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ABSTRACT

Determining safe and tight upper bounds on the worst-case execu-
tion time (WCET) of hard real-time tasks running on contempo-
rary microarchitectures is a difficult problem. Current trends in mi-
croarchitecture design have created a complexity wall: By enhanc-
ing performance through ever more complex architectural features,
systems have become increasingly hard to analyze.

This paper extends a framework, introduced previously as Virtual
Simple Architecture (VISA), to multi-tasking real-time systems.
The objective of VISA is to obviate the need to statically analyze
complex processors by instead shifting the burden of guaranteeing
deadlines — in part — onto the hardware. The VISA framework ex-
ploits a complex processor that ordinarily operates with all of its
advanced features enabled, called the complex mode, but which
can also be downgraded to a simple mode by gating off the ad-
vanced features. A WCET bound is statically derived for a task
assuming the simple mode. However, this abstraction is specula-
tively undermined at run-time by executing the task in the complex
mode. The task’s progress is continuously gauged to detect anoma-
lous cases in which the complex mode underperforms, in which
case the processor switches to the simple mode to explicitly enforce
the overall contractual WCET. The processor typically operates in
complex mode, generating significant slack, and the VISA safety
mechanism ensures bounded timing in atypical cases. Extra slack
can be exploited for reducing power consumption and/or enhancing
functionality.

By extending VISA from single-task to multi-tasking systems, this
paper reveals the full extent of VISA’s powerful abstraction capa-
bility. Key missing pieces are filled in: (1) preserving integrity of
the gauging mechanism despite disruptions caused by preemptions;
(2) demonstrating compatibility with arbitrary scheduling and dy-
namic voltage scaling (DVS) policies; (3) formally describing
VISA speculation overheads in terms of padding tasks’ WCETs;
and (4) developing a systematic method for minimizing these over-
heads. We also propose a novel VISA variant that dynamically
accrues the slack needed to facilitate speculation in the complex
mode, eliminating the need to statically pad WCETs and thereby
enabling VISA-style speculation even in highly-utilized systems.

1. INTRODUCTION

Determining safe (never underestimated) but tight upper bounds
on the worst-case execution time (WCET) of hard real-time tasks
running on contemporary microarchitectures is a difficult problem.
Schedulability tests based on real-time theory depend on safe up-
per bounds on the WCET to guarantee that deadlines are met [20,
7, 30]. Safe and tight WCET bounds can be provided by static tim-
ing analysis for relatively simple, scalar architectures with in-order

execution, static branch prediction (if any branch prediction at all),
and split caches as well as locking caches [23, 19, 31, 11, 21, 32].

Current trends in microarchitecture design have created a complex-
ity wall: By enhancing performance through ever more complex
architectural features, systems are increasingly hard to analyze.
While static timing analysis techniques have been developed to
safely and tightly bound the WCET for simple architectures, tech-
nology is advancing faster than timing analysis techniques.

Our work approaches timing analysis from a hardware/software
co-design angle. We build on a previously introduced framework
named Virtual Simple Architecture (VISA) [1, 28]. The VISA
framework provides a simple processor model to timing analysis
(e.g., a simple, in-order, scalar pipeline with static branch predic-
tion and split instruction/data caches). This simple model is only
an abstraction that allows us to derive safe and tight WCET bounds
with existing static timing analysis tools. In actuality, the underly-
ing processor is arbitrarily complex (e.g., a complex, out-of-order,
superscalar pipeline with dynamic branch prediction and split in-
struction/data caches). To ensure the simple timing abstraction
is honored, a task’s progress on the complex processor is con-
tinuously gauged via intermediate timing checkpoints, which, if
not exceeded, reflect timely on-going progress. A missed check-
point is safely recoverable by reconfiguring the complex processor
into a downgraded simple mode of execution to explicitly bound
remaining execution time, by disabling unsafe microarchitectural
features (e.g., overriding dynamic prediction with static prediction,
disabling all but one superscalar way for scalar execution, blocking
instructions from issuing out-of-order, etc.). Thus, a single pipeline
can be configured to operate in either an unconstrained complex
mode or a downgraded simple mode that matches the VISA specifi-
cation, the latter only used in anomalous cases where complex ex-
ecution may exceed its simple counterpart. For example, the com-
plex mode may (temporarily) underperform its simpler counterpart
as a result of extra branch mispredictions caused by excessively
long branch predictor training times, branch predictor table alias-
ing, etc., coupled with costlier misprediction penalties for backing
out of deep speculation.

The added cost of supporting the simple mode is minor since it does
not represent any additional functionality, only the gating-off of ex-
isting high-performance features. Moreover, operating primarily in
the complex mode is significantly more energy efficient than the al-
ternative (using an explicitly-safe simple processor), since the same
performance can be achieved at a far lower frequency/voltage by
compensating with abundant instruction-level parallelism (ILP).

Our prior work [1] implemented the VISA framework in systems
with only one periodic task. We demonstrated two-fold benefits.
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(1) The VISA framework enables the safe use of contemporary
processors in hard real-time systems by enforcing an agreed-upon
WCET abstraction of a single task. (2) The tangible benefit is
the creation of large amounts of dynamic slack due to the high-
performing complex mode. The spare capacity can be exploited ei-
ther to increase functionality (i.e., schedule other soft-real-time and
non-real-time tasks) [2], or save power/energy via dynamic voltage
scaling (DVS) [1].

This prior VISA research considers only single-task systems, mak-
ing it incomplete in many aspects and also veiling the full extent of
VISA’s powerful abstraction capability. Key gaps exist, including:
enforcement of tasks” WCETS in the context of preemptive multi-
tasking; compatibility with arbitrary scheduling and DVS policies
and any other real-time software components; explicit treatment of
VISA speculation overhead including systematic overhead assess-
ment. Moreover, we would like to explore new, efficient VISA
variants for eliminating overheads that otherwise become limiters
in highly-utilized systems. Accordingly, the major contributions of
this paper are as follows.

e Extension to multi-tasking: As mentioned previously, the
crux of VISA is preserving a contractual WCET abstraction
of a single task. In this paper, we adapt the VISA frame-
work for a multi-tasking system, which has a set of periodic
tasks (i.e., a task-set). In a multi-tasking system, tasks can
be interrupted (preempted) by higher-priority tasks and later
resumed. Task preemptions disrupt the VISA gauging mech-
anism, potentially undermining enforcement of the WCET
abstraction. We show that the VISA framework can be easily
adapted to account for task preemptions by saving and restor-
ing the state of the gauging mechanism (mode bit and watch-
dog counter) at task interruptions and resumptions, respec-
tively. As such, this paper shows that the VISA framework
correctly enforces the WCET abstraction in multi-tasking
systems as well.

e Transparency to real-time OS: Multiple tasks are managed
by the real-time OS, which includes task schedulers, DVS
schedulers, etc. We must consider the implications of the
VISA framework — if any — on these software components.
This paper makes the case that the VISA framework is trans-
parent by way of preserving the WCET abstraction that is
the basis of all scheduling theory. We demonstrate the trans-
parency principle by deploying a conventional EDF sched-
uler and an arbitrary DVS scheduler — the Look-Ahead DVS
real-time scheduler proposed by Pillai and Shin [24] — on top
of the VISA framework. Most importantly, we show that no
VISA-specific or other modifications were needed to these
software components.

