
Criticality-driven Superscalar Design Space Exploration
Sandeep Navada, Niket K. Choudhary, Eric Rotenberg

Department of Electrical and Computer Engineering
North Carolina State University

{ssnavada, nkchoudh, ericro}@ece.ncsu.edu

ABSTRACT
 It has become increasingly difficult to perform design space

exploration (DSE) of computer systems with a short turnaround

time because of exploding design spaces, increasing design

complexity and long-running workloads. Researchers have used

classical search/optimization techniques like simulated

annealing, genetic algorithms, etc., to accelerate the DSE. While

these techniques are better than an exhaustive search, a

substantial amount of time must still be dedicated to DSE. This is

a serious bottleneck in reducing research/development time.

These techniques do not perform the DSE quickly enough,

primarily because they do not leverage any insight as to how the

different design parameters of a computer system interact to

increase or degrade performance at a design point and treat the

computer system as a “black-box”.
We propose using criticality analysis to guide the classical

search/optimization techniques. We perform criticality analysis to

find the design parameter which is most detrimental to the

performance at a given design point. Criticality analysis at a

given design point provides a localized view of the region around

the design point without performing simulations at the

neighboring points. On the other hand, a classical

search/optimization technique has a global view of the design

space and avoids getting stuck at a local maximum. We use this

synergistic behavior between the criticality analysis (good

locally) and the classical search/optimization techniques (good

globally) to accelerate the DSE.

For the DSE of superscalar processors on SPEC 2000

benchmarks, on average, criticality-driven walk achieves 3.8x

speedup over random walk and criticality-driven simulated

annealing achieves 2.3x speedup over simulated annealing.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Performance, Design

Keywords
design space exploration, criticality model, bottleneck analysis,
superscalar processors, simulated annealing

1. INTRODUCTION
Design space exploration is extensively used by computer
architects to identify the subspace where the computer system
performs best, while satisfying other constraints such as power,
cost, area, design complexity, etc. However, it is becoming
increasingly difficult to perform design space exploration with a
short turnaround time because of the exploding design space,
increasing design complexity and long-running workloads
[16][25]. In quantitative terms, for a modest design space
consisting of 2000 design points, exhaustive search through cycle-
accurate simulation takes up to two months to identify the best
design point for the SPEC 2000 and MiBench benchmark suites
[21].

To accelerate the design space exploration, researchers have
adopted two orthogonal approaches. The first approach
concentrates on reducing the time taken to measure the
performance at a single design point. Techniques in this class
include analytical techniques, regression modeling techniques,
sampling techniques, reduced input set techniques and statistical
simulation techniques [20][16][17][25][37][9][31][27]. These
techniques trade accuracy for speed [20]. However, loss of
accuracy might lead to erroneous conclusions from the design
space exploration.

The second approach recognizes that an exhaustive design space
search using a cycle-accurate simulation is an insurmountable task
and hence aims to reduce the number of design points that needs
to be searched. Classical search/optimization techniques such as
random walk, simulated annealing, genetic algorithms, evolution
strategy, etc. [8][10][14][18][24][28] fall in this category. These
techniques use the performance values at previously simulated
design points to guide the search. Further, these techniques have a
global view of the design space and avoid getting stuck in a local
maximum. Even though these search techniques are much better
than exhaustive design space exploration, it still takes a
considerable amount of time to perform design space exploration
[10][14][18]. The main reason for this is that these techniques do
not leverage any insight as to how the different design parameters
of a computer system interact to increase or degrade performance
at a given design point and treat the computer system as a “black-
box” [21].

To gain insight about the computer system, we propose using
criticality analysis (performance bottleneck analysis) to guide the
classical search/optimization techniques. We perform criticality
analysis to find the critical design parameter(s) (the design
parameter(s) which is most detrimental to the performance) along
with the simulation of the design point. Subsequently, we use this
knowledge within the classical search/optimization techniques to
find the next design point(s) to be explored. Criticality analysis
helps in finding the critical design parameter(s) at the current
design point without performing simulations at the neighboring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09...$10.00.

261
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

points. That is, by just performing the criticality analysis at the
current design point, we obtain a localized view of the region
around the design point. Hence, criticality analysis helps classical
search/optimization techniques by avoiding unnecessary
simulations of design points to understand the local contour of the
region.

If standalone criticality analysis (without classical
search/optimization technique) is used for the design space
exploration, then the performance bottlenecks will be successively
eliminated at every iteration until a design point is reached which
has no bottlenecks. This balanced design point is the best design
point in the localized region (local maximum). However, this
point may not be a good design point in the global design space.
Hence, to give criticality analysis a global view, it is used in
conjunction with the classical search/optimization technique
which has a global view of the design space and avoids getting
stuck in a local maximum. Hence, we see that there is a
synergistic behavior between the criticality analysis (good locally)
and the classical search/optimization techniques (good globally).
Criticality-driven design space exploration exploits this
synergistic behavior to accelerate the design space exploration. To
summarize, criticality-driven design space exploration uses the

localized information from the criticality analysis to guide the

globally-aware classical search/optimization techniques.

Figure 1. (a) (top) The synergistic behavior of criticality

analysis and classical search/optimization techniques. (b)

(bottom) Block diagram of Criticality-driven Design Space

Exploration.

Figure 1(a) shows the performance landscape of a design space
where the height represents the performance of the design point.
The optimal design point is the highest point in the landscape. We
see that standalone criticality analysis gets stuck in the local
maximum. On the other hand, the globally-aware classical search
technique reaches the global maximum in a large number of
iterations. However, using criticality information to guide the
classical search technique helps to reach the global maximum
quickly.

Figure 1(b) illustrates the framework of the criticality-driven
design space exploration which uses the criticality information in

addition to the performance value of past design point(s) to find
the next design point(s) to be explored.

While criticality-driven design space exploration is sufficiently
general as to be adaptable for the design space exploration of any
computer system, in this paper, we demonstrate an entire
framework for fast, automated design space exploration of an out-
of-order superscalar processor. To enable this, we need a high-
fidelity superscalar design space and a detailed criticality model
which models all the components of the superscalar processor.

Our high-fidelity superscalar design space encompasses structure
sizes (reorder buffer, issue queue, load queue, store queue,
instruction cache, data cache, etc.), widths of pipeline stages, and
clock period. To take clock period into account, we need to
measure the propagation delays of different pipeline stages in the
superscalar processor. This requires physical implementation of a
superscalar processor in a given technology. Therefore, we use the
delay data of canonical pipeline stages of the superscalar
processor from the FabScalar toolset [6] to build the design space.
The high-fidelity design space unveils the delicate interplay
between the instruction-level parallelism (ILP) extracting
structures and the clock period [3][13] .

