
A Physical Design Study of FabScalar-generated

Superscalar Cores

Niket K. Choudhary, Brandon H. Dwiel, Eric Rotenberg

Department of Electrical and Computer Engineering

North Carolina State University

{nkchoudh,bhdwiel,ericro}@ncsu.edu

Abstract—FabScalar is a recently published tool for automat-
ically generating superscalar cores, of different pipeline widths,
depths and sizes. The output of FabScalar is a synthesizable
register-transfer-level (RTL) description of the desired core.
While this capability makes sophisticated cores more accessible
to designers and researchers, meaningful applications require
reducing RTL descriptions to physical designs. This paper
presents the first systematic physical design study of FabScalar-
generated superscalar cores.

I. INTRODUCTION

FabScalar is a recently published toolset for automatically

composing synthesizable register-transfer-level (RTL) designs

of diverse superscalar cores [1]. FabScalar is comprised of a

canonical superscalar template, a canonical pipeline stage li-

brary (CPSL), and a core generator. The template defines a set

of canonical pipeline stages, with composable interfaces, that

make up a superscalar core. The CPSL provides many different

RTL designs for each canonical pipeline stage, that differ in

three major superscalar dimensions: (1) superscalar complexity

(superscalar width and sizes of stage-specific structures), (2)

subpipelining (depth of pipelining within a stage), and (3)

stage-specific design choices. The core generator automatically

composes a specified superscalar core by referencing the

template and CPSL.

FabScalar is a big leap towards making sophisticated cores

more accessible to designers and researchers, fueling more

innovation. In most applications, however, an RTL description

is not the end-game. Whether the use-case is a high-fidelity

model for research, a hardware prototype for research, or a

production system-on-chip for commercial applications, the

RTL description must be reduced to a physical design.

In this paper, we present a physical design study of

FabScalar-generated cores. Arguably, physical design is a

significant portion of overall chip design cost [2]. In an

academic setting, producing a commercially-representative

physical design is an arduous task for a small research group,

not to mention it likely has to be repeated for diverse cores.

In keeping with FabScalar’s virtue of increasing accessibility

through automation, we make a point of heavily relying on

automated synthesis and place-and-route (SPR).

Our test cases are two FabScalar-generated cores configured

similarly to commercial Application Processors (APs) found

in mobile devices: one is typical of current-generation APs,

and the other, next-generation APs. We first characterize the

quality of physical designs that can be achieved with fully

synthesized memories and unmodifed RTL. Then, we com-

pare different physical design options for memories. Highly-

ported memories are pervasive in a superscalar core (rename

map table, physical register file, issue queue, load and store

queues, etc.), and presently we simply do not know how

much effort needs to go into this important facet of physical

design. Finally, we identify physical design imbalances and

explore RTL adjustments to target them. The impact of each

memory option and RTL adjustment is carefully measured:

its frequency contribution, and its impact on instructions-per-

cycle (IPC), power, and area. From this data, we identify

different design points of the core (a design point is a particular

combination of memory options and RTL adjustments) that

lie on pareto-optimal performance or power frontiers. These

frontiers provide guidelines to FabScalar users for tuning their

cores, in the near term, and suggest profitable options to be

included in future FabScalar releases, longer term.

The rest of the paper is organized as follows. Section II

discusses related work. Section III describes our methodology.

Section IV presents results of memory options and RTL adjust-

ments, applied in isolation and at the level of pipeline stages.

This data is aggregated in Section V to identify different design

points of the core that lie on pareto-optimal performance or

power frontiers. Section VI concludes the paper.

II. RELATED WORK

Choudhary et al. [3] did a cursory exploration of physical

design of FabScalar-generated cores. For cycle-time valida-

tion, they compared cycle times of three commercial RISC

superscalar processors with similarly configured FabScalar

cores. The cycle times were obtained from synthesis only, not

post-synthesis place-and-route. They also relied primarily on

their FabMem memory compiler for implementing memories.

Where place-and-route was applied, it was only to demonstate

compatibility with a full ASIC flow, and metrics such as

frequency, area, and power were not reported for the placed-

and-routed core. Finally, no insight is provided with respect to

physical design imbalances in the pipeline. In contrast, in this

paper: all results are from post-synthesis place-and-route, we

present other metrics besides frequency, a spectrum of physical

design options are explored for memories, and we characterize

physical design imbalances as a primary contribution as it

guides RTL modifications.