o Energy evaluation in multi-tasking systems: New experi-
ments show that the significant energy savings previously
observed in single-task systems transfer to multi-tasking sys-
tems. Using the Look-Ahead DVS real-time scheduling
scheme [24], we show that a VISA-protected complex pro-
cessor consumes 19-58% less energy than an explicitly-safe
simple processor.

o Systematic and intuitive method for assessing and minimiz-
ing VISA speculation overhead: At the start of a task, the
VISA gauging mechanism requires some extra time to at-
tempt the task in complex mode. This extra time is concep-
tually a “headstart” for the complex mode. There are three
contributions here with respect to our previous VISA work.
In our prior work, the notion of the headstart amount was im-

plied but not prominent. The first contribution is explicitly
demonstrating the need for a headstart and ensuring overall
system safety by padding each task’s headstart amount to its
WCET. The headstart amount is arbitrary from a correctness
standpoint, i.e., the choice of headstart does not affect safety
of the VISA framework. Nonetheless, the headstart should
be chosen carefully: a headstart that is too large over-inflates
the WCET, whereas a headstart that is too small increases the
likelihood of missing checkpoints even under anomaly-free
behavior. The second contribution is that we provide a sys-
tematic and intuitive approach to assess a minimal headstart
amount. Third, we show that the headstart amount tends to
be small compared to the overall WCET, thus having little
effect on overall worst-case utilization.

e Novel zero-overhead VISA speculation approach — dynamic
headstart accrual: Although we demonstrate that the head-
start overhead tends to be small, task-sets with near-100%
worst-case utilization may not be able to accommodate
the static headstart padding, precluding speculation in the
complex mode altogether, thus defaulting to only the sim-
ple mode. To address this, we propose a novel approach
called dynamic headstart accrual (as opposed to the explicit
padding approach). In this approach, a task is started in the
simple mode. Since actual execution time is typically less
than the WCET, dynamic slack accrues even while operating
in the simple mode. Once the accumulated slack exceeds the
required headstart amount, speculation becomes viable once
again. At such time, the pipeline is reconfigured to oper-
ate in complex mode, the VISA protection mechanisms are
engaged, and the task is speculatively executed in complex
mode.

In section 2, we review the VISA gauging mechanism, overall
VISA system design, and benefits of the VISA framework. In sec-
tion 3, we explain VISA speculation overhead and develop a sys-
tematic method of assessing the headstart amount. We present the
novel, zero-overhead VISA speculation approach, called dynamic
headstart accrual, in Section 4. Section 5 describes how arbitrary
DVS algorithms can be transparently employed in the VISA frame-
work. Section 6 describes modifications to the VISA framework
to safely accommodate preemptions. The simulation environment
and benchmarks are described in Section 7. Results and analyses
are presented in Section 8. Finally, related work is discussed in
Section 9, and Section 10 summarizes the paper.

2. VISA FRAMEWORK

Let us first review the main concepts of the VISA framework. In
VISA, a WCET bound is derived for a task assuming the simple
execution mode. This WCET bound should be derived by some
means that guarantees safety, such as a static timing analysis tool
[11] or pWCET for probabilistic approaches [4]. While the WCET
is determined for the simple mode, the task is executed using the
complex mode at run-time. The complex mode must be considered
unsafe since, strictly speaking, the WCET bound does not apply to
it. In practice, the complex mode is much faster on the average,
but we need to confirm this dynamically since there may exist cer-
tain instances where complex execution exceeds its simple coun-
terpart. This is achieved by dividing the task into multiple smaller
sub-tasks in software and gauging their progress in hardware. Sub-
tasks are assigned soft deadlines, called checkpoints. Continued
safe progress in complex mode is confirmed as long as sub-tasks
meet their checkpoints. If a checkpoint is missed, the processor is
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reconfigured to operate in simple mode, thereby bounding execu-
tion time explicitly.

2.1 Gauging Progress via Checkpoints

Our method is illustrated in Figures 1(a)-1(c) for a task with four
sub-tasks, where actual execution times are indicated by arrows.
Fig. 1(a) shows the conventional, conservative approach in which
complexity is disabled in order to be explicitly safe. The task is
executed entirely in simple mode. Dashed vertical lines in this fig-
ure indicate the WCETS of sub-tasks, which are very tight in the
example.

complex —
. |
simple -~ - ! w S -

(a) Non-speculative simple mode.

chkl chk2 chk3 chk4
i i i

net dynamic slack created
(b) Speculation in complex mode (requires headstart padding).

(c) Speculation in complex mode with mode switch
at misprediction in sub—task 2.

Fig. 1: Gauging progress under different scenarios.

Fig. 1(b) shows our speculative approach where the task is exe-
cuted in the unsafe, complex mode. Sub-task checkpoints are indi-
cated (chk1-chk4). Notice that the checkpoint for sub-task 1 (chk1)
lines up with the start time of sub-task 1 in the non-speculative
case (Fig. 1(a)); other sub-task checkpoints are similar. This leaves
enough time to finish sub-task 1 plus execute sub-tasks 2, 3, and 4
in the simple mode if sub-task 1 misses its checkpoint in the com-
plex mode. Thus, extra time must be budgeted relative to the non-
speculative case, providing a “headstart” that facilitates gauging
progress in the complex mode. In our initial approach [1], a task’s
WCET is explicitly padded to accommodate the headstart. Thus,
the price for speculation is a higher theoretical worst-case utiliza-
tion — but only slightly, as we will show in the results section.
Fortunately, overall, speculation pays off substantially. As shown
in Fig. 1(b), sub-tasks ordinarily complete well in advance of their
checkpoints, creating substantial dynamic slack in the schedule.
Dynamic slack can be exploited to reduce power/energy via DVS
[1] or enhance functionality via scheduling of non-real-time or soft-
real-time tasks [2].

While sub-tasks ordinarily complete well in advance of their check-
points, we cannot statically prove it. Fig. 1(c) shows a counterex-
ample, which may occur due to anomalous scenarios described in
the introduction, for instance. Fig. 1(c) shows a sub-task mispre-
diction for sub-task 2, indicated by an X at its checkpoint (chk2). In
missing the checkpoint, its execution time using the complex mode
can no longer be bounded. Hence, the processor switches to sim-
ple mode to explicitly bound the execution time of the unfinished
sub-task and remaining sub-tasks (dashed arrows indicate simple
mode). Here, we conservatively bound the residual execution time
of the unfinished sub-task using its WCET since we cannot know

how much of the sub-task was completed in the complex mode.
The implication is that, as touched upon previously, the checkpoint
for a sub-task is based on the cumulative WCETsS of all later sub-
tasks plus the WCET of the sub-task itself, ensuring enough time to
safely complete remaining work in simple mode.

Notice that the VISA speculation overhead is incurred whether or
not a misprediction occurs, as shown in Figures 1(b)—1(c).

2.1.1 Partitioning Tasks and Setting Checkpoints
Timeliness of the complex mode is gauged by dividing a task into
smaller sub-tasks. Sub-tasks are currently identified by manually
unrolling the outermost loop of the respective benchmarks. Alter-
natively, sub-task selection could be compiler-assisted in conjunc-
tion with a WCET tool to assess the preferred level of granularity
of sub-tasks.

Each sub-task is assigned a soft deadline, a so-called checkpoint.
Should a checkpoint be missed, an indication that the complex
mode resulted in unsafe timing, execution will only resume after
the architecture is reconfigured to operate in the simple mode for
the remainder of the task. In spite of a missed checkpoint for a
sub-task, we can guarantee safety for the entire task by reserving
enough time between the checkpoint and the task’s WCET to

. reconfigure the pipeline to operate in simple mode,

. complete the sub-task ¢ whose checkpoint was missed (in
simple mode) and

3. execute the remaining sub-tasks in simple mode.