In addition to a high-fidelity superscalar design space, we have
built a detailed criticality analysis model which is able to model
all the components of an out-of-order superscalar processor. It
should be noted that in the issue queue, instructions enter in-order
but leave in an out-of-order fashion as data dependences get
resolved and this makes modeling the issue queue more
challenging than other resources such as the reorder buffer, load
queue and store queue. Because of this complex out-of-order
nature of issue queue, it was not modeled in previous criticality
analysis models [11][34] even though it is one of the most critical
components of a superscalar processor [11][21]. We have
successfully incorporated it into our model. Further, we have
extended Field’s 3-node dispatch, execute and commit criticality
model [11] to a 7-node criticality model in which there is a node
corresponding to each of the canonical pipeline stages of a
superscalar pipeline, to make our analysis more fine-grained.

For our evaluation, we use simulated annealing [24] and a less
sophisticated technique, random walk, as the baseline
search/optimization techniques. Note that simulated annealing is
one of the state-of-the-art classical search/optimization techniques
and has a proof for theoretical convergence [15]. For the design-
space exploration of superscalar processors on SPEC 2000
benchmarks [33], on average (harmonic mean), criticality-driven
walk achieves 3.8x speedup over random walk and criticality-
driven simulated annealing achieves 2.3x speedup over simulated
annealing. Another key finding is that even though simulated
annealing performs better than random walk, criticality-driven
walk performs better or comparable to simulated annealing on all
SPEC 2000 benchmarks. This shows that using criticality analysis
over a simple classical search/optimization technique is more
effective than only using a sophisticated classical
search/optimization technique.

This paper makes three main contributions.

• To the best of our knowledge, this is the first work to
propose the use of criticality analysis to drive classical
search/optimization techniques to accelerate the design
space exploration of computer systems using the
synergistic behavior between them.

262
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

• We present a detailed implementation of using
criticality information to drive simulated annealing and
random walk for an out-of-order superscalar processor.
Further, we have performed detailed evaluation of
criticality-driven simulated annealing and criticality-
driven walk.

• We have built a detailed criticality analysis model of a
whole out-of-order superscalar processor, including the
issue queue. This detailed criticality model can also be
used for other purposes like fine-grained bottleneck
analysis.

The paper is organized as follows. In Section 2, we provide
background on superscalar processors including the factors that
affect their performance. Section 3 describes how criticality
information is used to drive the design space exploration. Section
4 describes our high-fidelity superscalar design space. Criticality
analysis using our detailed criticality model of a superscalar
processor is explained in Section 5. Sections 6 and 7 describe our
experimental methodology and results. Related work is presented

in Section 8. Section 9 concludes our work.

2. BACKGROUND ON SUPERSCALAR

PROCESSORS

2.1 Dimensions of a Superscalar Processor
A superscalar processor exposes and exploits instruction-level
parallelism (ILP) in programs. The pipeline of a superscalar
processor can be characterized along three dimensions:

• The sizes of ILP-extracting units (issue queue, load and
store queues, physical register file / reorder buffer),
caches, and predictors.

• The widths of pipeline stages.
• Clock frequency.

Another dimension is pipeline depth. Each high-level pipeline
stage might be subdivided into multiple sub-stages. We refer to
the number of sub-stages as the depth of the pipeline stage. In this
paper, the depth of a pipeline stage is not treated as an
independent parameter; rather, it is determined by frequency and
the total propagation delay (logic and wire delays) of the pipeline
stage.

2.2 Understanding Performance of a

Superscalar Processor
When designing a superscalar processor, there is a tradeoff
between accelerating the execution of independent instructions
(i.e., exposing and exploiting more ILP) and reducing the latency
of dependent instructions, and this tradeoff plays out differently
for different programs and program phases. Exploiting more ILP
requires increasing the sizes of ILP-extracting units and the
widths of pipeline stages, increasing their propagation delays.
Deeper pipelining can help maintain the clock frequency despite
the longer delays. However, the longer delays increase the latency
of dependent instructions. Overall performance increases or
decreases depending on whether parallelism or latency is the
dominating factor. Different programs or program phases have
different arrangements of independent and dependent instructions.
This causes them to be characterized by different optimal pipeline
designs.

2.3 Pipeline Loops
As mentioned previously, longer propagation delays increase the
latency of dependent instructions irrespective of increasing
pipeline depth. The reason is because dependent instructions
exercise pipeline loops [3]. Three well-known pipeline loops are:

1. Control-dependence loop: This loop is exposed when a branch
is mispredicted. The execute stage redirects the fetch unit in the
case of a mispredicted branch. The delay of this loop is the total
propagation delay between the fetch and execute stages, plus the
latency of misprediction recovery.

2. Register-dependence loop: This loop is exposed for data-
dependent instructions (but mainly single-cycle producer
instructions). The delay of this loop is the propagation delay of
the wakeup-select logic in the issue unit, and determines the
minimum time to execute chains of data-dependent instructions.

3. Memory-dependence loop: This dependence is exposed when
there is a store instruction followed by a load instruction to the
same memory location within the pipeline. The delay of this loop
is equal to the propagation delay of store-to-load forwarding.

3. CRITICALITY-DRIVEN DESIGN SPACE

EXPLORATION
Simulated annealing is one of the state-of-the-art classical
search/optimization techniques and has a proof for theoretical
convergence [24]. Random walk can be considered as a simpler
version of simulated annealing. Because both random walk and
simulated annealing do not get stuck in local maxima, they are
widely used in global optimization. In Section 3.1, we explain
random walk and simulated annealing. In Section 3.2, we discuss
how to use criticality information to drive random walk and
simulated annealing. Section 3.3 describes criticality-driven
design space exploration using other search/optimization
techniques.

3.1 Classical Search Techniques

3.1.1 Random Walk
Random walk is one of the simplest but widely used
search/optimization techniques used to perform global
optimization. In this section, we describe how random walk can
be used to perform design space exploration of superscalar
processors [24].

A random design point is used as the starting point. Simulation is
performed at this design point to obtain the performance value. A
parameter is selected at random from the current design point and
it is changed by the least significant unit to get a new design
point. We call this a random perturbation. Simulation is
performed again at the new design point to get its performance
value. Random perturbation is then performed again at the new
design point and this process is continued. During the entire
process, the algorithm keeps track of the design point which
generated the best performance value. If the performance value at
the current design point is below 50% of the best performance
value, then we restart from the best design point. Because of the
restarting procedure, iterations are not wasted in searching
through likely bad design points.

As random walk performs random perturbations and accepts new
design points which are worse than the current design point, it
does not get stuck in local maxima.

263
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

3.1.2 Simulated Annealing
Simulated annealing shares the spirit of random walk except that
there is a probability associated with the acceptance of a new
design point. If the new design point is not accepted, then random
perturbation is performed again at the current design point to get
another new design point.

The probability function is given as below:

<

≥
=

 −

currentnew
T

perfperf

currentnew

perfperf if

 perfperf if 1
P currentnew

e

Where perfnew is the performance at the new design point,
perfcurrent is the performance at the current design point, and T is
the temperature function which is high at the start of the design
space search and decreases every 20 iterations according to
following equation:

() 20
n

0 9.0TT ⋅=

Where To corresponds to the initial temperature (constant) and n is
the number of design points traversed.

