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Abstract
Power is a valuable resource in embedded systems as

the lifetime of many such systems is constrained by their
battery capacity. Recent advances in processor design have
added support for dynamic frequency/voltage scaling (DVS)
for saving power. Recent work on real-time scheduling fo-
cuses on saving power in static as well as dynamic schedul-
ing environments by exploiting idle and slack due to early
task completion for DVS of subsequent tasks. These schedul-
ing algorithms rely on a priori knowledge of worst-case ex-
ecution times (WCET) for each task. They assume that DVS
has no effect on the worst-case execution cycles (WCEC)
of a task and scale the WCET according to the proces-
sor frequency. However, for systems with memory hierar-
chies, the WCEC typically does change under DVS due to
frequency modulation. Hence, current assumptions used by
DVS schemes result in a highly exaggerated WCET.

This paper contributes novel techniques for tight and
flexible static timing analysis particularly well-suited for
dynamic scheduling schemes. The technical contributions
are as follows: (1) We assess the problem of changing ex-
ecution cycles due to scaling techniques. (2) We propose
a parametric approach towards bounding the WCET stat-
ically with respect to the frequency. Using a parametric
model, we can capture the effect of changes in frequency
on the WCEC and, thus, accurately model the WCET over
any frequency range. (3) We discuss design and implemen-
tation of the frequency-aware static timing analysis (FAST)
tool based on our prior experience with static timing anal-
ysis. (4) We demonstrate in experiments that our FAST tool
provides safe upper bounds on the WCET, which are tight.
The FAST tool allows us to capture the WCET of six bench-
marks using equations that overestimate the WCET by less
than 1%. FAST equations can also be used to improve exist-
ing DVS scheduling schemes to ensure that the effect of fre-
quency scaling on WCET is considered and that the WCET
used is not exaggerated. (5) We leverage three DVS schedul-
ing schemes by incorporating FAST into them and by show-
ing that the power consumption further decreases. To the
best of our knowledge, this study of DVS effects on timing
analysis is unprecedented.

� This work was supported in part by NSF grants CCR-0208581, CCR-
0310860 and CCR-0312695.

1. Introduction
Limitations on the lifetime of embedded devices, partic-

ularly battery-powered mobile devices, have resulted in ad-
vances in embedded architecture to extend the lifetime of
devices. Microprocessor designs support dynamic adjust-
ment of processing speed to prolong battery life. Gener-
ally, two techniques are employed in unison. On one side,
dynamic frequency scaling allows the speed of instruc-
tion execution to change during the operation of a device.
On the other side, dynamic voltage scaling modulates the
level of the supply voltage upon demand. Generally, both
schemes, referred to as DVS in the following, work hand in
hand: When the frequency is lowered by a certain degree,
the voltage can be also be reduced to a lower level. Fur-
thermore, both scaling techniques impact the power con-
sumption of a device: power scales linearly with the fre-
quency and quadratically with the voltage. Hence, consid-
erable power savings may result in a concerted approach of
dynamic frequency and voltage scaling [6].

Real-time systems are particularly well-suited to profit
from DVS. Due to periodic task execution, it is generally
not feasible to utilize the range of sleeping modes that mod-
ern processors offer. Tasks are invoked frequently (on a pe-
riodic basis in the order of a few milliseconds). The time to
enter a sleep mode (and the later wakeup time) is in the or-
der of tens of milliseconds, which generally matches the or-
der of magnitude of a real-time task’s period. Hence, sus-
pension in sleep modes is not a viable option for real-time
systems. But real-time systems often have task sets that un-
derutilize the processor. Hence, reducing the frequency of
execution while still meeting deadlines through DVS is a
viable option resulting in considerable power reduction.

Recently, a number of hard real-time DVS scheduling
schemes have been studied, ranging from compiler support
[16] over numerous static scheduling approaches [10, 19] to
dynamic methods [19, 2, 9]. All of these approaches have
their own merits in that they provide a solution suitable
to certain systems depending on scheduling methods, uti-
lization bounds of the task sets and architectural properties,
such as scaling overhead.

Any DVS scheduling scheme is subject to the same con-
straints as other hard real-time systems: The worst-case ex-
ecution time (WCET) of a task has to be known a priori,
i.e., safe bounds on a task’s execution time have to be ob-
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tained. Prior work on static timing analysis provides the
means to derive relatively tight WCET bounds for simple
embedded architectures, which are provably safe. A num-
ber of research groups have addressed various issues in
the area of bounding the WCET of a real-time task. Con-
ventional methods for static analysis have been extended
from unoptimized programs on simple CISC processors to
optimized programs on pipelined RISC processors , and
from uncached architectures to instruction and data caches
[18, 14, 12, 17, 23, 13]. The challenge of static timing anal-
ysis is to provide not only safe but also tight bounds on the
WCET in order to impose a high enough processor utiliza-
tion. These analysis approaches result in tight bounds for
deterministic microarchitectures with simple components.

In the context of DVS, static timing analysis is gener-
ally assumed to remain valid with frequency scaling. The
conjecture is that reducing a processor’s frequency still re-
sults in the same number of cycles of execution for a task.
Hence, considering the processor frequency should suffice
to derive safe WCET bounds. However, this simplistic view
generally does not hold for any realistic architectures. Con-
sider the impact of memory references. Any instruction or
data reference that is resolved through a main memory ac-
cess operates at external bus frequency. But bus frequencies
generally diverge from internal processor frequencies, and
they do not scale at the same rate as DVS scaling does. E.g.,
the first generation Compaq Ipaq has a StrongArm micro-
processor (SA-1110) that scales at 8 frequencies but only
supports two different external bus frequencies.

