
A Study of Control Independence in Superscalar Processors December 18, 1998 1

A Study of Control Independence in Superscalar Processors
Eric Rotenberg, Quinn Jacobson, Jim Smith

University of Wisconsin - Madison
ericro@cs.wisc.edu, {qjacobso, jes}@ece.wisc.edu

Abstract
An instruction iscontrol independentof a preceding conditional branch if the decision to exe-

cute the instruction does not depend on the outcome of the branch -- this typically occurs if the
two paths following the branch re-converge prior to the control independent instruction. A specu-
lative instruction that is control independent of an earlier predicted branch does not necessarily
have to be squashed and re-executed if the branch is predicted incorrectly. Consequently, control
independence has been put forward as a significant new source of instruction level parallelism in
future generation processors. However, its performance potential under practical hardware con-
straints is not known, and even less is understood about the factors that contribute to or limit the
performance of control independence.

A study of control independence in the context of superscalar processors is presented. First,
important aspects of control independence are identified and singled out for study, and a series of
idealized machine models are used to isolate and evaluate these aspects. It is shown that much of
the performance potential of control independence is lost due to data dependences and wasted
resources consumed by incorrect control dependent instructions. Even so, control independence
can close the performance gap between real and perfect branch prediction by as much as half.

Next, important implementation issues are discussed and some design alternatives are given.
This is followed by a more detailed set of simulations, where the key implementation features are
realistically modeled. These simulations show typical performance improvements of 10 to 30 per-
cent over a baseline superscalar processor.

Keywords: control dependences, selective squashing, branch prediction, speculation, ILP

1. Introduction

In order to expose instruction-level parallelism in sequential programs, dynamically scheduled
superscalar processors form a “window” of fetched instructions. Each cycle, the processor selects
and issues a group of independent instructions from this window. Maintaining a sufficiently large
window of instructions is essential for high instruction-level parallelism -- the more instructions
in the window, the greater the chance of finding independent ones for parallel execution.

Branch instructions are a major obstacle to maintaining a large window of useful instructions
because they introducecontrol dependences-- the next group of instructions to be fetched follow-
ing a branch instruction depends on the outcome of the branch. Typically, high performance pro-
cessors deal with control dependences by using branch prediction. Then instruction fetching and
speculative issue can proceed despite unresolved branches in the window. Unfortunately, branch
mispredictions still occur, and current superscalar implementations squash all instructions after a
mispredicted branch, thereby limiting the effective window size. Following a squash, the window
is often empty and several cycles are required to re-fill it before instruction issuing proceeds at full
efficiency. Furthermore, we are fast approaching the point where the hardware window that can be
constructed exceeds the average number of instructions between mispredictions.

A Study of Control Independence in Superscalar Processors December 18, 1998 2

There are three ways of dealing with the conditional branch problem. The first, and most
widely studied, is to improve branch prediction. This approach has received considerable (suc-
cessful) research effort for nearly two decades. The second is to fetch and execute both paths fol-
lowing a branch, and keep only the computation of the correct path. Of course this can lead to
exponential growth in hardware, so recently, more selective approaches have been advocated,
where multi-path execution is only used for hard-to-predict branches [2, 3, 4, 5, 6, 7]. Predicated
execution is a software method for achieving a similar effect [8, 9]. The third approach is aimed at
reducing the penalty after a misprediction occurs. This approach exploits the fact that not all
instructions following a mispredicted branch have performed useless computation.

The third approach is probably less well understood than the other two, and in this paper we
explore its potential. The key point is that only a subset of dynamic instructions immediately fol-
lowing the branch may truly depend on the branch outcome. These instructions arecontrol depen-
denton the branch. Other instructions deeper in the window may becontrol independentof the
mispredicted branch: they will be fetched regardless of the branch outcome, and do not necessar-
ily have to be squashed and re-executed [10, 11]. This can be illustrated with a simple example.

Figure 1 shows a control flow graph (CFG) containing four basic blocks. (Basic blocks are
used for simplicity and, in general, may be substituted with arbitrary control flow.) The condi-
tional branch terminating block 1 is mispredicted, with dashed arrows indicating the mispredicted
path 1, 2, and 4. Two data dependences, through registers r4 and r5, are also shown.

FIGURE 1. An example of control independence.

At the time the misprediction is detected, blocks 1, 2, and 4 have already been speculatively
fetched and some of their instructions may have already started executing. Because only block 2 is
control dependent on the misprediction, it is the only block whose instructions must be squashed.
Immediately after the misprediction is found, the fetch unit goes back and fetches block 3 to
replace the squashed instructions of block 2.

Control independent instructions following the mispredicted branch, specifically block 4, are
not squashed, but they do need to be inspected for data dependence violations caused by the
mispredicted control flow, and some instructions may have to be re-executed. The value identified
with r5 must be corrected so that block 4 uses the value produced earlier in block 1 instead of the
one incorrectly produced in block 2. Likewise, when block 3 is eventually inserted into the win-
dow, the data dependence through register r4 must also be established. Note that data dependences
through memory must similarly be repaired. After the instructions using r4 and r5 in block 4 cor-
rect their data dependences and reissue, all subsequent data dependent instructions must also reis-
sue. Hence, selective instruction reissue [12, 1] in some form is necessary.

r5

r5

r4

r5
r4

1

2 3

4

actual path

A Study of Control Independence in Superscalar Processors December 18, 1998 3

Lam and Wilson’s limit study on control independence [10] showed that substantial perfor-
mance improvements may be possible. However, as a limit study, most implementation con-
straints were not considered. Further, important aspects of programs themselves were not
modeled; in particular, a significant subset of data dependences were ignored due to the
trace-driven nature of the study. Several microarchitecture implementations have since been pro-
posed that incorporate control independence in some form [11, 13, 14, 15, 16, 17, 18, 1]. In these
studies, however, either the impact of control independence is not isolated, or insight into the
reported performance gains is limited and obscured by artifacts of the particular design.

In this paper we have three primary objectives and contributions. The first objective is to
establish new bounds on the performance potential of control independence under implementa-
tion constraints. The study focuses on two fundamental constraints that characterize superscalar
processors: instruction window size and instruction fetch/issue bandwidth. Other aspects of the
study remain ideal and aggressive to avoid design artifacts that might obscure the analysis.

The second objective is toprovide insight into the factors that contribute to or limit the perfor-
mance of control independence. Data dependences between control dependent and control inde-
pendent instructions play an important role. In Figure 1, there is atrue data dependence(register
r4) between thecorrect control dependent instructionsin block 3 and subsequent control inde-
pendent instructions in block 4. Similarly, there is afalse data dependence(register r5) produced
by theincorrect control dependent instructions in block 2. Resolving both types of data depen-
dences is delayed by the branch misprediction in spite of control independence. Another impor-
tant factor is the waste of fetch and execution resources by incorrect control dependent
instructions. Having to first fetch the misspeculated instructions delays filling the instruction win-
dow with correct, control independent instructions. Also, if there are more incorrect control
dependent instructions than correct ones, e.g. block 2 is larger than block 3, window space is
wasted that might have gone to more control independent instructions.

The third objective is toassess the complexity of implementing aggressive control indepen-
dence mechanisms in superscalar processors. Although it is beyond the scope of this paper to put
forth detailed designs, implementation requirements are identified and hardware/software alterna-
tives for meeting the requirements are proposed. We have also developed a detailed execu-
tion-driven simulator that implements the outlined requirements.

Several conclusions emerge from our study. First, the performance gap between branch pre-
diction with conventional speculation and oracle branch prediction is quite large, but control inde-
pendence holds the potential for closing the gap by as much as half. Second, the effects of
incorrect control dependent instructions -- both wasted resources and false data dependences --
significantly limit the benefits of control independence, with wasted resources being the chief
problem. The impact of true data dependences is slightly smaller than that of false data depen-
dences. Third, for the chosen design alternatives in the detailed execution-driven model, perfor-
mance improvements ranging from 10% to 30% are measured.

In order to keep the study manageable, we limit our scope to one of two major schemes for
exploiting control independence. In particular, the study targets processors that use a single flow
of control, i.e. a single fetch unit, as in today’s superscalar processors. Other schemes, using mul-
tiple flows of control, are not studied here, although extending the study of control independence
to multiple (yet finite) fetch units is an interesting problem to be explored.

A Study of Control Independence in Superscalar Processors December 18, 1998 4

1.1 Prior work

Lam and Wilson’s limit study [10] demonstrates that control independence exposes a large
amount of instruction-level parallelism, on the order of 10 to 100, for control-intensive integer
benchmarks. Although these results are important, full interpretation is obscured for both techni-
cal and practical reasons. As pointed out in an analysis by Sundararaman and Franklin [19], the
limit study makes certain assumptions that may inflate the apparent benefits of control indepen-
dence. Static branch prediction based on profiling is used, as opposed to higher accuracy dynamic
branch predictors. More importantly, because the simulation is fully trace-driven, it does not
account for false data dependences created on mispredicted paths (as discussed previously), thus
allowing incorrect-data dependent instructions to be scheduled earlier than they would be in prac-
tice. Furthermore, limit studies, by definition, are unconstrained in order to measureinherent par-
allelism in programs, and do not consider practical implementation issues. In the Lam and Wilson
limit study, several fundamental features of processors are not modeled. In particular, there is no
concept of a limited instruction window or instruction fetch bandwidth, whether considering a
single or multiple flows of control. The limit study schedules the entire dynamic instruction
stream at once; exposing the observed parallelism may require buffering speculative state for
thousands of instructions and using an impractical number of parallel fetch units.

Another unconstrained limit study by Uht and Sindagi [2] uses a similar simulation approach,
but in addition to studying “minimal control dependences”, a form of selective eager execution
called disjoint eager execution is also studied.

Multiscalar processors [11,13] and other multithreaded architectures [16, 17, 14, 15] exploit
control independence by pursuing multiple flows of control. In the case of multiscalar, the com-
piler partitions the program into tasks, or subgraphs of the CFG. Arbitrary control flow may exist
within a task, and the compiler need not guarantee that tasks be control and data independent. At
run-time, a task sequencer predicts and allocates tasks to run on distributed processing elements,
each capable of pursuing its own flow of control. In this way, branch mispredictions within a task
may not cause subsequent tasks to squash if they are control independent of the branch. To date,
however, there has been no study that separates the impact of control independence and deter-
mines its contribution to performance in the multiscalar paradigm.

Trace processors [20,1] are in some sense a variant of multiscalar processors where the
dynamic instruction stream is divided into traces -- frequently executed dynamic instruction
sequences. An internal mispredicted conditional branch causes its trace to be squashed, but subse-
quent traces are not squashed if, after repairing the mispredicted branch and predicting a new
sequence of traces, the new traces match those already residing in the processing elements [1].
Only modest improvements are reported because no optimization in trace selection or processor
assignment was done to enhance performance benefits of control independence.

The instruction reuse buffer [18] provides another way of exploiting control independence. It
saves instruction input and output operands in a buffer -- recurring inputs can be used to index the
buffer and determine the matching output; i.e. the instruction outputs are “reused”. In the pro-
posed superscalar processor with instruction reuse, there is complete squashing after a branch is
mispredicted. However, control independent instructions after the squash can be quickly evaluated
via the reuse buffer. Overall speedups due to reuse are on the order of 10%, over half of which is
due to squash reuse.

A Study of Control Independence in Superscalar Processors December 18, 1998 5

1.2 Paper organization

In Section 2, we consider a series of idealized machine models in order to better understand
the relative importance of some of the bigger issues affecting control independence. Section 3
lists the key features in a superscalar processor for exploiting control independence and discusses
implementation alternatives for each of the features. Next, in Section 4, we study performance
considering timing constraints imposed by practical implementations.

2. The potential of control independence

In this section we begin evaluating the performance potential of control independence in
superscalar processors. It is an idealized study in the sense that some of the models have oracle
knowledge so that (1) performance bounds can be established and (2) aspects that limit the perfor-
mance of control independence can be isolated. The latter has important implications: by under-
standing the limiting aspects, techniques may be developed to overcome them. On the other hand,
the study isnotan unconstrained “parallelism limit study” -- a particular class of implementations
is targeted, and some of the basic resources are limited.

