That

is, the collapsing bu�er stage depends on the BTB stages. This dependence forces a distinct

stage after the instruction cache.

� The collapsing bu�er stage is a longer path than expected because the actual routing signals

are not available at the beginning of the cycle. First, complex logic is needed to convert

the valid instruction bit vectors into the switch signals. Then the switch signals must be

fanned out to the bus drivers. Only then can the instructions propagate through the crossbar

network.

A.4.3 Branch Address Cache

This section contains only comments rather than detailed logic descriptions, due in part to com-

plexity, but foremost because it is unclear how to design the instruction cache to support this fetch

mechanism.

42

DEMUX
...

DEMUX
...

DEMUX
...

DEMUX
...

. . .
DEMUX

...
DEMUX

...
DEMUX

...
DEMUX

...

0 1 2 15. . .

0 1 2 15. . .

16 17 18 31

Figure 26: The collapsing bu�er stage of the CB fetch mechanism, implemented as a bus-based

crossbar.

The BAC requires logic similar to the collapsing bu�er after the instruction cache, since useless

instructions between branches and their targets must be removed. However, the logic is even more

complex due to the large number of cache banks (8 are used in this paper and in [2]). Even without

that hurdle, there are several major problems with this fetch unit:

� We do not have a valid instruction bit mask, nor has anything been mentioned in [2] about

storing lengths of basic blocks. Somehow the logic after the instruction cache needs to know

where all valid instructions are, yet only the starting location of each contiguous block is

known. A BAC-like design in [4] does discuss providing length information, among other

basic block attributes.

� It is not clear how to perform the interchange function. There are many more permutations

than with just 2 cache banks.

� Even if the previous two problems are addressed (so that we have enough control information

and the banks are presented in sequential order), we are back to the same collapsing bu�er

latency issues.

43

A.5 BAC Implementation Issues

A.5.1 Underow and Overow

The Branch Address Cache scheme as proposed in [2] introduces subtle issues which complicate

implementation alternatives. The fetch unit has an upper limit on the number of instructions

which can be supplied in a cycle. Two issues { here called underow and overow { arise from the

interaction between the BAC and this instruction fetch limit.

Underow is a scenario where (1) the fetch limit has not been reached, (2) it is possible to fetch

more instructions in the same cycle, BUT (3) strict adherence to the spirit of the BAC dictates

that fetching the additional instructions be delayed a cycle. (Hence the term underow { providing

less instructions than could be provided.) Overow is a scenario where the BAC causes the fetch

unit to exceed the instruction fetch limit. (Hence the term overow { exceeding the hard limit.)

Refer to Figure 27 for the description of underow. In cycle 1, there is one address A which is

used to index both into the instruction cache and the BAC. Suppose that branch b1 is predicted

not taken and branch b2 is predicted taken. The BAC indicates a hit and provides at least two

addresses corresponding to the predicted path: B and Y . The problem has to do with branch b1.

Since it is predicted not taken, two alternatives exist:

� Alternative 1: Fetch only the �rst basic block (A) of instructions in cycle 1. Wait until cycle

2 to fetch beyond branch b1 even though branch b1 is predicted not taken, using the address

B provided by the BAC.

� Alternative 2: Fetch both basic blocks A and B in cycle 1, since branch b1 is predicted not

taken. This requires that address B from the BAC not be used in cycle 2.

Alternative 1 is the scheme of choice from a complexity point of view, since addresses provided

by the BAC are always used (ignoring bank conicts { more on this later). Alternative 2, on

the other hand, introduces special cases which need to be handled di�erently. Speci�cally, the

outcomes of branches as well as the number of addresses provided by the BAC have to be examined

to make correct decisions. This leads to a less uniform design. The performance implications of

using Alternative 1 over Alternative 2 are not clear: while Alternative 2 tends to provide more

instructions in the �rst cycle, Alternative 1 \catches up" in the next cycle.

There are two conditions which characterize underow. First, there must be a hit in the BAC.

Second, the branch following the address which hit in the BAC must be predicted not taken. The

issue is whether or not to use the fall-through address of the not taken branch, leading to the two

alternatives previously described.

The problem of overow is depicted in Figure 28. Suppose that the fetch unit is limited to

a maximum bandwidth of 16 instructions per cycle. As in the previous example, during cycle 1

there is one address A which is used to index both into the instruction cache and the BAC. The

BAC indicates a hit and provides three addresses corresponding to the predicted path: B, C, and

Y . The basic blocks starting at these addresses are fetched in cycle 2. However, because the

16th instruction lies within basic block Y , part of that basic block is not fetched in cycle 2; these

instructions are marked with the lighter shading in the diagram. The last address Y is used as an

index into the BAC during cycle 2. This is where a potential problem exists. If the index Y hits

in the BAC, then the next fetch address (e.g. X) will skip over the last few instructions of basic

block Y . There are two alternative solutions to this problem:

44

b1

A

Y

5 Instructions fetched in cycle 1:

B
10+ Instructions fetched in cycle 2

b2

Y

Y

B

b1

A

12 Instructions fetched in cycle 1

b2

...

B

b1

Y

b2

A B

not taken
taken

Y

A

A

BAC Hit

addr 3

addr 2

addr 1

BAC addr

B

Y

Y

b1

b2

dc

dc

2 31CYCLE

A

A

BAC Hit

addr 3

addr 2

addr 1

BAC addr

b1

b2 t

nt

CYCLE 1 2

I$

I$

I$

I$

I$

I$

hit hit

3+ Instructions fetched in cycle 2

Alternative 1 Alternative 2

b1
b2

...
Figure 27: Underow.

