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ABSTRACT 
 It has become increasingly difficult to perform design space 

exploration (DSE) of computer systems with a short turnaround 

time because of exploding design spaces, increasing design 

complexity and long-running workloads. Researchers have used 

classical search/optimization techniques like simulated 

annealing, genetic algorithms, etc., to accelerate the DSE. While 

these techniques are better than an exhaustive search, a 

substantial amount of time must still be dedicated to DSE. This is 

a serious bottleneck in reducing research/development time. 

These techniques do not perform the DSE quickly enough, 

primarily because they do not leverage any insight as to how the 

different design parameters of a computer system interact to 

increase or degrade performance at a design point and treat the 

computer system as a “black-box”. 
We propose using criticality analysis to guide the classical 

search/optimization techniques. We perform criticality analysis to 

find the design parameter which is most detrimental to the 

performance at a given design point. Criticality analysis at a 

given design point provides a localized view of the region around 

the design point without performing simulations at the 

neighboring points. On the other hand, a classical 

search/optimization technique has a global view of the design 

space and avoids getting stuck at a local maximum. We use this 

synergistic behavior between the criticality analysis (good 

locally) and the classical search/optimization techniques (good 

globally) to accelerate the DSE. 

For the DSE of superscalar processors on SPEC 2000 

benchmarks, on average, criticality-driven walk achieves 3.8x 

speedup over random walk and criticality-driven simulated 

annealing achieves 2.3x speedup over simulated annealing. 

Categories and Subject Descriptors 
C.1.0 [Processor Architectures]: General 

General Terms 
Performance, Design 

Keywords 
design space exploration, criticality model, bottleneck analysis, 
superscalar processors, simulated annealing 

1. INTRODUCTION 
Design space exploration is extensively used by computer 
architects to identify the subspace where the computer system 
performs best, while satisfying other constraints such as power, 
cost, area, design complexity, etc. However, it is becoming 
increasingly difficult to perform design space exploration with a 
short turnaround time because of the exploding design space, 
increasing design complexity and long-running workloads 
[16][25]. In quantitative terms, for a modest design space 
consisting of 2000 design points, exhaustive search through cycle-
accurate simulation takes up to two months to identify the best 
design point for the SPEC 2000 and MiBench benchmark suites 
[21]. 

To accelerate the design space exploration, researchers have 
adopted two orthogonal approaches. The first approach 
concentrates on reducing the time taken to measure the 
performance at a single design point. Techniques in this class 
include analytical techniques, regression modeling techniques, 
sampling techniques, reduced input set techniques and statistical 
simulation techniques [20][16][17][25][37][9][31][27]. These 
techniques trade accuracy for speed [20]. However, loss of 
accuracy might lead to erroneous conclusions from the design 
space exploration. 

The second approach recognizes that an exhaustive design space 
search using a cycle-accurate simulation is an insurmountable task 
and hence aims to reduce the number of design points that needs 
to be searched. Classical search/optimization techniques such as 
random walk, simulated annealing, genetic algorithms, evolution 
strategy, etc. [8][10][14][18][24][28] fall in this category. These 
techniques use the performance values at previously simulated 
design points to guide the search. Further, these techniques have a 
global view of the design space and avoid getting stuck in a local 
maximum. Even though these search techniques are much better 
than exhaustive design space exploration, it still takes a 
considerable amount of time to perform design space exploration 
[10][14][18]. The main reason for this is that these techniques do 
not leverage any insight as to how the different design parameters 
of a computer system interact to increase or degrade performance 
at a given design point and treat the computer system as a “black-
box” [21]. 

To gain insight about the computer system, we propose using 
criticality analysis (performance bottleneck analysis) to guide the 
classical search/optimization techniques. We perform criticality 
analysis to find the critical design parameter(s) (the design 
parameter(s) which is most detrimental to the performance) along 
with the simulation of the design point. Subsequently, we use this 
knowledge within the classical search/optimization techniques to 
find the next design point(s) to be explored. Criticality analysis 
helps in finding the critical design parameter(s) at the current 
design point without performing simulations at the neighboring 
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points. That is, by just performing the criticality analysis at the 
current design point, we obtain a localized view of the region 
around the design point. Hence, criticality analysis helps classical 
search/optimization techniques by avoiding unnecessary 
simulations of design points to understand the local contour of the 
region.  

If standalone criticality analysis (without classical 
search/optimization technique) is used for the design space 
exploration, then the performance bottlenecks will be successively 
eliminated at every iteration until a design point is reached which 
has no bottlenecks.  This balanced design point is the best design 
point in the localized region (local maximum). However, this 
point may not be a good design point in the global design space. 
Hence, to give criticality analysis a global view, it is used in 
conjunction with the classical search/optimization technique 
which has a global view of the design space and avoids getting 
stuck in a local maximum. Hence, we see that there is a 
synergistic behavior between the criticality analysis (good locally) 
and the classical search/optimization techniques (good globally). 
Criticality-driven design space exploration exploits this 
synergistic behavior to accelerate the design space exploration. To 
summarize, criticality-driven design space exploration uses the 

localized information from the criticality analysis to guide the 

globally-aware classical search/optimization techniques.  

      

 

                                                                              
Figure 1. (a) (top) The synergistic behavior of criticality 

analysis and classical search/optimization techniques. (b) 

(bottom) Block diagram of Criticality-driven Design Space 

Exploration. 

Figure 1(a) shows the performance landscape of a design space 
where the height represents the performance of the design point. 
The optimal design point is the highest point in the landscape. We 
see that standalone criticality analysis gets stuck in the local 
maximum. On the other hand, the globally-aware classical search 
technique reaches the global maximum in a large number of 
iterations. However, using criticality information to guide the 
classical search technique helps to reach the global maximum 
quickly. 

Figure 1(b) illustrates the framework of the criticality-driven 
design space exploration which uses the criticality information in 

addition to the performance value of past design point(s) to find 
the next design point(s) to be explored. 

While criticality-driven design space exploration is sufficiently 
general as to be adaptable for the design space exploration of any 
computer system, in this paper, we demonstrate an entire 
framework for fast, automated design space exploration of an out-
of-order superscalar processor. To enable this, we need a high-
fidelity superscalar design space and a detailed criticality model 
which models all the components of the superscalar processor.  

