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Abstract

Mobile and PC/server class processor companies continue to roll
out flagship core microarchitectures that are faster than their prede-
cessors. Meanwhile placing more cores on a chip coupled with con-
stant supply voltage puts per-core energy consumption at a premium.
Hence, the challenge is to find future microarchitecture optimizations
that not only increase performance but also conserve energy. Elimi-
nating branch mispredictions – which waste both time and energy –
is valuable in this respect.

We first explore the control-flow landscape by characterizing
mispredictions in four benchmark suites. We find that a third of
mispredictions-per-1K-instructions (MPKI) come from what we call
separable branches: branches with large control-dependent regions
(not suitable for if-conversion), whose backward slices do not de-
pend on their control-dependent instructions or have only a short
dependence. We propose control-flow decoupling (CFD) to eradicate
mispredictions of separable branches. The idea is to separate the
loop containing the branch into two loops: the first contains only the
branch’s predicate computation and the second contains the branch
and its control-dependent instructions. The first loop communicates
branch outcomes to the second loop through an architectural queue.
Microarchitecturally, the queue resides in the fetch unit to drive timely,
non-speculative fetching or skipping of successive dynamic instances
of the control-dependent region.

Either the programmer or compiler can transform a loop for CFD,
and we evaluate both. On a microarchitecture configured similar
to Intel’s Sandy Bridge core, CFD increases performance by up to
43%, and reduces energy consumption by up to 41%. Moreover, for
some applications, CFD is a necessary catalyst for future complexity-
effective large-window architectures to tolerate memory latency.

1. Introduction

Good single-thread performance is important for both serial and

parallel applications, and provides a degree of independence from

fickle parallelism. This is why, even as the number of cores in a

multi-core processor scales, processor companies continue to roll out

flagship core microarchitectures that are faster than their predecessors.

Meanwhile placing more cores on a chip coupled with stalled supply

voltage scaling puts per-core energy consumption at a premium. Thus,

the challenge is to find future microarchitecture optimizations that

not only increase performance but also conserve energy.

Eliminating branch mispredictions is valuable in this respect. Mis-

predictions waste both time and energy, firstly, by fetching and execut-

ing wrong-path instructions and, secondly, by repairing state before

resuming on the correct path. Figure 1a shows instructions-per-cycle

(IPC) for several applications with hard-to-predict branches. The first

bar is for our baseline core (refer to Table 3 in Section 5) with a state-

of-art branch predictor (ISL-TAGE [28, 29]) and the second bar is

for the same core with perfect branch prediction. Each application’s

branch misprediction rate is shown above its bars. Speedups with

[18.8%] 

[20.4%] 

[7.7%] 
[2%] 

[6.8%] 

[14.8%] 

[3.9%] 

[2.9%] 

[4%] 

[3%] 

0
0.5

1
1.5

2
2.5

3
3.5

IP
C 

baseline baseline + perfect prediction

(a) IPC

0.42 0.36 

0.62 

0.94 

0.74 0.70 

0.96 
0.86 0.91 0.91 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

ize
d 

En
er

gy
  

(b) Energy of perfect branch prediction relative to real branch prediction

Figure 1: Impact of perfect branch prediction.

perfect branch prediction range from 1.05 to 2.16. Perfect branch

prediction reduces energy consumption by 4% to 64% compared to

real branch prediction (Figure 1b).

Some of these applications also suffer frequent last-level cache

misses. Complexity-effective large-window processors can tolerate

long-latency misses and exploit memory-level parallelism with small

cycle-critical structures [31, 23]. Their ability to form an effective

large window is degraded, however, when a mispredicted branch

depends on one of the misses [31]. Figure 2a shows the breakdown

of mispredicted branches that depend on data at various levels in the

memory hierarchy: L1, L2, L3 and main memory. Figure 2b shows

how the IPC of ASTAR (an application with high misprediction rate

and significant fraction of mispredictions fed by L3 or main memory)

scales with window size. Without perfect branch prediction, IPC

does not scale with window size: miss-dependent branch mispredic-

tions prevent a large window from performing its function of latency

tolerance. Conversely, eradicating mispredictions acts as a catalyst

for latency tolerance. IPC scales with window size in this case.

We first explore the current control-flow landscape by character-

izing mispredictions in four benchmark suites using a state-of-art

predictor. In particular, we classify the control-dependent regions

guarded by hard-to-predict branches. About a third of mispredictions-

per-1K-instructions (MPKI) come from branches with small control-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.38

329

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 03,2025 at 23:32:41 UTC from IEEE Xplore.  Restrictions apply. 