� Alternative 1: on a hit, the BAC may only provide n addresses if it is guaranteed that n full

basic blocks can be fetched within the bandwidth limit (ignoring bank conicts). The one

exception to this rule is for n = 1: in this case, a full basic block need not be guaranteed.

In the above example, indexing into the BAC with address A will yield only two basic block

addresses: B and C. Basic block Y is not provided since it does not �t within the 16

instruction fetch limit.

� Alternative 2: The above restriction does not apply. Therefore, the hardware must detect

overow of the last basic block and fetch the leftover instructions.

Alternative 2 seriously complicates the design since it deviates from basic block boundaries. In

the example, the fetch unit has to generate an extra address to pick up the leftover instructions of

basic block Y , which could introduce new bank conicts as well as aggravate the overow problem

in cycle 3. Alternative 1 is a cleaner design, but may yield lower performance.

A.5.2 Content and Fill Issues

Each entry in the original BAC design stores the following information:

� Address tag.

� Three bits of state per branch in the tree, 1 valid bit and 2 bits identifying the branch type

(conditional, unconditional, or return).

45

b3

Xtaken

16

b1 b2

not taken

C

taken

16th instruction

Y

B

A

C

B

X

Y

fetched in cycle 2

fetched in cycle 1

fetched in cycle 3

these instructions are skipped over

A

A

BAC Hit

addr 3

addr 2

addr 1

BAC addr

Y

Y

2 31CYCLE

B

C

X

hit hit

I$

I$

I$

Figure 28: Overow.

� Target and fall-through addresses of each branch in the tree.

This information is enough to fetch a large trace of instructions from the cache to the decoders.

However, the complexity of logic between the BAC and the bank address latches, and of the control

logic driving the alignment network, may impact cycle time. If cycle time does become a concern,

the design could be changed in several ways. First, at no extra hardware cost, bank conicts can be

determined ahead of time and only once { at the time branch addresses are entered into the BAC.

In other words, any basic block addresses provided by the BAC are guaranteed to not conict.

Second, additional control information could be stored in each entry { also determined at the time

the entry is �lled. The extreme is to store precalculated bank addresses and alignment network

control signals for each path through the tree. In the spirit of horizontal microcode, the information

is fanned out directly to the datapath control points.

Another implementation issue is the number of concurrent �lls supported. If an address misses

in the BAC, an entry is allocated for the tree beginning at that address; the entry is �lled with

branch target and fall-through addresses as branches in the predicted path are encountered. While

an entry is �lling, the fetch unit continues to access the BAC. If another miss occurs before the

�rst has completed, the hardware can either start another �ll immediately, delay servicing the new

miss until the �rst has completed, or ignore the miss altogether. Supporting multiple concurrent

�lls requires as many �ll bu�ers.

46

A.6 Trace Cache Fill Logic

This section presents the major part of the �ll logic required to accumulate traces for the TC. The

design is intentionally incomplete; the intent is to give a feel for the kind of functions the logic must

perform. Also, the datapath is not necessarily laid out for optimal timing. Figure 29 shows the

design, which assumes a TC line size of 16 instructions and up to a maximum of 3 basic blocks.

The logic assumes the following latched inputs from the decoder each cycle:

� incoming instruction latch { holds up to 16 new instructions fetched from the instruction

cache.

� PC { the starting address of the incoming contiguous block of instructions.

� b { the total number of branches in the incoming instruction latch.

� p1, p2, p3 { the predicted directions of any branches in the instruction latch.

� T1, T2, T3 { the target addresses of any branches in the instruction latch.

� W1, W2, W3 { the size of basic block 1, the size of basic blocks 1 and 2 together, and the

size of basic blocks 1, 2, and 3 together, respectively.

The central control { labelled as a PLA { monitors the progress of the �ll and maintains relevant

latches. Speci�cally, the following functions are performed:

� Reset all control and data latches when a signal indicates to start a new �ll.

� Maintain the current length of the �ll bu�er, L.

� Maintain the current number of branches in the �ll bu�er, B.

� Update the branch mask bits.

� Update the branch ags.

� Detect when either (1) the number of branches equals or exceeds 3, or (2) the number of

instructions equals or exceeds 16 (overow bits). At this point, the \�ll complete" signal is

asserted and all latches are frozen, until the �ll bu�er information is committed to the TC.

� In the cycle that �lling completes, the PLA controls what values are loaded into the trace

target address and trace fall-through address registers.

In Figure 29, control is distributed via dotted lines from the PLA to control points in the datapath.

The value of register L directly controls the shifting of new instructions into the appropriate position

of the �ll bu�er.

47

SHIFTER

RIGHT

L B

Br.Mask Br.Flags

update
logic

update
logic

LOGIC

(PLA)

start

reset all
latches

Fall-Thru

fill

W1

W2
W3

X

PC

T2 T3T1

MUX

MUX

30 4

Target

b

number of
incoming
branches

p1 p2 p3 T2 T3 W2 W3 PC

starting
address

5 9 dctnt2 dc

predictions branch targets lengths

W1

shift amount

logic
enable

latch write enables

W2

W3

W1

ov1

ov2

ov3

16

ov1
ov2

ov3

overflows

b

accumulate length
accumulate number

of branches

fill complete

p1 p2 p3

predictions

MUX

FILL BUFFER

to data array of Trace Cache

to control array of Trace Cache

W1

W2

incoming instructions

X

16

T1

from DECODER

F
ig
u
re

2
9
:
M
a
jo
r
p
o
rtio

n
s
o
f
th
e
T
C
�
ll
lo
g
ic.

4
8