2.1 Control independence models

In the models given below, the performance impact of three important aspects of a control
independent design are singled out for study.

• The first aspect concerns true data dependences between correct control dependent instructions
and control independent instructions. In such cases, issuing the control independent instruc-
tions is delayed until after the misprediction is resolved and the correct control dependent
instructions are fetched/issued.

• The second aspect is the handling of false data dependences created by incorrect control depen-
dent instructions. As discussed earlier, these cause the selective reissue of some control inde-
pendent instructions. Delays brought on by this repair and selective reissue can inhibit
performance gains.

• The third aspect is the use of machine resources by instructions on an incorrect path that are
eventually squashed. Even if control independence is ideally implemented otherwise, this
waste of resources and time will reduce performance.

Six different models are evaluated. Figure 2 illustrates the differences among these six mod-
els, using the example CFG in Figure 1. Only two resources, instruction fetch and issue, are
shown. Time progresses downward in the fetch/issue schedules. Fetching each basic block con-
sumes fetch bandwidth; this is shown using basic block labels within their respective fetch slots.
Likewise, instructions consume issue bandwidth, and are labeled first with the corresponding
basic block, followed by the production/consumption of a value. For clarity, only instructions that
ultimately retire (i.e. correct instructions) are shown; for these, only the final issue time is shown.
The labels “M” and “D” in the diagrams indicate the time of the branch misprediction (M) and the
time that the misprediction is detected (D).

Theoraclemodel (Figure 2(a)) uses oracle branch prediction and therefore the branch termi-
nating block 1 is not mispredicted. Blocks 1, 3, and 4 are fetched in correct dynamic program
order.

A Study of Control Independence in Superscalar Processors December 18, 1998 6

The next four models use real branch prediction coupled with complete knowledge of control
dependences to exploit control independence. The following notations are used.

• WR(“Wasted Resources”): Misspeculated instructions consume window resources and band-
width, thus delaying other, correct instructions.

• FD (“False Data Dependences”): The effects of false data dependences between incorrect con-
trol dependent instructions and control independent instructions are modeled.

The inverse notations,nWRand nFD, indicate the corresponding factor isnot modeled. Thus,
there are four possible models:nWR-nFD, nWR-FD, WR-nFD, andWR-FD.

FIGURE 2. Fetch and issue timing for the six models, corresponding to the example CFG in Figure 1.

In the nWR-nFDmodel (Figure 2(b)), mispredicted branches delay fetching the correct con-
trol dependent instructions. But between the time that a branch is mispredicted and the mispredic-
tion is detected, fetch and window resources are kept busy with control independent instructions.
Incorrect control dependent instructions are not considered (for example, block 2 is not fetched
into the window), thereby eliminating false dependences and devoting resources solely to control
independent work while the misprediction is resolved.

3

4

FETCH ISSUE

1

1: r5<=
3: r4<=

4: <=r4

(a) ORACLE

M

4: <=r5

D
3

1

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

(d) WR-nFD

TIME

M

4

FETCH ISSUE

(c) nWR-FD

3

4

1

1: r5<=

3: r4<=
4: <=r4

4: <=r5
DD

FETCH ISSUE

(b) nWR-nFD

3

1

4
1: r5<=
4: <=r5

3: r4<=
4: <=r4

M

M

D
3

1

4

2 1: r5<=

3: r4<=
4

4: <=r5
4: <=r4

(f) BASE

M

(e) WR-FD

D
3

1

4

2 1: r5<=

3: r4<=
4: <=r4

4: <=r5

A Study of Control Independence in Superscalar Processors December 18, 1998 7

The only difference between this model andoracle is that instructions are fetched in a differ-
ent order following mispredicted branches. This has a negative performance impact only when
true data dependences are delayed with respect tooracle. For example, instruction “4: <=r4”
issues later because the producer instruction in block 3 is delayed by the misprediction.

Interestingly, there are situations where performance ofnWR-nFDmay actually exceed that of
oracle. For example, instruction “4: <=r5” issues slightly earlier with respect tooracle, because
block 4 is fetched out-of-order and earlier. If this instruction is on the critical path, scheduling it
earlier may improve overall performance.

The nWR-FD model, shown in Figure 2(c), also does not waste time with misspeculated
instructions, however their effects on data dependences are felt. For example, we do not know the
true producer of “r5” until the misprediction is resolved, delaying instruction “4: <=r5” until that
time. The repair of false data dependences is assumed to occur in a single cycle, at the time a
misprediction is resolved -- this is the best that can be achieved.

The dual of this model isWR-nFD(Figure 2(d)): misspeculated instructions take up time and
resources (indicated by shaded regions), but false dependences are hidden. Performance degrada-
tion with respect tonWR-nFDis caused by an underutilized window and delayed fetching of cor-
rect (control independent) instructions.

The WR-FDmodel (Figure 2(e)) uses no oracle knowledge regarding misspeculated instruc-
tions -- they waste both time and resources, and interfere with data dependences. This model rep-
resents an upper bound on the performance of superscalar processors exploiting basic control
independence.

Finally, thebase model (Figure 2(f)) squashes all instructions after a branch misprediction.

2.2 Hardware constraints and assumptions

We are interested in the performance impact of instruction window size and machine width
(peak fetch, issue, and retire rate) on control independence. In our study, the machine width is 16
instructions per cycle for all simulations, and window size is varied. This is wider than current
processors, but may be suitable for a future generation when control independence is seriously
considered for implementation [21,22,23].

We implement the following additional hardware constraints and assumptions:

• An ideal fetch unit is assumed. That is, all instructions hit in the cache, and fetching can pro-
ceed past any number of branches, taken or not taken, in a single cycle (up to 16 instructions).

• A 5-stage pipeline is modeled: instruction fetch, dispatch, issue, execute, and retire. Fetch and
dispatch take 1 cycle each. Issue takes at least 1 cycle, possibly more if the instruction must
stall for operands. An instruction is in the execution stage for some fixed latency based on its
type, plus any time spent waiting for a result bus. Address generation takes 1 cycle, and all
cache accesses are 1 cycle, i.e. a perfect data cache is assumed. Instructions retire in order.

• Any 16 instructions may issue in a cycle because fully symmetric functional units are assumed.

• Output and anti-dependences are eliminated by assuming an unlimited number of physical reg-
isters for register renaming and unlimited speculative store buffering for memory renaming.

• Oracle memory disambiguation is used. However, stores fetched down the wrong control path
may still interfere with subsequent, control independent loads -- as with register values, false
memory dependences may be created in this case.

A Study of Control Independence in Superscalar Processors December 18, 1998 8

• A 216 entry gsharepredictor [24] is implemented for predicting the direction of conditional
branches. All direct target addresses are assumed to be predicted correctly since they can be

computed at the time of instruction fetch. For indirect calls and jumps, a 216 entry correlated
target buffer [25] is used. Returns are predicted using a perfect return address stack [26].

2.3 Benchmarks

Dynamic instruction traces, including both correctly speculated and misspeculated instruc-
tions, are generated by the Simplescalar simulator [27]. Five of the integer SPEC95 benchmarks,
gcc, go, compress, jpeg, andvortexwere simulated to completion. These benchmarks were chosen
to reflect a variety of prediction accuracies, ranging from very predictable (vortex) to diffi-
cult-to-predict (go). Input datasets, dynamic instruction counts, and branch misprediction rates are
shown in Table 1. The misprediction rates include both conditional branches and indirect jumps.

2.4 Results

Results of simulating the six machine models are in Figure 3. Performance is measured in
instructions per cycle (IPC) and is shown as a function of window size.

First of all, a performance upper bound is established with theoracle results. These results,
assuming perfect branch prediction, are typically over 10 IPC for window sizes of 256 to 512. The
machine width upper bound is 16, and most of the benchmarks come close to this mark. Compar-
ing theoracle andbaseresults indicates a large performance loss due to branch mispredictions
with a complete squash (but otherwise ideal) model. For a 512 instruction window, the loss is
between 40% and 70% for four of the five benchmarks. The benchmark that has the least perfor-
mance loss isvortex-- but its branch prediction accuracy is quite high. Performance for thebase
model typically saturates at a window size of 128 or 256 instructions. There is no such saturation
point for theoraclemodel. These results are consistent with those produced by others and indicate
the importance of branch mispredictions on overall performance.

The difference betweenoracle andnWR-nFDillustrates performance losses from deferring
instructions on a correct control dependent path until after a mispredicted branch is resolved. In
nWR-nFD, however, machine resources do not sit idle while the mispredicted branch is resolved
-- all machine resources are kept as busy as possible fetching and executing the control indepen-
dent path. The performance loss is typically only 1 to 2 IPC for the medium to large windows.

The basemodel also defers execution of the correct control path following a misprediction,
but it gets no benefit from the machine resources before the mispredicted branch is resolved -- any
work done after the branch is squashed. When viewed in this way,nWR-nFDindicates that the
otherwise wasted resources inbasecan lead to large performance benefits. In terms of the way
control flow is managed,nWR-nFDis most similar to Lam and Wilson’s model [10], because mis-
speculated instructions are ignored.

TABLE 1. Benchmark information.

benchmark input dataset instruction count misprediction rate

gcc -O3 genrecog.i 117 million 8.3%

go 9 9 133 million 16.7%

compress 400000 e 2231 104 million 9.1%

ijpeg vigo.ppm 166 million 6.8%

vortex modified train input 101 million 1.4%

A Study of Control Independence in Superscalar Processors December 18, 1998 9

FIGURE 3. Performance of the six control independence models.

With nWR-FD, the impact of false data dependences is isolated. For four of the five bench-
marks, the performance drop is significant, another 1 to 2 IPC belownWR-nFD. Compressexperi-
ences a much larger drop in performance. False dependences incompresslimit IPC to under 5 for
all window sizes.

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

go

oracle

nWR-nFD

nWR-FD

WR-nFD
WR-FD

base

4

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

gcc

oracle

nWR-nFD

nWR-FD

WR-nFD

WR-FD

base

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048

IP
C

window size (log2)

ijpeg

oracle
nWR-nFD
nWR-FD

WR-nFD
WR-FD

base

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048

IP
C

window size (log2)

compress

oracle

nWR-nFD

nWR-FD
WR-nFD

WR-FD

base

6

8

10

12

14

16

64 128 256 512 1024 2048

IP
C

window size (log2)

vortex
oracle
nWR-nFD
nWR-FD
WR-nFD
WR-FD

base

A Study of Control Independence in Superscalar Processors December 18, 1998 10

With WR-nFD, we isolate the effects of wasting resources by executing incorrect control
dependent instructions until the branch is resolved. Some resources are still used for the control
independent path -- but not until and unless the fetch unit reaches the control independent region.
This results in a major drop in performance, bigger than the drop caused bynWR-FD. For all
benchmarks exceptcompress, the effect of wasted time and resources dominates that of false
dependences, by about a factor of 2.

With WR-FD, we see the combined impact of wasted resources and false dependences caused
by incorrect control dependent instructions. Fortunately, the effects are not additive. TheWRcom-
ponent already dominates, so there is little additional penalty caused by repairing and reissuing
false data dependent instructions in the control independent stream (except forcompress). At this
point performance gains are about 100% over thebase machine.

2.5 Summary and applications of the study

This initial study has established performance bounds for control independence in the context
of superscalar processors. TheWR-FDmodel reduces the gap between theoracleandbasemod-
els by half, and a realistic implementation will fall somewhere betweenbase andWR-FD.

The other three control independence models also have interesting implications. A major per-
formance limiter is the incorrect control dependent path, primarily because of wasted fetching and
window space (WR-nFD), but also false data dependences (nWR-FD). If these limitations could
be mitigated in some way, performance of thenWR-nFDmodel indicates the remaining problem
is less significant, i.e. the problem of true data dependences between the deferred, correct control
dependent path and control independent instructions.