DO

Items 1 and 3 can be tightly bounded by considering the fixed over-
head for mode switching of the architecture and by obtaining the
sum of the WCETs of the remaining sub-tasks. Item 2, however,
cannot be tightly bounded since we do not know the WCET of
the remaining part of a sub-task in the middle of its execution.
Nonetheless, a looser (and safe) bound is given by the WCET of
the entire sub-task i. For now, we will express WCET in terms of
cycles, referred to as worst-cases execution cycles (WCEC) in the
following.

Checkpoints are derived from the WCECs of sub-tasks in the sim-
ple mode. The WCEC budget for each sub-task is depicted in Fig-
ure 2.

chkl chk2 chk3 chk4

WCEC3 e
Fig. 2: WCEC: of sub-tasks in simple mode.

Using the overall WCEC bound of a task and the corresponding
bound for each sub-task i, WC EC}, the checkpoint for sub-task &
relative to the beginning of the task is

chki = WCEC — (switchdelay + Y WCECk) (1)
k=1

For a sub-task 4 that misses its checkpoint, chk;, while running
in the complex mode: Equation 1 budgets enough time after the
checkpoint to switch to the simple mode (switch_delay), execute
the unfinished sub-task ¢ in the simple mode (even though part may
have already executed in complex mode), and execute all remaining
sub-tasks ¢ + 1 through s in the simple mode.
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For the example task in Fig. 2, Equation 1 yields the corresponding
checkpoints chk1-chk4. Note that the overall task’s WCEC, not ex-
plicitly depicted in the figure, is at least as large as the cumulative
sub-tasks” WCECs plus the modest overhead to switch the archi-
tectural mode (only several cycles to drain the pipeline and then
reconfigure). If the task’s WCEC is no larger than this minimum,
speculation in the complex mode cannot be commenced immedi-
ately since the required “headstart” for gauging progress, described
earlier in Sect. 2.1, is absent, i.e., chk1 is reached immediately upon
starting the task.

2.1.2  Detecting Missed Checkpoints

To detect missed checkpoints, progress of execution is gauged by a
hardware watchdog counter, which can be queried for its value or
set to a new start value through a memory-mapped location. The
counter operates as a count-down mechanism, decremented on each
cycle of execution, to alert the system when a checkpoint is missed,
i.e., if the counter reaches a zero value. Upon start of the first sub-
task, the watchdog is initialized as

watchdog = chki.

This is depicted in Figure 3, which includes an explicit headstart
amount to allow speculation in the complex mode to commence
with the first sub-task. Derivation of the headstart amount is de-
ferred to Section 3. The figure also shows sub-tasks’ progress in
the complex mode, i.e., actual execution times. For any subsequent
sub-task ¢, the watchdog counter is incremented by the WCEC be-
tween chk;_1 and chk;:

watchdog = watchdog + chk; — chk;_1.
watchdog = chk1
watchdog += (chk2—chk1)

chkl chk2 chk3 chk4

headstart
Fig. 3: Using watchdog to gauge progress in complex mode.

Notice that by adding to the watchdog before it expires in a previ-
ous sub-task, we gain slack for subsequent sub-tasks by being able
to exploit left-over cycles from preceding ones. Hence, as execu-
tion progresses, sub-tasks are less likely to miss checkpoints due
to operational properties of watchdog slack passing. Should the
watchdog reach a zero value, due to it being decremented on each
cycle of execution within the processor, it would indicate that a cur-
rent sub-task missed its checkpoint. This raises a watchdog under-
flow exception. Such an exception causes the hardware to drain the
pipeline and then invoke a light-weight exception handler in soft-
ware that reconfigures the processor to stage subsequent execution
in simple mode.

2.2 VISA System Design

Formally, the “virtual simple architecture” is the specification of a
hypothetical simple pipeline, adhered to by both the static worst-
case timing analysis tool (for generating WCETSs) and the simple
mode of the complex processor. The VISA specification is outlined
in Fig. 4 (left-hand side). Fig. 4 also describes the complex proces-
sor used in this paper (right-hand side), which can be downgraded
to the VISA-compliant simple mode of execution.
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VISA specification Complex Pipeline
T fetch, decode, register read, fetch, dispatch, issue, register
Pipeline -
execute, memory, writeback read, execute or agen/memory,
Stages . )
writeback, retire
1 instr./cycle 4 instr./cycle

Fetch - — - —

Unit static branch prediction: dynamic branch prediction:
BT/FNT heuristic 2'-entry gshare, 16-bit BHR
in-order execution out-of-order execution
scalar execution (I instr./cycle) 4-way superscalar (4
1 unpipelined universal function | instr./cycle)

. unit 4 pipelined universal function
Execution f
Core units
128-entry reorder buffer
64-entry issue queue
64-entry load/store queue
2 ports to load/store queune + DS
L1 I-cache: 64KB, 4-way set-assoc., 64B block, 1 cycle hit
Memory L1 D-cache: 64KB, 4-way set-assoc., 64B block, 1 cycle hit
Hierarchy | 100 cycles worst-case memory 100 cycles minimum stall time
stall time

Fig. 4: Left: Virtual simple architecture specification. Right:
Architecture of complex processor.

Embedding a simple mode of execution within a contemporary,
high-performance pipeline does not incur significant hardware
overhead or design complexity [1]. The simple mode is a subset of
the existing pipeline and typically involves disabling complex fea-
tures through simple gating. Simple modifications to key pipeline
stages are described in the precursor architectural work [1]. For
example: switching from dynamic to static branch prediction in-
volves overriding the dynamic branch predictor’s output with the
static prediction, via a 1-bit 2:1 MUX; switching from superscalar
to scalar execution involves disabling the unused superscalar ways,
funneling instruction flow through only one of the ways; switching
from out-of-order to in-order execution involves allowing only one
instruction in the issue queue per cycle or bypassing it altogether;
etc. To sum up, the simple mode of execution is not a separate com-
ponent, rather, it is a downgrading of the existing complex pipeline
and leverages the existing pipeline datapath.

2.3 Benefits of VISA Framework

Fig. 5 captures the essence of the VISA concept and its benefits. It
contrasts a conventional real-time system on the left with a VISA-
based system on the right. The conventional system is limited to
using an explicitly-safe, simple processor. In contrast, the VISA-
based system can use a complex processor. The VISA safety frame-
work ensures that the VISA-based system with complex processor
and the conventional system with simple processor are provably
equivalent in the worst case. In both cases, WCET analysis ob-
serves a simple processor. In the case of the VISA-based system,
this abstraction is provided by the virtual simple architecture spec-
ification that sits above the complex processor, and guaranteed by
the gauging mechanism plus the embedded simple mode of execu-
tion if needed. Thus, the first key benefit is providing a comparable
worst-case performance bound for the complex processor without
explicit analysis.

The second key benefit is that the complex processor typically in-
troduces a substantial speed differential, resulting in the creation of
large amounts of dynamic slack. This manifests itself by very early
task completions, hence, low actual utilization of the complex pro-
cessor as shown in the figure. The spare computational capacity
can be used to increase functionality, e.g., by scheduling additional
soft-real-time or non-real-time tasks. Alternatively, dynamic slack
can be used to reduce power via dynamic frequency/voltage scal-
ing (DVS). Higher-level DVS scheduling techniques benefit trans-
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parently from early task completions without specific knowledge
of what causes the slack (in this case, speculative task execution on
the complex processor).