In short, when static timing analysis is applied in the
context of DVS, tightness and safety assumptions may no
longer hold: WCET bounds may either not be tight (con-
siderable overestimation upon fast memory operations for
lower processor frequencies) or are no longer safe (under-
estimation potentially leading to missed deadlines upon a
reduced data bus frequency). As a result, the memory la-
tency also has to be adjusted to discrete values according to
dynamic settings for execution frequencies and memory la-
tencies. Instead of obtaining one discrete WCET through
static timing analysis, different values for each processor
frequency / bus frequency pair would have to be obtained.
While this may still be a feasible approach for a static sched-
ule and for a small number of such frequency pairs, it be-
comes infeasible for dynamic scheduling paradigms or a
large number of frequency pairs. For certain scheduling ap-
proaches that exhibit intra-task DVS, such a static approach
becomes impossible if tight bounds for the WCET are to
be determined since the point of frequency changes during
task execution is typically unknown at static time, e.g., due
to dynamic scheduling, preemption and early completion.

The contribution of this paper is to remedy this prob-
lem by promoting a new methodology for frequency-aware
static timing analysis (FAST). Instead of obtaining a WCET

bound for each frequency pair, FAST takes static timing
analysis to a novel level suitable for dynamic scheduling.
FAST expresses WCET bounds as a parametric term whose
components are frequency-sensitive parameters. On the one
side, cycles are interpreted in terms of the processor fre-
quency; on the other hand, memory accesses are expressed
in terms of the memory latency overhead due to the exter-
nal bus speed. This parametric expression of the WCET al-
lows one to determine on-the-fly the WCET for a given fre-
quency pair. This is particularly appealing when scheduling
decisions occur dynamically and when the number of fre-
quency pairs becomes large, such as is the case with state-
of-the-art processors with fine-grained frequency settings.

In the following, we detail the technical innovations ne-
cessitated by DVS to ensure that safe and flexible WCET
predictions may be obtained. We provide motivating exam-
ples, discuss the design of our FAST analysis tool, and we
show the feasibility of our approach in a set of experiments
that demonstrate flexibility and competitiveness while still
providing tight bounds on the WCET. Related as well as fu-
ture work and a summary conclude our contributions.

2. Effects of frequency scaling on WCET
In this section, we motivate the need for a parametric fre-

quency model and assess the challenges of supporting this
novel model in a static timing analysis tool. We also de-
scribe the parametric frequency model in detail, and we il-
lustrate the key features in examples.

2.1. Motivation
Real-time systems that use DVS-based scheduling scale

the WCET assuming that the WCEC remains constant even
with a change in the frequency. This assumption holds for
systems where the memory latency can scale with processor
frequency (systems with on-chip memory) In contrast, for a
system where the memory latency does not scale with pro-
cessor frequency (systems with dynamic memory and mem-
ory hierarchies), the WCEC of a task does not remain con-
stant when the frequency is scaled since an increase in the
frequency typically increases the number of cycles required
to access memory. This behavior is caused by a constant ac-
cess latency for memory references, regardless of chang-
ing processor frequencies. By assuming that the WCEC re-
mains constant, one ignores the fact that the WCEC reduces
with frequency, which results in WCET overestimations.

Figure 1 depicts results for the C-lab real-time bench-
mark fft, where the actual WCEC for a system with a mem-
ory hierarchy is compared to a constant WCEC. The WCEC
for the benchmark was calculated for a simple in-order
pipeline with instruction and data caches. In this example,
it is assumed that the memory access latency is constant.
Figure 1 illustrates that the number of WCEC increases pro-
portionally with the processor frequency. This results from
an increasing number of wait cycles for a constant time
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Figure 1. Actual vs. Assumed WCEC for fft
memory latency as the frequency increases. The slope of
the actual WCEC depends on the number of accesses to
main memory (and the latency to frequency ratio). Hence,
the slope depends on the number of misses in the instruc-
tion and data caches combined. Therefore, the accuracy of
paradigms that measure the worst-case behavior of the in-
struction and data caches not only control the accuracy of
the WCEC, but they also affect the accuracy by which the
WCEC can be scaled with frequency. Figure 2 depicts the
equivalent WCET to the two WCEC curves in Figure 1. The
actual WCET depicted indicates the assumption of a con-
stant WCEC independent of frequency modulations result
in considerable overestimations of the WCET.

The objective of the work described in this paper is to
accurately model the actual WCEC and, thereby, the actual
WCET of real-time tasks. We derive a parametric frequency
model for this purpose. The model provides WCET bounds
that remain tight and accurate throughout any frequency
range. The parametric model complements real-time sys-
tems employing a DVS-base scheduling scheme, and it is
paramount to achieving higher power savings. Ignoring the
change in WCEC with frequency results in considerably
smaller power savings.

2.2. Parametric Frequency Model
Our parametric frequency model can be used for timing

analysis with any simple in-order single-issue pipeline. The
model is applicable to systems with or without a memory hi-
erarchy. We consider the model in a system with a memory
hierarchy in the following, and we contribute solutions to
the technical challenges posed. We assume that the system
is equipped with an on-chip instruction and data cache and
that the main external memory has a constant access latency.
To accurately model the WCET in systems with memory
hierarchies, we propose a parametric frequency model that
captures the effect of frequency scaling accurately by split-
ting the WCEC of a task into two components. The first
component, �, captures the ideal number of cycles required
to execute the task assuming perfect caches. In other words,
� does not scale with frequency. The second component,�,
counts the total number of instruction and data cache misses
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Figure 2. Actual vs. Assumed WCET for fft
for the task. � is the part of the WCEC that scales with fre-
quency and depends on the memory access latency. If a sys-
tem without caches is considered, � would count the total
number of cycles used for non-memory operations while �
would count the total number of memory references. Thus,
the WCEC is expressed as follows:

���� � ���� (1)

where � is the number of cycles required to access the
memory, which depends on the latency of the memory and
the frequency of the processor. For a simple pipeline, the
WCEC can be easily be converted into the WCET by divid-
ing by the frequency. This frequency model can accurately
model the actual WCET because it separates the WCEC into
components, one that scales and one that does not scale with
processor frequency.

The following examples are presented to show that the
parametric model can capture the effects of different se-
quences of instructions in a task. Only sequences that con-
tain data or instruction cache misses are of concern since
they are affected during frequency scaling. A sequence of
instructions without any cache misses can be captured ex-
clusively by the � component and represents a trivial exam-
ple of our parametric model. For the following examples,
let � � ��, as shown in the figures below. We assume sep-
arate instruction and data caches and frequency scaling un-
der our model with an arbitrary simple in-order pipeline.