A possible approach to mitigating the effects of incorrect control dependent instructions is to
design instruction windows and fetch units that are less sensitive to wasted resources. The multi-
scalar architecture is a candidate due to its multiple program counters and “expandable, split-win-
dow” [28]. Although strictly speaking our study is only applicable to processors with a single flow
of control, we at least get a hint of the control independence potential forsomemultiscalar design
points. For example, Vijaykumar’s thesis [29] indicates average task sizes on the order of 15
instructions (comparable to the fetch width of 16 instructions) and effective window sizes of
under 200 instructions for integer benchmarks. Given a multiscalar processor with aggressive res-
olution of inter-task data dependences and selective reissuing capability, thenWR-FD model
rather thanWR-FDgives the more appropriate performance bound due to the expandable window.

The large performance drop betweennWR-nFDandWR-nFD, the result of wasted fetch and
execution resources, tends to indicate that both hardware and software forms of multi-path execu-
tion should be performed carefully. These techniques are applied to both correctly predicted and
incorrectly predicted branches. We have shown that wasted resources caused by incorrect predic-
tions alone is a problem; adding some fraction of correct predictions worsens the problem.

3. Implementation Issues

In this section we discuss important implementation issues for exploiting control indepen-
dence in superscalar processors. This discussion allows us to better understand, qualitatively,
where implementation complexities may lie. We do not mean to suggest that the methods we
describe are the only ones possible, but we feel the approaches outlined here are adequate for
highlighting the major implementation issues that must be considered, and they form a basis for
our later performance simulations in Section 4.

A Study of Control Independence in Superscalar Processors December 18, 1998 11

3.1 Handling of branch mispredictions

When a branch misprediction is detected in a traditional superscalar processor, the processor
performs a series of steps to ensure correct execution. Instructions after the mispredicted branch
are squashed and all resources they hold are freed. Typically, freeing resources includes returning
physical registers to the freelist and reclaiming entries in the instruction issue buffers, reorder
buffer, and load/store queues. In addition, the mapping of physical registers is backed up to the
point of the mispredicted branch. The instruction fetch unit is also backed up to the point of the
mispredicted branch and the processor begins sequencing on the correct path.

Exploiting control independence requires modifications to the recovery sequence. The overall
process is illustrated in Figure 4. Recovery may proceed as follows, although not necessarily in a
strict time sequence -- some of these steps can potentially be overlapped.

1. After a branch misprediction is discovered, the first control independent instruction (if it exists)
must be found in the instruction window. We call this thereconvergent point, because in gen-
eral control independence exists when control flow diverges and subsequently re-converges.

2. Instructions are selectively squashed, depending on whether they are incorrect control depen-
dent instructions or control independent instructions. Squashed instructions are removed from
the window, and any resources they hold are released.

3. Instruction fetching is redirected to the correct control dependent instructions, and these new
instructions are inserted into the window which may already hold subsequent control indepen-
dent instructions. This step combined with steps 1 and 2 above constitute therestart sequence.

4. Based on the new, correct control dependent instructions, data dependences must be estab-
lished with the control independent instructions already in the window. Any modified data
dependences cause already-executed control independent instructions to be reissued with new
data. This step is called theredispatch sequence in Figure 4.

FIGURE 4. Misprediction recovery in a superscalar processor implementing control independence.

3.2 Key microarchitecture mechanisms

To support the above recovery steps, we have identified four underlying microarchitecture
mechanisms to be implemented. These are: detecting the reconvergent point, supporting arbitrary
insertion and removal of instructions within the window, establishing correct data dependences
following a misprediction, and selectively reissuing instructions. In the following subsections we
consider implementation alternatives for each of these.

3.2.1 Detecting the reconvergent point

Ideally, one would find reconvergent points by associating with every branch instruction its
immediate post-dominator: the basic block nearest the branch which lies on every path between

Incorrect
Instructions

Correct Instructions

Control Independent Instructions

Redispatch SequenceRestart Sequence

Mispredicted Branch Reconvergent Point

A Study of Control Independence in Superscalar Processors December 18, 1998 12

the branch and the CFG exit block [30, 31]. In Figure 1, for example, block 4 is the immediate
post-dominator of the mispredicted branch. Although the post-dominator does not directly specify
the program’s control dependences, it is sufficient for identifying all reconvergent points. Finding
immediate post-dominators could be very difficult using hardware alone. If binary compatibility
does not have to be maintained, software can aid the hardware by encoding this information. For
example, the compiler could encode this information by including in each branch instruction an
offset to its post-dominator instruction. In most cases this offset is quite small. A second option is
to incorporate post-dominator registers into the architecture. Software can load these registers
with the addresses of post-dominator instructions for soon-to-be-executed branches and then
specify a post-dominator register in each branch instruction.

Hardware-only solutions for detecting reconvergent points probably require heuristics that are
less accurate than using complete post-dominator information. One less aggressive hardware
alternative is to identify points in a program where multiple paths converge. There are some com-
mon constructs in a program that exhibit this behavior, such as targets of subroutine return
instructions, or targets of backward branches that form a loop. These points can be determined
with hardware tables that monitor the dynamic stream and record program counter values of such
reconvergent points. When a branch misprediction is detected, hardware can consult the table for
the first such reconvergent point and assume it to be the correct reconvergent point for the mispre-
dicted branch. This approach preserves only a subset of the control independent code after a
branch misprediction, but requires less information to be learned by hardware. A more compli-
cated approach could attempt to learn pairs of branches and their corresponding reconvergent
points.

3.2.2 Instruction removal/insertion

Following the detection of a reconvergent point, the instruction window must be repaired by
selectively removing incorrect control dependent instructions preceding the reconvergent point,
and fetching instructions from the correct control dependent path. We refer to this process as the
restart sequence, shown in Figure 4.

The restart sequence requires selectively removing and inserting instructions while maintain-
ing a correct ordering. The reorder buffer (ROB) of a traditional superscalar processor can be aug-
mented to support this. One option is to have the ROB support arbitrary physical shifting of
instructions to collapse and expand the window for restart sequences. This first option causes the
physical ROB slots to move, and any instruction tags in the pipelines pointing to them will
become out-of-date. This complication can be partially solved by adding a level of indirection.

A second option is to implement the ROB as a linked list. Then, any outstanding instruction
tags do not change as the ROB is repaired, but dispatch and retirement will be complicated by
multiple linked list operations being done in parallel. The complexity of manipulating the linked
list can be reduced by implementing it at a granularity larger than a single instruction. That is,
ROB space can be partitioned into multi-instruction blocks. For example, a 256 instruction ROB
can be implemented as 16 blocks of 16 instructions each. Then, a block at a time can be inserted
or removed from the ROB in a more-or-less conventional way. This reduces complexity but also
reduces full utilization of the window as ROB blocks will often not be fully utilized. For example,
when the processor needs to insert eight instructions into the middle of the ROB, it will allocate a
full block of 16 but use only half the entries.

A Study of Control Independence in Superscalar Processors December 18, 1998 13

Load/store buffers with insertion and removal can be implemented in a similar manner as the
ROB, but they have the added complication that they may require sequence-sensitive address
comparisons to resolve dependences.

Freeing resources for selectively squashed instructions is likely to be less efficient than com-
plete squashing. Reclaiming resources includes returning physical registers to the freelist and
freeing load/store buffer entries. Reclaiming resources selectively may require sequencing
through the squashed instructions and iteratively reclaiming their resources. However, if selective
squashing is done in parallel with fetching new instructions, at least some of the latency may be
effectively hidden. In the process, new instructions may acquire the resources being freed by the
old instructions.

Finally, another complication occurs if the window fills with new instructions before the
reconvergent point is reached. That is, there are more new correct control dependent instructions
than there were old incorrect ones. In this case, it is necessary to begin squashing control indepen-
dent instructions (youngest first), allowing the restart sequence to proceed.

3.2.3 Forming correct data dependences

As pointed out earlier, although instructions may becontrol independent with a preceding
block of instructions, they may not bedata independent. Consequently, correct ordering of data
dependences, both through registers and memory, must be recovered when a misprediction
occurs. Register dependences may be maintained through the existing physical register mapping
mechanisms. To update dependence information, instructions in a control independent region
must be redispatched [1]. During redispatch of instructions their register source operands are
remapped while their register destination operands maintain their original assignments. If an
instruction’s register source operand is mapped to a new physical register, the instruction must be
reissued.

Memory dependences can be maintained through an augmented memory-ordering buffer. The
memory-ordering buffer must detect when a preceding store is removed or inserted by a restart
sequence and direct subsequent loads to reissue. This functionality can be added to an address res-
olution buffer [32] or large load/store queue, the main modifications being that the structures have
to support selective insertion and removal similar to the reorder buffer.

3.2.4 Selective reissuing of instructions

If an instruction’s register source operand is mapped to a new physical register, the instruction
must be reissued. As these instructions are reissued, they will produce new values, and instruc-
tions in data dependence chains following these instructions will also need to reissue.

Ultimately, instructions may issue and execute multiple times before they eventually retire.
Reissuing, therefore, becomes a common case and the microarchitecture must be modified to
reflect this. To reduce the complexity and latency of reissuing instructions, they remain in the
instruction issue buffers until they retire [1, 12]. Instruction issue buffers can be built to reissue
their instructions autonomously when they observe a new value being produced for a source oper-
and. This functionality can be built into the normal issue logic. Thus, the redispatch logic need
only identify instructions directly affected by incorrect data dependences, and the following data
dependent chain of instructions will automatically reissue.

A Study of Control Independence in Superscalar Processors December 18, 1998 14

4. Performance of control independence in a superscalar processor

The idealized studies of Section 2 provide insight into the factors that govern performance of
control independence. Having done so, we now proceed with a more refined analysis, focusing on
an implementation of the modelWR-FD. The analysis is based on a detailed, fully-execution
driven simulator, and reflects the performance impact of implementing the basic mechanisms out-
lined in Section 3.

4.1 Simulator detail

Many of the basic hardware constraints are the same as in Section 2. The machine width is 16
instructions and the underlying pipeline is similar. Instruction fetching remains ideal, but a more
realistic data cache is modeled. The data cache is 64KB, 4-way set associative. The cache access
latency is two cycles for a hit instead of one, and the miss latency to the perfect L2 data cache is
14 cycles. Also, realistic, but aggressive, address disambiguation is performed. Loads may pro-
ceed ahead of unresolved stores, and any memory hazards are detected as store addresses become
available [32] -- recovery is via the selective reissuing mechanism. Lastly, the branch predictor,
while identical to that in the ideal study, may have lower accuracy due to delayed updates (tables
are updated at retirement).

The key mechanisms for supporting control independence, outlined in Section 3, are modeled
as follows.

Detecting the reconvergent pointis done via software analysis of post-dominator informa-
tion. Several hardware-only mechanisms are discussed and evaluated in Appendix A.5.

Instruction removal/insertion gives equivalent performance whether the shift register or
linked list approaches are used. In the simulator, we implemented a linked list approach that uses
single instruction granularity. Larger granularities are evaluated in Appendix A.4.

Forming correct data dependencesis delayed some number of cycles after the mispredic-
tion is detected, unlike the ideal study, because the redispatch sequence cannot proceed until after
the restart sequence completes. Further, redispatch proceeds at the maximum dispatch rate. How-
ever, we also modeled single-cycle redispatch of all control independent instructions (after the
restart phase completes), in order to study its performance impact.

Selective reissuingis modeled in detail, whereas the ideal study models only thedelaycaused
by repaired dependences, i.e. only the final instruction issue. The source of reissuing includes
both register rename repairs and loads squashed by stores, followed by a cascade of reissued
instructions along the dependence chains.

4.2 Performance results

Figure 5 shows the instructions per cycle (IPC) for three different machines: a superscalar pro-
cessor that squashes all instructions after branch mispredictions (BASE), a processor with control
independence capability (CI), and one with the added capability to instantaneously repair data
dependences and redispatch all control independent instructions after the restart sequence com-
pletes (CI-I). Measurements are made for three window sizes, 128, 256, and 512 instructions.

For less predictable workloads, control independence offers a significant performance advan-
tage over complete squashing, although less than the ideal study indicated. The relative perfor-
mance improvement of CI over BASE for each of the window sizes is summarized in Figure 6.
Go, compress, andjpegshow improvements on the order of 20% to 30%. Whilejpeg is fairly pre-
dictable, it is also rich in parallelism and any misprediction cycles result in a large penalty.Go on

A Study of Control Independence in Superscalar Processors December 18, 1998 15

the other hand is a very control-intensive workload with frequent mispredictions, and it demon-
strates the most performance benefit.