Note that the probability of accepting the new design point is
always 1 if the new design point is better than the current design
point. However, if the new design point is worse than the current
design point, then the probability of accepting the design point is
close to 1 at the beginning of the design space search when the
temperature is high. However, as the design space search
progresses, the probability function tends to zero. In other words,
design space search starts as a random walk. However, when it
reaches close to the optimal region, it only accepts better design
points (gradient ascent). This prevents wasting unnecessary
iterations when the optimal region is close. However, the initial
temperature has to be carefully set. Otherwise, gradient ascent
might start too early or too late. This might result in simulated
annealing performing worse (taking more iterations) than random
walk.

3.2 Criticality-driven Search Techniques
Although random walk and simulated annealing are much better
than exhaustive design space search, using knowledge from
performance bottleneck analysis can make it even faster. In
criticality-driven design space search, we use criticality-driven
perturbation instead of random perturbation to give random walk
and simulated annealing a localized view of the region around the
design point. This avoids unnecessary simulations in the localized
region and, hence, accelerates the design space exploration.
Section 3.2.1 explains criticality-driven perturbation. Sections
3.2.2 and 3.2.3 discusses how criticality-driven perturbation is
used in criticality-driven walk and criticality-driven simulated
annealing, respectively.

3.2.1 Criticality-driven Perturbation
To perform criticality-driven perturbation at the current design
point, criticality analysis is performed along with the simulation

of the design point. Criticality analysis assigns cycles from the
total execution cycles to each of the processor resources (structure
sizes and widths of pipeline stages) and program dependences
(control, register and memory dependences). The processor
resource/program dependence which has the most cycles
attributed to it is the most critical bottleneck. Criticality analysis
gives the most critical bottleneck at the given design point. Using
this bottleneck information, the design parameter to be perturbed
to improve the performance is found in the following way.

If the most critical bottleneck is a processor resource, the
implication is that there is more instruction-level parallelism (ILP)
to be extracted but doing so is prevented by the limited resource.
Therefore, the next point in the design space will be based on
increasing the size of that resource (structure size or width of a
pipeline stage). Also, the affected pipeline stage will be increased
in depth (sub-pipelined deeper) to accommodate the larger
structure or width while maintaining the current clock frequency.
However, if the most critical bottleneck is a program dependence,
it implies that the processor resources are not critical. This means
that the resources of the processor are oversized at the current
design point. In this case, the clock frequency is increased while
keeping the pipeline depth of each pipeline stage the same, which
would decrease all the processor resources. This increases the
performance as the clock frequency is increased.

Using the most critical bottleneck always leads to increasing a
parameter. However, we also need to decrease the design
parameters to make sure that the entire design space is reachable.
In fact, to make the entire design space reachable, we need to
increase and decrease the design parameters with the same
probability. To decrease the design parameters, criticality analysis
is also used to find the least critical bottleneck (processor resource
or program dependence which has the least number of cycles
attributed to it). Using the least critical bottleneck, the design
parameter is decreased to improve performance in the following
way.

If the least critical bottleneck is a processor resource, it implies
that the processor resource is oversized. Hence, the next design
point is found by decreasing the oversized resource. The affected
pipeline stage will be decreased in depth to accommodate the
resource while maintaining the current clock frequency. This
helps to improve performance as the pipeline loop latency like
branch misprediction loop latency, etc. [3], will decrease due to
the decrease in pipeline depth corresponding to the processor
resource. On the other hand, if the least critical bottleneck is a
program dependence, it means that processor resources are
critical. This implies that all the processor resources are limited
and more parallelism can be extracted by increasing the processor
resources. Hence, the clock frequency is decreased while keeping
the pipeline depth of each pipeline stage the same, which
increases all the resources.

The following table gives a summary of the above discussion on
the design parameter which needs to be perturbed based on the
bottleneck information from the criticality analysis.

264
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

Table 1. Criticality-driven perturbation

To understand if the criticality-driven perturbation yields
performance improvement, we randomly picked 1,000 design
points and for each performed a single criticality-driven
perturbation. On average, we see that around 82% of criticality-
driven perturbations resulted in a performance improvement. The
remaining 18% of perturbations result in performance
degradation.

One of the major reasons for performance degradation is due to
the balanced design points (local maxima). A balanced design
point is a design point at which all the design parameters
contribute roughly equal numbers of cycles to the total execution
cycles. Hence, at a balanced design point, there is no bottleneck
and any perturbation at this point may result in performance
degradation.

Figure 2. Breakdown of criticality-driven perturbation.

Other reasons for performance degradation could be the presence
of parallel and near-critical paths. As we only model one critical
path, the performance improvement is not guaranteed at these
points [35]. Note that the fidelity of the criticality analysis would
not affect the correctness of the design space exploration. It might
just slightly slow down the design space exploration. However,
our criticality model has enough fidelity to significantly accelerate
the design space exploration.

To summarize, as 82% of criticality-driven perturbation results in
a performance improvement, it shows that the criticality
information is very useful in providing localized information to
the design space exploration.

3.2.2 Criticality-driven Walk
In criticality-driven walk, to get a localized view, we perform
criticality-driven perturbations instead of random perturbations.

However, if a design point is revisited, then a random perturbation
is performed instead, to avoid going in a loop.

At every iteration, criticality-driven walk tries to improve
performance by selecting the parameter which would most likely
yield a performance improvement. However, when it reaches a
balanced design point (local maximum) where all parameters are
almost equally critical, the parameter that does get selected might
not improve performance. Once it drifts away from this balanced
design point, it again tries to improve performance and ultimately
reaches some other balanced design point (local maximum). After
a certain number of iterations, it reaches a balanced design point
which is the global maximum. Note that accepting design points
which are worse than the current design point when it reaches
local maxima helps criticality-driven walk avoid getting stuck at
local maxima.

3.2.3 Criticality-driven Simulated Annealing
Similar to criticality-driven walk, to get a localized view, we use
criticality-driven perturbation instead of random perturbation to
generate a new design point. In case the new design point is not
accepted, we resort to random perturbation. Also, if a design point
is revisited, then a random perturbation is performed to avoid
going in a loop.

During the beginning of the design space search, criticality-driven
simulated annealing acts like a criticality-driven walk (high
“temperature”). Hence, it reaches the optimal region in fewer
iterations. Once it is close to the optimal region, it behaves like a
gradient ascent method. Since criticality-driven perturbation has a
localized view, the design point generated is more likely to be
accepted by the probability function compared to random
perturbation. Hence it takes fewer iterations even when it is doing
a gradient ascent and overall, criticality-driven simulated
annealing performs better than simulated annealing.