Consider a sequence of four instructions, as shown in the
Figure 3. This instruction sequence is executed in a proces-
sor with a simple six-stage in-order pipeline. The pipeline
stages are fetch (IF), decode (ID), issue (IS), execute (EX),
memory access (MEM) and write-back (WB).

1. In Figure 4, we observe the effects of an instruction
cache. Consider instruction B resulting in a miss. While in-
struction B misses in the instruction cache, all other cache
accesses result in hits. Since instructions are stalled till the

A: add R2, R1, R3 
B: load R4, [M1] 
C: add R2, R1, R4 
D: add R2, R1, R5 

Figure 3. Sample Instruction Sequence
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miss on B is resolved, the number of cycles involved can be
separated into two components. With � � � and � � � in
Equation 1, the WCEC is accurately captured by our model
as���� � ���� . Hence, the WCEC is accurately mod-
eled for any value of � resulting in an accurate WCET re-
gardless of frequencies.
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Figure 4. Ex 1: Instruction cache miss
2. In Figure 5, we observe the effects of a data cache

miss. Instruction B misses in the data cache while all other
cache accesses are hits. With � � � and � � �, the WCEC
is again calculated as �� �� . Since the data miss stalls the
previous instructions, one can separate the number of cy-
cles required for the memory access. However, had the In-
struction C or any other stalled instruction performed any
useful work instead of being stalled, a potential for over-
estimation would occur for the model, e.g., for multi-cycle
floating-point operations, branch mispredictions, etc. Any
such overestimation results from the overlap of useful cy-
cles with the memory stall. In our model, the � component
counts these useful cycles while the � component counts
data miss. Overlap would not be considered by the model.
For example, if instruction C took an extra cycle to execute,
the new WCEC would become �� � �� . The model does
not consider the overlap between the data miss and the ex-
tra cycle used by instruction C. A similar problem is also
observed in example 1 if the instruction miss overlaps with
a high execution latency instruction.

The potential for overestimations implies that the ob-
tained WCET obtained still provides an upper bound on the
execution time, albeit not necessarily a tight one. But re-
moving overestimations due to instructions with high exe-
cution latencies is non-trivial because instructions may have
different execution latencies. Subsequent experiments show
that these design choices have a diminishing affect on the
tightness of WCET bounds.

3. In Figure 6, we observe the effects of a simultane-
ous instruction and data cache misses. Instruction B results
in a data cache miss while the instruction C results in an in-
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Figure 5. Ex 2: Data cache miss

struction cache miss. All other cache accesses are hits. With
� � � and � � �, the ���� � � � �� . The instruc-
tion and the data cache misses cannot be serviced together.
Hence, instruction B is stalled till instruction C’s cache miss
is serviced. The model captures all sequences of instruc-
tions where a cache miss stalls yet another cache miss. No-
tice that the two misses in question need not result from con-
secutive instructions. We observe some overestimation be-
cause of overlapping of some work with the miss cycles.
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Figure 6. Ex 3: Instruction + data cache miss
In the above examples, different combinations of cache

misses were considered, which can occur in a simple
pipeline. In the presence of these misses, the parametric
model accurately captures the worst-case timing behavior
for any sequence of instructions. Overestimation is expected
when a high execution latency operation overlaps with a
miss or when an I-cache miss overlaps with a D-cache miss.

3. Timing Analysis
In this section, we describe conventional static timing

analysis and briefly contrast the approach to dynamic timing
analysis methods. We specify the novel enhancements ne-
cessitated by DVS to adapt conventional static timing analy-
sis to a frequency-aware static timing analysis (FAST) tool.

3.1. Static Timing Analysis
Schedulability analysis for hard real-time systems re-

quires that the worst-case execution time (WCET) be safely
bounded in order to ensure feasibility of scheduling a task
set for a given scheduling policy, such as rate-monotone
and earliest-deadline-first scheduling [15]. If the execution
time of a task were obtained through dynamic timing analy-
sis based on experimental or trace-driven approaches, these
values would not provide a safe bound of the WCET [22].
On the one side, it is difficult to determine the worst-case
input set even for moderately complex tasks that would ex-
hibit the WCET, and to perform exhaustive testing over the
entire input space is infeasible except for trivial cases. On
the other side, even if the worst-case input set was known,
the interaction between the software and hardware might
cause the task to exhibit its WCET for a different input set.
The cause of this behavior is architectural complexity, such
as complex pipelines and caching mechanisms.

Static timing analysis is a viable alternative to dynamic
timing analysis, and while various static approaches have
been studied, we will constrain ourselves to one such toolset
without loss of generality [11, 17, 23]. The WCET bounds
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obtained by static timing analysis provide a guaranteed up-
per bound on the computation time of a task. Static timing
analysis performs the equivalent of a traversal over all ex-
ecution paths to determine timing information independent
of a program trace and without tracking values or program
variables. Loop bodies only require a few traversals to deter-
mine the worst-case behavior of the entire loop due to an ef-
ficient fixed-point approach. As the execution paths are tra-
versed, the behavior of the architectural components along
the execution paths is captured. The paths are composed to
form loops, functions and ultimately the entire application
to calculate both WCEC and WCET.

Figure 7 depicts an overview of the organization of this
timing analysis toolset. An optimizing compiler has been
modified to produce control flow and branch constraint in-
formation as a side effect of the compilation of a source
file. The original research compiler VPCC/VPO [3] was
replaced by GCC with a Portable Instruction Set Archi-
tecture (PISA) backend that interfaces with SimpleScalar.
Real-time applications are compiled into assembly code us-
ing the GCC PISA-compiler. The control-flow graph and
instruction as well as data references are extracted from
the assembly code. Upper bounds on the number of itera-
tions performed by loops are provided, a prerequisite for
performing static timing analysis. A static instruction cache
simulator uses the control flow information to construct a
control-flow graph of the program that consists of the call
graph and the control flow of each function. The program’s
control-flow graph is then analyzed, and a caching catego-
rization for each instruction and data reference in the pro-
gram is produced. Separate categorizations are provided for
each loop level in which the instructions and data refer-
ences are contained. The categorizations for instruction ref-
erences are described in Table 1. Next, the timing analyzer
uses the control flow and constraint information, caching
categorizations, and machine dependent information (e.g.,
pipeline characteristics) to calculate bounds on the WCET.