EDF scheduler,
DVS scheduling, etc.

EDF scheduler,
DVS scheduling, etc.

WCET abstraction WCET abstraction

Worst-Case
Timing Analysis

Worst-Case
Timing Analysis

Virtual Simple Architecture (VISA)

Simple Processor
P Complex Processor

with Simple Mode

dynamic
slack

Processor
Utilization

Processor
Utilization

Worst-Case Actual
Utilization  Utilization

Worst-Case Actual
Utilization Utilization

Exploit dynamic slack for power/energy
savings, other functionality
(a) Conventional System, (b) VISA-based System,
Simple Processor. Complex Processor.
Fig. 5: “Worst-case-equivalent” systems.

Note that the complex processor in a VISA-based system is in-
trinsically less power efficient than the simple processor used in
a conventional system for the same frequency/voltage. This is evi-
dent from Fig. 6, based on detailed cycle-level architectural simu-
lations augmented with Princeton’s detailed Wattch power models
[5]. (This detailed simulator is the basis for all results reported in
this paper.) The first two bars in the graph show: (1) total energy
consumption of the baseline simple processor used in this paper
(scalar, in-order) running at the peak frequency of 1 GHz; (2) total
energy consumption of the complex processor used in this paper (4-
issue superscalar, out-of-order execution) running at the same fre-
quency of 1 GHz. (The C-lab benchmark adpcm is used in these ex-
periments. Wattch models are configured for aggressive clock gat-
ing of idle units.) Each bar is also annotated with the benchmark’s
execution time on the corresponding processor configuration. At
the same frequency (1 GHz), the complex processor consumes 5%
more energy than the simple processor. What this result overlooks
is the fact that the complex processor finishes the task much faster,
at the same frequency, due to significantly higher instruction-level
parallelism (ILP) (0.68 ms vs. 2.37 ms). The complex proces-
sor’s power efficiency advantage comes from parallelism. The fre-
quency/voltage of the complex processor can be lowered with re-
spect to the simple processor’s frequency/voltage and offset with
higher parallelism to yield roughly the same task execution time as
the simple processor. The third bar in Fig. 6 shows total energy
consumption of the complex processor at 300 MHz, the frequency
which yields a similar task execution time as the simple processor
at 1 GHz (2.14 ms vs. 2.37 ms). Notice the frequency/voltage re-
duction more than compensates for the complex processor’s higher
intrinsic power — yielding a net energy savings of 63%.

The graph in Fig. 6 also gives a coarse breakdown of where energy
is being expended for each processor configuration. The break-
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Fig. 6: Energy comparisons of complex vs. simple processors.

down helps explain why, even at the same frequency of 1 GHz, the
initial energy disadvantage of the complex processor is not as sig-
nificant as one would expect — only 5%. Energy is broken down
into energy consumed in the execution core, the instruction and
data caches (combined), and the clock tree. Aggressive clock gat-
ing ensures that idle units — unused ALUs, register file ports, cache
ports, etc. — do not expend energy during any given cycle. Thus,
ignoring wrong-path fetching and execution, energy consumed in
the execution core and caches is primarily determined by the pro-
gram, which is invariant. Therefore, aggressive clock gating has the
effect of reducing the energy gap between the complex and simple
processors. Nonetheless, the following contribute to more energy
expended in the complex processor’s core logic than the simple pro-
cessor’s core logic (3 mJ vs. 1.6 mJ): (1) corresponding structures
(register file, etc.) in the complex processor’s core are larger; (2) the
complex processor has additional structures such as rename logic,
dynamic scheduling logic, etc.; (3) a branch misprediction in the
complex processor typically brings more incorrect instructions into
the pipeline that are ultimately squashed, wasting energy. (On the
other hand, the simple processor typically has more branch mispre-
dictions.) The cache energy differential between the two processors
is negligible due to the clock gating effect described above and the
fact that the I-cache and D-cache configurations are the same for
the two processors. Interestingly, it is clock-tree energy consump-
tion that penalizes the simple processor. Although its clock tree is
smaller (we assume the simple processor has 1/4 the die area, even
with the two large caches) and, therefore, its clock-tree energy per
clock tick is less, the benchmark takes 3.5 times more clock cycles
to execute on the simple processor. The clock-tree energy builds up
and ultimately exceeds the total clock-tree energy of the complex
processor.

3. VISA SPECULATION OVERHEAD

As explained in Section 2.1, a headstart is needed to facilitate spec-
ulation. From a correctness standpoint, the headstart amount can
be set arbitrarily.

At one extreme, using a headstart of zero cycles would cause the
first sub-task to miss its checkpoint right away, since the initial
value loaded into the watchdog counter is zero. In this case, the
entire task is executed in the simple mode, failing to exploit the
high-performing complex mode. More generally, using a headstart
that is artificially low does not give the complex mode a reasonable
chance to succeed. Missed checkpoints in this case are not actually
due to anomalous, underperforming scenarios, but are rather due to
an artificially low headstart amount.

On the other hand, using a headstart amount that is artificially in-
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flated is also undesirable. It artificially inflates perceived worst-
case utilization, possibly to the point of exceeding schedulability
bounds.

When VISA-based speculation is combined with DVS scheduling,
as discussed later, either scenario will result in higher energy con-
sumption — due to running inefficiently in simple mode (after pre-
maturely mispredicting) or due to exaggerating WCETs of future
tasks, for under- and over-estimations, respectively. Thus, a good
approximation is needed to select a headstart for scheduling.

3.1 Systematic Headstart Assessment

As mentioned above, the headstart amount is arbitrary from a safety
standpoint. Our objective is to minimize the headstart amount
while providing reasonable time for the complex mode to com-
plete each sub-task, i.e., to essentially eliminate mispredictions in
the absence of any complex-mode performance anomalies. To this
end, we profile the tasks on the complex mode. Let PEC), de-
note the predicted execution cycles of sub-task k on the complex
mode obtained by profiling. Recall that the timing-safe gauging
method ensures that enough WCEC is budgeted after the check-
point of each sub-task k for execution of the unfinished sub-task &
and all remaining sub-tasks in simple mode, should the checkpoint
be missed. This is shown in Fig. 7 for sub-task 3: WCECs of sub-
tasks 3 and 4 are budgeted after sub-task 3’s checkpoint, chk3. To
make a miss of chk3 unlikely, we should anticipate an amount of
time equal to the predicted (or profiled) execution time of sub-task
3 in the complex mode (P EC'3) prior to chk3. And we can assume,
without restricting safety, that prior sub-tasks executed according to
their profiled time as well (otherwise an earlier checkpoint would
have missed prior to reaching this point). Hence, a good headstart
amount &3 considering only sub-task 3 is given by the difference
between chkl (the original start boundary) and the new boundary
as shown in Fig. 7. The same procedure is repeated for all sub-tasks
individually, and the maximum headstart amount §; among all the
sub-tasks is the desired headstart amount for the overall task.
chkl chk2 chk3 chk4
| |

headstart
Fig. 7: Headstart amount, considering only the third sub-task.