Gcc also shows a substantial performance gain, about 10%. Statistics presented in the next
section show that approximately 60% ofgcc’s mispredictions have a corresponding reconvergent
point in the window, while forgo, jpeg, andcompressthe same statistic is over 70%. The fact that
less control independence is exposed may partially account for the lower performance gain.

From Figure 5 we see that CI-I, as expected, gives better performance than CI. However, the
gain is surprisingly small -- between 1% and 4%. This is a positive result because it means the
time spent during redispatch sequences has less impact than anticipated. Redispatch ties up the
sequencer, preventing it from fetching new instructions into the window, and also delays the
repair of some register dependences. As for the latter, statistics in Section 4.3 (Table 2) show that
not many instructions need to repair register dependences, and we also suspect that those in need
of repair are close to the reconvergent point and thus repair quickly.

Compressactually shows a small drop in performance for the CI processors when the window
is increased from 256 to 512 (although performance is still better than BASE). As will be seen in
the next section,compressexhibits an unusually high number of memory ordering violations.
This situation is only worsened with larger window size -- and particularly where control indepen-
dent instructions are saved -- because more loads have the opportunity to proceed before depen-
dent stores. The drop in performance is due to a 1-cycle penalty for loads squashed by stores. The
effect is amplified incompressbecause there are extremely long dependence chains in the bench-
mark, as can be seen by the large number of reissued instructions presented in the next section.

FIGURE 5. Performance with and without control independence, for three window sizes.

FIGURE 6. Percent improvement in IPC due to control independence.

0

1

2

3

4

5

6

7

8

9

10

gc
c/1

28

gc
c/2

56

gc
c/5

12

go
/1

28

go
/2

56

go
/5

12

co
m

p/
12

8

co
m

p/
25

6

co
m

p/
51

2

jpe
g/

12
8

jpe
g/

25
6

jpe
g/

51
2

vo
rte

x/1
28

vo
rte

x/2
56

vo
rte

x/5
12

benchmark/window size

IP
C

CI-I
CI
BASE

Improvement of CI over BASE

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg vortex

%
 IP

C
 im

p
ro

ve
m

en
t

128
256
512

A Study of Control Independence in Superscalar Processors December 18, 1998 16

We would expect with larger window sizes, more control independence is exposed. However,
according to Figure 6, only two of the benchmarks show a substantial variation with increasing
window size --go and jpeg -- and even then most of the variation occurs between 128 and 256.
Yet our ideal study shows more variation with window size. In addition to the obvious configura-
tion differences enumerated in Section 4.1, there are a host of subtle issues that contribute to dif-
ferences between the ideal and implementation studies; some of these issues are treated in
Appendix A.

4.3 Other control independence measures

This section explores the behavior of control independence in a superscalar processor to better
understand the performance results given in the previous section. The results in this section are for
the intermediate window size of 256 instructions.

The first column of Table 2 shows how often a control independent reconvergent point is in
the window at the time a control misprediction is detected. In all the benchmarks exceptvortexa
reconvergent point is present for over 60% of mispredictions.

The second and third columns of Table 2 show the average number of instructions removed
and insertedfor those restart sequences that reconverge in the window. The average number of
instructions removed for a restart, the dynamic distance between the misprediction point and
reconvergent point on the incorrect path, is less than 14 for all the benchmarks. The average num-
ber of instructions inserted for a restart, the dynamic distance between the misprediction point and
reconvergent point on the correct path, is less than 20 for all the benchmarks. For both removal
and insertion the distance is 32 or less for over 80% of the restarts (not shown in the table).

The average number of inserted instructions is higher than that of removed instructions
because we only consider mispredictions that have a corresponding reconvergent point in the win-
dow. Consequently, mispredictions with many incorrect control dependent instructions do not
contribute to the average number of removed instructions if the reconvergent point is not reached.

The fourth column in Table 2 shows that the average number of control independent instruc-
tions after the reconvergent point is greater than 50 for all the benchmarks. Further, the last col-
umn in Table 2 shows that on average, only 2 to 3 of the control independent instructions will
acquire new physical register names during redispatch, requiring them to reissue. Additional con-
trol independent instructions will reissue due to memory dependences or data dependences with
other control independent instructions that reissue. Also, some of these control independent
instructions may be parts of incorrect control paths and will later be squashed.

TABLE 2. Statistics for restart/redispatch sequences.

Benchmark

% of
mispredictions
that
reconverge

Avg. # of
removed
control dep.
instr.

Avg. # of
inserted
control dep.
instr.

Avg. # of
control indep.
instr.

Avg. # of control
indep. instr.
squashed due to new
register name(s)

gcc 61.8 13.2 16.5 51.8 2.75

go 71.2 13.5 18.1 62.4 2.18

compress 90.8 6.8 6.6 122.1 1.74

jpeg 81.6 9.0 10.7 79.8 2.17

vortex 46.8 9.2 12.8 81.5 2.10

A Study of Control Independence in Superscalar Processors December 18, 1998 17

Table 3 shows the amount of useful work that can be saved with control independent instruc-
tions. In this table we look only at correct instructions that ultimately retire. Ignoringvortex, 13%
(jpeg) to 70% (compress) of all retired instructions are fetched before a preceding mispredicted
branch is resolved. Without using control independence these instructions would be squashed and
fetched again. More importantly, 11% (jpeg) to 39% (compress) of all retired instructions issue
and have their final value before a preceding mispredicted branch is resolved. Without using con-
trol independence this work would be lost. Of control independent instructions that do not have
their final value at the time the misprediction is resolved, most have issued and are forced to reis-
sue due to data dependences (the column labeled “work discarded”).

Table 4 shows how often and why instructions reissue. Even without control independence,
memory ordering violations due to incorrect disambiguation cause instructions to reissue. With-
out control independence, instructions issue on average 1.04 (jpeg) to 1.24 (compress) times.
0.5% to 6% of instructions are loads that reissue due to memory ordering violations, which in turn
cause chains of dependent instructions to reissue.

With control independence, the average number of times each instruction issues increases to
1.10 (jpeg) to 2.44 (compress). Memory ordering violations result from (1) incorrect disambigua-
tion and (2) incorrect memory dependences caused by branch mispredictions. The two compo-
nents tend to be equal. Other instructions reissue because of incorrect register dependences caused
by branch mispredictions. When instructions reissue due to memory or register data dependences,
they cause chains of dependent instructions to reissue.

5. Conclusions and Future Work

This research refines our understanding of control independence, perhaps the least understood
solution to the conditional branch problem. The study establishes new performance bounds that
account for practical implementation constraints and incorporate all data dependences. To gain
insight, the study identifies three important factors and isolates their impact on performance: true

TABLE 3. Work saved by exploiting control independence, as a fraction of retired instructions.

benchmark fetch saved work saved work discarded had only fetched

gcc 27% 20% 5% 2%

go 39% 30% 6% 3%

comp 70% 39% 27% 4%

jpeg 13% 11% 2% 0%

vortex 5% 4% 1% 0%

TABLE 4. Instruction issues per retired instruction.

no control independence control independence

Benchmark total due to memory
violations

total due to memory
violations

due to register
violations

gcc 1.07 0.015 1.19 0.027 0.033

go 1.10 0.015 1.32 0.032 0.025

comp 1.24 0.061 2.44 0.063 0.051

jpeg 1.04 0.005 1.10 0.010 0.007

vortex 1.12 0.019 1.14 0.021 0.002

A Study of Control Independence in Superscalar Processors December 18, 1998 18

data dependences between correct control dependent instructions and control independent instruc-
tions, false data dependences created by incorrect control dependent instructions, and wasted
resources consumed by incorrect control dependent instructions. A conclusion is that both types
of data dependences limit the potential of control independence in perhaps unavoidable ways, but
the biggest performance limiter is wasted resources consumed by incorrect control dependent
instructions. This limitation may be reduced in designs capable of “absorbing” wasted instruction
fetch and execution bandwidth.

This paper also discusses important implementation issues and provides some design alterna-
tives. Simplified alternatives are also discussed to address some of the more complex aspects,
such as the segmented ROB for arbitrary insertion/removal of instructions, and hardware heuris-
tics for identifying the reconvergent point. Detailed simulations of a superscalar processor imple-
menting the key features show typical performance improvements of 10 to 30 percent over a
baseline superscalar processor. The speedup is derived from 20 percent of retired instructions
whose computation is saved as a result of control independence.

The purpose of this work is not so much to advocate control independence in superscalar pro-
cessors as to promote other control independence architectures. This research is a necessary step
towards improving control independence in trace processors, whose hierarchical structure pro-
vides a simpler implementation in many respects, including arbitrary instruction insertion/
removal. Further, the abstractnWR-FDmachine model suggests combining the expandable win-
dow model of multiscalar processors with the aggressive data dependence resolution and recovery
model of trace processors.

 Appendix

A. Detailed issues in control independent designs

This section describes many of the issues we encountered when trying to understand and
exploit control independence. These issues only became apparent during the translation from
ideal study to detailed implementation, and they partially explain discrepancies between the ideal-
ized experiments and the measurements taken from the detailed execution-driven simulator.

While a few of the problems are unique to control independence processors with a single pro-
gram counter (e.g. handling multiple concurrent branch mispredictions), several apply to any con-
trol independence architecture, including those with multiple flows of control. In particular, the
problem of false mispredictions (Section A.2) and the interaction between control independence
and global branch history (Section A.3) have more far-reaching implications.

Unless otherwise stated, all results are for a 256 instruction window.

A.1 Handling multiple branch mispredictions

In Section 3, implementation issues were discussed in the context of recovery from a single
mispredicted branch. In reality, the recovery process can potentially consume many cycles, and
while a recovery is in progress, the processor may determine that a branch logically preceding the
current restart sequence has also been mispredicted. This can easily occur when branches are
allowed to execute out-of-order. Even if branches are required to execute in-order this can still
occur in limited cases -- while fetching instructions for a restart sequence, a newly fetched branch
may execute and determine that its prediction was incorrect. Our preliminary performance studies
indicated that handling restart sequences serially without preemption can lead to significant per-

A Study of Control Independence in Superscalar Processors December 18, 1998 19

formance degradation, because the processor may be delayed from bringing good instructions into
the window while it is fetching and/or redispatching instructions from an incorrect path.

We have determined this effect to be quite significant and some form of preemption is neces-
sary. We begin with a simple preemption strategy that results in some performance loss but has
minimal impact on the instruction fetch unit. This method was used in the primary performance
evaluation of Section 4. To determine the performance degradation of simple preemption, optimal
preemption is also presented (the ideal study of Section 2 models optimal preemption).

A.1.1 Simple preemption

Figure 7 shows three possible cases where a branch misprediction logically preceding an
active restart/redispatch sequence is detected. The logical sequence of instructions is represented
by the solid line going from left to right. The terms “later” and “earlier” refer to the times that
mispredictions are detected. So, in the figure the later mispredicted branch in fact appears first in
the logical program sequence. The three cases listed below differ in the location of the reconver-
gent point of the later mispredicted branch.

FIGURE 7. Three cases for preemption of a restart/redispatch sequence.

CASE 1: the later mispredicted branch may not have a corresponding reconvergent point in
the window. In this case, all the instructions in the window following the later mispredicted
branch can be squashed.

CASE 2: the later mispredicted branch has a reconvergent point that occurs after the current
reconvergent point (caused by the earlier misprediction). In this case all the instructions from the
current restart sequence will be squashed and instructions after the new reconvergent point will
have to go through redispatch again. In these first two scenarios, it is reasonable to preempt the
active restart/redispatch sequence, i.e. the behavior is identical to recovery from a single mispre-
diction.

CASE 3: the later mispredicted branch has its reconvergent point before the current restart
sequence. In this case the instructions in the current restart sequence and those following the cur-
rent reconvergent point may still be part of the correct path. In order to avoid delays in servicing
the new misprediction and to avoid adding extra state to the sequencer, the most straight-forward
approach is to preempt the active restart sequence, and squash instructions following the current
reconvergent point. The more complex alternative is to have the sequencer remember that there
was a restart in progress, and after servicing the new restart sequence, the sequencer must return
to the preempted restart to continue filling the gap in the instruction window.