The approach in this paper differs from our prior toolset
as follows. Our tool separates static I-cache and D-cache
(instruction/data cache) analysis. The D-cache analysis cur-
rently lacks sufficiently detailed information about refer-
ences for the GCC compilation phase, and D-cache analy-
sis does not fully match the SimpleScalar model. The focus
of this paper is on enhancing the timing analyzer with re-
spect to the FAST model and PISA instruction set. But since
we use our SimpleScalar-based architectural simulation en-
vironment [20] to validate our approach, we have to make

Source
Files

Simulator
Cache
Static Cache

Categorization

Analyzer
Timing WCET

Prediction

Control Flow &
I/D−References

Gcc (PISA)

Compiler

Figure 7. Obtaining Safe WCET Bounds

Cache Category Definition

always miss Instruction may not be in cache when
referenced.

always hit Instruction will be in cache when refer-
enced.

first miss Instruction may not be in cache on 1st
reference for each loop execution, but is
in cache on subsequent references.

first hit Instruction is in cache on 1st reference
for each loop execution, but may not be
in cache on subsequent references.

Table 1. Instruction Categories for WCET

simplifying assumptions about data caches. Specifically, we
assume a constant number of data cache accesses to be
misses for each application to model compulsory misses.
The remaining references are considered to be hits, which
models a sufficiently large cache. This simplifying assump-
tion does not affect the design of FAST, i.e., our model sup-
ports a more precise static data cache analysis as well.

The timing analyzer uses the control-flow information
and loop bounds, caching categorizations, and pipeline de-
scription to derive WCET bounds. The pipeline simula-
tor considers the effect of structural hazards (an instruc-
tion occupying the universal function unit for multiple cy-
cles), data hazards (a load-dependent instruction stalls for
at least one cycle if it immediately follows the load), branch
prediction (backward-taken/forward-not-taken), and cache
misses (derived from caching categorizations) for alterna-
tive execution paths through a loop body or a function.
Static branch prediction is easily accommodated by worst-
case analysis: the misprediction penalty is added to the non-
predicted path (not-taken path for backward branches and
taken path for forward branches). Path analysis (see below)
selects the longest execution path as usual. Once timings
for alternate paths in a loop are obtained, a fixed-point al-
gorithm (quickly converging in practice), is employed to
safely bound the time of the loop based on the its body’s
cycle counts.

The fixed-point approach generally requires path anal-
ysis for only a few iterations. Given the longest path for
the first iteration, the next-longest path is determined for
the second iteration, which may differ from the original
path due to caching effects. The lengths of these paths are
monotonically decreasing due to cache effects, and once we
reach a fixed-point, subsequent loop iterations can be safely
approximated by this fixed-point timing value. When the
longest paths of consecutive iterations are combined, we ac-
count for the pipeline overlap between the tail of the earlier
path and the head of the path that follows. The alternative
– no overlap – is tantamount to draining the pipeline be-
tween iterations. Using this fixed-point approach, the tim-
ing analyzer ultimately derives WCET bounds, first for each
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path, then for loops, and finally for functions within the
program. A timing analysis tree is constructed, where each
node of the tree corresponds to a loop or function. Nodes
in the tree are processed in a bottom-up manner. In other
words, the WCET for an outer loop / caller is not calcu-
lated until the times for all of its inner loops / callees are
known. This means that the timing analyzer predicts the
WCET for programs by first analyzing the innermost loops
and functions before proceeding to higher-level loops and
functions, eventually reaching the tree’s root (e.g., main()).
For our purposes, the timing analysis tree provides a con-
venient method for obtaining WCET for a specific scope, in
particular for sub-tasks. From the description in this section,
it becomes evident that static timing analysis is non-trivial,
even for simple pipelines.

3.2. Frequency-Aware Static Timing Analysis
The static timing analysis tool calculates the WCEC for

a particular task. However, static timing analysis has to be
performed whenever the processor frequency is changed.
Re-assessing the WCET bound is paramount to temporal
safety since a change in the processor frequency causes a
change in the number of cycles required to access the mem-
ory since front-side bus frequencies do not scale at all (or at
least not at the same rate). Due to the change in memory la-
tency, the WCEC information for different paths changes,
which may result in a different worst-case path than be-
fore. Our frequency model can be elegantly incorporated
into static timing analysis such that it calculates the num-
ber of cycles for each possible worst-case path in the pro-
gram. The following technical innovations to the static tim-
ing analysis framework support such flexible calculations.

Instead of using the memory access cycles to simulate
the sequence of instructions in the pipeline, the ideal num-
ber of cycles is calculated assuming all cache accesses to be
hits. The instruction and data cache misses are accumulated
as a side-effect to compose a first-order polynomial equa-
tion describing the WCEC.

Static timing analysis requires different paths through
the same node (loop or function) to be compared. The path
with the worst WCEC is used as the WCEC for the node.
After integrating the frequency model into the framework,
one has to compare two equations to determine which one
was to result in a larger number of execution cycles. The
challenge here is posed by having to consider both equa-
tions: One of them has greater WCEC for some range of fre-
quencies while the other has greater WCEC for the rest of
the frequency range. Remember that the frequency model is
a first-order polynomial. Consider the case where two equa-
tions intersect, i.e., both polynomial have a common solu-
tion. We propose three approaches to address this problem.

1. One can maintain an ordered list of equations and
the ranges where subsequent polynomials represent a larger
WCEC than previous ones. Since the frequency model is a

first-order polynomial with different slopes, there exists an
intersection point constraining the range for each equation.

2. Alternatively, a curve-fitting equation could capture
the effects of both equations. This obviates the need for
maintaining large numbers of equations but increases the
complexity of the parametric equation. A higher-order poly-
nomial with strict upper bounds on each base polynomial
would provide a relatively close fit. The resulting curve
would not be as tight as in case (1) but may suffice if
the slopes of the original polynomials do not diverge sig-
nificantly. This would impose more overhead on dynamic
scheduling schemes that have to perform additional arith-
metic to evaluate the equation upon any scheduling action.