978-1-4673-2658-2/12/$31.00 ©2012 IEEE
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MICROARCHITECTURE CONFIGURATIONS OF TWO REFERENCE CORES

USED FOR THIS WORK. THE CONFIGURATION ONLY REFLECTS THE

INTEGER PIPELINE. BTB: BRANCH TARGET BUFFER, BPB: BRANCH

PREDICTION BUFFER, RAS: RETURN ADDRESS STACK. FU MIX:
S=SIMPLE ALU, C=COMPLEX ALU, B=BRANCH, LD/ST=LOAD/STORE

PIPELINE.

Core-2W Core-4W

Fetch / Dispatch Width 2 4

Issue Width 3 4

Functional Unit Mix 1S/C, 1B, 1Ld/St 1S, 1S/C, 1B, 1Ld/St

Fetch Queue 8 16

Issue Queue 16 24

Load / Store Queues 8 / 8 12 / 12

Reorder Buffer Size 64 96

BTB / BPB / RAS Size (#
entries)

128 / 512 / 4 256 / 1024 / 8

L1 I-cache / L1 D-cache (KB) 16 / 16 32 / 32

fetch-to-execute pipeline depth
(simple / load-store)

8 / 9 8 / 9

Several other studies are related to this paper insofar as they

explore the merits of SPR over custom design, consistent with

FabScalar values. Except for caches, the AMD Bobcat design-

ers employ an automated SPR flow for physical design [4].

The IBM POWER7 designers automated the layout of regular

datapaths and memories through the use of Cadence SKILL

scripts [2]. They also replicate memories as a way to extend the

number of read and write ports with low custom-design effort.

Chinnery and Keutzer [5] address the power and performance

gap between ASIC and full custom design methodologies.

They recommend techniques such as logic pipelining, alternate

algorithmic implementations of logic cells, using dual supply

voltages if the tools support it, etc.

III. METHODOLOGY

Using the FabScalar toolset, we generated RTL designs

of two reference cores, a 2-way and a 4-way superscalar

processor with respect to fetch width. These are referred

to as Core-2W and Core-4W, respectively. Table I shows

their microarchitectural configurations. We determined the

microarchitectural configurations of Core-2W and Core-4W

based on two guiding principles. Firstly, the two cores

should represent the spectrum of commercial application

processors in terms of superscalar width and key structures

for exposing and exploiting instruction-level parallelism

(ILP). The fetch width, issue width, and instruction window

size of Core-2W and Core-4W are based closely on the AMD

Bobcat [4] and ARM Cortex-A15 [6], respectively. Secondly,

the microarchitectural resources should be balanced in terms

of no one structure being the sole limiter of IPC.

The commercial CAD tools used for all experiments are

shown in Table II. All designs are implemented using the

Nangate 45nm open cell library [7]. For the L1 instruction

and data caches, timing is obtained from CACTI 5.1 adjusted

to the FreePDK BSIM4 predictive technology model [7] and

the FabMem memory compiler is used to estimate the LEF

geometry for layout [3]. For measuring IPC, we use the

TABLE II
EDA TOOLS USED FOR ASIC DESIGN FLOW.

Phase EDA tool(s) used

functional verification Cadence NC-Verilog, vers. 06.20-s006

logic synthesis Synopsys Design Compiler, vers. E-2010.12-SP2

place & route Cadence SoC Encounter, vers. 7.1

spice simulation HSPICE, vers. C-2009.03-SP1

TABLE III
BASELINE RESULTS FOR CORE-2W AND CORE-4W DESIGNS.

Post-synthesis
Freq. (MHz)

Post-layout
Freq. (MHz)

Power
(mW/MHz)

Area
(mm2)

Core-2W 1111 834 0.433 1.048

Core-4W 1000 667 0.635 2.052

SPEC2000 integer benchmark suite and the cycle-accurate

C++ simulator from the FabScalar toolset.

IV. RESULTS

At the outset, we synthesize and place-and-route Core-

2W and Core-4W. All memory structures, except for the

L1 caches, are synthesized to flip-flops. This initial exercise

(Section IV-A) determines the frequency, power, and area

that are possible with only automated SPR. Next, we explore

two classes of techniques: 1) optimizing memory structures

(Section IV-B) and 2) adjusting the microarchitecture (Section

IV-C), in conjunction with SPR. The results reported are after

full layout of the design using Cadence SoC Encounter.