Based on Fig. 7, the total execution time for a task on the VISA
framework, assuming sub-task & misses its checkpoint, is

k—1 s
(> _PEC; + PECy + WCEC,+ »_ WCEC:) (2)
i=1 i=k+1

Combining the PEC terms together and the WCEC terms together,
equation 2 can be simplified as
k s
(> _PEC;+) WCEC;) ©)
i=1 i=k

The minimum headstart (dy) required for sub-task k to not miss its
checkpoint (assuming no anomalies) would then be the difference
between the execution time on the VISA framework (denoted by
equation 3) and the original worst-case execution time, which is

the sum of the WCEC:s of the individual sub-tasks.
o= (XF ,PEC+Y:_ WCEC;) -S| WCEC; (4)
= PEC, — Y/ (WCEC; — PEC;)

The latter (rewritten) form of Equation 4 above is intuitive. Essen-
tially, we expect the needed headstart for sub-task k to be at least as
large as its predicted execution time in the complex mode, PEC}.
However, this amount can be lessened by slack gained due to early
completion of prior sub-tasks, caused by the difference between
WCEC; and PEC; of all prior sub-tasks 3.

To lower the chance that any checkpoints are missed, the overall
headstart § for a task should be the maximum of the headstarts
derived for all of its sub-tasks:

0= 121]?%’5(&) )]

3.2 Static Padding of Headstart

To ensure that a sufficient headstart is available to confidently initi-
ate any task in complex mode, we explicitly pad each task’s WCEC
with its headstart amount. Hence, this technique is called the ex-
plicit padding approach.

A task’s WCEC provided to the scheduler for the explicit padding
approach is the sum of the individual sub-tasks’ WCECs plus the
headstart term 6, as detailed below:

WCECpea =6+ » WCEC; (6)
=1
Substituting for § using equations 5 and 4, we get the expression
for the padded WCEC as:
WCECpaq = maz Or)+ >, WCEC; = (7

maz (3F_, PEC; + Y;_, WCEC,)

1<k<s
Notice that this padding amount avoids unnecessary switches from
complex to simple mode, which impacts the execution efficiency.
It does not impact the correctness of the scheme as paddings that
are too tight only result in simple execution for the remainder of a
task after a checkpoint is missed. The overall deadline is always
met.

The advantage of the explicit padding approach is that it allows
each task to be started speculatively in complex mode because the
headstart amount is automatically budgeted in each task’s WCET.
However, explicitly padding the WCET with the headstart inflates
the overall worst-case utilization. Although the overhead tends
to be small, as we will show in the results section, task-sets with
near-100% worst-case utilization may not be able to accommodate
the static headstart padding, precluding speculation in the complex
mode altogether, thus defaulting to only the simple mode. Accord-
ingly, in the next section, we propose a novel zero-overhead ap-
proach called dynamic headstart accrual to eliminate the need for
padding tasks’ WCETs.

4. DYNAMIC HEADSTART ACCRUAL

We propose a novel VISA speculation approach, in which tasks’
WCETs do not have to be padded with the headstart amounts. In
this approach, a task is initiated in the simple mode, contrary to the
explicit padding approach (which immediately begins speculation
in the complex mode, enabled by headstart padding). Because ac-
tual execution times are typically less than WCETSs even in the sim-
ple mode, dynamic slack is generated naturally (albeit more slowly
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than for the complex mode). This natural slack can be gathered for
eventually enabling the complex mode for a future sub-task. Since
the required headstart is dynamically accrued, we refer to this tech-
nique as dynamic headstart accrual.

Fig. 8(a)-(c) illustrates the new approach. Fig. 8(a) shows non-
speculative (conservative) execution in the simple mode. Fig. 8(b)
shows execution on a VISA-protected processor employing dy-
namic headstart accrual. Notice the task is started in the simple
mode (denoted by dashed arrows). At the end of the second sub-
task, sufficient dynamic slack has accrued to enable switching to
the complex mode. Hence, the remaining portion of the task is
executed in complex mode (denoted by solid horizontal arrows).
Fig. 8(c) shows the case where the pipeline is reconfigured to com-
plex mode at the end of sub-task 2 (due to sufficient headstart ac-
crued), but sub-task 3 misses its checkpoint (complex-mode under-
performance anomaly). We see that the contractual WCET is still
guaranteed despite the missed checkpoint because of the time bud-
geted after the checkpoint to complete sub-task 3 and remaining
sub-tasks in the simple mode.

complex ——

o

2

‘
ey
‘ ‘
‘ ‘
‘

|
4 |
|

(b) Deferred speculation in complex mode w/ dynamic headstart accrual.

-1 | |
2w s |
| .

4

B

(c) Same as (b), except mode switch at misprediction in sub-task 3.

Fig. 8: Illustration of deferred speculation.

With this new approach, no padding is required since the headstart
is dynamically accrued. Thus, a task’s WCET is simply that of
Equation 6 with zero padding, i.e., 6 = 0. Now, the watchdog
is leveraged for a different purpose, i.e., to measure the amount
of slack accrued while in the simple mode. The watchdog is ini-
tialized to zero and, at the start of each sub-task, the watchdog is
incremented by the sub-task’s WCEC. Although the watchdog is
decremented every cycle, as before, it will never go below zero in
the safe simple mode, and any amount that remains after the com-
pletion of a sub-task reveals the accrued slack up to that point.

Based on early sub-task completion, one can determine after how
many sub-tasks a change from simple mode to complex mode be-
comes beneficial in the sense that future checkpoints are unlikely
to be missed.

This is exactly the same goal as for the explicit padding approach,
only now we are waiting for the desired headstart amount ¢ to ac-
crue naturally. Before starting a new sub-task x, we determine if
it is beneficial to switch to the complex mode by comparing the
amount of available slack in the watchdog to a headstart amount
0; this ¢ is derived using the same procedure as before, only now
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we do not need to consider prior completed sub-tasks when find-
ing the maximum. Hence, the condition for mode switching at the
beginning of sub-task x is:

watchdog > zrggécs(ék) (8)

The 0, amounts can be computed a priori since they only depend
on PECs and WCECs. They can be stored in a lookup table. Hence,
only a small, constant overhead is incurred in looking up the ap-
propriate d’s and comparing their maximum with the watchdog
counter.

Notice that the watchdog does not need to be updated when switch-
ing from simple mode to complex mode, since it conveniently con-
tains the initial headstart. If the condition represented by Inequa-
tion 8 is satisfied at the beginning of some sub-task, only a mode
switch (to complex) occurs.

Slack in the watchdog can be due to early completion of initial sub-
tasks up to x — 1, i.e., it can be intra-task slack accumulating in the
watchdog. This condition would need to be evaluated at each new
sub-task x until it is satisfied and the mode is switched to complex.
There is no need to check the condition after mode switching as
progress is then gauged via checkpoints as before.

The condition can be weakened by considering inter-task slack,
both of static and dynamic nature. Inter-task slack is discovered
at different rates depending on the real-time scheduling policy and
can be used within the VISA framework. Such slack would already
be available for the first sub-task, which may allow us to immedi-
ately switch to the complex mode even though no explicit padding
was imposed. This is discussed in Section 5.

After switching to complex mode, execution will only revert to sim-
ple mode if a checkpoint is missed. The dynamic accrual scheme
allows us to eventually revert to complex mode again once enough
intra-task slack has accumulated, another strength of this approach.

The primary advantage of the dynamic headstart accrual approach
is that WCETs need not be padded and, hence, the overall worst-
case utilization is unaffected. Hence, any task-set that can be
scheduled on the hypothetical simple pipeline can be scheduled
on a VISA-protected processor. An additional benefit is that the
dynamic accrual scheme supports multiple switches from simple
mode to complex mode provided sufficient slack has accrued.