3. Another, easier solution is to declare a valid range of
frequencies for the processor. If two equations intersect out-
side the given range, we simply have to choose the equation
that provides the higher WCEC within the valid range. If
two equations intersect within this specified range, we use a
simple curve-fitting technique through a first-order polyno-
mial that provides a WCEC greater or equal to the values of
either of the original equations.

By using one of the above techniques, we ensure that a
FAST equation obtained always provides an upper bound on
the WCEC of the task, regardless of the chosen frequency.
For our FAST framework, we have used the third, the easi-
est technique to bound FAST equations.

4. FAST-DVS Schemes
Most DVS scheduling algorithms use the assumption

that the WCEC is constant with frequency when scaling
the WCET. By not considering the effect on WCEC dur-
ing frequency modulation, DVS schemes assume a consid-
erably overestimated WCET. Thus, DVS schemes fail to
completely utilize available slack because the scaled WCET
is not a tight bound. We have implemented our parametric
frequency model as the FAST framework. Parametric equa-
tions obtained by FAST can be used in DVS scheduling
schemes to ensure that the scaled WCET remains an accu-
rate and tight bound of the execution time for a task. Thus,
we can increase the efficiency of DVS schemes and further
reduce the power consumption of the system.

DVS schemes can execute a task set at a lower fre-
quency provided that a schedulability test deems the task
set feasible and tasks do not exceed their WCET. For DVS
schemes based on earliest-deadline-first (EDF) scheduling,
the schedulability test expressed in Equation 2 must be sat-
isfied by the task set to ensure feasibility. Equation 2 repre-
sents the utilization of the system under frequency scaling.

��

��
�
��

��
� � � � �

��

��
� � (2)

��, ��, � � � , �� represent the WCET for each of the �
tasks. ��, ��, � � � , �� represent the respective periods of
the tasks. As is common in base EDF, tasks’ deadlines are
assumed to be equal to their periods. The term � in Equa-
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tion 2 is the scaling factor. It identifies actual (scaled) fre-
quency such that � � �����, where �� is the scaled fre-
quency and �� is the peak frequency.

Equation 2 does not consider the effect of frequency scal-
ing on WCET. By combining Equation 1 with Equation 2,
we yield a more accurate scaling factor taking the effects of
frequency scaling on WCET into account, as seen in Equa-
tion 3. �� � ������

����
� � � ��

�� � ������
����

� � (3)

To obtain Equation 3, we substitute the WCET by �� �
����������� derived from Equation 1. The number of cy-
cles, � , is expressed in terms of the frequency, � , and the
memory latency,�, using the relation� � ��� . Since the
schedulability test in Equation 3 is used for frequency scal-
ing, substitute � � ��� in WCET equations. The schedu-
lability test in Equation 3 is transformed into Equation 4 to
consider the scaling factor.��

���
�����

����� �
��

���
������

� � (4)

The scaling factor in Equation 4 results in a much lower
frequency ��. The WCET used is not exaggerated, and slack
is exploited efficiently.

In our implementation work, we integrated FAST equa-
tions into DVS-EDF scheduling as proposed by Pillai and
Shin through (a) static voltage scaling, (b) cycle-conserving
RT-DVS and (c) look-ahead RT-DVS [19]. With only min-
imal changes to the original algorithms, we integrated the
FAST equations into the respective DVS schemes, thereby
improving energy savings obtained.

4.1. FAST - Static Voltage Scaling
The static voltage scaling schemes introduced of Pillai

and Shin [19] uses the modified EDF test shown in Equa-
tion 2 to calculate the scaling factor �. This algorithm uses
all static slack in the system. The processor frequency for
the entire task set is set statically. Dynamic slack produced
during runtime due to early completion of tasks is not con-
sidered for frequency scaling. The FAST equations for the
WCET can be integrated into the static voltage scheme as
shown in Figure 8. Equation 1 represents the WCET of all
tasks, and the scaling factor is calculated using Equation 4.
The FAST static voltage scaling algorithm performs better
than the original static voltage scheme because it consid-
ers the portion of WCET that scales with frequency.

EDF-test(�):
i�

��

���
�����

����� �
��

���
������

� � ��	
�� 	�
� �

else return false;
select-frequency:

use lowest frequency
������ � � �  ����� � � � � � �����

such that EDF-test(�������) is true;

Figure 8. FAST-Static Voltage Scaling for EDF

4.2. FAST - Cycle-Conserving RT-DVS
The cycle conserving RT-DVS by Pillai and Shin [19]

calculates the utilization for a task set at every task release
and task completion. Upon task release, the utilization is
calculated based on the WCET. Upon task completion, the
utilization is calculated by considering the actual execution
time of the completed task instead of the WCET. This algo-
rithm uses the static slack available in the system as well as
the dynamic slack generated due to early task completions.
Figure 9 shows the necessary modifications to the original
algorithm to incorporate the FAST equations.

The FAST cycle conserving DVS scheme outperforms
the original scheme since it takes the actual execution times
as well the scaling levels of previous tasks into account.
The scheme derives the current system utilization after task
completion by considering the actual execution time. In
FAST cycles-conserving RT-DVS, the total number of cy-
cles and the total number of misses experienced by a task
are determined during executing, e.g., by hardware coun-
ters, which have become quite common for modern archi-
tectures. The actual execution time is also converted into
a FAST equation to consider its scaling with frequency.
The system utilization and the scaling factor are calculated
through Equations 3 and 4.
select-frequency():

use lowest frequency
������ � � �  ������� � � � � � �����

s
�� 	��	

��

���
�����

����� �
��

���
������

� ������� �

upon task-release(�� ):
set �� � ���	
 and �� � ���	
 ;
select frequency();

upon task-completion(�� ):
set �� � ������ and �� � ������ ;