3.3 Extension to Other Search/Optimization

Algorithms
As other search/optimization algorithms use random
perturbations, we can easily use criticality-driven perturbation in
other search/optimization algorithms [28][18]. For example, in
genetic algorithms, there are two operators to generate new design
points: mutation and crossover [28][18]. Mutation is a random
perturbation. Hence, we can use criticality analysis to drive
genetic algorithms by changing the mutation operator to a
criticality-driven perturbation operator. Also, criticality analysis
can be used to find good crossover sites in the design points while
performing a crossover operation.

4. SUPERSCALAR DESIGN SPACE

CREATION
This section explains the process of creating a high-fidelity
superscalar design space. Later, it discusses a mechanism to prune
the superscalar design space.

The performance of a superscalar processor is a function of both
instructions per cycle (IPC) and clock frequency. To take clock
frequency into account, we need to measure propagation delay.
Hence, we use detailed synthesizable Verilog models and physical
designs of superscalar processors from the FabScalar toolset [6].
FabScalar defines a canonical superscalar pipeline shown in
Figure 3. The Standard Superscalar Library (SSL) of FabScalar

Bottleneck Whether

most/least

critical

Design

parameter to

be perturbed

Comments

Processor

resource

Most critical Processor
resource
increased

Depth of
stage
increased

Program

dependence

Most critical Clock
frequency
increased

Decreases all
resources

Processor

resource

Least
critical

Processor
resource
decreased

Depth of
stage
decreased

Program

dependence

Least
critical

Clock
frequency
decreased

Increases all
resources

performance improvement

performance degradation

(balanced design point)

performance degradation

(coarse perturbation)

performance degradation

(unknown)

265
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

provides many different designs of each canonical superscalar
pipeline stage that differ in their complexity (structure sizes and
pipeline width) and depth.

Figure 3. Canonical superscalar pipeline stages.

All possible combinations of pipeline stages that fit in a given
clock period gives the design points for the given clock period.
Doing this for different clock periods forms the entire design
space of superscalar processors.

The following design space pruning strategy is used to decrease
the size of the design space to a manageable size. Design space
pruning is performed by weeding out among the design points
having pipeline stages of same depth and same clock period.
Among these design points having the same depth and clock
period, the design point having pipeline stages with the highest
complexity is retained and other design points having lower
complexity are weeded out. This is because design points with
lower complexity will always perform worse than the design point
having highest complexity. For example, let us assume issue
width of 2 and 4 for 16 entries issue queue fits into issue depth of
2 for clock period of 0.4ns. We discard the design point having
issue width of 2 as it would always perform worse than the design
point with issue width of 4. Sometimes it might be hard to
distinguish which of them is most complex. In such cases, we
don’t perform pruning. For example, it is difficult to distinguish
between complexity of issue queue size having 16 entries with
width 2 and issue queue size having 8 entries with width 4. In
case of design space exploration having fixed power/area budget,
the above design space pruning is done only on those points
which fit in the budget.

5. CRITICALITY ANALYSIS
The design parameter to be perturbed in the criticality-driven
design space exploration is identified using the bottleneck
information of the criticality analysis. This section explains the
process of finding the bottlenecks for a given superscalar
processor configuration using criticality analysis. Section 5.1
gives an overview of criticality analysis for a superscalar
processor. Even though the issue queue lies at the heart of the
superscalar processor, the issue queue was not modeled in past
work on criticality analysis. Section 5.2 describes modeling of the
issue queue in the criticality model. Section 5.3 illustrates the
working of criticality analysis using an example. Section 5.4 gives
the overhead of using criticality analysis.

5.1 Overview of Criticality Analysis
There are three main steps in finding the bottlenecks for a

superscalar processor running a given application using criticality
analysis.

1) Building of critical-path graph model

The critical-path graph model [11][29] of a processor is a graph-
based model which helps to uncover the bottlenecks in the
processor. It is a directed graph that models the resource

constraints of the processor (structure sizes and pipeline widths)
and control, register, and memory dependence constraints of the
program currently being executed. It expresses the dependence
relationships between different events occurring in the processor,
which are dictated by different constraints of the processor and
the program being executed. The graph is built using the trace of
committed instructions of the program being executed.

Table 2. Overview of the constraints modeled by the criticality

model of a superscalar processor

Constraint

Modeled

Edge Comments

Pipeline
dependence

Fi→Di, Di→Ii, Ii→Ri,
Ri→Ei, Ei→Wi,
Wi→Ci

Applicable to non-
mem. instructions

Fi→Di, Di→Ii, Ii→Ri,
Ri→Ei, Ei→M1i,
M1i→M2i, M2i→Wi,
Wi→Ci

Applicable to mem.
instructions

In-order
pipeline stage
constraints

Fi-1→Fi, Di-1→Di,,
Ci-1→Ci

In-order constraint

Di-w→Fi, Ii-w→Di Width constraint,
0<w<=width

Reorder buffer Ci-R→Ii R=ROB size
Load/Store
Queue

CK1→Ii, CK2→Ii K1 → bottleneck
load instruction
K2 → bottleneck
store instruction

I-cache miss Fi→Di, Fi→Fi+1 Weight of the edge is
i-cache miss latency

D-cache miss M2i→Wi Weight of the edge is
d-cache miss latency

L2-cache miss Fi→Di, Fi→Fi+1,
M2i→Wi

Weight of the edge is
L2-cache miss latency

Issue width [36] Rb→Ri b → instruction which
consumed the last
issue slot

Control
dependence

Ei-1→Fi i-1 → mispredicted
branch

Data
dependence

Rp→Rc p → producer
instruction of data
c → consumer
instruction of data

Memory
dependence

M2p→M2c p → producer store
instruction
c → consumer load
instruction

Each node in the graph represents an event when the instruction
enters a given pipeline stage. For every non-memory instruction
in the dynamic instruction stream, there is a fetch (F) node, a
dispatch (D) node, an issue (I) node, a register-read (R) node, an
execute (E) node, a write-back (W) node and a commit (C) node.
There are two additional nodes, namely mem1 (M1) and mem2
(M2) for memory instructions. An edge in the graph corresponds
to the dependence relationship between the two events (nodes)
because of some resource or program constraint. If there is an
edge from node A to node B and the weight on the edge is W,
then the event B cannot occur earlier than W cycles after the event
A has occurred. For example, if the fetch pipeline depth is 1, then

F
e
tc
h

D
is
p
a
tc
h

Is
s
u
e

R
e
g
 R
e
a
d

E
x
e
c
u
te

L
o
a
d
/S
to
re
 U

n
it

(M
E
M
-1
)

C
a
c
h
e
 A
c
c
e
s
s

(M
E
M
-2
)

W
ri
te
B
a
c
k

R
e
ti
re

266
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

there is a directed edge with weight 1 from the fetch (F) node to
the dispatch (D) node of an instruction. However, there can be
multiple incoming edges to a node. In that case, the edge that
dominates will decide the time of the event.