The simple preemption strategy for CASE 3 results in a performance loss (compared to the
complex alternative). However, the sequencer does not have to keep track of multiple outstanding
restart sequences, only the most recent one.

Later Mispredict Earlier Mispredict

Current Restart
CASE 1CASE 2CASE 3

A Study of Control Independence in Superscalar Processors December 18, 1998 20

Note that preempting a re-dispatch sequence is simpler because backing up the sequencer
ensures that the instructions will eventually be re-dispatched by the latest recovery process.

A.1.2 Optimal preemption

As described above, optimal preemption requires maintaining state for all outstanding restart
sequences. This may not be overly complex: a minimum of sequencer state (PC, where in the win-
dow instructions are to be inserted, and information about the reconvergent point) might be
pushed onto a hardware stack to preempt a restart sequence, and resuming restart sequences in the
proper order is achieved by popping state from the stack. However, preemption state may have to
be selectively deleted from the middle of the stack if the corresponding restart sequences them-
selves belong to a mispredicted path and are squashed.

A.1.3 Preemption results

Figure 8 shows the performance of both simple and optimal preemption models. Simple pre-
emption performs as well as optimal preemption, at least for a 256 instruction window, because
restart sequences that reconverge in the window have a duration of only 1 or 2 cycles on average.
Gcc, go, compress, andjpeg have average durations of 1.6, 1.6, 1.1, and 1.2 cycles respectively.
For all of the benchmarks, about 90% of all restarts require 3 or fewer cycles. As a result, preemp-
tions (including case-3 preemptions) are rare.

Preemptions will become more frequent in larger windows, due to more branches and a higher
chance for concurrent misprediction detection. A lower fetch bandwidth also increases the fre-
quency of preemptions, because restarts take longer to service.

FIGURE 8. Evaluation of simple and optimal preemption for handling multiple branch mispredictions.

In the experiments that follow, optimal preemption is used because other enhancements may
be artificially limited by simple preemption. This probably is not the case, but rather than simulate
all combinations, we chose the least restrictive preemption model.

A.2 False mispredictions

A false mispredictionoccurs when a branch that is predicted correctly executes with specula-
tive, incorrect operands, and as a result, the branch prediction is assumed to be incorrect. A false
misprediction causes what are actually correct instructions to be squashed.

preemption models

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C simple

optimal

A Study of Control Independence in Superscalar Processors December 18, 1998 21

The operands of a branch may be incorrect for various reasons. In a processor with control
independence, a mispredicted branch can introduce incorrect data dependences which ultimately
affect subsequent control independent branches. Other sources include incorrect values produced
by data speculation, e.g. value prediction and memory dependence speculation. Incompressfor
example, the high frequency of loads that issue before dependent stores may cause false mispre-
dictions.

A.2.1 Performance impact of false mispredictions

False misprediction is one source of discrepancy between the idealized models and the
detailed execution-driven simulator. The impact of false mispredictions is measured in the execu-
tion-driven simulator by using oracle information to detect and prevent false mispredictions from
occurring. The following configurations are simulated (all in the context of a processor with con-
trol independence mechanisms).

• non-spec: Branches are not allowed to complete until their operands are known to be non-spec-
ulative. This means (1) branches must execute in-order, so that operands are non-speculative in
terms ofcontrol flow, and (2) all instructions that may affect a branch’s operands must them-
selves be non-speculative before the branch can execute, so that operands are non-speculative
in terms ofdata flow. In this branch completion model, there are no false mispredictions.

• spec-D: Branches must execute in-order, but branches need not wait for any other instructions
to be non-speculative. Hence,spec-Drefers to the fact that operands may still be speculative
due todata speculation, in our case loads issuing early.

• spec-D-HFM: This is the same asspec-D, except oracle information is used to detect branches
that will cause false mispredictions if allowed to complete. In these cases, branch completion is
delayed, thereby preventing false mispredictions:HFM = hide false mispredictions.

• spec-C: This is the dual ofspec-D. Branches may complete out-of-order, but other instructions
that may affect a branch’s operands must be non-speculative before the branch can complete.
Hence,spec-Crefers to the fact that operands may still be speculative due tocontrol specula-
tion.

• spec-C-HFM: This is the same asspec-C, but false mispredictions are prevented.

• spec: Branches may complete whenever operands are available. This means branches complete
without regard to speculative operands.

• spec-HFM: This is the same asspec, but false mispredictions are prevented.
The results of the seven models are shown in Figure 9. The first graph shows IPC for each

model, and the second graph shows the percent IPC difference between any two specified models.
Referring to the second graph, it is clear from the first bar (spec-Covernon-spec) that com-

pleting branches out-of-order is important, about a 10% impact. This performance improvement
comes from detecting true mispredictions quickly, although not as early as possible because
branch operands cannot be data-speculative. Further, from the fourth bar (spec-C-HFMover
spec-C) it is clear that this early evaluation does not result in many false mispredictions; prevent-
ing false mispredictions inspec-C results in less than 1% improvement.

A Study of Control Independence in Superscalar Processors December 18, 1998 22

FIGURE 9. Performance impact of branch completion models and false mispredictions.

From the second and third bars (spec-Dandspecover non-spec, respectively), we conclude
that (1) except forjpeg, allowing data-speculative operands (spec-D) is less important than com-
pleting branches out-of-order (spec-C), but (2) allowing data-speculative operands becomes more
important when branches are allowed to complete out-of-order (spec). That is, the combined
effect ofspec-Candspec-Dis greater than the sum of the two. The only exception iscompress,
for which allowing data-speculative operands has negative consequences. This is understandable
considering the large number of load-store ordering violations incompress.

From the fifth bar (spec-D-HFMover spec-D), it is apparent that allowing data-speculative
operands results in more false mispredictions than allowing control-speculative operands. Still, if

branch completion and false misprediction
experiments

0

1

2

3

4

5

6

7

8

9

gcc go comp jpeg

benchmark

IP
C

non-spec
spec-C
spec-C-HFM
spec-D
spec-D-HFM
spec
spec-HFM

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

gcc go comp jpeg

benchmark

IP
C

 d
el

ta
:

m
o

d
el

 X
 w

.r
.t

. m
o

d
el

 Y

spec-C/non-spec
spec-D/non-spec
spec/non-spec
spec-C-HFM/spec-C
spec-D-HFM/spec-D
spec-HFM/spec

A Study of Control Independence in Superscalar Processors December 18, 1998 23

false mispredictions can be prevented in thespec-Dmodel, the result is only about a 3% improve-
ment for three of the benchmarks.Compress,as expected, can benefit significantly by eliminating
false mispredictions -- a 24% improvement overspec-D.

Finally, from the sixth bar (spec-HFMover spec) we can assess the total impact of false
mispredictions when branches are allowed to execute as soon as operands are available. False
mispredictions affect performance by 5% forgcc andgo, 2% forjpeg, and 37% forcompress.

From these results, we conclude that with only a small degree of data speculation (i.e. memory
dependence speculation, but not value prediction), it is probably best to implement thespec
model. We have shown that it is more important to resolve true mispredictions as early as possible
than try to avoid false mispredictions by being conservative. In the following section, we present
intelligent techniques for identifying false mispredictions, so that branches may be selectively
identified for early or late completion. These techniques may be used as a hedge against false
mispredictions if they are a major problem in other workloads, or other processor configurations
(e.g. larger, more speculative windows).

Spec-Cis the branch completion model used in our primary results section (Section 4) and
unless otherwise stated is used for the remainder of the experiments.Spec-Cwas chosen for its
robustness across all of our benchmarks.Compress, however, is somewhat of a microbenchmark
(as seen in the next section) and its anomalies should not have too much influence in designing
control independent processors.

A.2.2 Identifying and preventing false mispredictions

In this section ways of detecting and avoiding false mispredictions are discussed. One obvious
solution is to use a branch prediction confidence mechanism [33], which assesses the likelihood
that a given branch prediction will turn out to be incorrect. A high-confidence assessment of a
branch prediction delays the completion of a branch if its operands are speculative. Delaying a
correctly-predicted branch does not degrade performance and may prevent false mispredictions
from occurring. On the other hand, delaying a true misprediction from being resolved can seri-
ously degrade performance.

Our early experiments using branch confidence to prevent false mispredictions have not pro-
duced good results. All too often more true mispredictions are delayed than false mispredictions
prevented.

These early experiments motivate a second technique to identify false mispredictions. Branch
prediction confidence is indirect in that the history of correct and incorrect branch predictions is
monitored. It may prove more useful to directly monitor the history of true and false mispredic-
tions instead.

We begin by collecting true/false misprediction statistics per static branch, analogous to the
static confidence measurements in [33]. For each static branch, we measure the total number of
true mispredictions it contributes as well as the total number of false mispredictions it contributes.
This data is used to compute thefalse misprediction rateper branch, that is, the ratio of false
mispredictions to total mispredictions for a given branch. The branches are then sorted from
higher to lower false misprediction rate. Finally, using the sorted list of mispredicted branches, the
cumulative fractions of true and false mispredictions are computed. The resulting graph is shown
in Figure 10, with cumulative fractions of true and false mispredictions plotted along the x-axis
and y-axis respectively.

A Study of Control Independence in Superscalar Processors December 18, 1998 24

FIGURE 10. Using true/false misprediction history to detect false mispredictions.

From the curve labeledstatic, we can see that 90% of all false mispredictions can be detected
and prevented at the expense of delaying only 20% of all true mispredictions, forgcc and jpeg.
For go, 75% of false mispredictions can be detected for the same point. In compress, a single
branch accounts for over 50% of the true mispredictions and 75% of the false mispredictions --
clearly a static identification scheme is ineffective in such cases.

The static implementation implies profiling per-branch false misprediction rates, choosing a
threshold rate, and marking branches above the threshold. At run-time, these branches are delayed
until their operands are non-speculative.

Thestaticscheme does not exploit dynamic behavior in that a branch is either always delayed
or never delayed. A dynamic scheme may be more effective in separating true from false mispre-
dictions. A hardware table is used to collect true/false misprediction history. Rather than propose
a specific automaton, we begin by maintaining a 16-bit shift register of history, called the TFR
(“True/False mispredictionRegister”). This is analogous to the CIR in [33], but the TFR is
updated only for mispredicted branches. A ‘1’ is shifted in for a false misprediction and a ‘0’ for a

true misprediction. In these experiments a 216-entry table of TFRs is maintained, indexed either
by the PC or the PC XORed with global branch history (likegshare).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (jpeg)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (go)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (gcc)

static
dynamic (pc)

dynamic (xor)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

%
 o

f
fa

ls
e

m
is

pr
ed

ic
tio

ns

cumulative % of true mispredictions

false mispredictions (compress)

static
dynamic (pc)

dynamic (xor)

A Study of Control Independence in Superscalar Processors December 18, 1998 25

The same process described above is used to generate curves for the dynamic schemes, but
instead of gathering misprediction statistics per static branch, they are gathered per TFR pattern.
The TFR patterns are sorted by false misprediction rate and cumulative fractions of true and false
mispredictions are plotted.

From Figure 10, it is apparent that dynamic schemes identify more false mispredictions while
delaying less true mispredictions. The curve labeleddynamic(pc)uses only the PC to index into
the TFR table, and the curve labeleddynamic(xor)uses agshare index. If only 10% of true
mispredictions are to be delayed, 90%, 80%, 60%, and 95% of all false mispredictions can be
detected forgcc, go, compress, andjpeg, respectively. This is for thedynamic(xor)scheme. If we
can tolerate delaying 20% of true mispredictions, then 75% of false mispredictions can be
detected incompress.

The results for the dynamic techniques demonstrate thepotentialfor identifying false mispre-
dictions. Developingreduction functions[33] that capture the desired TFR patterns is left for
future work. It is not clear that resetting counters, which perform well for confidence estimation,
are well-suited for identifying false mispredictions.