Our high-fidelity superscalar design space encompasses structure 
sizes (reorder buffer, issue queue, load queue, store queue, 
instruction cache, data cache, etc.), widths of pipeline stages, and 
clock period. To take clock period into account, we need to 
measure the propagation delays of different pipeline stages in the 
superscalar processor. This requires physical implementation of a 
superscalar processor in a given technology. Therefore, we use the 
delay data of canonical pipeline stages of the superscalar 
processor from the FabScalar toolset [6] to build the design space. 
The high-fidelity design space unveils the delicate interplay 
between the instruction-level parallelism (ILP) extracting 
structures and the clock period [3][13] .  

In addition to a high-fidelity superscalar design space, we have 
built a detailed criticality analysis model which is able to model 
all the components of an out-of-order superscalar processor. It 
should be noted that in the issue queue, instructions enter in-order 
but leave in an out-of-order fashion as data dependences get 
resolved and this makes modeling the issue queue more 
challenging than other resources such as the reorder buffer, load 
queue and store queue. Because of this complex out-of-order 
nature of issue queue, it was not modeled in previous criticality 
analysis models [11][34] even though it is one of the most critical 
components of a superscalar processor [11][21]. We have 
successfully incorporated it into our model. Further, we have 
extended Field’s 3-node dispatch, execute and commit criticality 
model [11] to a 7-node criticality model in which there is a node 
corresponding to each of the canonical pipeline stages of a 
superscalar pipeline, to make our analysis more fine-grained. 

For our evaluation, we use simulated annealing [24] and a less 
sophisticated technique, random walk, as the baseline 
search/optimization techniques. Note that simulated annealing is 
one of the state-of-the-art classical search/optimization techniques 
and has a proof for theoretical convergence [15]. For the design-
space exploration of superscalar processors on SPEC 2000 
benchmarks [33], on average (harmonic mean), criticality-driven 
walk achieves 3.8x speedup over random walk and criticality-
driven simulated annealing achieves 2.3x speedup over simulated 
annealing. Another key finding is that even though simulated 
annealing performs better than random walk, criticality-driven 
walk performs better or comparable to simulated annealing on all 
SPEC 2000 benchmarks. This shows that using criticality analysis 
over a simple classical search/optimization technique is more 
effective than only using a sophisticated classical 
search/optimization technique. 

This paper makes three main contributions. 

• To the best of our knowledge, this is the first work to 
propose the use of criticality analysis to drive classical 
search/optimization techniques to accelerate the design 
space exploration of computer systems using the 
synergistic behavior between them. 
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• We present a detailed implementation of using 
criticality information to drive simulated annealing and 
random walk for an out-of-order superscalar processor. 
Further, we have performed detailed evaluation of 
criticality-driven simulated annealing and criticality-
driven walk. 

• We have built a detailed criticality analysis model of a 
whole out-of-order superscalar processor, including the 
issue queue. This detailed criticality model can also be 
used for other purposes like fine-grained bottleneck 
analysis. 

The paper is organized as follows. In Section 2, we provide 
background on superscalar processors including the factors that 
affect their performance. Section 3 describes how criticality 
information is used to drive the design space exploration. Section 
4 describes our high-fidelity superscalar design space. Criticality 
analysis using our detailed criticality model of a superscalar 
processor is explained in Section 5. Sections 6 and 7 describe our 
experimental methodology and results. Related work is presented 

in Section 8. Section 9 concludes our work.  

2. BACKGROUND ON SUPERSCALAR 

PROCESSORS 

2.1 Dimensions of a Superscalar Processor 
A superscalar processor exposes and exploits instruction-level 
parallelism (ILP) in programs. The pipeline of a superscalar 
processor can be characterized along three dimensions: 

• The sizes of ILP-extracting units (issue queue, load and 
store queues, physical register file / reorder buffer), 
caches, and predictors. 

• The widths of pipeline stages. 
• Clock frequency. 

Another dimension is pipeline depth. Each high-level pipeline 
stage might be subdivided into multiple sub-stages. We refer to 
the number of sub-stages as the depth of the pipeline stage. In this 
paper, the depth of a pipeline stage is not treated as an 
independent parameter; rather, it is determined by frequency and 
the total propagation delay (logic and wire delays) of the pipeline 
stage. 

2.2 Understanding Performance of a 

Superscalar Processor 
When designing a superscalar processor, there is a tradeoff 
between accelerating the execution of independent instructions 
(i.e., exposing and exploiting more ILP) and reducing the latency 
of dependent instructions, and this tradeoff plays out differently 
for different programs and program phases. Exploiting more ILP 
requires increasing the sizes of ILP-extracting units and the 
widths of pipeline stages, increasing their propagation delays. 
Deeper pipelining can help maintain the clock frequency despite 
the longer delays. However, the longer delays increase the latency 
of dependent instructions. Overall performance increases or 
decreases depending on whether parallelism or latency is the 
dominating factor. Different programs or program phases have 
different arrangements of independent and dependent instructions. 
This causes them to be characterized by different optimal pipeline 
designs. 

2.3 Pipeline Loops 
As mentioned previously, longer propagation delays increase the 
latency of dependent instructions irrespective of increasing 
pipeline depth. The reason is because dependent instructions 
exercise pipeline loops [3]. Three well-known pipeline loops are: 

1. Control-dependence loop: This loop is exposed when a branch 
is mispredicted. The execute stage redirects the fetch unit in the 
case of a mispredicted branch. The delay of this loop is the total 
propagation delay between the fetch and execute stages, plus the 
latency of misprediction recovery. 

2. Register-dependence loop: This loop is exposed for data-
dependent instructions (but mainly single-cycle producer 
instructions). The delay of this loop is the propagation delay of 
the wakeup-select logic in the issue unit, and determines the 
minimum time to execute chains of data-dependent instructions. 

3. Memory-dependence loop: This dependence is exposed when 
there is a store instruction followed by a load instruction to the 
same memory location within the pipeline. The delay of this loop 
is equal to the propagation delay of store-to-load forwarding.  