The drawback of this scheme is its dependence on the creation of
dynamic slack to switch to complex mode. If accrued slack is in-
sufficient, the task will be perpetually executed in simple mode. So,
the dynamic headstart accrual approach is well suited to task-sets
that have high worst-case utilization but lower actual utilization on
the hypothetical simple pipeline.

5. TRANSPARENT DVS SCHEDULING

Let us consider the implications of dynamic frequency/voltage scal-
ing (DVS) on top of the VISA framework. The motivation for DVS
on top of the VISA framework is given by, on average, much ear-
lier completion of tasks in the complex mode. In the following, we
discuss transparency of the VISA framework in this context.

Transparency stems from the fact that the VISA framework ex-
presses execution budgets in cycles, and, therefore, is independent
of frequency changes and corresponding changes in execution time.
In particular, a task’s WCEC, headstart amount, and checkpoints
are all expressed in cycles. Whereas DVS lowers (raises) frequency
to extend (compress) execution time, cycles are invariant. As such,
the VISA framework functions correctly regardless of the safe fre-
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quency selected by the DVS scheduling algorithm.

Likewise, DVS scheduling algorithms are oblivious of the under-
lying VISA framework. DVS may observe much more slack than
usual, due to early completion of tasks in the complex mode. This
slack is exploitable without specific knowledge of how the slack ac-
crued (in this case, fewer execution cycles due to high instruction-
level parallelism in the complex mode).

The VISA framework does not limit itself to any specific real-time
DVS scheduling algorithm. DVS scheduling can be applied to sim-
ple and complex modes alike. Static schemes may choose a uni-
form frequency over all tasks while dynamic schemes may vary
frequencies between tasks, different jobs of the same task or even
within a job at preemption points.

The VISA framework can also benefit from real-time DVS schedul-
ing algorithms in a semi-transparent manner. This is of particu-
lar interest for dynamic headstart accrual, i.e., in the absence of
padding. Recall that execution had to start in the simple mode
since no intra-task slack was available prior to the first sub-task.
If, however, a real-time DVS scheduler discovers slack as an inher-
ent part of the scheduler invocation, this slack can be exploited to
immediately start a task in the complex mode.

Consider the Look-Ahead DVS algorithm by Pillai and Shin [24].
It determines the amount of slack s available for the current task,
which can be fully exploited for frequency scaling without risking
a missed deadline. Using the condition represented in Inequation
8, only now checking if the slack s is greater than the needed 9, the
VISA framework may be able to switch to the complex mode as
soon as the first sub-task. Hence, a real-time DVS scheduler may
choose to apportion some of the slack s to the watchdog, slightly
reducing the amount of slack available for frequency scaling (from
s to s’, by § from Inequation 8) but, in return, enabling a task to
immediately commence in complex mode:

s=s5-4
watchdog = §

Above, we claimed that the VISA framework is independent of
processor frequency since it expresses execution budgets in cycles.
This claim holds under linear scaling of execution time with pro-
cessor frequency. Although execution time does not scale linearly
with processor frequency due to constant-time memory accesses, it
is safe to assume linear scaling, albeit, the resulting WCET may not
be as tight since one has to assume the memory latency (in cycles)
at the maximum frequency for all lower frequencies. This problem
is orthogonal to the VISA framework and can be addressed by aug-
menting timing predictions with memory modeling, such as given
by FAST [27] or by using per-frequency WCETSs [26, 1]. Using
this conservative assumption about linear scalability, we can safely
(but not necessarily tightly) assert the WCET of a task as
WCET = WCEC
f

given the WCEC at the maximum processor frequency f. This
W CET is then used by DVS scheduling algorithms as a base for
scaling frequency and can be easily determined for either explicit
padding or dynamic headstart accrual, using Equation 9.

6. PREEMPTIONS

For a set of real-time tasks under preemptive scheduling, the effect
of suspending and resuming tasks has to be considered. We dis-
cuss two aspects related to preemptions. First, we discuss how the

®

integrity of the watchdog checking mechanism is preserved in the
presence of preemptions. Second, we discuss modeling of preemp-
tion overheads, which applies to both VISA and non-VISA real-
time systems.

6.1 Saving/Restoring the VISA State

For the explicit padding approach, supporting preemptions in hard-
ware is similar to precise handling of exceptions/interrupts: The
state used to manage a task in the VISA framework is saved as
part of the task’s context and later restored. The following state is
included in the context:

e The current pipeline mode (complex or simple) and
o the content of the watchdog counter.

When a task is resumed, the pipeline mode is restored to that prior
to preemption, which may differ from the mode of the preempting
task. Likewise, the watchdog counter is restored to its previous
value and used to monitor further progress of the interrupted sub-
task. (However, as usual, the watchdog counter is not used if the
restored mode is the simple mode, since progress is not gauged in
simple mode.)

The technique for saving/restoring the watchdog counter is in-
dependent of frequency changes introduced by transparent DVS
scheduling, since execution budgets are expressed in cycles. De-
coupling of the VISA framework from frequency variations was
discussed in Section 5.

For the dynamic headstart accrual scheme, the pipeline mode and
watchdog counter do not have to be saved/restored when the task
is preempted/resumed. We exploit the approach described in Sec-
tion 5, whereby the DVS scheduler re-initializes the VISA state
upon resuming a preempted task. The watchdog counter is re-
initialized on the basis of slack s that has accumulated since the
task was preempted. Likewise, the pipeline is configured in either
the simple or complex mode on the basis of the result of testing the
condition in Inequation 8.

6.2 Accounting for Preemption Overheads

In multi-tasking real-time systems, the worst-case execution time
of the task scheduler itself must be accounted for in schedula-
bility analysis. Our scheduler’s WCET includes selecting the
next task based on deadline scheduling, such as rate-monotone or
EDF scheduling, applying a DVS scheduling algorithm, and sav-
ing/restoring register contexts in the case of preemptions. Safely
accommodating scheduler overheads is independent of VISA, i.e.,
these overheads must be considered for VISA and non-VISA real-
time systems alike. Nonetheless, there are several alternatives for
accounting for the WCET of the scheduler.

We present an approach very convenient in two respects:

1. Itimplicitly accounts for the worst-case number of scheduler
invocations (bounded by two per task, one for when the task
is released and one for when it completes).

2. It enables the task scheduler to execute in complex mode
without first delineating it into sub-tasks, setting interim
checkpoints, etc., as is done with other tasks.

Our solution is to consider the task scheduler to be part of the first
sub-task and the last sub-task of each task in the task-set. The rea-
son the scheduler does not need to be partitioned is that, effectively,
it is no longer a task, but rather a part of a sub-task in another task.
To summarize, the overhead of the task scheduler is accommodated
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by padding the WCEC: of the first and last sub-tasks (for each task
in the task-set), as follows:
WCEC; = WCOEC]; + WCECscheduter fori=1,s (10)

W CEC, is the original WCEC of the i*" sub-task before padding
it with the scheduler overhead.

7. EXPERIMENTAL FRAMEWORK

We simulate a multi-tasking real-time system (including periodic
task-sets, EDF scheduler, and real-time DVS scheduler) on a de-
tailed cycle-level architectural simulator. The architectural simu-
lator was custom-built using the Simplescalar toolset [6]. We in-
tegrated the Wattch power models [5] into the simulator, elabo-
rated below. Tasks and the scheduler were compiled using the gcc-
based Simplescalar compiler, which targets the PISA instruction
set (MIPS-like).