A. Baseline physical design

To establish the baseline frequency, power, and area, we

implemented Core-2W and Core-4W using SPR with no

modifications to the FabScalar-generated RTL. Table III shows

baseline results using the 45nm cell library. Increasing su-

perscalar complexity from Core-2W to Core-4W decreases

frequency by 20%, and increases area by 96%. Figure 1a

shows the IPCs of various SPEC SimPoints on Core-2W and

Core-4W. The number associated with each benchmark is its

SimPoint id. On average, the IPC of Core-4W is 37% better

than the IPC of Core-2W.

In both pipelines, Fetch-1 is the most timing critical stage.

Its longest path is reading the banked BTB for all instructions

in the fetch bundle, identifying the first predicted-taken branch

instruction in the fetch bundle, and, if it is a call instruction,

then updating the RAS with the call’s return address. Inves-

tigating further, Figure 1b shows the slack in each pipeline

stage. Slack reflects the logic imbalance that exists in different

stages. The next most critical stages in both cores are Issue,

Register Read, and the LSU (the second stage of load/store

execution which involves searching the LQ/SQ). Compared

to Core-2W, the Register Read and LSU slacks are lower

in Core-4W, whereas slacks of other stages increased. This

reflects a significant increase in complexity of the Register

Read and LSU stages. In Register Read, the culprits are a

larger physical register file and longer and more complex

bypasses (spanning four execution lanes). The larger SQ, for

store-to-load forwarding, impacts the LSU. In general, SPR

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

2.5
Core-2W:IPC
Core-4W:IPC

0

10

20

30

40

50

60

70

80

90 Core-2W: %Propagation Delay Wasted

Core-4W: %Propagation Delay Wasted

(a)

(b)

Fig. 1. (a) IPCs of Core-2W and Core-4W for different SPEC SimPoints.
(b) Slack in each pipeline stage as a percentage of cycle time.

tools are very advanced in optimizing ALUs: it was very easy

to achieve approximately 2.5GHz for the ALUs. CAD vendors

provide pre-designed libraries for fast carry-save adders, carry-

lookahead adders, and other common elements. However, SPR

tools do not perform as well for wire-dominated stages. For

instance, the authors spent a considerable amount of time to

make the Register Read stage routable.

B. Optimizing memory structures

Multi-ported memories are pervasive in superscalar pro-

cessors. They are often the dominant cycle time, power,

and area contributors within their respective pipeline stages.

Therefore, in high-end superscalar processors, each memory

is typically a custom-designed SRAM or CAM [2]. In the

baseline implementation, we synthesized memories to flip-

flops. However, memories synthesized to flip-flops suffer from

multiple inefficiencies. A flip-flop in a typical standard cell

library has 25 to 30 transistors. An SRAM cell, on the other

hand, uses 6 to 8 transistors per bit, yielding lower area and

lower power. Moreover, large memories implemented with

flip-flops suffer long access times.

Figure 2 compares frequency and power of memories syn-

thesized to flip-flops and the same memories implemented

in SRAM using the FabMem tool. All the memories are

multi-ported (2 read, 2 write) and 4 bytes wide. Interestingly,

delays of flip-flop-based memories are better or compara-

ble for smaller sizes (less overhead at small sizes, e.g., no

sense amps) but for larger sizes delays are much worse.

For all configurations, flip-flop based memories are power

inefficient. The inefficiency is low for small memories and

grows significantly for large memories (the trend is similar for

area). Moreover, the automated place & route tool suffers in

Fig. 2. Frequency and power of different depth memories synthesized to
flip-flops vs. implemented in SRAM (from FabMem). Depth is varied from
64 to 256 words and the word size is 4 bytes. Each memory has 2-read and
2-write ports.

handling many wires localized in a small space. Multi-ported

memories implemented with flip-flops have many local wires,

attributed to large fan-in and fan-out of individual flip-flops

because of multiple decoders (for writes) and multiplexors (for

reads). Wire routing in custom-designed SRAM is optimized

manually.