3. CRITICALITY-DRIVEN DESIGN SPACE 

EXPLORATION 
Simulated annealing is one of the state-of-the-art classical 
search/optimization techniques and has a proof for theoretical 
convergence [24]. Random walk can be considered as a simpler 
version of simulated annealing. Because both random walk and 
simulated annealing do not get stuck in local maxima, they are 
widely used in global optimization. In Section 3.1, we explain 
random walk and simulated annealing. In Section 3.2, we discuss 
how to use criticality information to drive random walk and 
simulated annealing. Section 3.3 describes criticality-driven 
design space exploration using other search/optimization 
techniques. 

3.1 Classical Search Techniques 

3.1.1 Random Walk 
Random walk is one of the simplest but widely used 
search/optimization techniques used to perform global 
optimization. In this section, we describe how random walk can 
be used to perform design space exploration of superscalar 
processors [24].  

A random design point is used as the starting point. Simulation is 
performed at this design point to obtain the performance value.  A 
parameter is selected at random from the current design point and 
it is changed by the least significant unit to get a new design 
point. We call this a random perturbation. Simulation is 
performed again at the new design point to get its performance 
value. Random perturbation is then performed again at the new 
design point and this process is continued. During the entire 
process, the algorithm keeps track of the design point which 
generated the best performance value. If the performance value at 
the current design point is below 50% of the best performance 
value, then we restart from the best design point. Because of the 
restarting procedure, iterations are not wasted in searching 
through likely bad design points. 

As random walk performs random perturbations and accepts new 
design points which are worse than the current design point, it 
does not get stuck in local maxima.  
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3.1.2 Simulated Annealing 
Simulated annealing shares the spirit of random walk except that 
there is a probability associated with the acceptance of a new 
design point. If the new design point is not accepted, then random 
perturbation is performed again at the current design point to get 
another new design point. 

The probability function is given as below: 
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Where perfnew is the performance at the new design point, 
perfcurrent is the performance at the current design point, and T is 
the temperature function which is high at the start of the design 
space search and decreases every 20 iterations according to 
following equation: 
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Where To corresponds to the initial temperature (constant) and n is 
the number of design points traversed. 

Note that the probability of accepting the new design point is 
always 1 if the new design point is better than the current design 
point. However, if the new design point is worse than the current 
design point, then the probability of accepting the design point is 
close to 1 at the beginning of the design space search when the 
temperature is high. However, as the design space search 
progresses, the probability function tends to zero.  In other words, 
design space search starts as a random walk. However, when it 
reaches close to the optimal region, it only accepts better design 
points (gradient ascent). This prevents wasting unnecessary 
iterations when the optimal region is close. However, the initial 
temperature has to be carefully set. Otherwise, gradient ascent 
might start too early or too late. This might result in simulated 
annealing performing worse (taking more iterations) than random 
walk. 

3.2 Criticality-driven Search Techniques 
Although random walk and simulated annealing are much better 
than exhaustive design space search, using knowledge from 
performance bottleneck analysis can make it even faster. In 
criticality-driven design space search, we use criticality-driven 
perturbation instead of random perturbation to give random walk 
and simulated annealing a localized view of the region around the 
design point. This avoids unnecessary simulations in the localized 
region and, hence, accelerates the design space exploration.  
Section 3.2.1 explains criticality-driven perturbation. Sections 
3.2.2 and 3.2.3 discusses how criticality-driven perturbation is 
used in criticality-driven walk and criticality-driven simulated 
annealing, respectively. 

3.2.1 Criticality-driven Perturbation 
To perform criticality-driven perturbation at the current design 
point, criticality analysis is performed along with the simulation 

of the design point. Criticality analysis assigns cycles from the 
total execution cycles to each of the processor resources (structure 
sizes and widths of pipeline stages) and program dependences 
(control, register and memory dependences). The processor 
resource/program dependence which has the most cycles 
attributed to it is the most critical bottleneck. Criticality analysis 
gives the most critical bottleneck at the given design point. Using 
this bottleneck information, the design parameter to be perturbed 
to improve the performance is found in the following way. 

If the most critical bottleneck is a processor resource, the 
implication is that there is more instruction-level parallelism (ILP) 
to be extracted but doing so is prevented by the limited resource. 
Therefore, the next point in the design space will be based on 
increasing the size of that resource (structure size or width of a 
pipeline stage). Also, the affected pipeline stage will be increased 
in depth (sub-pipelined deeper) to accommodate the larger 
structure or width while maintaining the current clock frequency. 
However, if the most critical bottleneck is a program dependence, 
it implies that the processor resources are not critical. This means 
that the resources of the processor are oversized at the current 
design point. In this case, the clock frequency is increased while 
keeping the pipeline depth of each pipeline stage the same, which 
would decrease all the processor resources. This increases the 
performance as the clock frequency is increased.  

Using the most critical bottleneck always leads to increasing a 
parameter. However, we also need to decrease the design 
parameters to make sure that the entire design space is reachable. 
In fact, to make the entire design space reachable, we need to 
increase and decrease the design parameters with the same 
probability.  To decrease the design parameters, criticality analysis 
is also used to find the least critical bottleneck (processor resource 
or program dependence which has the least number of cycles 
attributed to it). Using the least critical bottleneck, the design 
parameter is decreased to improve performance in the following 
way.  

If the least critical bottleneck is a processor resource, it implies 
that the processor resource is oversized. Hence, the next design 
point is found by decreasing the oversized resource. The affected 
pipeline stage will be decreased in depth to accommodate the 
resource while maintaining the current clock frequency. This 
helps to improve performance as the pipeline loop latency like 
branch misprediction loop latency, etc. [3], will decrease due to 
the decrease in pipeline depth corresponding to the processor 
resource. On the other hand, if the least critical bottleneck is a 
program dependence, it means that processor resources are 
critical. This implies that all the processor resources are limited 
and more parallelism can be extracted by increasing the processor 
resources. Hence, the clock frequency is decreased while keeping 
the pipeline depth of each pipeline stage the same, which 
increases all the resources. 

The following table gives a summary of the above discussion on 
the design parameter which needs to be perturbed based on the 
bottleneck information from the criticality analysis. 
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Table 1. Criticality-driven perturbation 

To understand if the criticality-driven perturbation yields 
performance improvement, we randomly picked 1,000 design 
points and for each performed a single criticality-driven 
perturbation. On average, we see that around 82% of criticality-
driven perturbations resulted in a performance improvement. The 
remaining 18% of perturbations result in performance 
degradation.  