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Br
ea

kd
ow

n 
of

 M
is

pr
ed

ic
ts

 w
.r.

t. 
Th

e 
Ca

ch
e 

Le
ve

ls
 F

ee
di

ng
 T

he
m

 

MEM
L3
L2
L1

(a) Breakdown of mispredictions with respect to the furthest
memory hierarchy level feeding them

0

0.5

1

1.5

2

2.5

3

168 256 384 512 640

IP
C 

Window Size 

baseline

baseline + perfect
prediction

(b) ASTAR(Rivers)
IPC under different
window sizes

Figure 2: Effect of branch mispredictions on memory latency toler-
ance.

dependent regions, e.g., hammocks. If-conversion using conditional

moves, a commonly available predication primitive in commercial

instruction-set architectures (ISA), is generally profitable for this

class [2]. For completeness, we analyze why the gcc compiler did

not if-convert such branches and manually do so at the source level

in order to focus on other classes. We discover that another third of

MPKI comes from what we call separable branches. A separable

branch has two qualities:

1. The branch has a large control-dependent region, not suitable for

if-conversion.

2. The branch does not depend on its own control-dependent instruc-

tions via a loop-carried data dependence (totally separable), or has

only a short loop-carried dependence with its control-dependent

instructions (partially separable).

For a totally separable branch, the branch’s predicate computation is

totally independent of the branch and its control-dependent region.

This suggests “vectorizing” the control-flow: first generate a vector

of predicates and then use this vector to drive fetching or skipping

successive dynamic instances of the control-dependent region. This

is the essence of our proposed technique, control-flow decoupling

(CFD), for eradicating mispredictions of separable branches. The

loop containing the branch is separated into two loops: a first loop

contains only the instructions needed to compute the branch’s pred-

icate (generate branch outcomes) and a second loop contains the

branch and its control-dependent instructions (consume branch out-

comes). The first loop communicates branch outcomes to the second

loop through an architectural queue, specified in the ISA and man-

aged by push and pop instructions. At the microarchitecture level,

the queue resides in the fetch unit to facilitate timely, non-speculative

branching.

Partially separable branches can also be handled. In this case,

the branch’s predicate computation depends on some of its control-

dependent instructions. This means a copy of the branch and the

specific control-dependent instructions must be included in the first

loop. Fortunately, this copy of the branch can be profitably removed

by if-conversion due to few control-dependent instructions.

Either the programmer or compiler can transform a loop for CFD,

and we evaluate both. On a microarchitecture configured similar

to Intel’s Sandy Bridge core [35], CFD increases performance by

up to 43%, and reduces energy consumption by up to 41%. For

hard-to-predict branches that traverse large data structures that suffer

many cache misses, CFD acts as the necessary catalyst for future

large-window architectures to tolerate these misses.

The paper is organized as follows. In Section 2, we discuss our

methodology and classification of control-flow in a wide range of

applications. In Section 3, we present the ISA, hardware and software

aspects of CFD. In Section 4, we describe our implementation of

CFD in the gcc compiler. In Section 5, we describe our evaluation

framework and baseline selection process. In Section 6, we present

an evaluation of the proposed techniques. In Section 7, we discuss

prior related work. We conclude the paper in Section 8.

2. Methodology and Control-Flow Classification

The goal of the control-flow classification is first and foremost dis-

covery: to gain insight into the nature of difficult branches’ control-

dependent regions, as this factor influences the solutions that will

be needed, both old and new. Accordingly we cast a wide net to

expose as many control-flow idioms as possible: (1) we use four

benchmark suites comprised of over 80 applications, and (2) for the

purposes of this comprehensive branch study, each application is run

to completion leveraging a PIN-based branch profiling tool.

2.1. Methodology

We use four benchmark suites: SPEC2006 [32] (engineering, sci-

entific, and other workstation type benchmarks), NU-MineBench-
3.0 [24] (data mining), BioBench [1] (bioinformatics), and cBench-
1.1 [10] (embedded). All benchmarks1 are compiled for x86 using

gcc with optimization level -O3 and run to completion using PIN [20].

We wrote a pintool that instantiates a state-of-art branch predictor

(winner of CBP3, the third Championship Branch Prediction: 64KB

ISL-TAGE [28]) that is used to collect detailed information for every

static branch.

Different benchmarks have different dynamic instruction counts.