A.3 Branch prediction issues

For the most part, branch predictors have been designed for processors that sequentially pre-
dict and fetch instructions, with the implicit assumption that all instructions following a branch
misprediction are squashed and re-predicted with the most up-to-date branch history. This poses
problems for any form of out-of-order instruction fetching, e.g. control independence in supersca-
lar processors, or hierarchical sequencing in multiscalar and multithreaded processors. The prob-
lem is a branch may have to be predicted based on an incomplete orincorrect history of prior
branches.

Two-level predictors that use global branch history, such as thegsharepredictor used in this
work, while highly accurate, are potentially problematic in control independence machines. In
Figure 11, the two branches b1 and b2 are correlated and b1 is mispredicted. Because of the corre-
lation, thegsharepredictor is likely to also mispredict b2. In a conventional processor with com-
plete squashing, the second misprediction b2 is irrelevant: the sequencer backs up to b1 and
re-predicts branch instructions, this time with the up-to-date historyincluding b1’s correction.
Thus, b2 is likely to be predicted correctly.

FIGURE 11. Example of using incorrect global branch history to predict branches.

This has two implications.

• Control independence does not obviate the need for re-predicting branches. As with complete
squashing, the branch predictor must be backed up to the misprediction, the global history cor-
rected, and instructions re-predicted during the re-dispatch sequence. Thus, re-dispatch

b1

b2 b2 is strongly correlated with b1

A Study of Control Independence in Superscalar Processors December 18, 1998 26

sequences are not only needed to repair data dependences, but also to iteratively improve
branch predictions within the instruction window as global history is corrected. Without these
early corrections, the advantages of correlation are negated and performance may actually
worsen with respect to a simpler, local-history branch predictor.

• Simulation models that assume a correct global history for every branch prediction are mis-
leading in the context of control independence. The conventional branch prediction accuracy
metric does not hold. For example, the initial prediction for b2 would in fact appear as a
misprediction and reduces the apparent benefit of control independence. The idealized study in
this paper, Lam and Wilson’s limit study, and Uht and Sindagi’s limit study are overly optimis-
tic in this respect: the studies assume correct global history for predicting branch b2 the first
time, so b2 is predicted correctly, whereas the accurate timing model used in Section 4 of this
paper mispredicts b2.

A.3.1 Global branch history

The second bullet above is potentially a source of discrepancy between the idealized study and
the detailed timing model. To evaluate the impact of assuming correct global history, we imple-
mentedoracle global historyin the detailed execution-driven simulator: a given branch is pre-
dicted using what is ultimately the correct global branch history leading up to that branch.

The graph in Figure 12 shows that the effect is not large, a maximum change in IPC of plus or
minus 5% with respect to using timing-accurate, possibly incorrect global history. Strangely,jpeg
exhibits worse performance with oracle branch history. We do not have a definite reason for why
this is the case.Jpegmay legitimately perform better with the patterns created by delayed correc-
tions to the global history register.

Or this may be an artifact of the simulation method, which cannotguaranteematching a given
branch with its correct global branch history. The simulator runs a second, fully-accurate instruc-
tion window in parallel with the actual processor window, and maintains a mapping of good
instructions in the processor to counterparts in the fully-accurate window; these counterparts pro-
vide the oracle branch history. Because loop iterations and function instances may be inserted at
any time into the middle of the instruction window, initial mappings may be incorrect due to
instance mismatches.

FIGURE 12. Impact of assuming oracle global branch history.

impact of oracle branch history

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

gcc go comp jpeg

benchmark

d
el

ta
 w

.r
.t

. r
ea

l b
ra

n
ch

 h
is

to
ry

A Study of Control Independence in Superscalar Processors December 18, 1998 27

A.3.2 Re-predict sequences

It is quite possible for a re-prediction to overturn a correct prediction, or worse, to overturn a
branch that has already executed. We have determined that the latter case is important and can
often be avoided. A good heuristic that is implemented in the execution-driven simulator is to
force the branch predictor if a branch is in the “completed” state. On the other hand, if the branch
is not in the “completed” state, the branch predictor dictates the re-prediction.

In Figure 13, we first evaluate the importance of re-predicting branches. The bar labeled
CI-NRshows the performance of control independence mechanisms with no re-predict sequences.
That is, initial predictions are maintained until and unless branches complete and overturn the pre-
dictions. Thus, there are noearly correctionsof predictions as global history changes. For refer-
ence, the performance of a processor without control independence is also shown, labeledbase.

Second, to assess the re-prediction heuristics implemented in our design, labeledCI, they are
compared withoracle re-predictsequences, labeledCI-OR. The modelCI-OR is oracle in the
sense that correct predictions are never overturned during re-predict sequences.CI differs from
CI-ORin two ways: (1) branches not in the “completed” state cannot force the predictor where the
oracle model might and (2) branches in the “completed” state may have an incorrect outcome and
wrongly force the predictor.

The important conclusion is that re-predict sequences are necessary. Forgcc andcompress,
not having re-predict sequences degrades performance to near or below thebasemachine. Forgo
and jpeg, not having re-predict sequences reduces the benefit of control independence by half:
from 30% to 15% forgo, and 20% to 12% forjpeg.

ComparingCI to CI-OR, we see that our re-prediction mechanism performs within 5% of ora-
cle re-prediction for three of the benchmarks. Forcompress, however,CI-ORperforms 25% better
thanCI. All too often, either the predictor overturns correct predictions or completed branches
incorrectly override the predictor. Because these results are for thespec-Ccompletion model, we
suspect the branch predictor to be at fault (re-predictions overturning correct predictions).

FIGURE 13. Evaluation of re-predictions.

A.4 Segmented reorder buffers

The non-hierarchical, inflexible, contiguous window organization of superscalar processors is
a primary source of complexity for implementing control independence. In Section 3.2.2 we pro-

re-prediction models

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C

base
CI-NR
CI
CI-OR

A Study of Control Independence in Superscalar Processors December 18, 1998 28

posed implementing the reorder buffer (ROB) as a linked-list to support arbitrary instruction
insertion and removal. To reduce the number of concurrent linked-list operations, we proposed a
hierarchical organization composed of ROB segments. The logical (program) order of instructions
within a segment corresponds directly with their physical order, as in a conventional ROB. How-
ever, the logical ordering among segments varies. In this way, the linked-list data structure need
only specify the logical order of physical segments. The complex alternative to this hierarchical
approach is to maintain an instruction-granularity linked-list.

A.4.1 Segment size

Maintaining the linked-list mapping is less complex for larger segments. For example, if the
number of instructions per segment is equal to the dispatch/retire rate, up to 3 linked-list opera-
tions need to be performed each cycle: inserting one segment for dispatching new instructions,
removing one segment for retiring instructions, and removing one segment for squashing instruc-
tions (we envision a processor that concurrently frees resources held by incorrect control depen-
dent instructions and allocates resources for correct control dependent instructions). Halving the
segment size doubles the number of concurrent linked-list operations, resulting in a more complex
implementation.

On the other hand, larger segments result in internal fragmentation of ROB entries, i.e. poor
ROB utilization. This occurs because segments are allocated as a unit. If fewer instructions are
inserted in the window than there are instructions in a segment, space in the segment is wasted.
Likewise, some fraction of leading or trailing instructions within a segment may be squashed, also
leaving the segment underutilized.

In Figure 14 the ROB segment size is varied. In all cases the total ROB size is 256 instructions
and the machine width is 16 instructions per cycle. Segments of 1, 4, and 16 instructions are sim-
ulated. 1 instruction per segment amounts to exploiting control independence at the granularity of
individual instructions; it is clearly the most flexible approach, resulting in optimal ROB utiliza-
tion and high performance, but may be overly complex. Using larger segments degrades perfor-
mance in two ways. First, fragmentation due to insertion and removal of instructions from the
middle of the ROB results in wasted buffer space that is not reclaimed until retirement or until the
entire segment is squashed. Second, segments must be retired as a unit. This delays reclaiming
ROB entries untilall instructions in the segment are ready to retire.

Both IPC and performance improvement over a processor without control independence
(base) are shown in Figure 14. Forcompressand jpeg, 4-instruction segments exploit control
independence as well as 1-instruction segments, and 16-instruction segments reduce performance
by less than 5%. Likewise, forgoandgcc4-instruction segments reduce performance by less than
5%. However, 16-instruction segments reduce the performance improvement due to control inde-
pendence by half ingcc and by a third ingo. These benchmarks exhibit more fragmentation
because their control flow is much more irregular thancompress andjpeg.

A Study of Control Independence in Superscalar Processors December 18, 1998 29

FIGURE 14. Varying ROB segment size.

A.4.2 Control for logically ordering instructions

The processor must maintain the correct program order of instructions for two reasons:
in-order retirement and establishing data dependences. Thus far we have only briefly discussed
instruction ordering for establishing memory dependences, but it deserves some attention.

A conceptual view of the contents of the linked-list control structure is shown in Figure 15.
The structure holds one entry per ROB segment and is indexed by physical segment number. An
entry consists of three fields: logical segment number (head segment in the list is logical segment
0), previousphysical segment number, andnextphysical segment number. Inserting and removing
segments (corresponding to allocating and reclaiming segments, respectively) involves updating
the previousandnextpointers of logically adjacent segments. Further, inserting or removing a
segment requires incrementing or decrementing the logical number of all segments that logically
follow the segment.

The first field, called thephysical-to-logical segment translation, and theprevious-nextpoint-
ers are essentially redundant information, since they both represent a linked-list. However, the dif-
ferent representations may simplify different tasks. As will be seen in the next section, the
physical-to-logical segment translation may prove useful for resolving memory dependences.

impact of segment size

0

1

2

3

4

5

6

7

8

gcc go comp jpeg

benchmark

IP
C

base
16
4
1

performance improvement over base for various
segment sizes

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg

benchmark

%
 IP

C
 im

p
ro

ve
m

en
t

16
4
1

A Study of Control Independence in Superscalar Processors December 18, 1998 30

FIGURE 15. Linked-list control structure.

A.4.3 Resolving memory dependences

A scheme for ordering loads and stores based on physical sequence numbers was proposed in
the context of trace processors in [1]. Assigning physical sequence numbers based on instruction
buffer number to all loads and stores, the mechanism allows for memory operations to be selec-
tively inserted and removed from anywhere within the window, while still maintaining correct
load-store ordering. However, the approach relies on a very simple, circular mapping of physi-
cal-to-logical sequence number. That is, the processing elements (segments) are organized in a
ring.

This requirement is alleviated if a general mechanism is provided to translate physical to logi-
cal sequence numbers, like the linked-list control structure in Figure 15. Therefore, we can apply

the same memory ordering algorithm used in the trace processor1, the only changes to the algo-
rithm being a translation step before any sequence number comparison.

A.5 Hardware heuristics for detecting reconvergent points

Thus far we have assumed accurate, per-branch post-dominator information for identifying
reconvergent points. In this section we discuss two other general approaches for identifying
reconvergence and measure the performance of one of them. Clearly, other heuristics are possible,
and hardware identification of reconvergence is a topic for future study.

A.5.1 Associative-search technique

As a restart sequence progresses, one approach is to compare the PCs of the incoming instruc-
tions with the PCs of all instructions logically after the mispredicted branch. If the reconvergent
point is in the window, in most cases it will be found using this associative-search technique.

1. Because the load-store ordering algorithm is involved, we do not reproduce it here and the reader is referred to [1].

head tail
7 1

segment id
physical

0 1 32

physical

logical

Example:

7 3 4 1

0
1
2
3
4
5
6
7 0

2
1

3

segment id
logical

3

13
7 4

4 //

//

logical
segment id

prev next

A Study of Control Independence in Superscalar Processors December 18, 1998 31

There is one major problem with this approach. Because we do not know before-hand where
incorrect control dependent instructions end and control independent instructions begin, dispatch-
ing new instructions requires reclaiming instruction buffers from the tail of the reorder buffer,
when in fact buffers could be reclaimed from incorrect control dependent instructions first. Thus
some control independent instructions are unnecessarily squashed.

A.5.2 Identifying reconvergent points by instruction type

In Section 3.2.1 we proposed examining the dynamic instruction stream for common control
flow constructs such as loops and procedures. Both loops and procedures exhibit obvious recon-
vergence and, as a first approximation, they are identifiable by examining instruction words at
decode time.