1) Implementing memories using level-sensitive latches:

As a first approach to optimize memories, we implemented

memories using level-sensitive latches. Latches are comprised

of 12 to 14 transistors, about half the size of flip-flops. The

drawback of using latches is that write-after-read hazards must

be explicitly handled in certain pipeline stages. For example,

the Rename Stage leverages the fact that, in a flip-flop imple-

mentation, RMT writes are synchronous with the clock edge

and happen at the end of the clock cycle. Therefore, writes

by younger instructions in the rename bundle do not interfere

with reads by older instructions in the rename bundle, despite

accessing the same logical register. With latches, however, the

writes happen during the second half of the cycle, potentially

interfering with concurrent reads. The solution is to defer the

rename bundle’s RMT updates to the next cycle, i.e., pipeline

the RMT reads and writes from the same rename bundle. In

turn, deferring the writes requires a second level of RMT

bypasses to pass tags from the current rename bundle to the

rename bundle that follows it; such bypasses already exist for

intra-bundle dependences.

Thus, using latches required RTL modifications, however,

the modifications were purely local to the affected modules

and had no global impact.

2) Implementing memories using foundry memory compil-

ers: In the second memory optimization, we explore us-

ing foundry memory compilers (hypothetically, since we use

FabMem in place of a commercial memory compiler). The

advantage of using a memory compiler is that it requires

less effort than custom-designing an SRAM from scratch.

Unfortunately, memory compilers are typically limited to one

or two ports. (FabMem is not limited, but we are using it as

if it were limited, for demonstration.)

To work around port limitations, the effect of more ports can

be achieved by replicating SRAMs. In fact, this work-around is

often employed in FPGAs with dual-ported block RAMs [8].

Figure 3 shows how it works. Figure 3a shows a 2R1W SRAM

implemented with two 1R1W SRAMs. A write happens to

both SRAMs so that two reads can access the same data in

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

rd _ a d d r0

rd _ a d d r1

w r_ a d d r0

w r_ d a ta 0

w r_ e n 0

rd _ d a ta 0

rd _ d a ta 1

p o rt0

p o rt1

2 R 1 W R A M

p o rt0

p o rt1

rd _ a d d r0

w r_ a d d r1

w r_ d a ta 1

w r_ e n 1

rd _ d a ta 0

1 R 2 W R A M

w r_ a d d r0

w r_ d a ta 0

w r_ e n 0

...

...

w r_ a d d r0

w r_ a d d r1

w r_ ID 1

w r_ ID 0 ...

rd _ a d d r0

ra m _ s e le c t_ v e c to r

p o rt0

p o rt1

p o rt0

p o rt1

p o rt0

p o rt1

p o rt0

p o rt1

rd _ a d d r0

rd _ a d d r0

w r_ a d d r1

w r_ d a ta 1

w r_ e n 1

rd _ d a ta 0

2 R 2 W R A M

w r_ a d d r0

w r_ d a ta 0

w r_ e n 0

...

...

w r_ a d d r0

w r_ a d d r1

w r_ ID 1

w r_ ID 0 ...

rd _ a d d r1

ra m _ s e le c t_ v e c to r

p o rt0

p o rt1

p o rt0

p o rt1

rd _ a d d r1

rd _ d a ta 1

(a) (b)

(c)

Fig. 3. Using dual-ported SRAMs to implement: (a) 2 read, 1 write, (b) 1
read, 2 write, (c) 2 read, 2 write.

parallel. Figure 3b shows a 1R2W SRAM, also implemented

with two 1R1W SRAMs. Each SRAM reflects writes from

only one write port. A read consults the ram select vector

(implemented with flip-flops) to know which SRAM was most

recently written at the selected row. Figure 3c combines the

two cases to construct a 2R2W SRAM. More generally, the

number of 1R1W SRAMs needed is the number of logical

read ports times the number of logical write ports. If SRAM

building blocks with more than two ports are available, then

the degree of replication required is less.

3) Memory optimization results: Figure 4 shows the fre-

quency, power, and area of three pipeline stages individually:

Rename, Register Read, and Issue. The only variation is in

the implementation of their memories, specifically, the RMT

in the case of Rename, Physical Register File in the case of

Register Read, and payload RAM in the case of Issue.

Using latches instead of flip-flops substantially reduces

delay in Rename, moderately in Register Read, and not much

in Issue. Power is significantly reduced for Register Read and

Issue, but increases a bit for Rename. Unexpectedly, area for

flip-flops and latches are about the same. In hindsight, the

memories are probably dominated by wires, decoders, and

muxes to access the flip-flop and latch arrays with many ports.