We use the Look-Ahead DVS real-time scheduling algorithm for
scheduling tasks and choosing a safe processor frequency [24]. In
our experiments, we investigate two processor models:

1. explicitly-safe simple: This represents a baseline, explicitly-
safe simple processor that directly implements the VISA
pipeline specification. Recall, the VISA pipeline specifica-
tion was reviewed in Fig. 4.

2. VISA-protected complex: This represents a VISA-protected
complex processor, that supports the complex and simple
modes. The microarchitecture of the complex processor was
also reviewed in Fig. 4.

For VISA-protected complex, we study both the explicit padding
and dynamic headstart accrual speculation approaches. Recall
from Section 4 for the dynamic headstart accrual approach, we can
switch from simple mode to complex mode as soon as the accrued
slack is greater than the headstart (§) needed for speculation. As
the headstart amount is affected by the sizes of sub-tasks, we also
investigate the impact of coarse-grained vs. fine-grained sub-task
selection.

7.1 Power Modeling

The Wattch power models were modified to closely resemble the
microarchitecture of contemporary superscalar processors. Instead
of the original RUU-based microarchitecture modeled by Wattch,
we consider a separate physical register file, active list, issue queue,
and load/store queue. To support dynamic voltage scaling (DVS),
we built in support for an extrapolated Intel XScale DVS model
with 37 frequency/voltage pairs in range of 100MHz/0.70V to
1GHz/1.8V [13].

During idle time, we operate at the minimum frequency/voltage
since the overhead of switching into sleep modes is prohibitive on
realistic architectures in the presence of real-time task-sets with pe-
riods as short as 10 ms.

Since explicitly-safe simple directly implements the VISA pipeline
specification, its microarchitectural components (e.g., register file)
are sized accordingly. Hence, it is more power-efficient than the
simple mode of VISA-protected complex, which must still access
larger microarchitectural components of the complex pipeline.

7.2 Static Worst-Case Timing Analysis

We use our static timing tool to generate WCETSs on a sub-task
basis. Analysis targets the VISA pipeline specification that was re-
viewed in Fig. 4. Static timing analysis includes static instruction

cache simulation, pipeline simulation and path analysis for alter-
nate paths in the control-flow. Interprocedural control-flow is ana-
lyzed in a bottom-up fashion to derive worst-case execution times
(or cycles) for code portions (in our case sub-tasks) or even entire
tasks (for schedulability). The effect of data caching was simulated
for a cache size sufficiently large (64KB) to incur only cold misses,
which allowed us to tightly bound the WCET with our tools. Other
approaches to ensure predictability for the data cache, such as those
based on locking caches [32], could be used in conjunction with the
VISA framework to handle smaller cache sizes. The details of static
timing analysis [11] and its adaptation to Simplescalar [1, 27] are
beyond the scope of this paper.

7.3 Benchmarks and Task-Sets

The benchmarks are a subset of the C-lab real-time benchmark

suite [8]. These benchmarks are widely used in timing analysis. We

analyze fully optimized (gcc -O3) code generated for these bench-

marks. Table 1 depicts two different sub-task selections per bench-
Tab. 1: Benchmarks.

Padded Average execution
bench- sub-tasks WCET | WCET time (ms) @ 1 GHz
mark | fine-| coarse-| (ms) (ms) | explicitly- | VISA-protected
grain | grain safe simple complex
adpem | 16 8 3.35 3.46 2.43 0.64
cnt 10 5 0.16 0.17 0.07 0.02
fft 10 5 0.59 0.62 0.36 0.06
Ims 20 10 0.19 | 0.195 0.17 0.04
mm 20 10 2.25 2.35 2.10 0.66
srt 20 10 3.53 3.65 1.82 0.55

mark in the second and third columns: fine-grained and coarse-
grained, where the former has twice the number of sub-tasks of
the latter. The fourth and fifth columns indicate the WCET and
the padded WCET for the explicit padding approach, respectively.
Since the dynamic headstart accrual approach does not need ex-
plicit padding, it uses the unpadded WCETs, as does explicitly-safe
simple. The final two columns indicate actual execution times at the
maximum frequency for the explicitly-safe simple processor (also
the simple mode) and the VISA-protected complex processor.

We created various task-sets by combining the benchmarks above.
Each task-set has three tasks whose periods are indicated in Table 2.
For example, task-set LCF is composed of lms, cnt, and fft, with
periods of 0.6 ms, 0.52 ms, and 2.0 ms, respectively. Task-sets
were designed to obtain various mixes of small and large tasks.
There is one task-set composed of all small tasks (LCF), one task-
set composed of all large tasks (AMS), four task-sets composed of
one large and two small tasks (LFM, CLS, LMC, ACL), and four
task-sets composed of one small and two large tasks (ASL, ASF,
MSL, ASC).

For the first set of experiments, task periods were randomly se-
lected while ensuring that the task-set is schedulable by both
explicitly-safe simple and VISA-protected complex with explicit
padding. Notice that explicitly-safe simple does not require any
padding and, hence, has lower utilization than VISA-protected com-
plex as shown in the last two columns in Table 2. Lower utilization
allows DVS scheduling algorithms to exploit additional static slack
whereas there is comparatively less static slack for VISA-protected
complex with explicit padding.

To further demonstrate the benefits yielded by the dynamic head-
start accrual approach, we construct additional task-sets (similar in
composition to the ones in Table 2) such that the utilization is 1.0
based on unpadded WCETS. The first column of Table 3 indicates
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Tab. 2: Task-sets. (Utilization less than 1.)

Umaz
task- | taski | tasks | tasks | explicitly | VISA-protected
set | P1 (ms) | Pa(ms) | P3(ms) | -safe simple complex
LCF 0.6 0.52 2.0 0.91 0.96
CLS | 0.52 6.0 11.0 0.94 0.98
LMC| 0.6 7.5 0.52 0.91 0.97
ACL | 11.0 0.52 6.0 0.92 0.97
LFM| 0.6 2.0 7.5 0.91 0.94
MSL| 75 11.0 0.6 0.93 0.97
ASL | 11.0 11.0 0.6 0.94 0.97
ASC| 11.0 11.0 0.52 0.93 0.98
ASF | 11.0 11.0 2.0 0.92 0.95
AMS | 11.0 7.5 11.0 0.92 0.96

Tab. 3: Task-sets. (Utilization equals 1.)

task- taskq tasko tasks Unmaz
set P; (ms) | P2(ms) | Ps(ms)
LCF 0.55 0.48 1.8 1.0
CLS 0.46 0.56 10.7 1.0
LMC 0.55 6.80 0.48 1.0
ACL 9.84 0.48 0.58 1.0
LFM 0.55 1.80 6.81 1.0
MSL 6.61 10.70 0.56 1.0
ASL 9.84 10.70 0.56 1.0
ASC 9.84 10.70 0.48 1.0
ASF 9.84 10.70 1.8 1.0
AMS 9.84 6.81 10.70 1.0

the name of the task-set while the next three columns show the pe-
riods of the member tasks. Notice that the periods here are smaller
compared to the periods shown in Table 2.

In the experiments that follow, each task-set is simulated for 50 ms.