The graph is dynamically built along with the simulation of the
given design point (processor configuration). As an instruction is
committed in the simulator, nodes corresponding to all the
pipeline stages through which the instruction passed are added.
Then, the edges incoming to these nodes are added according to
resource constraints of the processor and dependence constraints
of the program. According to the incoming constraints to the
nodes, the nodes are scheduled. That is, the time (cycle) of the
event corresponding to the node is determined. It should match
with the simulator timestamp of the instruction entering the
corresponding pipeline stages. Table 2 gives an overview of
constraints modeled by past research on criticality models
[11][36].

2) Finding the critical path

The critical path is the longest path from the starting node (fetch
of the first instruction in the dynamic instruction stream) to the
end node (commit of the last instruction in the dynamic
instruction stream). The length (sum of weights of the edges) of
the critical path is the execution time of the program. Hence, any
parameter affecting the critical path would affect the performance
of the processor.

3) Profiling the critical path to find the bottlenecks

Each edge in the program critical path is due to some processor
resource (size of a structure or width of a pipeline stage) or
program dependence (control, data, or memory dependence).
Accordingly, we break down the entire critical path and assign
contributions to different processor resources and program
dependences. The processor resource or program dependence
which has the most cycles assigned to it is the most critical
bottleneck and the one which has the least cycles associated is the
least critical bottleneck. Note that the most critical bottleneck
could be a program dependence. This would happen if the
resources of the processor are oversized for the program.

5.2 Modeling of the Issue Queue in the

Criticality Model
The size of a FIFO structure is straightforward to model in the
graph. As an example, consider a reorder buffer of size S. The
reorder buffer cannot hold more than S instructions, and
instructions enter and leave the reorder buffer in program order.
This implies that instruction “i” cannot enter the reorder buffer
before instruction “i-S” has left it. This constraint is enforced by
inserting an edge between the relevant nodes of instruction “i-S”
and instruction “i”.1

The key point here is that modeling the size S of a FIFO structure
is simple because the critical instruction with respect to an
instruction “i” is easily identified: it is always instruction “i-S”.

1 In particular, the edge is between the commit (C) node of

instruction “i-S” and the issue (I) node of instruction “i”: Ci-S →
Ii. Note that the commit node corresponds to an instruction
leaving the reorder buffer and the issue node corresponds to an
instruction entering the reorder buffer and other structures
(issue queue and possibly the load or store queue).

In contrast, modeling the size of the issue queue is not
straightforward because instructions leave it out-of-order. It was
not modeled in previous criticality-based models [11] [21] [36].
Yet, the issue queue is one of the most performance-critical
components in an out-of-order superscalar processor: the tradeoff
between exposing more ILP and minimizing pipeline loop delay
(wakeup-select loop) is particularly acute in the issue queue.

Consider an issue queue of size S. As with the reorder buffer, an
instruction “i” cannot enter the issue queue before some prior
instruction has left it. Unfortunately, because instructions leave
the issue queue out-of-order, this critical instruction is not simply
“i-S”. The critical instruction could be any prior instruction to this
point. Our approach is to maintain a list of S prior instructions
that are the latest to leave the issue queue, among all prior
instructions. That is, the list contains the S latest-departing
instructions. The critical instruction is among these S instructions.
Namely, the critical instruction is the one that leaves the issue
queue first. Its departure makes room for instruction “i”.
Accordingly, an edge is inserted between the relevant nodes of
this critical instruction and instruction “i”.2

Figure 4. Modeling the issue queue in the criticality model.

The list of S instructions must be updated after each instruction
“i” is added to the graph. This is simple to do: the critical
instruction as identified above is removed from the list and
instruction “i” is added to it. The critical instruction is the earliest-
departing one and instruction “i” will necessarily have a later
departure (since the critical instruction made way for it). Thus, the
new list of S latest-departing instructions excludes the critical
instruction and includes instruction “i”.

Figure 4 (top) shows the criticality graph corresponding to
instruction trace I0, I1, I2, I3. Note that the number on the edge is
the weight of the edge and the number on the node is the time
stamp corresponding to that node. For simplicity, we have not
drawn the incoming issue queue edges for I0, I1, I2 and I3. The
issue queue size is assumed to be 3. When the instruction I4 is
committed, the nodes corresponding to it are added and edges

2 In particular, the edge is between the register-read (R) node of

the critical instruction and the issue (I) node of instruction “i”:
Rcritical → Ii. Note that the register-read node corresponds to an
instruction leaving the issue queue and the issue node
corresponds to an instruction entering the issue queue.

267
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

corresponding to pipeline dependences are added. The latest three
instructions to be issued are I0, I1 and I3 (set S = {I0, I1, I3}). I0
has the smallest register read (R) time stamp in set S. Hence, to
model the issue queue bottleneck, we have an edge from R node
of I0 to I node of I4. Figure 4 (bottom) shows the criticality graph
corresponding to instruction trace I0, I1, I2, I3 and I4.

5.3 Illustrative Example of Criticality

Analysis
Dynamic Instruction trace

 I0 :R5=0
 I1 :R3=1
L1: I2 :R1=R3+2
 I3 :R6=R1+2
 I4 :R3=R3+1
 I5 :R5=R6+R5
 I6 :cmp R7,0
 I7 :br L1
 I8 :R5=R5+100

Figure 5. Criticality model of the dynamic instruction trace.

The resource constraints modeled are follows: ROB size = 4, issue
queue size =2, issue width =2, fetch width =2, commit width =2.
The critical path model for the dynamic instruction trace for above
resource constraints is shown in Figure 5. The longest path from
fetch node of I0 (F0) to the commit node of I8 (F8) is shown in bold
color. This path is the critical path and has nodes F0, F1, D1, I1, R1,
R2, R3, E3, W3, C3, I7, R7, E7, F8, D8, I8, R8, E8, W8, C8. The
critical path is profiled and cycles are assigned to different
processor resources and program dependences as follows:
Register dependence = 2, Control dependence = 1, ROB = 1,
unclassified = 15. Note that the unclassified cycles are the cycles
attributed to pipeline dependences which cannot be attributed to
any of the processor resources or program dependences. We
clearly see that the register dependence is the most critical
bottleneck. Note that many of the processor resources and
program dependences have 0 cycles assigned to it because of the
very short dynamic trace

5.4 Overhead of Criticality Analysis
Simulation time overhead

Criticality analysis requires the processing of timestamps of
instructions and bottleneck events (branch mispredictions and
cache misses) to build the dependence graph. Hence, criticality
analysis takes lesser time compared to the time taken for cycle-
level simulation. In our simulations, criticality analysis takes less
than 3% of the time taken to perform cycle-accurate simulation.

Storage overhead

To perform the criticality analysis, the entire dependence graph
obtained had to be built and stored. This incurs a large storage
overhead. For example: a trace of 100 million instructions might
take up to 10 GB of storage space. As done in [26], we remove
this overhead by not storing the entire graph and performing
criticality analysis as the graph is being built. This is done by
realizing that the edges to the nodes corresponding to future
instructions come from only a handful of nodes. We see that the
storage requirement of the critical path analysis model is of the
order of number of constraints modeled. Hence, the storage
requirement of the graph is drastically reduced.