One of the major reasons for performance degradation is due to 
the balanced design points (local maxima). A balanced design 
point is a design point at which all the design parameters 
contribute roughly equal numbers of cycles to the total execution 
cycles. Hence, at a balanced design point, there is no bottleneck 
and any perturbation at this point may result in performance 
degradation. 

Figure 2. Breakdown of criticality-driven perturbation. 

Other reasons for performance degradation could be the presence 
of parallel and near-critical paths. As we only model one critical 
path, the performance improvement is not guaranteed at these 
points [35]. Note that the fidelity of the criticality analysis would 
not affect the correctness of the design space exploration. It might 
just slightly slow down the design space exploration. However, 
our criticality model has enough fidelity to significantly accelerate 
the design space exploration. 

To summarize, as 82% of criticality-driven perturbation results in 
a performance improvement, it shows that the criticality 
information is very useful in providing localized information to 
the design space exploration. 

3.2.2 Criticality-driven Walk 
In criticality-driven walk, to get a localized view, we perform 
criticality-driven perturbations instead of random perturbations. 

However, if a design point is revisited, then a random perturbation 
is performed instead, to avoid going in a loop. 

At every iteration, criticality-driven walk tries to improve 
performance by selecting the parameter which would most likely 
yield a performance improvement. However, when it reaches a 
balanced design point (local maximum) where all parameters are 
almost equally critical, the parameter that does get selected might 
not improve performance. Once it drifts away from this balanced 
design point, it again tries to improve performance and ultimately 
reaches some other balanced design point (local maximum). After 
a certain number of iterations, it reaches a balanced design point 
which is the global maximum. Note that accepting design points 
which are worse than the current design point when it reaches 
local maxima helps criticality-driven walk avoid getting stuck at 
local maxima.  

3.2.3 Criticality-driven Simulated Annealing 
Similar to criticality-driven walk, to get a localized view, we use 
criticality-driven perturbation instead of random perturbation to 
generate a new design point. In case the new design point is not 
accepted, we resort to random perturbation. Also, if a design point 
is revisited, then a random perturbation is performed to avoid 
going in a loop. 

During the beginning of the design space search, criticality-driven 
simulated annealing acts like a criticality-driven walk (high 
“temperature”). Hence, it reaches the optimal region in fewer 
iterations. Once it is close to the optimal region, it behaves like a 
gradient ascent method. Since criticality-driven perturbation has a 
localized view, the design point generated is more likely to be 
accepted by the probability function compared to random 
perturbation. Hence it takes fewer iterations even when it is doing 
a gradient ascent and overall, criticality-driven simulated 
annealing performs better than simulated annealing. 

3.3 Extension to Other Search/Optimization 

Algorithms 
As other search/optimization algorithms use random 
perturbations, we can easily use criticality-driven perturbation in 
other search/optimization algorithms [28][18]. For example, in 
genetic algorithms, there are two operators to generate new design 
points: mutation and crossover [28][18]. Mutation is a random 
perturbation. Hence, we can use criticality analysis to drive 
genetic algorithms by changing the mutation operator to a 
criticality-driven perturbation operator. Also, criticality analysis 
can be used to find good crossover sites in the design points while 
performing a crossover operation. 

4. SUPERSCALAR DESIGN SPACE 

CREATION 
This section explains the process of creating a high-fidelity 
superscalar design space. Later, it discusses a mechanism to prune 
the superscalar design space. 

The performance of a superscalar processor is a function of both 
instructions per cycle (IPC) and clock frequency. To take clock 
frequency into account, we need to measure propagation delay. 
Hence, we use detailed synthesizable Verilog models and physical 
designs of superscalar processors from the FabScalar toolset [6]. 
FabScalar defines a canonical superscalar pipeline shown in 
Figure 3. The Standard Superscalar Library (SSL) of FabScalar 

Bottleneck Whether 

most/least 

critical 

Design 

parameter to 

be perturbed 

Comments 

Processor 

resource 

Most critical Processor 
resource 
increased 

Depth of 
stage 
increased 

Program 

dependence 

Most critical Clock 
frequency 
increased 

Decreases all 
resources 

Processor 

resource 

Least 
critical 

Processor 
resource 
decreased 

Depth of 
stage 
decreased 

Program 

dependence 

Least 
critical 

Clock 
frequency 
decreased 

Increases all 
resources 

performance improvement

performance degradation

(balanced design point)

performance degradation

(coarse perturbation)

performance degradation

(unknown)

265
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore.  Restrictions apply. 



provides many different designs of each canonical superscalar 
pipeline stage that differ in their complexity (structure sizes and 
pipeline width) and depth.                                         

 

Figure 3. Canonical superscalar pipeline stages. 

All possible combinations of pipeline stages that fit in a given 
clock period gives the design points for the given clock period.                                                
Doing this for different clock periods forms the entire design 
space of superscalar processors.  

The following design space pruning strategy is used to decrease 
the size of the design space to a manageable size. Design space 
pruning is performed by weeding out among the design points 
having pipeline stages of same depth and same clock period. 
Among these design points having the same depth and clock 
period, the design point having pipeline stages with the highest 
complexity is retained and other design points having lower 
complexity are weeded out. This is because design points with 
lower complexity will always perform worse than the design point 
having highest complexity. For example, let us assume issue 
width of 2 and 4 for 16 entries issue queue fits into issue depth of 
2 for clock period of 0.4ns. We discard the design point having 
issue width of 2 as it would always perform worse than the design 
point with issue width of 4. Sometimes it might be hard to 
distinguish which of them is most complex. In such cases, we 
don’t perform pruning. For example, it is difficult to distinguish 
between complexity of issue queue size having 16 entries with 
width 2 and issue queue size having 8 entries with width 4. In 
case of design space exploration having fixed power/area budget, 
the above design space pruning is done only on those points 
which fit in the budget. 