In the misprediction contribution pie charts that follow, we weigh

each benchmark equally by using its MPKI instead of its total number

of mispredictions. Effectively we consider the average one-thousand-

instruction interval of each benchmark.

Figure 3a shows the relative misprediction contributions of the four

benchmark suites. Every benchmark of every suite is included2, and,

as just mentioned, each benchmark is allocated a slice proportional

to its MPKI. We further refine the breakdown of each benchmark

suite slice into targeted versus excluded, shown in Figure 3b. The

excluded slice contains (1) benchmarks with misprediction rates less

than 2%, and (2) benchmarks that we could not run in our detailed

timing simulator introduced later (due to gcc Alpha cross-compiler

problems). The targeted slice contains the remaining benchmarks.

Table 1 lists the targeted benchmarks along with their MPKIs.

This paper focuses on the targeted slices which, according to

Figure 3b, contribute almost 78% of cumulative MPKI in the four

benchmark suites.

2.2. Control-Flow Classification

We inspected branches in the targeted benchmarks, and categorized

them into the following four classes:

1For benchmarks with multiple ref inputs, we profiled then classified all inputs into
groups based on the control-flow patterns exposed. One input is selected from each
group in order to cover all observed patterns. For example, for bzip we select the ref
inputs input.source and chicken.

2A benchmark that is present in multiple suites is included once. For example, hmmer
appears in BioBench and SPEC2006. In both benchmark suites, the same hard-to-predict
branches are exposed, thus, only one instance of hmmer is included.
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Figure 3: Breakdown of branch mispredictions.
Benchmark Suite Application MPKI Benchmark Suite Application MPKI

astar (BigLakes) 10.11 gsm 2.10

astar (Rivers) 25.98 jpeg-compr 8.17

bzip2 (chicken) 4.08 jpeg-decompr 2.41

bzip2 (input.source) 8.16 cBench quick-sort 4.64

gobmk 7.17 tiff-2-bw 5.42

SPEC2006 gromacs 1.13 tiff-median 3.60

hmmer 11.72

mcf 9.06 clustalw 4.25

namd 1.17 BioBench fasta 16.64

sjeng 5.15

soplex (pds) 6.14

soplex (ref) 2.25 MineBench eclat 10.19

Table 1: Targeted applications.

1. Hammock: Branches with small, simple control-dependent re-

gions. Such branches will be if-converted. From what we can tell,

the gcc compiler did not if-convert these branches because they

guard stores. An example from hmmer is shown in Figure 4, line

1. To encourage if-conversion, the code can be adjusted (manu-

ally or using compiler) to unconditionally perform the store, if

legal (i.e., if address is legal regardless of branch outcome). The

control-dependent store to ic[k] (line 1) is moved outside the ham-

mock (line 4) and the value being stored is a new local variable,

local. Depending on the branch, local contains either the original

value of ic[k] (line 2) or sc (line 3). Thus, the store to ic[k], after

the hammock, is effectively conditional – ic[k]’s value may or

may not change – even though it is performed unconditionally.

The new if-statement (line 3) is then if-converted by the compiler

using a conditional move (line 6): conditionally move sc into local
based on the condition sc > local. This transformation increases

the number of retired stores, but the extra stores are silent. Ob-

taining the original value at the memory location requires a load,

but we observed that most cases are like the hmmer example, in

which the load already exists because the branch’s test depends

on a reference to ic[k] (line 1).

2. Separable: Branches with large, complex control-dependent re-

gions, where the branch’s backward slice (predicate computation)

is either totally separable or partially separable from the branch

and its control-dependent instructions. The backward slice is

totally separable if it does not contain any of the branch’s control-

dependent instructions. Total separability allows all iterations of

the backward slice to be hoisted outside the loop containing the

branch, conceptually vectorizing the predicate computation, which

is what CFD does via its first and second loops. The backward

slice is partially separable if it contains very few of the branch’s

control-dependent instructions. In this case, the backward slice

also contains the branch itself, since the branch guards the few

control-dependent instructions in the slice. All iterations of the

backward slice can still be hoisted but it contains a copy of the

branch, therefore, the backward slice is if-converted. CFD will be

applied to totally and partially separable branches.

1 if (sc > ic[k]) ic[k] = sc;  
 
 

2 
3 
4 

local = ic[k]; 
if(sc > local)  local = sc; 
ic[k] = local; 

 
 

5 
6 
7 

local = ic[k]; 
CMOV(local, sc, sc > local); 
ic[k] = local; 

Figure 4: Hammock (from HMMER).