The next three points implement the highly-ported memo-

ries by replicating 1R1W, 2R2W, or 3R3W building blocks

generated by FabMem. The final point, “Custom”, is meant to

represent a custom SRAM with the exact number of ports

required by the core, also generated by FabMem. 3R3W

cannot be used for Core-2W’s Rename and Issue Stages,

hence, the corresponding points are intentionally missing. For

Core-2W, flip-flops and latches have similar or better access

times than SRAM blocks. The SRAM blocks yield much lower

power for two of the stages, however. The 1R1W and 2R2W

SRAM blocks yield worse area than latches and flip-flops.

This is likely due to the fact that Core-2W’s memories are

sufficiently small with moderate number of ports (compared

Fig. 4. Frequency, power, and area comparisons of different memory
implementations, for the RMT in Rename Stage, Phys. Register File in
Register Read Stage, and payload RAM in Issue Stage.

to Core-4W) such that the overhead of SRAM replication is

too high, yielding worse access times and areas.

It seems the one case where SRAM blocks are favored for

frequency, is in Core-4W’s Physical Register File. It is the

largest memory considered in this section and has 12 ports.

Consequently, for Core-4W Register Read, 2R2W yields the

highest frequency, low power, and area similar to latches and

flip-flops.

C. Adjusting the microarchitecture

1) Pipelining timing critical stages: The frequency

achieved by SPR can be boosted by pipelining timing-critical

stages, at the cost of additional power and area. Increasing

pipeline depth may also negatively impact IPC. In this section,

we evaluate this cost/benefit tradeoff of pipelining.

Table IV shows the pipelining experiments that we per-

formed for both cores. Fetch-1-Pipe1 delays pushing a call’s

return target onto the RAS by one cycle. If the return instruc-

tion is in the following fetch bundle, it obtains its target from

a newly-introduced RAS bypass. Rename-Pipe1 and Rename-

Pipe2 pipelines the Rename Stage into two or three cycles,

and adds more levels of bypassing to handle cross-rename-

bundle dependences. Issue-Pipe1 involves splitting wakeup-

select-payloadRead logic into wakeup-select and payloadRead.

This maintains a single-cycle wakeup-select loop, ensuring

single-cycle producers and their consumers still execute in

consecutive cycles. The cost, however, is that the select

logic datapath is widened to include not only instructions’

request/grant signals but also their tags. The select logic

must simultaneously generate grants and steer the granted

instruction’s tag to the wakeup port, whereas previously the

tag was obtained from the payload RAM after the select

logic. RegRead-Pipe1 and RegRead-Pipe2 pipeline the Phys-

ical Register File into 2 and 3 stages, respectively. This

further complicates the bypass network. Pipelining the LSU

adds no additional bypass logic but increases the load-to-use

latency. The Decode and Dispatch Stages are straightforward

to pipeline, they only require additional pipeline registers. We

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PIPELINING EXPERIMENTS. EACH EXPERIMENT IS LABELED FOR FUTURE

REFERENCE.

Stage Experiment Performed

Fetch-1 (i) pipeline RAS update (Fetch-1-Pipe1)

Rename (i) pipeline FL read and RMT write (Rename-Pipe1),
(ii) pipeline FL read and RMT write into 2 stages
(Rename-Pipe2)

Issue (i) pipeline wakeup-select and payload-read (Issue-
Pipe1)

RegRead
(including
bypass network)

(i) pipeline PRF memory in 2 stages (RegRead-
Pipe1), (ii) pipeline PRF memory in 3 stages
(RegRead-Pipe2)

LSU (i) pipeline store-to-load forwarding in 2 stages
(LSU-Pipe1), (ii) pipeline store-to-load forwarding
in 3 stages (LSU-Pipe2)

Fig. 5. (left) Frequency increase and (right) costs, for individual stages.

pipelined them as well and account for their overheads in the

results.

The graphs on the left-hand side of Figure 5 show the per-

stage frequency improvements of pipelining for the two cores.

In both cores, Rename, Issue, Register Read, and LSU are

initially close in frequency. The adjustment made to Issue is

less effective than the adjustments made to the other three

stages. Fetch-1 was already the most critical in both cores, and

its adjustment did not substantially help. Consequently, these

experiments show that Fetch-1 and Issue remain frequency

bottlenecks. Therefore, we apply further adjustments to these

in the sub-sections that follow.