/*������	 are the actual number of misses
for this invocation,
������	 are the ideal number of cycles for
this invocation not counting the miss cycles*/

select frequency();
Figure 9. FAST-Cycle conserving DVS for EDF

4.3. FAST - Look-Ahead RT-DVS
The look-ahead RT-DVS schemes by Pillai and Shin [19]

finds the minimum amount of work that may be performed
between now and the next scheduling event without miss-
ing any deadlines. All work is deferred till the last possible
moment, also referred to as last-chance scheduling [8]. As a
side effect, the frequency may be increased as execution ap-
proaches a deadline. In practice, most tasks complete exe-
cution early, i.e., prior to their WCET. Hence, the frequency
rarely has to be raised to complete by a deadline. This al-
gorithm also uses all the static slack (idle) as well as most
of the dynamic slack. Figure 4.3 depicts the modified origi-
nal algorithm to integrate the FAST equations into the DVS
scheme. Figure 4.3 also shows a modification to the look-
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ahead RT-DVS algorithm for ����� �����	�
�� by setting
� �	��� � � (see appendix). The FAST look ahead scheme
also takes advantage of FAST equations to lower energy
consumption of the algorithm. The terms 
 �	�� and � �	��

describe the computation left in the form of a FAST equa-
tion. Hardware counters are employed to track total cycles
completed and total misses inflicted while a task is execut-
ing. The � component shown in Figure 4.3 cannot be con-
verted into a FAST equation unless considerable changes
are made to the algorithm. Doing so would make the al-
gorithm more aggressive leading to lower frequencies. To
avoid excessive modifications, only the next scheduled task
is expressed in the form of a FAST equation. The exper-
iments show that the performance of the algorithm is im-
proved even with minimal modifications to the algorithms.

5. Experimental Framework
The experimental framework is divided into two sec-

tions. The first section is devoted to comparing the WCEC
calculated using FAST equations, obtained from the FAST
framework, to the WCEC obtained from the traditional
static timing analysis tool. The second section tests and
compares FAST-DVS algorithms with the original DVS al-
gorithms proposed by Pillai and Shin [19].

5.1. Testing the FAST Framework
We re-designed our static timing analyzer [11] to create

the FAST framework. The FAST tool, like its predecessor
select-frequency(x): use lowest frequency

������� � � � � ������� � � � � � �����
such that � � ������� ;

upon task-release(��):
set � �	�
� � �� ,

� ����� � � ����� and � ����� � � � ���� ;
defer();

upon task-completion(�� ):
set � �	�
� � �� ,

� ����� � � ����� and � ����� � � � ���� ;
defer();

during task-execution(�� ):
decrement � �	�
� , � ����� and � ����� ;

defer():
set � � ���� � � � �� ����;
set � � � ;
for � � � 
� �, �� � ��� � � � � ����� � � � � � ��

/*Note: reverse EDF order of tasks*/
set � � � � ���� ;
set �� � m����� � �	�
� � ��� ����� ����� ;
set � � � � �� �	�
� � ������� ���� ;
set � � �� �� ;

� � �� 	�

� � 
� � ������ ����

	 �
�� ����� � ����

����� ��� ��������
�

select-frequency(x);
Figure 10. FAST-Look ahead DVS for EDF

[1], is based on the portable ISA (PISA) used by the Sim-
pleScalar tool set. All instruction execution latencies are
based on the MIPS R10K latencies. Specifically, a constant
memory latency of 100ns is used. We use a 8KB direct-
mapped instruction cache and a 8KB direct-mapped data
cache. For the instruction cache categorizations, the static
cache simulator of our existing tool set is used. To obtain
data cache categorizations distinguishing hits and misses,
we use a scheme that assumes a constant number of data
accesses as misses and the remaining references as cache
hits. During pipeline simulation, a static branch prediction
scheme using the Ball-Larus heuristic is modeled. Both the
static timing analysis tool and the FAST tool model a sim-
ple in-order six-stage pipeline.

When incorporating the frequency model into the static
timing analyzer, two paths with FAST equations that result
in intersecting first-order polynomials may be encountered.
In this case, we resort to the third method introduced in Sec-
tion 3.2 to choose the equation resulting in the worst-case
behavior. First, we try to determine if one equation is al-
ways greater than the other for the valid range of frequen-
cies (100MHz-1GHz). Otherwise, we approximate the two
equations by an equation providing a safe upper bound. This
may result in slight overestimations but, overall, still pro-
vides sufficiently tight bound of the WCEC, as will be seen.
We also remove the branch misprediction penalty from the
FAST equation if branch misprediction overlaps with a data
miss stall. The overestimation caused by instructions with
execution latencies higher than one are not removed from
the equation as they contribute insignificant savings.

We studied six real-time benchmarks from the C-
lab real-time benchmark suite [5], commonly utilized for
WCET experiments. Three floating point benchmarks, ad-
pcm, lms and fft as well as three integer benchmarks, cnt, srt
and mm are analyzed. These benchmarks were compiled by
the PISA GCC compiler integrated with our SimpleScalar-
based tool set. From the compilation of these benchmarks,
the control-flow graphs and instruction layouts were ob-
tained, which are taken as inputs to the FAST analyzer and
the static cache analyzer. The FAST output is the WCEC
in the form of a parametric equation conforming with our
parametric frequency model. The same benchmarks were
also exposed to the original static timing analysis tool set
for comparison. The original static timing analyzer must be
run separately for each frequency under consideration to ac-
count for changed memory latency for a given processor fre-
quency. In contrast, the FAST framework captures the same
effect in an equation (derived from a single analysis step).

5.2. Testing FAST-DVS Schemes
To test the FAST-DVS schemes, we implemented the

algorithms in a scheduling simulator. Implementation fea-
tures include generic static voltage scaling support and
scheduling algorithms ranging from base EDF, cycle-
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conserving RT-DVS, look-ahead RT-DVS, FAST static volt-
age scaling, FAST cycle conserving RT-DVS to FAST look
ahead RT-DVS. All the scheduling algorithms can choose a
frequency between 100MHz to 1GHz for the next scheduled
task. The base EDF algorithm runs all tasks at 1GHz. All al-
gorithms switch the processor frequency to 100MHz during
idle times in the schedule, the lowest available frequency,
since it is not realistic to put a processor into sleep mode
(with millisecond overheads) for frequent task releases (in
the order of milliseconds). A combination of task sets re-
sulting from application workloads of six real-time bench-
marks, namely srt, fft, mm, lms, adpcm and cnt, were stud-
ied. The task sets were exposed to the simulator, and en-
ergy consumption was calculated for all scheduling algo-
rithms. The execution times were derived from exposing
the benchmarks to a cycle-accurate pipeline model imple-
mented in our SimpleScalar-based simulator [20]. By ex-
ploiting a cycle-accurate architectural simulator, we can ob-
tain the total number of cache misses as well as the to-
tal number of cycles executed. The execution times ob-
tained from the architectural simulator are scaled with fre-
quency using the same assumption used while formulating
the FAST parametric model. Namely, we assume that the
total number of execution cycles does not remain constant
with frequency. The same execution time scaling method is
used for all the voltage scaling algorithms.