The following two heuristics identify “global” reconvergent points: these points are not neces-
sarily the precise, i.e.nearest, control independent point of any one branch, but they cover regions
of branches and their mispredictions.

• procedure return points (return heuristic): The decoder identifies all return instructions. The
predicted target instruction of a return is remembered as a potential reconvergent point.

• top-of-loop and loop-exit points (loop heuristic): The decoder identifies all backward branches
by examining branch offsets. The predicted target instruction of a backward branch is remem-
bered as a potential reconvergent point. Depending on the prediction, this may be either the
taken or not taken target of the branch, corresponding to the top-of-loop or loop-exit point,
respectively.

Whether thereturn andloop heuristics are used singly or in combination, the global reconvergent
point nearest a mispredicted branch is assumed to be the branch’s reconvergent point.

The third heuristic is an example of precisely identifying the reconvergent point of a class of
branches.

• mispredicted loop-terminating branches (ltb heuristic): If a backward branch is mispredicted,
the not taken target of the branch is found in the window and assumed to be the reconvergent
point of the branch.

If the ltb heuristic is used in conjunction with thereturn and/orloop heuristics, theltb heuristic
takes priority if the mispredicted branch is a backward branch.

The two global heuristics are shown in Figure 16(a) and theltb heuristic in Figure 16(b). Can-
didate reconvergent points are marked with a black dot and mispredictions with an X. Thereturn
heuristic covers all mispredictions within a function, and even some mispredictions before the call
if the call is among the control independent instructions. Likewise, theloop heuristic covers all
mispredictions within a loop and possibly some before the loop. Finally, theltb heuristic specifi-
cally and precisely covers the mispredicted backward branch of a loop.

In general, heuristics will not perform as well as complete post-dominator information for the
following reasons.

1. Choosing the nearest global reconvergent point from among many in the window will yield no
benefit if the chosen point is in the incorrect control dependent path of the mispredicted branch.

2. Even if the chosen global reconvergent point is among the control independent instructions, it
may be too distant from the mispredicted branch’s immediate post-dominator to yield benefit.

A Study of Control Independence in Superscalar Processors December 18, 1998 32

3. There is a case where theltb heuristic fails. If the loop is exited via some other branch, then the
not taken target of the mispredicted backward branch is possibly among the incorrect control
dependent instructions.

FIGURE 16. Instruction-type heuristics for identifying reconvergent points.

Performance of all combinations of the three heuristics is shown in Figure 17. Performance
improvement is measured with respect to a machine with no control independence. For reference,
a processor using full post-dominator information is shown as well, labeledCI.

When the three heuristics are applied individually (first three bars in Figure 17), thereturn
heuristic is generally the best performer. The only exception isjpeg, for which theloop heuristic
performs best.Jpeghas one loop in particular that has many internal mispredictions, and control
independence is easily exploited across loop iterations.

FIGURE 17. Performance of simple instruction-type heuristics for identifying reconvergent points.

(a) global reconvergent points

call

ret

"loop" heuristic

"return" heuristic

"ltb" heuristic

(b) precise reconvergent point
of a loop-terminating branch

0%

5%

10%

15%

20%

25%

30%

35%

gcc go comp jpeg

%
 IP

C
 im

p
ro

ve
m

en
t

o
ve

r
b

as
e

return
loop
ltb
return/loop
return/ltb
loop/ltb
return/loop/ltb
CI

A Study of Control Independence in Superscalar Processors December 18, 1998 33

Except for compress, using all heuristics together (return/loop/ltb) yields the best perfor-
mance. Forgcc, heuristics achieve only a third ofCI’s performance potential; forgo, nearly half
of the potential is achieved; and forjpeg, nearly three quarters of the potential is achieved.

Interestingly, forcompress,thereturnheuristic and combinedreturn/ltbheuristic perform bet-
ter thanCI. Conceivably, heuristics can identify better reconvergent points than a compiler can, as
shown in Figure 18. The branch in basic block A is mispredicted in the direction of block B
(dashed edge). According to the compiler, block D is the reconvergent point because it is the
immediate post-dominator of block A. But if the left edge of block C is taken, then block B is the
closest reconvergent point --dynamicallythe control independent instructions begin with block B.
In fact, if the left edge of block C is taken very often (e.g. 99% as shown), then the compiler
would be wiser to indicate block B is the immediate post-dominator. In this example, thereturn
heuristic by chance selects a reconvergent point that is closer to block A, saving potentially many
useful instructions in the region of E.

FIGURE 18. An example where the heuristic-based reconvergent point is closer than the compiler-based
reconvergent point.

B. A philosophy of control independence

In the introduction to this paper, exploiting control independence is described as “selectively
squashing instructions after a branch misprediction to reduce the penalty”, primarily because this
description is simple. However, there are more fundamental formulations of the problem that,
while academic and perhaps not so useful to a designer, I feel provide better motivation for
researching control independence. The formulation presented in Section B.1 is based on the view
that there are analogs between control dependences and data dependences, and thatconceptually
the same techniques should be applied to both.

In Section B.2, a range of control independence solutions is discussed, focusing on the merits
of using multiple flows of control or a single flow of control. To complete the discussion, control
independence is contrasted with other branch-misprediction tolerant architectures in Section B.3.

B.1 Control independence is evolutionary

Control and true data dependences in a program impose a partial ordering among instructions
to be executed. This ordering can be satisfied trivially by executing instructions in strict program

A

B

C

D

E

call

ret

immediate
post-dominator

99%

1%

mispredicted branch

A Study of Control Independence in Superscalar Processors December 18, 1998 34

order. However, modern high performance processors use several techniques to more closely
approach the partial ordering constraints, and they often go even further by using prediction and
speculation to reduce the performance effects of the true dependences. Thus, the techniques
applied to control and data dependences can be classified into two categories.

1. Non-speculative techniques to achieve the partial ordering of true dependences.This class of
techniques has been applied primarily to data dependences. First, to eliminate all but true
dependences,renamingof register and memory storage is used. Second, to achieve the partial
ordering implied by true data dependences,out-of-order issue is used.

2. Speculative techniques to eliminate ordering altogether.This technique has been applied pri-
marily to control dependences. Predicting branches allows the processor to continue fetching
and executing instructions despite unresolved branches. As long as the predictions are correct,
all ordering constraints due to control are essentially eliminated.

It is interesting that the dominant processing paradigm (superscalar) has evolved such that the
non-speculative techniques are reserved for data dependences and the speculative techniques are
reserved for control dependences. There are at least two explanations for this evolution. First, this
arrangement may be sufficient. For example, branch prediction techniques are perhaps sufficient
to keep processors busy with instructions for the windows being designed today. But clearly, this
will not always be the case. Second, this arrangement happens to be the “path of least resistance”
for achieving the current level of performance. It is easier to speculate control dependences than
data dependences because there are fewer of them, and because they are quite predictable. And as
demonstrated in this paper, applying non-speculative out-of-order concepts to control depen-
dences is not particularly intuitive.

Nevertheless, data prediction and speculation techniques are now beginning to appear in the
literature [12,34,35], and we argue that non-speculative techniques normally reserved for data
dependences should also be considered for control dependences. There are subtle analogies
between data and control dependences that suggest conceptually similar solutions.

B.1.1 True dependences

An instruction stalls when its data operands are unavailable. In an in-order machine, all subse-
quent instructions, whether data dependent or independent of the stalled instruction, must also
stall. Instructions are totally ordered at run-time despite the partial ordering implied by data
dependences. Similarly, if all instructions after a branch misprediction are squashed and
re-fetched, an ordering between these instructions and the mispredicted branch is created despite
the partial ordering implied by control dependences.

But neither data stalls nor control mispredictions should force a total ordering. Just as
out-of-order issue mechanisms allowdata independentinstructions to proceed despite prior
stalled instructions, control independence mechanisms allowcontrol independentinstructions to
proceed despite prior branch mispredictions. The microarchitecture should resolve mispredictions
much the same way stalls are resolved. Viewed in this way, control independence is an evolution-
ary extension of out-of-order instruction issue, generalizing independence and carrying it to its
logical conclusion.

A Study of Control Independence in Superscalar Processors December 18, 1998 35

B.1.2 Artificial dependences

Anti-dependences, output dependences, and structural hazards are artificial dependences that
can be alleviated by renaming registers and memory locations (in the case of anti- and output
dependences) and providing more resources in general (structural hazards).

In terms of control flow, the single program counter introduces an artificial dependence,
because instructions are fetched sequentially and not necessarily in the order in which they are
needed. For example, there may be several independent instructions that are ready to issue but are
too far into the instruction stream to be reached by the PC. The PC must first sequence through
less urgent instructions to get to the ready instructions. The single PC is a resource limitation that
can artificially delay the critical path through the program, just as a lack of registers or functional
units artificially delays execution. To alleviate this, the single PC can be “renamed” into multiple
PCs just as a single architected register can be renamed into multiple physical registers.

The following architectures implement multiple program counters either directly or implicitly.

• VLIW: Hardware maintains a single PC, but the compiler prepares instructions such that the
order in which they are fetched is identical to the order in which they issue.

• Wide superscalar: A single PC may not be so much of a bottleneck if it is a “wide PC”, that is,
if many instructions can be brought in at once. Much of the effect of multiple control flows
may be realizable, but the solution is somewhat brute-force. On the other hand, it is robust in
that it does not rely on the compiler or hardware doing a good job ofplacingmultiple program
counters across the dynamic instruction stream.

• Multiscalar and multithreading: Architecturally, there is only a single logical PC. But the hard-
ware maintains multiple physical program counters, and the placement of the program counters
across the dynamic instruction stream is guided by the compiler (although a fully-dynamic
scheme is possible).

• Dataflow: There is essentially an unlimited number of control flows, dictated by the data flow
graph of the program.

B.2 Control independence architectures

Control independence is a property of a dynamically executed program. Ways of exploiting
control independence can vary with the hardware and software techniques being used. We identify
two general classes of implementations (although hybrids are possible).

• Multiple flows of control with a noncontiguous instruction window.This class of machines has
multiple instruction fetch units and can simultaneously fetch from disjoint points in the
dynamic instruction stream. The instruction window, i.e. the set of instructions simultaneously
being considered for issue and execution, does not have to be a contiguous block from the
dynamic instruction stream. Clearly, control independent code regions are good candidates for
parallel fetching, though this is not a requirement. Multiscalar processors and parallel multi-
processors fall into this class.

• Single flow of control with a contiguous instruction window.This class of machines has a sin-
gle program counter and can fetch along a single flow of control at any given time. The instruc-
tion window is a contiguous set of dynamic instructions. Control independence is implemented
by allowing the program counter to skip back and forth in the dynamic instruction stream.
(This paper focuses on this class of machines.)

A Study of Control Independence in Superscalar Processors December 18, 1998 36

Each class of machines has advantages. With implementations having multiple flows of con-
trol, there is a natural hierarchical structure: each flow of control fetches and operates on its own
“task” or thread. Control decisions are separated into inter-task and intra-task levels. Intra-task
mispredictions can be isolated to the task containing the misprediction, and later control indepen-
dent tasks can proceed in a fairly straightforward manner. This hierarchical task-based structure
leads to what is effectively a non-contiguous instruction window where instructions can be fairly
easily inserted and removed as control mispredictions occur. Further, the hierarchy allows for
multiple branch mispredictions to be serviced simultaneously if they are in different tasks.

An advantage of a single control flow implementation is that the single fetch unit can scan all
the instructions as it builds the single instruction window and, therefore, has more complete
knowledge of potential dependences. This leads to more robust and less conservative data depen-
dence resolution and recovery mechanisms (discussed below). In addition, these methods may be
able to take advantage of finer grain control independence, at the level of individual basic blocks,
for example.

The aggressive data dependence resolution and recovery mechanisms presented in this paper
are important distinctions with other control independence architectures. Specifically,some
design points of the multiscalar and multithreading approaches resolve inter-thread data depen-
dences conservatively [29]. That is, even though control flow within a thread does not directly
affect other threads, values dependent on the control flow are not forwarded to other threads until
the control flow is resolved. If speculative data forwarding is performed, entire threads are
squashed when incorrect values are referenced, losing some or all of the benefits of control inde-
pendence. This is only true for designs without selective reissuing capability, e.g. large threads
may preclude being selective. In a sense, this approach to control independence more closely
resembles guarding [36,37,8,9], which shifts the problem of control flow to data flow. But clearly
these are not fundamental restrictions [38]; conservatism reflects a simpler and perhaps more
practical design.