5. CRITICALITY ANALYSIS 
The design parameter to be perturbed in the criticality-driven 
design space exploration is identified using the bottleneck 
information of the criticality analysis. This section explains the 
process of finding the bottlenecks for a given superscalar 
processor configuration using criticality analysis. Section 5.1 
gives an overview of criticality analysis for a superscalar 
processor. Even though the issue queue lies at the heart of the 
superscalar processor, the issue queue was not modeled in past 
work on criticality analysis. Section 5.2 describes modeling of the 
issue queue in the criticality model. Section 5.3 illustrates the 
working of criticality analysis using an example. Section 5.4 gives 
the overhead of using criticality analysis.   

5.1 Overview of Criticality Analysis 
There are three main steps in finding the bottlenecks for a 

superscalar processor running a given application using criticality 
analysis. 

1) Building of critical-path graph model 

The critical-path graph model [11][29] of a processor is a graph-
based model which helps to uncover the bottlenecks in the 
processor. It is a directed graph that models the resource 

constraints of the processor (structure sizes and pipeline widths) 
and control, register, and memory dependence constraints of the 
program currently being executed. It expresses the dependence 
relationships between different events occurring in the processor, 
which are dictated by different constraints of the processor and 
the program being executed. The graph is built using the trace of 
committed instructions of the program being executed. 

Table 2. Overview of the constraints modeled by the criticality 

model of a superscalar processor 

Constraint 

Modeled 

Edge Comments 

Pipeline 
dependence 

Fi→Di, Di→Ii, Ii→Ri, 
Ri→Ei, Ei→Wi, 
Wi→Ci 

Applicable to non-
mem. instructions 

Fi→Di, Di→Ii, Ii→Ri, 
Ri→Ei, Ei→M1i, 
M1i→M2i, M2i→Wi, 
Wi→Ci 

Applicable to mem. 
instructions 

In-order 
pipeline stage 
constraints 

Fi-1→Fi, Di-1→Di,, 
Ci-1→Ci 

In-order constraint 

Di-w→Fi, Ii-w→Di Width constraint, 
0<w<=width 

Reorder buffer  Ci-R→Ii R=ROB size 
Load/Store 
Queue 

CK1→Ii, CK2→Ii K1  → bottleneck 
load instruction 
K2  → bottleneck 
store instruction 

I-cache miss Fi→Di, Fi→Fi+1 Weight of the edge is 
i-cache miss latency 

D-cache miss M2i→Wi Weight of the edge is 
d-cache miss latency 

L2-cache miss Fi→Di, Fi→Fi+1, 
M2i→Wi 

Weight of the edge is 
L2-cache miss latency 

Issue width [36] Rb→Ri b → instruction which 
consumed the last 
issue slot  

Control 
dependence 

Ei-1→Fi i-1 → mispredicted 
branch 

Data 
dependence 

Rp→Rc p → producer 
instruction of data 
c → consumer 
instruction of data 

Memory 
dependence 

M2p→M2c p → producer store 
instruction 
c → consumer load 
instruction 

 

Each node in the graph represents an event when the instruction 
enters a given pipeline stage. For every non-memory instruction 
in the dynamic instruction stream, there is a fetch (F) node, a 
dispatch (D) node, an issue (I) node, a register-read (R) node, an 
execute (E) node, a write-back (W) node and a commit (C) node. 
There are two additional nodes, namely mem1 (M1) and mem2 
(M2) for memory instructions. An edge in the graph corresponds 
to the dependence relationship between the two events (nodes) 
because of some resource or program constraint. If there is an 
edge from node A to node B and the weight on the edge is W, 
then the event B cannot occur earlier than W cycles after the event 
A has occurred. For example, if the fetch pipeline depth is 1, then 
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there is a directed edge with weight 1 from the fetch (F) node to 
the dispatch (D) node of an instruction. However, there can be 
multiple incoming edges to a node. In that case, the edge that 
dominates will decide the time of the event. 

The graph is dynamically built along with the simulation of the 
given design point (processor configuration). As an instruction is 
committed in the simulator, nodes corresponding to all the 
pipeline stages through which the instruction passed are added. 
Then, the edges incoming to these nodes are added according to 
resource constraints of the processor and dependence constraints 
of the program. According to the incoming constraints to the 
nodes, the nodes are scheduled. That is, the time (cycle) of the 
event corresponding to the node is determined. It should match 
with the simulator timestamp of the instruction entering the 
corresponding pipeline stages. Table 2 gives an overview of 
constraints modeled by past research on criticality models 
[11][36].  

2) Finding the critical path  

The critical path is the longest path from the starting node (fetch 
of the first instruction in the dynamic instruction stream) to the 
end node (commit of the last instruction in the dynamic 
instruction stream).  The length (sum of weights of the edges) of 
the critical path is the execution time of the program. Hence, any 
parameter affecting the critical path would affect the performance 
of the processor. 

3) Profiling the critical path to find the bottlenecks 

Each edge in the program critical path is due to some processor 
resource (size of a structure or width of a pipeline stage) or 
program dependence (control, data, or memory dependence). 
Accordingly, we break down the entire critical path and assign 
contributions to different processor resources and program 
dependences. The processor resource or program dependence 
which has the most cycles assigned to it is the most critical 
bottleneck and the one which has the least cycles associated is the 
least critical bottleneck. Note that the most critical bottleneck 
could be a program dependence. This would happen if the 
resources of the processor are oversized for the program.  

5.2 Modeling of the Issue Queue in the 

Criticality Model 
The size of a FIFO structure is straightforward to model in the 
graph. As an example, consider a reorder buffer of size S. The 
reorder buffer cannot hold more than S instructions, and 
instructions enter and leave the reorder buffer in program order. 
This implies that instruction “i” cannot enter the reorder buffer 
before instruction “i-S” has left it. This constraint is enforced by 
inserting an edge between the relevant nodes of instruction “i-S” 
and instruction “i”.1 

The key point here is that modeling the size S of a FIFO structure 
is simple because the critical instruction with respect to an 
instruction “i” is easily identified: it is always instruction “i-S”. 

                                                                 
1 In particular, the edge is between the commit (C) node of 

instruction “i-S” and the issue (I) node of instruction “i”: Ci-S → 
Ii.  Note that the commit node corresponds to an instruction 
leaving the reorder buffer and the issue node corresponds to an 
instruction entering the reorder buffer and other structures 
(issue queue and possibly the load or store queue). 