The graphs on the right-hand side of Figure 5 show the

power and area increase on a per-stage basis. Rename and Reg-

ister Read suffer the largest power and area increases, which

is not unexpected due to the increase in bypass complexity in

both stages.

2) Distributing the Issue Queue: The monolithic IQ is best

for IPC but it is timing critical [9]. We explore different

IQ partitioning schemes for Core-2W and Core-4W (shown

in Table V): Core-2W-IQP, Core-4W-IQP1 and Core-4W-

IQP2. In Core-2W-IQP, the AGEN IQ holds load and store

instructions and the INT IQ holds non-memory instructions.

TABLE V
IQ PARTITIONING SCHEMES IN CORE-2W AND CORE-4W. ALL THE

SCHEMES EMPLOY ISSUE-PIPE1 IMPLEMENTATION.

Experiment Description

Core-2W-IQP Partitioned the IQ into INT:8, AGEN:8

Core-4W-IQP1 Partitioned the IQ into INT:16, AGEN:8

Core-4W-IQP2 Partitioned the IQ into INT0:8, INT1:8, AGEN:8

The same applies for Core-4W-IQP1. In Core-4W-IQP2, non-

memory instructions are additionally split across INT0 and

INT1 partitions based on a simple round-robin based policy for

load balancing. In addition, for all schemes, cross-partition tag-

broadcast (wakeup) requires an additional cycle, preventing a

single-cycle producer and its consumer in a different partition

from executing in consecutive cycles.

Figure 6 shows the frequency gain and IPC loss, respec-

tively, of IQ partitioning. (The monolithic IQ designs for

Core-2W and Core-4W are referred to as Core-2W-IQ and

Core-4W-IQ, respectively). Note that all designs implement

Issue-Pipe1. Core-2W-IQP achieves 17% higher frequency but

the IPC degrades by 5%, on average, compared to Core-2W-

IQ. Core-4W-IQP1 achieves 28.5% higher frequency but the

IPC degrades by 6%, on average, compared to Core-4W-

IQ. Core-4W-IQP2 achieves 50% higher frequency but the

IPC degrades by 8%, on average, compared to Core-4W-IQ.

Although average IPC degradation of Core-4W-IQP2 is only

8%, there are a few benchmarks that suffer significantly, e.g.,

bzip.3089, bzip.9277 and parser.5201.

3) Fetch-1: Fetch-1 remains a stubborn bottleneck because

of the branch prediction logic. The other pipeline stages are

able to achieve more than 1500MHz using various adjustments

described thus far. Unfortunately, pipelining the branch predic-

tion logic requires sophisticated algorithms [10] that balloon

design effort as documented by others that implemented them

in RTL [11].

We propose using multiple frequency domains (MFD) [12]

to remove the Fetch-1 bottleneck. The Fetch-1 stage can

operate at a slower frequency than the rest of the pipeline

stages. State-of-art CAD tools are very advanced in handling

MFD and cross frequency domain communication [13]. To

compensate for a slower frequency, the fetch width can be

increased. Thus, the Fetch-1 stage will deliver fetch bundles at

a lower frequency but more instructions per fetch bundle. We

explored two MFD-based design choices for Core-2W using

Cadence SoC Encounter: Core-2W-MFD-Fetch-2W and Core-

2W-MFD-Fetch-4W. In the former, Fetch-1 does not increase

fetch bundle size (2) with respect to Core-2W and is clocked

at half the frequency. In the latter, Fetch-1 doubles its fetch

bundle size (to 4) and is clocked at half the frequency. We

account for additional latency introduced by cross-domain

synchronization buffers in IPC simulation.

Referring to Figure 7, Core-2W-MFD-Fetch-2W degrades

IPC by 30%, on average, with respect to Core-2W. The average

IPC degradation for Core-2W-MFD-Fetch-4W is only 3.5%.

Increasing the Fetch-1 complexity from 2-wide to 4-wide

increases the power of Core-2W by 6%.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. (left) Frequency achieved due to IQ partitioning schemes in Core-2W and Core-4W. (right) %IPC reduction of each partitioned IQ design with respect
to (wrt) monolithic IQ.

Fig. 7. IPCs of two MFD-based fetch designs for Core-2W and the baseline
Core-2W.