Design effort overhead

We need the timestamps of the instructions entering different
pipeline stages and the information of different bottleneck events
like branch mispredictions, icache miss, dcache miss, etc. We can
then build the dependence graph from this information. Hence, it
requires minimal effort to retrofit the simulator to get the critical
path information.

6. EXPERIMENTAL METHODOLOGY
This section describes the design space of superscalar processors
and the simulation environment used for evaluation.

Design Space

Our design space consists of design points created by varying the
clock period and complexity (structure sizes and pipeline widths)
of different pipeline stages of a superscalar processor. The design
space is spanned by the independent design parameters as
enumerated in Table 3. Note that the depths of each pipeline stage
are dependent parameters as explained in Section 2. The depth of
a canonical pipeline stage for a given design point is the degree of
sub-pipelining required so that the given complexity of the
pipeline stage may fit in the given clock period.

Our design space consists of 3.6 million design points. By design
space pruning as explained in section 4, we reduce the design
space to about 104K design points. Using design space pruning,
we have eliminated nearly 97% of the design points from the
original design space and this helps in fast design space
exploration. Note that in our evaluation, we used the pruned
design space for both criticality-driven design space exploration
and baseline design space exploration.

Simulator and Benchmarks

For our evaluation, we used the SPEC 2000 benchmark suite with
the given reference inputs [33]. We simulated the instruction trace
using SIMPOINT [31], so that our simulation run is
representative of the entire benchmark. Our simulator is a
timestamp, trace-driven simulator based on SimpleScalar [2]. We
use a trace-driven simulator to save time in the evaluation to make
detailed evaluation of design space exploration possible. Note that
using a trace-driven simulator does not affect the general
conclusions of the paper as we only treat it as a “black-box” to get
the performance value.

Metric

In our evaluation, the design space exploration is performed for
optimizing the performance of the superscalar processor. We use
instructions per time unit (IPT) to quantify the performance of the
superscalar processor. Our metric for the design space exploration
is the exploration time which is the amount of time elapsed before

F0

D0

I0

R0

E0

W0

C0

F1

D1

I1

R1

E1

W1

C1

F2

D2

I2

R2

E2

W2

C2

F3

D3

I3

R3

E3

W3

C3

F4

D4

I4

R4

E4

W4

C4

F5

D5

I5

R5

E5

W5

C5

F6

D6

I6

R6

E6

W6

C6

F7

D7

I7

R7

E7

W7

C7

F8

D8

I8

R8

E8

W8

C8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

1

2

3

4

5

6

7

2

3

4

5

6

7

8

2

3

4

6

7

8

9

3

4

8

9

10

11

12

3

4

8

9

10

11

12

4

7

9

10

11

12

13

4

7

10

11

12

13

14

13

14

15

16

17

18

19

1 1111

0

0

0

0

0

0

0

0

0 1 0 0 1 0 0

0 0

0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 00 0 0 0 0

1 1

1

1

1

(I0) (I1) (I2) (I3) (I4) (I5) (I6) (I7) (I8)

268
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

a design point is reached whose performance value is within 0.5%
of the optimal performance value [10]. The optimal design point
is found by doing an exhaustive design space search. The
exploration time is normalized to the time taken by a single
simulation of bzip benchmark. Note that the exploration time
includes the time taken to perform criticality analysis in the case
of criticality-driven design space exploration.

Table 3. Microarchitectural design parameters

7. RESULTS
In this section, we present the performance results and sensitivity
studies with the criticality-driven design space exploration. In
Section 7.1, we discuss the performance results of criticality-
driven walk and criticality-driven simulated annealing. In Section
7.2, we show sensitivity studies by changing the starting point,
changing the size of the design space, and adding power
constraints.

0

2000

4000

6000

8000

10000

12000

bz
ip

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rl

tw
ol
f

vo
rte
x

vp
r

Benchmarks

E
x
p
lo
ra
ti
o
n
 t
im

e

RW

SA-100K

SA-10K

SA-1K

SA-100

SA-10

SA-1

Figure 6. Comparison of criticality-driven walk (CRW) vs.

random walk (RW) (top) and the effect of changing the initial

temperature on simulated annealing (SA) (bottom).

7.1 Performance of Criticality-driven Design

Space Exploration

7.1.1 Criticality-driven Walk
In Figure 6(top), we see that for all benchmarks, criticality-driven
walk (CRW) reaches the optimal point much faster than random
walk (RW). On average (harmonic mean), criticality-driven walk
obtains 3.8x speedup over random walk. For some benchmarks
like gzip and parser, the speedup obtained is close to 10x. This
shows that the criticality information is very useful in accelerating
random walk.

7.1.2 Criticality-driven Simulated Annealing

Figure 7. Comparison of criticality-driven simulated annealing

(CSA) vs. simulated annealing (SA) (top) and comparison of

simulated annealing (SA) and criticality-driven walk (CRW)

(bottom).

For simulated annealing to be effective, the initial temperature
should be carefully set. For finding a good initial temperature, we
use the initial temperature of 1 to 100K. In Figure 6(bottom), we
see that there is no single initial temperature which is good for all
the benchmarks. However, an initial temperature of 10 is good for
many benchmarks. Hence, we use an initial temperature of 10 for

all our evaluations. Note that a significant amount of time must
be invested in temperature tuning to make simulated annealing
better than random walk.

In Figure 7(top), we see that using criticality information helps to
speed up simulated annealing. On average (harmonic mean), we
see criticality-driven simulated annealing (CSA) obtains 2.3x
speedup over simulated annealing (SA). Even after removing
vortex and gap, CSA obtains 1.9x speedup over SA. Using
criticality analysis to guide simulated annealing helps to reach
optimal point faster than conventional simulated annealing.

As pointed out before, simulated annealing requires significant
temperature tuning to outperform random walk. In Figure
7(bottom), we compare criticality-driven random walk and
conventional simulated annealing and see that criticality-driven

Parameter Value Range Number

Front end width 2, 4, 6, 8 4
Issue width 2, 4, 6, 8 4
Register File size 32, 64, 128, 256, 512 5
Issue Queue size 16, 32, 64, 128 4
Load Queue/Store
Queue size

8/8, 16/16, 24/24, 32/32,
40/40, 48/48, 56/56, 64/64

8

Instruction cache
size

8KB, 16KB, 32KB, 64KB,
128KB

5

Data cache size 8KB, 16KB, 32 KB, 64 KB,
128KB

5

L2 cache size 0.5MB, 1MB, 2MB, 4MB 4
Clock period 0.3→0.95ns

(granularity=0.05ns)
14

269
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

walk is better than or comparable to simulated annealing for the
SPEC 2000 benchmark suite. Hence, this shows that building the
criticality model is more useful than using more sophisticated
algorithms like simulated annealing which are sensitive to tuning.