In contrast, modeling the size of the issue queue is not 
straightforward because instructions leave it out-of-order. It was 
not modeled in previous criticality-based models [11] [21] [36]. 
Yet, the issue queue is one of the most performance-critical 
components in an out-of-order superscalar processor: the tradeoff 
between exposing more ILP and minimizing pipeline loop delay 
(wakeup-select loop) is particularly acute in the issue queue. 

Consider an issue queue of size S. As with the reorder buffer, an 
instruction “i” cannot enter the issue queue before some prior 
instruction has left it. Unfortunately, because instructions leave 
the issue queue out-of-order, this critical instruction is not simply 
“i-S”. The critical instruction could be any prior instruction to this 
point. Our approach is to maintain a list of S prior instructions 
that are the latest to leave the issue queue, among all prior 
instructions. That is, the list contains the S latest-departing 
instructions. The critical instruction is among these S instructions. 
Namely, the critical instruction is the one that leaves the issue 
queue first. Its departure makes room for instruction “i”. 
Accordingly, an edge is inserted between the relevant nodes of 
this critical instruction and instruction “i”.2 

                                     

          

Figure 4. Modeling the issue queue in the criticality model. 

The list of S instructions must be updated after each instruction 
“i” is added to the graph. This is simple to do: the critical 
instruction as identified above is removed from the list and 
instruction “i” is added to it. The critical instruction is the earliest-
departing one and instruction “i” will necessarily have a later 
departure (since the critical instruction made way for it). Thus, the 
new list of S latest-departing instructions excludes the critical 
instruction and includes instruction “i”. 

Figure 4 (top) shows the criticality graph corresponding to 
instruction trace I0, I1, I2, I3. Note that the number on the edge is 
the weight of the edge and the number on the node is the time 
stamp corresponding to that node. For simplicity, we have not 
drawn the incoming issue queue edges for I0, I1, I2 and I3. The 
issue queue size is assumed to be 3. When the instruction I4 is 
committed, the nodes corresponding to it are added and edges 

                                                                 
2 In particular, the edge is between the register-read (R) node of 

the critical instruction and the issue (I) node of instruction “i”: 
Rcritical → Ii. Note that the register-read node corresponds to an 
instruction leaving the issue queue and the issue node 
corresponds to an instruction entering the issue queue. 
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corresponding to pipeline dependences are added. The latest three 
instructions to be issued are I0, I1 and I3 (set S = {I0, I1, I3}).  I0 
has the smallest register read (R) time stamp in set S. Hence, to 
model the issue queue bottleneck, we have an edge from R node 
of I0 to I node of I4. Figure 4 (bottom) shows the criticality graph 
corresponding to instruction trace I0, I1, I2, I3 and I4. 

5.3 Illustrative Example of Criticality 

Analysis 
Dynamic Instruction trace 

      I0 :R5=0 
      I1 :R3=1 
L1: I2 :R1=R3+2 
      I3 :R6=R1+2 
      I4 :R3=R3+1 
      I5 :R5=R6+R5 
      I6 :cmp R7,0 
      I7 :br L1 
      I8 :R5=R5+100 
 
 

 

 

 

 

 

 

 

 

    

Figure 5. Criticality model of the dynamic instruction trace. 

The resource constraints modeled are follows: ROB size = 4, issue 
queue size =2, issue width =2, fetch width =2, commit width =2. 
The critical path model for the dynamic instruction trace for above 
resource constraints is shown in Figure 5. The longest path from 
fetch node of I0 (F0) to the commit node of I8 (F8) is shown in bold 
color. This path is the critical path and has nodes F0, F1, D1, I1, R1, 
R2, R3, E3, W3, C3, I7, R7, E7, F8, D8, I8, R8, E8, W8, C8. The 
critical path is profiled and cycles are assigned to different 
processor resources and program dependences as follows: 
Register dependence = 2, Control dependence = 1, ROB = 1, 
unclassified = 15. Note that the unclassified cycles are the cycles 
attributed to pipeline dependences which cannot be attributed to 
any of the processor resources or program dependences. We 
clearly see that the register dependence is the most critical 
bottleneck. Note that many of the processor resources and 
program dependences have 0 cycles assigned to it because of the 
very short dynamic trace 

5.4  Overhead of Criticality Analysis 
Simulation time overhead 

Criticality analysis requires the processing of timestamps of 
instructions and bottleneck events (branch mispredictions and 
cache misses) to build the dependence graph. Hence, criticality 
analysis takes lesser time compared to the time taken for cycle-
level simulation. In our simulations, criticality analysis takes less 
than 3% of the time taken to perform cycle-accurate simulation. 

 

Storage overhead 

To perform the criticality analysis, the entire dependence graph 
obtained had to be built and stored. This incurs a large storage 
overhead. For example: a trace of 100 million instructions might 
take up to 10 GB of storage space. As done in [26], we remove 
this overhead by not storing the entire graph and performing 
criticality analysis as the graph is being built. This is done by 
realizing that the edges to the nodes corresponding to future 
instructions come from only a handful of nodes. We see that the 
storage requirement of the critical path analysis model is of the 
order of number of constraints modeled. Hence, the storage 
requirement of the graph is drastically reduced. 

Design effort overhead 

We need the timestamps of the instructions entering different 
pipeline stages and the information of different bottleneck events 
like branch mispredictions, icache miss, dcache miss, etc. We can 
then build the dependence graph from this information. Hence, it 
requires minimal effort to retrofit the simulator to get the critical 
path information. 

6. EXPERIMENTAL METHODOLOGY 
This section describes the design space of superscalar processors 
and the simulation environment used for evaluation. 

Design Space 

Our design space consists of design points created by varying the 
clock period and complexity (structure sizes and pipeline widths) 
of different pipeline stages of a superscalar processor. The design 
space is spanned by the independent design parameters as 
enumerated in Table 3. Note that the depths of each pipeline stage 
are dependent parameters as explained in Section 2. The depth of 
a canonical pipeline stage for a given design point is the degree of 
sub-pipelining required so that the given complexity of the 
pipeline stage may fit in the given clock period.  