To evaluate the different FAST-DVS and DVS schemes,
we formed several tasksets using the cnt, srt, mm, adpcm, fft
and lms benchmarks. Three groups were formed as follows
- G1: cnt, srt, mm (all integer), G2:adpcm, fft, lms (all float-
ing point) and G3:cnt, mm, fft, lms (mixed). The periods
were chosen for each benchmark and from each group two
tasksets are created – one with high utilization, and one with
low utilization. The high utilization tasksets have a utiliza-
tion of approximately 0.9 while the low utilization tasksets
have a utilization of approximately 0.5.

The frequency/voltage settings used for the scheduling
simulator are loosely based on Intel Xscale, which is re-
ported to have 5 settings ranging from 150 MHz / 0.76 V
to 1 GHz / 1.8 V [43]. From the Xscale, we extrapolated
37 settings ranging from 100 MHz / 0.70 V to 1 GHz /

Bench- Equations WCET:Static timing analysis/ FAST (WCEC)
marks i m 100MHZ 400MHZ 700MHZ 1000MHZ

fft 355933 24658 600628/ 1340578/ 2079876/ 2820478/
602675 1342625 2081993 2822525

adpcm 3026370 544104 8433905/ 24749525/ 41065145/ 57380765/
8467410 24790530 41113650 57436770

lms 167890 29905 466438/ 1363598/ 2260748/ 3157898/
466940 1364090 2261240 3158390

cnt 71221 6066 131880/ 313860/ 495840/ 677820/
131881 313861 495841 677821

mm 2038538 59134 2629877/ 4403897/ 6177917/ 7951937/
2629878 4403898 6177918 7951938

srt 3509420 102145 4530868/ 7595218/ 10659568/ 13723918/
4530870 7595220 10659570 13723920

Table 2. WCEC of FAST vs. Traditional

1.8 V in 25 MHz / 0.03 V increments. We calculate en-
ergy per cycle at a particular frequency by using the rela-
tion ������ � � ��	
��� � ��������.

6. Results for FAST Framework
The WCEC equations for the six benchmarks obtained

from the static timing analysis tool and the FAST tool are
compiled in Table 2 and in Figure 12. The FAST scheme
differs from conventional static timing analysis without
parametric expressions of frequencies by less than half a
percent. Hence, we conclude that the FAST equations ac-
curately model the WCEC obtained from the static analysis
tool. Since the effects of scaling on WCEC are accurately
modeled by the FAST equations, the scaling of the WCET
can also be accurately captured.

Table 2 shows the WCEC for all six benchmarks calcu-
lated for four different frequencies using the FAST equa-
tions and compared with the corresponding WCEC ob-
tained from the static timing analysis tool. Figure 12 plots
the ratio of the WCET for the FAST tool and the static tim-
ing analysis tool. As shown in the Table 2 and Figure 12,
cnt, mm and srt show that the FAST bounds on WCET
match the bounds obtained by the static timing analyzer ex-
actly. For fft, adpcm and lms the FAST bounds on WCET
are very close to the bounds obtained by the static timing
analyzer. The overestimation in these benchmarks is due to
the presence of floating point operations that have overlap-
ping execution latencies with memory stalls (see Section
2.2, Figure 5). Thus, the FAST tool can accurately model
the WCEC of tasks with a negligible error (�1%) by us-
ing our parametric frequency model.

7. Results for FAST-DVS Schemes
Figures 11(a) to 11(f) show the Energy for all the DVS

schemes normalized to the base EDF scheme for all six
tasksets. The figures show a decrease in power consump-

0.998

0.999

1.000

1.001

1.002

1.003

1.004

1.005

fft adpcm lms cnt mm srt

Benchmarks

R
at

io

frequency = 100MHz
frequency = 400MHz
frequency = 800MHz
frequency = 1000MHz

Figure 12. FAST vs. Traditional WCEC

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)  
0-7695-2044-8/03 $ 17.00 © 2003 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 16,2025 at 21:09:43 UTC from IEEE Xplore.  Restrictions apply. 



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Static RT-
DVS

FAST Static
RT-DVS

Cycle
Conserving

RT-DVS

FAST Cycle
Conserving

RT-DVS

Look-ahead
RT-DVS

FAST Look-
ahead RT-

DVS

DVS-EDF Schemes

E
n

er
g

y 
n

o
rm

al
iz

ed
 t

o
 b

as
e 

E
D

F

(a) Taskset G1 with utilization 0.9
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(b) Taskset G1 with utilization 0.5
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(c) Taskset G2 with utilization 0.9
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(d) Taskset G2 with utilization 0.5
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(e) Taskset G3 with utilization 0.9
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(f) Taskset G3 with utilization 0.5

Figure 11. Energy Normalized to Base EDF for Various Task Sets
tion for all the FAST-DVS schemes when compared to the
original RT-DVS schemes. The first, third and fifth bars
in the graphs show the energy consumption for the origi-
nal RT-DVS schemes. The second, fourth and sixth bars in
the graphs show the improved energy consumption for the
FAST-DVS schemes.