7.1.3 Dynamic Behavior of Criticality-driven Design

Space Exploration

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 500 1000 1500

Exploration time

IP
T RW (bzip)

CRW (bzip)

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500

Exploration time

IP
T SA(bzip)

CSA(bzip)

Figure 8. Variation of performance of the best design point

found with exploration time, for criticality-driven walk

(CRW) vs. random walk (RW) (top) and for criticality-driven

simulated annealing (CSA) vs. simulated annealing (SA)

(bottom), for bzip benchmark.

To understand how the performance of the best design point
found changes with the exploration time for criticality-driven
design space exploration, we plot the Instructions per time unit
(IPT) of the best design point found with the exploration time, for
criticality-driven walk and criticality-driven simulated annealing
in Figure 8. Due to space constraints, we only show the graph for
the bzip benchmark. However, other benchmarks also show
similar trends. We see that localized information from criticality
analysis helps criticality-driven design space exploration to reach
better design points more quickly.

7.2 Sensitivity Studies
To understand how robust our technique is, we perform sensitivity
studies by changing the starting point and the size of the design
space, and adding power constraint.

7.2.1 Changing the Starting Point
We choose two other random starting points. Figure 9(top) shows
the normalized exploration time needed for criticality-driven walk
(CRW) and random walk (RW) for the two starting points. We see
that criticality-driven walk outperforms random walk for all
benchmarks except gcc in the second starting point. In Figure
9(bottom), we see that criticality-driven simulating annealing
performs better than simulated annealing for all benchmarks

except mcf and vpr in the first starting point. Because of non-
deterministic behavior (random perturbations) of random
walk/simulated annealing, in very few cases, it might go through a
slightly shorter route to the optimal design point. However, in
general, criticality-driven design space exploration is much better
than conventional design space exploration.

Figure 9. Effect of changing the starting point on criticality-

driven walk (CRW) (top) and criticality-driven simulated

annealing (CSA) (bottom).

7.2.2 Changing the Size of the Design Space

Figure 10. Effect of making the size of design space smaller on

criticality-driven random walk (CRW) (top) and on criticality-

driven simulated annealing (CSA) (bottom).

270
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

We decrease the size of the design space to about 60,000 design
points by increasing the clock period granularity from 0.05ns to
0.1ns. In Figure 10, we see that even for the smaller design space,
criticality-driven walk and criticality-driven simulated annealing
perform better than random walk and simulated annealing,
respectively. Further, we see that the temperature selected for
simulated annealing for the large design space is not suited for the
small design space, as simulated annealing performs worse than
random walk on average.

7.2.3 Adding Power Constraint

0

500

1000

1500

2000

2500

3000

3500

4000

4500

bz
ip

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

tw
ol
f

pa
rs
er

pe
rl

vo
rte
x

vp
r

Benchmarks

E
x
p
lo
ra
ti
o
n
 t
im

e

RW

CRW

0

500

1000

1500

2000

2500

3000

3500

bz
ip

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

tw
ol
f

pa
rs
er

pe
rl

vo
rte
x

vp
r

Benchmarks

E
x
p
lo
ra
ti
o
n
 t
im

e

SA

CSA

Figure 11. Effect of adding peak power budget of 50 W on

criticality-driven walk (CRW) (top) and on criticality-driven

simulated annealing (CSA) (bottom).

For modeling power for a given processor configuration, we used
Wattch [4], an architecture-level processor power estimation tool.
We modified the underlying CACTI [32] models used in Wattch,
to incorporate the device parameters from FabScalar [6]. Further,
we added power models of combinational logic using the
FabScalar RTL model. We calculate the peak power of the
processor by assuming all the components, memory structures and
combinational logic elements, are switching with an activity factor
of 1.

For the sensitivity analysis, we constrain the design space by
keeping the peak power budget of the processor at 50 W. In
Figure 11, we see that even after adding the power constraint,
criticality-driven design space exploration performs better than
conventional design space exploration. However, it is slightly less
effective than before. This is because some of the criticality-
driven perturbation leads to a design point which exceeds the
power budget and hence in this case, criticality-driven design
space exploration has to rely on random perturbation.

8. RELATED WORK
Design Space Exploration

Accelerating design space exploration is a well studied topic. As
pointed out in Section 1, there are two orthogonal approaches for

accelerating design space exploration: speeding up the simulation
of a single design point and reducing the number of points to be
searched.

For accelerating the simulation of a single design point, there are
two methods: analytical methods and sampling methods. In
analytical methods, an analytical expression is obtained for the
performance. Karkhanis’ analytical model [19] is a direct
approach for obtaining the analytical expression. It expresses the
IPC in terms of steady state IPC and penalties due to branch
mispredictions and cache misses. A number of methods use an
indirect method to obtain an analytical expression by sampling the
design space and fitting an analytical model to the data
[17][16][9][25]. Lee et al. [25] use a regression model and Ipek
et al. [16] use artificial neural networks to get the analytical
expression. Analytical methods trade accuracy for speed. The
average error rates of these methods are between 3% and 7%.
However, the worst-case error rate is a lot higher and may yield an
erroneous conclusion about the optimal design point. Sampling
techniques reduce the number of instructions needed to be
simulated while still being representative of the benchmark
[8][27][31][37]. This technique is orthogonal to our approach and
in fact we use SIMPOINT [31] to accelerate the time taken to
simulate a given point.

An orthogonal approach for accelerating design space exploration
is to avoid exhaustive search and concentrates on reducing the
number of design points that needs to be simulated
[18][10][14][8]. Classical search/optimization techniques like
simulated annealing, genetic algorithms, etc. belong to this
category. Criticality-design space exploration builds on these
classical search/optimization techniques to make them even faster.

Yi et al.[38] proposed using Plackett and Burman design to find
the most critical parameters in the entire design space. Chow et
al.[7] and Cai et al.[5] use principal components analysis and
multivariate analysis to identify the most critical parameter in the
design space. This can help pruning the design space by focusing
on the most important parameters. On the other hand, our
technique finds the most critical parameters at a design point
(local level) which is not possible using the above methods. This
fine-grained information is needed to find the bottleneck at the
current design point which helps to accelerate the design space
exploration.

Criticality Analysis

Criticality Analysis is very useful in improving performance in a
highly concurrent system like a computer system. It has been
proposed to be used inside the processor in the form of a
criticality predictor which is used to identify critical instructions
to improve performance [11][12][34]. It is used for better
resource arbitration by giving priority to critical instructions
[11][34]. It can also be used for misspeculation reduction by
restricting speculation to critical instructions [11].

It can also be used offline for bottleneck analysis in the computer
system [12][29][30]. It has been successfully used to identify
bottlenecks in processor architectures like TRIPS, clustered
architectures, etc.[1][26][35].

In a simpler design space, criticality analysis has been directly
used for design space exploration [22]. However, in a more
complicated superscalar design space, using only criticality
analysis leads to a local maximum which is a sub-optimal design.