Our design space consists of 3.6 million design points. By design 
space pruning as explained in section 4, we reduce the design 
space to about 104K design points. Using design space pruning, 
we have eliminated nearly 97% of the design points from the 
original design space and this helps in fast design space 
exploration. Note that in our evaluation, we used the pruned 
design space for both criticality-driven design space exploration 
and baseline design space exploration. 

Simulator and Benchmarks 

For our evaluation, we used the SPEC 2000 benchmark suite with 
the given reference inputs [33]. We simulated the instruction trace 
using SIMPOINT [31], so that our simulation run is 
representative of the entire benchmark. Our simulator is a 
timestamp, trace-driven simulator based on SimpleScalar [2]. We 
use a trace-driven simulator to save time in the evaluation to make 
detailed evaluation of design space exploration possible. Note that 
using a trace-driven simulator does not affect the general 
conclusions of the paper as we only treat it as a “black-box” to get 
the performance value. 

Metric 

In our evaluation, the design space exploration is performed for 
optimizing the performance of the superscalar processor. We use 
instructions per time unit (IPT) to quantify the performance of the 
superscalar processor. Our metric for the design space exploration 
is the exploration time which is the amount of time elapsed before 
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a design point is reached whose performance value is within 0.5% 
of the optimal performance value [10]. The optimal design point 
is found by doing an exhaustive design space search. The 
exploration time is normalized to the time taken by a single 
simulation of bzip benchmark. Note that the exploration time 
includes the time taken to perform criticality analysis in the case 
of criticality-driven design space exploration. 

Table 3. Microarchitectural design parameters 

7. RESULTS 
In this section, we present the performance results and sensitivity 
studies with the criticality-driven design space exploration. In 
Section 7.1, we discuss the performance results of criticality-
driven walk and criticality-driven simulated annealing. In Section 
7.2, we show sensitivity studies by changing the starting point, 
changing the size of the design space, and adding power 
constraints. 
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Figure 6. Comparison of criticality-driven walk (CRW) vs. 

random walk (RW) (top) and the effect of changing the initial 

temperature on simulated annealing (SA) (bottom). 

7.1 Performance of Criticality-driven Design 

Space Exploration 

7.1.1  Criticality-driven Walk 
In Figure 6(top), we see that for all benchmarks, criticality-driven 
walk (CRW) reaches the optimal point much faster than random 
walk (RW). On average (harmonic mean), criticality-driven walk 
obtains 3.8x speedup over random walk. For some benchmarks 
like gzip and parser, the speedup obtained is close to 10x. This 
shows that the criticality information is very useful in accelerating 
random walk. 

7.1.2  Criticality-driven Simulated Annealing 

 

 

Figure 7. Comparison of criticality-driven simulated annealing 

(CSA) vs. simulated annealing (SA) (top) and comparison of 

simulated annealing (SA) and criticality-driven walk (CRW) 

(bottom). 

For simulated annealing to be effective, the initial temperature 
should be carefully set. For finding a good initial temperature, we 
use the initial temperature of 1 to 100K. In Figure 6(bottom), we 
see that there is no single initial temperature which is good for all 
the benchmarks. However, an initial temperature of 10 is good for 
many benchmarks. Hence, we use an  initial temperature of 10 for 

all our evaluations. Note that a significant amount of time must 
be invested in temperature tuning to make simulated annealing 
better than random walk. 

In Figure 7(top), we see that using criticality information helps to 
speed up simulated annealing. On average (harmonic mean), we 
see criticality-driven simulated annealing (CSA) obtains 2.3x 
speedup over simulated annealing (SA). Even after removing 
vortex and gap, CSA obtains 1.9x speedup over SA. Using 
criticality analysis to guide simulated annealing helps to reach 
optimal point faster than conventional simulated annealing. 

As pointed out before, simulated annealing requires significant 
temperature tuning to outperform random walk. In Figure 
7(bottom), we compare criticality-driven random walk and 
conventional simulated annealing and see that criticality-driven 

Parameter Value Range Number 

Front end width 2, 4, 6, 8 4 
Issue width 2, 4, 6, 8 4 
Register File size 32, 64, 128, 256, 512 5 
Issue Queue size 16, 32, 64, 128 4 
Load Queue/Store 
Queue size 

8/8, 16/16, 24/24, 32/32, 
40/40, 48/48, 56/56, 64/64  

8 

Instruction cache 
size 

8KB, 16KB, 32KB, 64KB, 
128KB 

5 

Data cache size 8KB, 16KB, 32 KB, 64 KB, 
128KB 

5 

L2 cache size 0.5MB, 1MB, 2MB, 4MB 4 
Clock period 0.3→0.95ns 

(granularity=0.05ns) 
14 
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walk is better than or comparable to simulated annealing for the 
SPEC 2000 benchmark suite. Hence, this shows that building the 
criticality model is more useful than using more sophisticated 
algorithms like simulated annealing which are sensitive to tuning.    

7.1.3 Dynamic Behavior of Criticality-driven Design 

Space Exploration 
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Figure 8. Variation of performance of the best design point 

found with exploration time, for criticality-driven walk 

(CRW) vs. random walk (RW) (top) and for criticality-driven 

simulated annealing (CSA) vs. simulated annealing (SA) 

(bottom), for bzip benchmark.    

To understand how the performance of the best design point 
found changes with the exploration time for criticality-driven 
design space exploration, we plot the Instructions per time unit 
(IPT) of the best design point found with the exploration time, for 
criticality-driven walk and criticality-driven simulated annealing 
in Figure 8. Due to space constraints, we only show the graph for 
the bzip benchmark. However, other benchmarks also show 
similar trends. We see that localized information from criticality 
analysis helps criticality-driven design space exploration to reach 
better design points more quickly. 

7.2  Sensitivity Studies 
To understand how robust our technique is, we perform sensitivity 
studies by changing the starting point and the size of the design 
space, and adding power constraint. 

7.2.1  Changing the Starting Point 
We choose two other random starting points. Figure 9(top) shows 
the normalized exploration time needed for criticality-driven walk 
(CRW) and random walk (RW) for the two starting points. We see 
that criticality-driven walk outperforms random walk for all 
benchmarks except gcc in the second starting point. In Figure 
9(bottom), we see that criticality-driven simulating annealing 
performs better than simulated annealing for all benchmarks 

except mcf and vpr in the first starting point. Because of non-
deterministic behavior (random perturbations) of random 
walk/simulated annealing, in very few cases, it might go through a 
slightly shorter route to the optimal design point. However, in 
general, criticality-driven design space exploration is much better 
than conventional design space exploration. 