For the integer taskset G1, savings are considerable (ex-

cess of 50%) between the original scheme and the corre-
sponding FAST scheme for the static and cycle-conserving
approaches (Figures 11(a) and 11(b)). The look-ahead
scheme shows none or only marginal savings under FAST
for high and lower utilizations, respectively. This is caused
by fact that the FAST look-ahead scheme runs the taskset
at a lower frequency and has to recover by raising the fre-
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quency more often than the original look-ahead scheme.
The results are also sensitive to the task set, as a compar-

ison with the floating-point taskset G2 shows. Figures 11(c)
and 11(d) indicate that G2 still experiences considerable
savings for high utilizations – and slightly lower ones for
lower utilizations – under the corresponding FAST scheme.
In case of G2, savings for the static and cycle-conserving
schemes are even higher. The results for the integer/floating
point mix of G3 in Figures 11(e) and 11(f) show savings at
levels between the G1 and G2 tasksets for static and cycle-
conservings schemes. The look-ahead version of FAST re-
sults in less significant savings, mostly due to already very
aggressive savings due to the original look-ahead scheme.

All results depend on the FAST equation for the bench-
marks. The scalability of the WCET depends on the number
of misses counted during timing analysis. Due to a worst-
case analysis, the number of misses are usually highly ex-
aggerated, especially for data caches. This means that the
original schemes are penalized heavily due to their assump-
tions about scaling the WCET. Using the FAST equations,
the DVS schemes can improve the tightness of the WCET,
which is already highly exaggerated, thereby improving en-
ergy consumption.

Overall, FAST equations with the RT-DVS schemes are
more greedy and results in lower frequencies. The relative
energy benefits are highest in the static RT-DVS scheme
because it has the most scope for improvement. The cy-
cle conserving and the look-ahead RT-DVS schemes are
dynamic schemes and already scale the frequency aggres-
sively. The addition of the FAST equations to these aggres-
sive schemes enables them to scale the frequency even more
aggressively, showing lower energy consumption. Hence,
benefits for FAST are being observed in all cases.

8. Related Work
Recently, a number of research groups have addressed

various issues in the area of predicting the worst-case ex-
ecution time (WCET) of real-time programs. Conventional
methods for static analysis have been extended from unop-
timized programs on simple CISC processors to optimized
programs on pipelined RISC processors, and from uncached
architectures to instruction and data caches [18, 14, 12, 17,
23, 13]. All these methods obtain discrete values to bound
the WCET in a non-parametric fashion.

Vivancos et al. describe techniques for addressing static
timing analysis for variable loop bounds [21]. The so-called
parametric timing analysis allows dynamic schedulers to re-
assess the WCET based on dynamically determined loop
bounds during program execution. Chapman et al. [7] used
path expressions to combine a source-oriented paramet-
ric approach of WCET analysis with timing annotations,
verifying the latter through the former. Bernat and Burns
also proposed using algebraic expressions to represent the

WCET of subprograms, where the algebraic expression is
parameterized by some of the subprogram’s parameters [4].
These approaches differ in that they address fundamental
problems in static timing analysis. Our FAST approach, in
contrast, aims at isolating execution effects as a function of
the processor frequency, a unique, unprecedented approach
complementing existing work on static timing analysis.

9. Conclusion
In this work, novel techniques for tight and flexible static

timing analysis were developed most suitable – but not
restricted to – dynamic scheduling schemes. The essence
of our approach lies in providing frequency-aware bounds
on the WCET through static timing analysis. Using a
frequency-sensitive parametric model, we can capture the
effect of combined DFS/DVS on the WCEC and, thus, ac-
curately model the WCET over any frequency range. These
techniques are implemented in a frequency-aware static
timing analysis (FAST) tool leveraging prior expertise on
static timing analysis. Experiments show the capability of
FAST to derive safe upper bounds on the WCET, which are
almost as tight (within 1%) as conventional, non-parametric
timing analysis. FAST equations can also be used to im-
prove existing DVS scheduling schemes to ensure that the
effect of frequency scaling on WCET is considered and that
the WCET used is not exaggerated. This is demonstrated
by incorporating FAST into three DVS scheduling schemes.
Results indicate significant energy savings over the base
DVS schedulers due to FAST. To the best of our knowl-
edge, this study of DVS effects on timing analysis is un-
precedented.
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Modified Look-ahead DVS-EDF
A number of DVS schemes were proposed by Pillai and

Shin for scheduling hard real-time systems [19]. A simple,
static scaling version uniformly scales the frequency for all
tasks based on utilization tests for schedulability, both for
rate-monotone and EDF scheduling. Cycle-conserving EDF
lowers utilization upon task completion temporarily to the
proportion of the actual execution time. Look-ahead EDF
is an extension to these scheme that capitalizes on early
task completion by deferring work for future tasks in favor
of scaling the current task. Scaling of the current task oc-
curs based on a modified utilization test that benefits from
both idle slots and early task completion. At any comple-
tion (both early and on time), the utilization is effectively
reduced for the completing task (up until its next release
time).

Specifically, upon task completion, ��� � � ����� � �

according to Cycle-Conserving EDF and Look-ahead EDF,
respectively. The defer calculations of Look-ahead EDF
then reassesses the utilization based on future and past dead-
lines for released and completed tasks, respectively.

We modified the Look-ahead EDF by setting � ����� �

�� at task completion instead of assigning a zero value. In
addition, we reassess the utilization strictly based on the
next deadline in the future, irregardless of whether tasks are
already released and not. This allows us to look ahead even
further in the schedule and, thereby, potentially save addi-
tional energy by lowering frequencies more aggressively,
and it retains the safety of the schedule by adhering to the
EDF utilization test. If the WCET is not fully utilized, then
other tasks may still benefit from early completion up to the
threshold given by the idle times left in the schedule. This
modified Look-ahead EDF scheme was implemented in our
comparison and is shown to result in up to 34% higher en-
ergy consumption than the original scheme. On the aver-
age, the modified scheme consumes an additional 5-11%
of energy for utilizations between 25% and 100%. At high
utilizations, our modification occasionally requires between
0.5-8% more energy, which is due to considering an actual
time of ��� � � in the original scheme up to the next release
of a task. Hence, it would be possible to switch between the
two schemes based on a utilization threshold as a trigger.
Additional savings over the modified scheme due to early
completion can only be obtained by considering the density
of a schedule at some instance in time, such as given by the
maximal schedule utilized in our feedback EDF scheme.
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