271
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

Our work uses criticality analysis in conjunction with the classical
search/optimization techniques to avoid getting stuck in a local
maximum. Our work opens up another line of research by using
criticality analysis in conjunction with the classical search
techniques for fast design space exploration.

9. CONCLUSIONS
Because of the exploding design space, increasing design
complexity and long-running workloads, design space exploration
of a computer system takes a lot of time. Criticality-driven design
space exploration uses the localized information from the
criticality analysis to guide the globally-aware classical
search/optimization techniques. This is a promising direction of
research for accelerating design space exploration.

We have just scratched the surface of criticality-driven design
space exploration. Using more sophisticated critical path models
such as slack and interaction cost model [12] can help to speed up
the design space exploration even more. It would also be very
interesting to use criticality analysis to speedup the design space
exploration of multi-core processors, SMT processors and
memory systems.

10. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their
valuable feedback. Devesh Tiwari, Ganesh Krishnan, Siddhartha
Chhabra, Elliott Forbes, Hashem Hashemi, Abhishek Dhanotia
and Rajesh Vanka also provided numerous suggestions that
improved this work.

This research was supported by NSF grant no. CCF-0811707,
Intel and IBM. Any opinions, findings, and conclusions or
recommendations expressed herein are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

11. REFERENCES
[1] M. Agarwal, N. Navale, K. Malik, M. I. Frank. Fetch-Criticality

Reduction through Control Independence, In ISCA 2008.
[2] T. Austin, E. Larson, D. Ernst. SimpleScalar: An Infrastructure

for Computer System Modeling, IEEE Micro, Feb. 2002.
[3] E. Borch, E. Tune, S. Manne, J. Emer. Loose Loops Sink Chips,

In HPCA 2002.
[4] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations, In ISCA
2000.

[5] G. Cai, K. Chow, T. Nakanishi, J. Hall, M. Barany. Multivariate
Power/Performance Analysis for High Performance Mobile
Microprocessor Design, In Power Driven Microarchitecture
Workshop, June 1998.

[6] N. Choudhary, S. Wadhavkar, T. Shah, S. Navada, H. Hashemi,
E. Rotenberg. FabScalar, In WARP-2009.

[7] K. Chow, J. Ding. Multivariate Analysis of Pentium Pro
Processor, In Intel Software Developers Conference, Oct. 1997.

[8] T. Conte. Systematic Computer Architecture Prototyping, PhD.
Thesis, Department of Electrical Engineering, UIUC, 1992.

[9] C. Dubach, T. M. Jones, M. O’Boyle. Microarchitectural Design
Space Exploration using An Architecture-Centric Approach, In
MICRO 2007.

[10] S. Eyerman, L. Eeckhout, K. De Bosschere. Efficient Design
Space Exploration of High Performance Embedded Out-of-Order
Processors, In DATE 2006.

[11] B. Fields, S. Rubin, R. Bodik. Focusing Processor Policies via
Critical-Path Prediction, In ISCA 2001.

[12] B. Fields, R. Bodik, M. D. Hill, C. J. Newburn. Interaction Cost:
For When Event Counts Just Don't Add Up, IEEE Micro, Nov.
2004.

[13] E. Grochowski, R. Ronen, J. Shen, H. Wang. Best of Both
Latency and Throughput, In ICCD 2004.

[14] H. Hashemi Najaf-abadi, E. Rotenberg. Configurational
Workload Characterization, In ISPASS 2008.

[15] L Ingber, B Rosen. Genetic algorithms and Very Fast Simulated
Reannealing: A Comparison, Mathematical and Computer
Modelling, 1992.

[16] E. Đpek, S.A. McKee, B.R. de Supinski, M. Schulz, R. Caruana.
Efficiently Exploring Architectural Design Spaces via Predictive
Modeling, In ASPLOS 2006.

[17] P. J. Joseph, K. Vaswani, M. Thazhuthaveetil. A Predictive
Perfomance Model for Superscalar Processors, In MICRO 2006.

[18] S. Kang, R. Kumar. Magellan: A Framework for Fast Muti-core
Design Space Exploration and Optimization Using Search and
Machine Learning, In DATE 2008.

[19] T. Karkhanis, J. E. Smith. A First-Order Superscalar Processor
Model, In ISCA 2004.

[20] T. Karkhanis, J. E. Smith. Automated Design of Application-
Specific Superscalar Processors, In ISCA 2007.

[21] T. Karkhanis. Automated Design of Application-Specific
Processors, PhD. Thesis, Department of Electrical Engineering,
University of Wisconsin-Madison, 2006.

[22] H. Kannan, M. Budiu, J. Davis, G. Venkataramani. Tuning SOCs
using the Dynamic Critical Path, In SOCC 2009.

[23] R. Kumar, D. Tullsen, N. Jouppi. Core Architecture Optimization
for Heterogeneous Chip Multiprocessors, In PACT 2006.

[24] P. Laarhoven, E. Aarts. Simulated Annealing: Theory and
Applications, Springer, 1987.

[25] B. Lee, D. Brooks. Accurate and Efficient Regression Modeling
for Microarchitectural Performance and Power Prediction, In
ASPLOS 2006.

[26] R. Nagarajan, X. Chen, R. G. McDonald, D. Burger, S. W.
Keckler. Critical Path Analysis of the TRIPS architecture, In
ISPASS 2006.

[27] S. Nussbaum, J. E. Smith. Modeling Superscalar Processors via
Statistical Simulation, In PACT 2001.

[28] E. Rich, K. Knight. Artificial Intelligence, 2nd Edition. Morgan
Kaufmann, 1991.

[29] A. Saidi, N. Binkert, T. N. Mudge, S. K. Reinhardt. Full System
Critical Path Analysis, In ISPASS 2008.

[30] A. Saidi, N. Binkert, S. K. Reinhardt, T. N. Mudge. End-To-End
Performance Forecasting: Finding Bottlenecks before They
Happen, In ISCA 2009.

[31] T. Sherwood, E. Perelman, G. Hamerly, B. Calder. Automatically
Characterizing Large Scale Program Behavior, In ASPLOS 2002.

[32] P. Shivakumar, N.P. Jouppi. Cacti 3.0: An Integrated Cache
Timing, Power and Area model, Technical report, 2001.

[33] The Standard Performance Evaluation Corporation,
http://spec.org

[34] S. Subramaniam, A. Bracy, H. Wang, G. Loh. Criticality-Based
Optimizations for Efficient Load Processing, In HPCA 2009.

[35] P. Salverda, C. Zilles. A Criticality Analysis of Clustering in
Superscalar Processors, In MICRO 2005.

[36] E. Tune, D. Tullsen, B. Calder. Quantifying Instruction
Criticality, In PACT 2002.

[37] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe.
SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling, In ISCA 2003.

[38] J. Yi, D. Lilja, D. Hawkins. A Statistically Rigorous Approach for
Improving Simulation Methodology, In HPCA 2003.

272
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore. Restrictions apply.