 

Figure 9. Effect of changing the starting point on criticality-

driven walk (CRW) (top) and criticality-driven simulated 

annealing (CSA) (bottom). 

7.2.2 Changing the Size of the Design Space 

                   

 

Figure 10. Effect of making the size of design space smaller on 

criticality-driven random walk (CRW) (top) and on criticality-

driven simulated annealing (CSA) (bottom). 
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We decrease the size of the design space to about 60,000 design 
points by increasing the clock period granularity from 0.05ns to 
0.1ns. In Figure 10, we see that even for the smaller design space, 
criticality-driven walk and criticality-driven simulated annealing 
perform better than random walk and simulated annealing, 
respectively. Further, we see that the temperature selected for 
simulated annealing for the large design space is not suited for the 
small design space, as simulated annealing performs worse than 
random walk on average. 

7.2.3 Adding Power Constraint 
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Figure 11. Effect of adding peak power budget of 50 W on 

criticality-driven walk (CRW) (top) and on criticality-driven 

simulated annealing (CSA) (bottom). 

For modeling power for a given processor configuration, we used 
Wattch [4], an architecture-level processor power estimation tool. 
We modified the underlying CACTI [32] models used in Wattch, 
to incorporate the device parameters from FabScalar [6]. Further, 
we added power models of combinational logic using the 
FabScalar RTL model. We calculate the peak power of the 
processor by assuming all the components, memory structures and 
combinational logic elements, are switching with an activity factor 
of 1. 

For the sensitivity analysis, we constrain the design space by 
keeping the peak power budget of the processor at 50 W. In 
Figure 11, we see that even after adding the power constraint, 
criticality-driven design space exploration performs better than 
conventional design space exploration. However, it is slightly less 
effective than before. This is because some of the criticality-
driven perturbation leads to a design point which exceeds the 
power budget and hence in this case, criticality-driven design 
space exploration has to rely on random perturbation.  

8. RELATED WORK 
Design Space Exploration 

Accelerating design space exploration is a well studied topic. As 
pointed out in Section 1, there are two orthogonal approaches for 

accelerating design space exploration: speeding up the simulation 
of a single design point and reducing the number of points to be 
searched. 

For accelerating the simulation of a single design point, there are 
two methods: analytical methods and sampling methods. In 
analytical methods, an analytical expression is obtained for the 
performance. Karkhanis’ analytical model [19]  is a direct 
approach for obtaining the analytical expression. It expresses the 
IPC in terms of steady state IPC and penalties due to branch 
mispredictions and cache misses. A number of methods use an 
indirect method to obtain an analytical expression by sampling the 
design space and fitting an analytical model to the data 
[17][16][9][25].  Lee et al. [25] use a regression model and Ipek 
et al. [16] use artificial neural networks to get the analytical 
expression. Analytical methods trade accuracy for speed. The 
average error rates of these methods are between 3% and 7%. 
However, the worst-case error rate is a lot higher and may yield an 
erroneous conclusion about the optimal design point. Sampling 
techniques reduce the number of instructions needed to be 
simulated while still being representative of the benchmark 
[8][27][31][37]. This technique is orthogonal to our approach and 
in fact we use SIMPOINT [31] to accelerate the time taken to 
simulate a given point. 

An orthogonal approach for accelerating design space exploration 
is to avoid exhaustive search and concentrates on reducing the 
number of design points that needs to be simulated 
[18][10][14][8]. Classical search/optimization techniques like 
simulated annealing, genetic algorithms, etc. belong to this 
category.  Criticality-design space exploration builds on these 
classical search/optimization techniques to make them even faster. 

Yi et al.[38] proposed using Plackett and Burman design to find 
the most critical parameters in the entire design space. Chow et 
al.[7] and Cai et al.[5] use principal components analysis and 
multivariate analysis to identify the most critical parameter in the 
design space. This can help pruning the design space by focusing 
on the most important parameters. On the other hand, our 
technique finds the most critical parameters at a design point 
(local level) which is not possible using the above methods. This 
fine-grained information is needed to find the bottleneck at the 
current design point which helps to accelerate the design space 
exploration. 

Criticality Analysis 

Criticality Analysis is very useful in improving performance in a 
highly concurrent system like a computer system. It has been 
proposed to be used inside the processor in the form of a 
criticality predictor which is used to identify critical instructions 
to improve performance [11][12][34]. It is used for better 
resource arbitration by giving priority to critical instructions 
[11][34]. It can also be used for misspeculation reduction by 
restricting speculation to critical instructions [11]. 

It can also be used offline for bottleneck analysis in the computer 
system [12][29][30]. It has been successfully used to identify 
bottlenecks in processor architectures like TRIPS, clustered 
architectures, etc.[1][26][35].  

In a simpler design space, criticality analysis has been directly 
used for design space exploration [22]. However, in a more 
complicated superscalar design space, using only criticality 
analysis leads to a local maximum which is a sub-optimal design. 

271
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 04,2025 at 15:10:17 UTC from IEEE Xplore.  Restrictions apply. 



Our work uses criticality analysis in conjunction with the classical 
search/optimization techniques to avoid getting stuck in a local 
maximum.  Our work opens up another line of research by using 
criticality analysis in conjunction with the classical search 
techniques for fast design space exploration. 

9.   CONCLUSIONS 
Because of the exploding design space, increasing design 
complexity and long-running workloads, design space exploration 
of a computer system takes a lot of time. Criticality-driven design 
space exploration uses the localized information from the 
criticality analysis to guide the globally-aware classical 
search/optimization techniques. This is a promising direction of 
research for accelerating design space exploration. 

We have just scratched the surface of criticality-driven design 
space exploration. Using more sophisticated critical path models 
such as slack and interaction cost model [12] can help to speed up 
the design space exploration even more. It would also be very 
interesting to use criticality analysis to speedup the design space 
exploration of multi-core processors, SMT processors and 
memory systems. 
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