A

B
C

D

E

F

G

H

I

J

A

B

C
D

E,F

G

H

I, J

0.75

0.95

1.15

1.35

1.55

1.75

0

100

200

300

400

500

600

700

800

900

1000

800 1000 1200 1400 1600 1800

Power (mW)

IPT (BIPS)

Frequency (MHz)

IP
T

 (B
IP

S
)

P
o

w
e

r
(m

W
)

Fig. 8. Optimal frontiers of Core-2W designs that achieve maximum
performance (BIPS) or minimum power (mW) for a given frequency.

V. PUTTING IT ALL TOGETHER

The previous section explored different memory options and

RTL adjustments to individual pipeline stages and quantified

design quality in terms of frequency, power, and area. In

this section, we put together individual techniques to achieve

a certain frequency for the core as a whole. For example,

suppose we want to target 1 GHz. For each pipeline stage, we

search for options/adjustments that meet 1 GHz. Moreover, we

measure performance and power of the core for each design

point that achieves the target frequency. By varying the target,

we can obtain optimal frontiers of design points that maximize

performance or minimize power for a given frequency.

Figure 8 shows the optimal frontiers of Core-2W. Design

points are labeled in the figure and explained in Table VI.

VI. CONCLUSION

This paper systematically investigated the additional RTL

tuning required for FabScalar-generated cores to achieve a

good quality physical design. We explored different memory

options and RTL adjustments to individual pipeline stages to

improve their frequency, in conjunction with SPR.

TABLE VI
KEY FOR DECODING THE LABELS IN FIGURE 8.

Label Memory Options and RTL Adjustments

A Baseline

B MFD-Fetch-4W

C MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1

D MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-FF

E MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-
IQP-FF

F MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-
IQP-SRAM1R1W

G MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-FF,
Dispatch-Pipe1

H MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-
IQP-FF, Dispatch-Pipe1, Rename-Latch, RegRead-Latch

I MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-
IQP-FF, Dispatch-Pipe1, Rename-Pipe1-FF, RegRead-Latch

J MFD-Fetch-4W, LSU-Pipe1, Decode-Pipe1, Issue-Pipe1-
IQP-FF, Dispatch-Pipe1, Rename-Latch, RegRead-Pipe1-FF

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back. This research was supported by NSF grant CCF-0811707

and gifts from Intel and IBM. Any opinions, findings, and

conclusions or recommendations expressed herein are those

of the authors and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] N. K. Choudhary et al., “FabScalar: Automating Superscalar Core
Design,” IEEE Micro, vol. 32, no. 3, May-June 2012.

[2] J. Friedrich et al., “Design Methodology for the IBM POWER7 Micro-
processor,” IBM J. Res. Dev., 2011.

[3] N. K. Choudhary et al., “FabScalar: Composing Synthesizable RTL
Designs of Arbitrary Cores within a Canonical Superscalar Template,”
in ISCA, 2011.

[4] B. Burgess et. al, “Bobcat: AMD’s Low-Power x86 Processor,” IEEE

Micro, vol. 31, no. 2, 2011.
[5] D. G. Chinnery and K. Keutzer, “Closing the Gap Between ASIC and

Custom: an ASIC Perspective,” in DAC, 2000.
[6] “ARM Cortex-A15,” http://www.arm.com/files/pdf/AT-

Exploring the Design of the Cortex-A15.pdf.
[7] J. Knudsen, “Nangate 45nm Open Cell Library,” CDNLive, EMEA, 2008.
[8] B. H. Dwiel, N. K. Choudhary, and E. Rotenberg, “FPGA Modeling of

Diverse Superscalar Processors,” in ISPASS, 2012.
[9] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-Effective

Superscalar Processors,” in ISCA, 1997.
[10] A. Seznec et al., “Multiple-block Ahead Branch Predictors,” in ASPLOS,

1996.
[11] J. Gandhi, “A Synthesizable RTL Model of a Pipelined Instruction Fetch

Unit for Superscalar Processors,” M.S. Thesis, NCSU, 2010.
[12] S. Dropsho et al., “Dynamically Trading Frequency for Complexity in

a GALS Microprocessor,” in MICRO, 2004.
[13] Cadence, “Clock Domain Crossing,” Technical paper.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 23:42:31 UTC from IEEE Xplore. Restrictions apply.