B.3 Other misprediction-tolerant solutions

B.3.1 Instruction reuse

Instruction reuse [18] is a mechanism that exploits control independence. Rather than explic-
itly preserving instructions within theinstruction window, input and output values of completed
instructions are buffered in acache-like structure. When a misprediction is detected, the instruc-
tion window is not preserved, but the control and data independent state of the window is in some
sense restored from the reuse buffer. Control independent instructions that were written into the
reuse buffer before the misprediction is detected, and whose inputs do not change due to the
misprediction, bypass re-execution.

The reuse buffer greatly simplifies preserving the instruction window. In addition to its sim-
plicity, there are at least two performance advantages of instruction reuse with respect to explicit
control independence. First, if the incorrect control dependent path is shorter than the correct con-
trol dependent path, more control independent instructions can be executed and preserved in the
reuse buffer than can be preserved in the instruction window (the additional control independent
instructions are “pushed out” of the window by the longer, correct control dependent path). Sec-
ond, instruction reuse is a unified approach for exploiting both control independence (squash
reuse) andgeneral reuse.

Reuse has potential disadvantages, however, when compared with explicitly preserving
instructions in the window. First, with explicit control independence, control independent instruc-

A Study of Control Independence in Superscalar Processors December 18, 1998 37

tions that have not issued, executed, or broadcast their results by the time the misprediction is
detected may continue processing in spite of the misprediction. Instruction reuse may not capture
these instructions. With very large instruction windows, explicitly preserving instructions in the
window and allowing work to proceed in parallel with servicing mispredictions may account for
much of the benefit of control independence; this is an area that deserves further study. Second,
because instructions are stored in the reuse buffer based on PC, the number of dynamic instances
of an instruction that may be recovered is constrained by the associativity of the reuse buffer. This
may be a problem for instructions in loops. Clearly, other reuse buffer organizations may over-
come this limitation.

Instruction reuse requires re-fetching instructions. On the other hand, conceivably there are
explicit control independence implementations that do not require re-fetching and re-dispatching
instructions. More advanced register repair models than those proposed in this report are possible.
However, re-fetching may be necessary for maintaining high prediction accuracy -- this was dis-
cussed in Appendix A.3.2 in terms of the need for re-predict sequences.

B.3.2 Predication and selective multi-path execution

Predication [36,37,8,9] and selective multi-path execution [2,3,4,5,6,7] attempt to identify
hard-to-predict branches, either through profiling or branch confidence estimators (respectively),
and fetch both paths of these branches. In the case of multi-path execution, both paths are fully
renamed and executed as separate threads. When the branch is resolved, one of the threads is
squashed and the other becomes the primary thread of execution.

Predication is in some sense the software equivalent of multi-path execution applied to for-
ward-branching regions of the CFG. In one form of predication, the control dependent instruc-
tions do not execute until their predicates are computed, i.e. multiple paths are fetched but only
the correct path is executed. Alternatively, withpredicate promotion[39] or predicated state buff-
ering [9], instructions from multiple paths may execute concurrently, and only the results from the
correct path are committed.

Predication and multi-path execution waste resources by fetching and possibly executing both
the correct and incorrect control dependent paths of branches. This results in a performance gain
over conventional speculation if the branches are mispredicted. Unfortunately, multi-path execu-
tion is applied to some fraction of correctly predicted branches, and alternatively, some fraction of
incorrectly predicted branches are not covered by multi-path execution. In our experience with
static and dynamic confidence estimation [33], it is not often the case that specific branches are
always predicted correctly or incorrectly. Rather, most branches -- or patterns in the case of
dynamic schemes -- identified as “unpredictable” are actually in a gray area, with prediction accu-
racies of 80% or more.To cover a significant fraction of mispredictions, an even larger number of

correct predictions must also be covered.1

A problem specific to predication is the aggravation of data dependences. The purpose of
branch prediction is two-fold: (1) quickly determine which instructions to fetch next and (2)

1. For example, a dynamic confidence mechanism can concentrate 90% of all mispredictions within 20% of all
dynamic predictions for the IBS benchmarks [33]. Assuming a 90% branch prediction accuracy, this means 9% of
predictions are correctly identified for multi-path execution, 11% of predictions are incorrectly identified for
multi-path execution, and 1% of predictions are not identified for multi-path execution when they should be. For a
static profiling scheme, which predication may rely on, the same numbers are 6%, 14%, and 4% respectively, to
concentrate 60% of all mispredictions within 20% of all dynamic predictions.

A Study of Control Independence in Superscalar Processors December 18, 1998 38

quickly establish and resolve data dependences among instructions. Predication only addresses
the first aspect. It “removes” branches, so the instructions to be fetched are known in advance (all
instructions in the predicated region are fetched). It does not, however, address the second aspect.
Without predicated state buffering, all predicated instructions must wait for their controlling pred-
icate to be resolved. Branch prediction eliminates this control dependence if the prediction is cor-
rect, and it is correct more often than incorrect. With predicated state buffering, instructions
within a region need not wait for predicates, but their computed results are not forwardedoutside
the region until predicate conditions are resolved.

Predication and multi-path execution can potentially reduce the branch misprediction penalty
more than control independence, because only part (or none) of the path after the branch is recov-
ered in the case of control independence. On the other hand, because only a single path is fol-
lowed, control independence may still capture more control independent instructions within the
window than predication or multi-path execution.

The idea behind control independence is to always trust branch prediction and speculation,
and take measures only when a misprediction occurs, thereby avoiding the above difficulties.
After all, branch prediction performs well most of the time, so it makes sense to exploit its poten-
tial fully and employ other optimizations when it does not perform.

References
[1] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors.30th Intl. Symp. on Microarchitecture,

Dec 1997.
[2] A. Uht and V. Sindagi. Disjoint eager execution: An optimal form of speculative execution.28th Intl. Symp. on

Microarchitecture, Dec 1995.
[3] T. Heil and J. Smith. Selective dual path execution. Technical report, University of Wisconsin, ECE Depart-

ment, Nov 1996.
[4] G. Tyson, K. Lick, and M. Farrens. Limited dual path execution. Technical Report CSE-TR-346-97, University

of Michigan, EECS Department, 1997.
[5] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution on the polypath architecture.25th Intl.

Symp. on Computer Architecture, June 1998.
[6] S. Wallace, B. Calder, and D. Tullsen. Threaded multiple path execution.25th Intl. Symp. on Computer Archi-

tecture, June 1998.
[7] P. Ahuja, K. Skadron, M. Martonosi, and D. Clark. Multipath execution: Opportunities and limits.Intl. Conf.

on Supercomputing, July 1998.
[8] S. Mahlke, R. Hank, J. McCormick, D. August, and W. Hwu. A comparison of full and partial predicated exe-

cution support for ilp processors.22nd Intl. Symp. on Computer Architecture, June 1995.
[9] H. Ando, C. Nakanishi, T. Hara, and M. Nakaya. Unconstrained speculative execution with predicated state

buffering.22nd Intl. Symp. on Computer Architecture, June 1995.
[10] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism.19th Intl. Symp. on Computer Architecture,

pages 46–57, May 1992.
[11] M. Franklin.The Multiscalar Architecture. PhD thesis, University of Wisconsin, Nov 1993.
[12] M. Lipasti.Value Locality and Speculative Execution. PhD thesis, Carnegie Mellon University, April 1997.
[13] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors.22nd Intl. Symp. on Computer Architec-

ture, pages 414–425, June 1995.
[14] P. Dubey, K. O’Brien, K. M. O’Brien, and C. Barton. Single-program speculative multithreading (spsm) archi-

tecture: Compiler-assisted fine-grained multithreading.Intl. Conf. on Parallel Architecture and Compilation
Techniques, 1995.

[15] J.-Y. Tsai and P.-C. Yew. The superthreaded architecture: Thread pipelining with run-time data dependence
checking and control speculation.Intl. Conf. on Parallel Architecture and Compilation Techniques, 1996.

[16] J. Oplinger, D. Heine, S.-W. Liao, B. Nayfeh, M. Lam, and K. Olukotun. Software and hardware for exploiting
speculative parallelism in multiprocessors. Technical Report CSL-TR-97-715, Stanford University, Computer
Systems Laboratory, Feb 1997.

[17] J. Steffan and T. Mowry. The potential for using thread-level data speculation to facilitate automatic parallel-

A Study of Control Independence in Superscalar Processors December 18, 1998 39

ization.4th Intl. Symp. on High Performance Computer Architecture, Feb 1998.
[18] A. Sodani and G. S. Sohi. Dynamic instruction reuse.24th Intl. Symp. on Computer Architecture, June 1997.
[19] K. Sundararaman and M. Franklin. Multiscalar execution along a single flow of control.ICPP’97, Aug 1997.
[20] S. Vajapeyam and T. Mitra. Improving superscalar instruction dispatch and issue by exploiting dynamic code

sequences.24th Intl. Symp. on Computer Architecture, pages 1–12, June 1997.
[21] M. Lipasti and J. Shen. Superspeculative microarchitecture for beyond ad 2000.IEEE Computer, Billion-Tran-

sistor Architectures, Sep 1997.
[22] Y. Patt, S. Patel, M. Evers, D. Friendly, and J. Stark. One billion transistors, one uniprocessor, one chip.IEEE

Computer, Billion-Transistor Architectures, Sep 1997.
[23] J. Smith and S. Vajapeyam. Trace processors: Moving to fourth-generation microarchitectures.IEEE Comput-

er, Billion-Transistor Architectures, Sep 1997.
[24] S. McFarling. Combining branch predictors. Technical Report TN-36, WRL, June 1993.
[25] P. Chang, E. Hao, and Y. Patt. Target prediction for indirect jumps.24th Intl. Symp. on Computer Architecture,

June 1997.
[26] D. Kaeli and P. Emma. Branch history table prediction of moving target branches due to subroutine returns.

18th Intl. Symp. on Computer Architecture, pages 34–42, May 1991.
[27] D. Burger, T. Austin, and S. Bennett. Evaluating future microprocessors: The simplescalar toolset. Technical

Report CS-TR-96-1308, University of Wisconsin, CS Department, July 1996.
[28] M. Franklin and G. S. Sohi. The expandable split window paradigm for exploiting fine-grain parallelism.19th

Intl. Symp. on Computer Architecture, May 1992.
[29] T. Vijaykumar.Compiling for the Multiscalar Architecture. PhD thesis, University of Wisconsin, Jan 1998.
[30] D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar machines.ACM Conf. on Program-

ming Language Design and Implementation, June 1991.
[31] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. An efficient method of computing static single

assignment form.ACM Symp. on Principles of Programming Languages, Jan 1989.
[32] M. Franklin and G. S. Sohi. ARB: A hardware mechanism for dynamic reordering of memory references.IEEE

Transactions on Computers, 45(5):552–571, May 1996.
[33] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning confidence to conditional branch predictions.29th Intl.

Symp. on Microarchitecture, pages 142–152, Dec 1996.
[34] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The performance potential of data dependence speculation and col-

lapsing.29th Intl. Symp. on Microarchitecture, pages 238–247, Dec 1996.
[35] F. Gabbay and A. Mendelson. Speculative execution based on value prediction. Technical Report 1080, Tech-

nion - Israel Institute of Technology, EE Dept., Nov 1996.
[36] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data dependence.

10th Symp. on Principles of Programming Languages, Jan 1983.
[37] D. Pnevmatikatos and G. Sohi. Guarded execution and branch prediction in dynamic ilp processors.21st Intl.

Symp. on Computer Architecture, April 1994.
[38] T. N. Vijaykumar, S. E. Breach, and G. S. Sohi. Register communication strategies for the multiscalar archi-

tecture. Technical Report 1333, CS Dept., Univ. of Wisc. - Madison, Feb 1997.
[39] P. Tirumalai, M. Lee, and M. Schlansker. Parallelization of loops with exits on pipelined architectures.Super-

computing ’90, Nov 1990.