8. RESULTS

We now present the energy savings yielded by the VISA frame-
work. Figure 9 shows the energy savings of VISA-protected com-
plex relative to explicitly-safe simple, for both the explicit padding
and dynamic headstart accrual approaches. Coarse-grained sub-
tasks are used. VISA-protected complex yields energy savings
ranging from 24% (AMS) to 58% (LFM). This is due to the fact
that explicitly-safe simple runs at an average frequency of about
700MHz to 850MHz (depending on the task-set), as shown in Fig-
ure 10. On the other hand, Figure 10 shows that VISA-protected
complex runs at a lower average frequency, ranging from about
275MHz to 450MHz (depending on the task-set and speculation
approach).

In these experiments, no checkpoints were missed in the case of
VISA-protected complex. This means that all tasks were executed
using the complex mode, and the simple mode was not used at all.
Though the complex mode is highly reliable, it is not provably safe,
hence, the simple mode is needed to ensure that the WCET abstrac-
tion is preserved in unusual cases where the complex mode under-
performs.

Notice that the dynamic headstart accrual approach yields more
energy savings than the explicit padding approach.  Explicit
padding causes the DVS algorithm to use padded WCETs for all
future tasks when calculating the frequency. On the other hand,
dynamic headstart accrual causes the DVS algorithm to use un-
padded WCETs for all future tasks plus the headstart amount for
the next task when calculating the frequency. Because the per-

ceived worst-case amount of work is less for the dynamic head-
start accrual approach, it yields a lower average frequency than the
explicit padding approach, as shown in Figure 10.

70% Eexplicit padding —
B dynamic headstart accrual
60%

il

ACL AMS ASC ASF ASL CLS LCF LFM LMC MSL
Fig. 9: Energy savings of VISA-protected complex with explicit
padding and dynamic headstart accrual over explicitly-safe sim-
ple.
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Fig. 10: Average frequencies of explicitly-safe simple and VISA-
protected complex with explicit padding and dynamic headstart
accrual.

Next, we present the energy savings yielded by VISA-protected
complex for a task-set whose worst-case utilization (based on un-
padded WCETs) is explicitly set to 1, i.e., task periods are set as
shown in Table 3. Since the tight schedule cannot accommodate
padding, the explicit padding approach provides little benefit (the
simple mode would be used perpetually). However, this task-set
can certainly benefit from the dynamic headstart accrual approach.

Recall that the pipeline can be reconfigured from simple mode to
complex mode as soon as the accrued slack is greater than the head-
start amount (4). So, a smaller headstart amount is desirable be-
cause it increases the chances and speed with which speculation is
engaged. The headstart amount is less for tasks that are partitioned
more finely (due to smaller PECs), so we also study the impact
of coarse-grained v.s. fine-grained sub-task selection (refer to Ta-
ble 1).

Figure 11 shows the energy savings yielded by VISA-protected
complex employing the dynamic headstart accrual approach, for
both coarse-grain and fine-grain sub-tasks. We see that VISA-
protected complex yields 19% to 58% energy savings relative to
explicitly-safe simple. Also notice that, with the exception of one
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task-set (ASL), fine-grained sub-task selection yields higher en-
ergy savings than coarse-grained sub-task selection. Figure 12
shows the average frequencies for explicitly-safe simple and for
VISA-protected complex, the latter with both coarse-grain and fine-
grain sub-tasks. As observed previously, the average frequen-
cies for VISA-protected complex (275MHz to 500MHz) are always
much lower than the average frequencies for explicitly-safe sim-
ple (7150MHz to 875MHz). For VISA-protected complex, the first
task in a hyperperiod starts in simple mode and the pipeline is later
reconfigured to operate in complex mode when enough slack has
accrued. Typically, the switch to complex mode occurs in the mid-
dle of the first task (due to intra-task slack) or at the end of the
first task (due to inter-task slack). Subsequent tasks typically find
enough slack to start in complex mode due to the slack provided by
the DVS algorithm (see Section 5).
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Fig. 11: Energy savings of VISA-protected complex using dy-
namic headstart accrual relative to explicitly-safe simple, for
task-sets with worst-case utilization of 1.
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Fig. 12: Average frequencies of explicitly-safe simple and VISA-
protected complex using dynamic headstart accrual, for task-sets
with worst-case utilization of 1.

9. RELATED WORK

Scheduling theory for hard real-time systems, such as rate-
monotone and EDF scheduling, relies on known WCET bounds
for tasks [20, 7, 30]. For modern architectures, timing bounds on a
task’s WCET are increasingly difficult to obtain as the complexity
of architectures increases [10].

Architectural support for hard real-time systems was proposed as
cache partitioning to separate the cache footprint of each real-time
task [16]. Subsequently, software partitioning schemes of caches
were studied [33, 18]. Our work differs in that VISA provides two
execution modes, which combines maximum opportunities for exe-
cution speed with a fall-back mode for guaranteeing hard real-time
deadlines.

Various methods to assess the WCET of tasks statically have been
proposed in the past, ranging from processor models to caches
and advanced architectural features, such as branch prediction and
locking caches [23, 25, 34, 31, 22, 15, 17, 11, 9, 32]. While
these techniques rely on static analysis of programs, recent work
is taking a probabilistic approach to provide certainty levels of the
WCET based on a sample of observed executions supported by
the pWCET tool [4]. Any of these approaches can be combined
with the VISA specification to obtain WCET bounds for the sim-
ple mode. The VISA framework then provides safety by gauging
progress in complex mode since none of the above static analysis
techniques can fully capture the effects of a complex architecture.
Even the pWCET results at some certainty level can profit from the
additional safety provided by VISA.

Related work on DVS scheduling for hard real-time systems has
demonstrated significant energy savings for time-constrained em-
bedded systems [29, 24, 3, 3, 14, 35]. These techniques generally
are variations on slack reclamation schemes ranging from static to
dynamic analysis schemes, with sources of slack originating from
idle, inter-task savings (early completion) and intra-task savings
(early sub-task completion). While we only demonstrated the ap-
plicability to Pillai’s Look-Ahead DVS scheduling, VISA allows
the integration of arbitrary DVS scheduling algorithms.

Hughes et al. [12] compared energy savings of architectural adap-
tation, frequency/voltage scaling, and combinations of the two in
soft real-time systems. Interestingly, they found that complex mi-
croarchitectures are often more energy-efficient than simpler archi-
tectures under DVS. These gains result from matching performance
at a lower frequency and were a motivating factor for exploiting
slack for power savings in this paper. Single-task results are re-
ported by Anantaraman et al. [1]. Our paper rigorously extends
this approach to multi-tasking systems.

10. CONCLUSION

The VISA framework fundamentally transforms the way we view
the provisioning of real-time guarantees. Sharing the burden of
WCET enforcement between hardware (complex processor with
downgraded simple mode) and software (analytical framework for
checkpoints, headstarts, etc.), coupled with the abstraction of a
virtual simple architecture, enables the enforcement of real-time
schedules on contemporary processors.

In this paper, we rigorously extended the VISA framework to ar-
bitrary multi-tasking systems, including integrity of the intra-task
gauging mechanism with inter-task preemptions, transparency of
the VISA framework to arbitrary RTOS software components, and
optimality of VISA speculation overheads. A new VISA spec-
ulation approach was proposed, much more fluid in its mode-
switching than the previous approach, that has zero speculation
overhead.

Overall, this paper unveils the full extent of VISA’s powerful ab-
straction capability, helping to modernize hard real-time systems
by safely integrating contemporary processors.
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