3. Inseparable: Branches with large, complex control-dependent

regions, where the branch’s backward slice contains too many

of the branch’s control-dependent instructions. An inseparable
branch differs from a partially separable branch, in that it is not

profitable to if-convert its backward slice. This type of branch is

very serial in nature: the branch is frequently mispredicted and

it depends on many of the instructions that it guards. This class

of branch cannot be handled by if-conversion or CFD, and will

require a new solution which is outside the scope of this paper.

4. Not Analyzed: Branches we did not analyze, i.e., branches with

small contributions to total mispredictions.

Figure 3c breaks down the targeted mispredictions of Figure 3b

into these four classes. 37.8% of the targeted mispredictions can

be handled using CFD. 27.2% of the targeted mispredictions can

be handled using if-conversion. That CFD covers the largest per-

centage of MPKI after applying a sophisticated branch predictor,

provides a compelling case for CFD software, architecture, and mi-

croarchitecture support. Its applicability is on par with if-conversion,

a commercially mainstream technique that also combines software,

architecture, and microarchitecture. In addition to comparable MPKI

coverage, CFD and if-conversion apply to comparable numbers of

benchmarks and static branches (see Table 5 in Section 6).

3. Control-Flow Decoupling

Figure 5a shows a high-level view of a totally separable branch within

a loop. Branch slice computes the branch’s predicate. Depending on

the predicate, the branch is taken or not-taken, causing its control-

dependent instructions to be skipped or executed, respectively. In

this example, none of the branch’s control-dependent instructions are

in its backward slice, i.e., there isn’t a loop-carried data dependency

between any of the control-dependent instructions and the branch. A

partially separable branch would look similar, except a small number

of its control-dependent instructions would be in the branch slice; this

would appear as a backward dataflow edge from these instructions to

the branch slice.

Figure 5b shows the loop transformed for CFD. The loop is sep-

arated into two loops, each with the same trip-count as the original.

The first loop has just the branch slice. It pushes predicates onto an
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Figure 5: High-level view of the CFD transformation.

architectural branch queue (BQ) using a new instruction, Push_BQ.

The second loop has the control-dependent instructions. They are

guarded by a new instruction, Branch_on_BQ. This instruction pops

predicates from BQ and the predicates control whether or not the

branch is taken.

Hoisting all iterations of the branch slice creates sufficient fetch
separation between a dynamic instance of the branch and its producer

instruction, ensuring that the producer executes before the branch is

fetched. If successive iterations are a, b, c, ..., instead of fetching slice-
a, branch-a, slice-b, branch-b, slice-c, branch-c, ..., the processor

fetches slice-a, slice-b, slice-c, ... branch-a, branch-b, branch-c, ....
Additionally, to actually exploit the now timely predicates, they must

be communicated to the branch in the fetch stage of the pipeline so

that the branch can be resolved at that time. Communicating through

the existing source registers would not resolve the branch in the fetch

stage. This is why we architect the BQ predicate communication

medium and why, microarchitecturally, it resides in the fetch unit.

While this paper assumes an OOO processor for evaluation pur-

poses, please note that in-order and OOO processors both suffer

branch penalties due to the fetch-to-execute delay of branches. We

want to resolve branches in the fetch stage (so fetching is not dis-

rupted) but they resolve in the execute stage, unless correctly pre-

dicted. Thus, the problem with branches stems from pipelining in

general. OOO execution merely increases the pipeline’s speculation

depth (via buffering in the scheduler) so that, far from being a so-

lution to the branch problem, OOO execution actually makes the

branch problem more acute.

For a partially separable branch, the first loop would not only have

(1) the branch slice and Push_BQ instruction, but also (2) the branch

and just those control-dependent instructions that feed back to the

branch slice. The branch is then removed by if-conversion, using

conditional moves to predicate the control-dependent instructions.

CFD is still profitable in this case because the subsetted control-

dependent region is small and simple (otherwise the branch would be

classed as inseparable).

CFD is a software-hardware collaboration. The following subsec-

tions discuss ISA, software, and hardware.

3.1. ISA Support and Benchmark Example
ISA support includes an architectural specification of the BQ and

two instructions, Push_BQ and Branch_on_BQ. The architectural

specification of the BQ is as follows:

1. The BQ has a specific size. BQ size has implications for software.

These are discussed in the next subsection.

2. Each BQ entry contains a single flag indicating taken/not-taken

(the predicate). Other microarchitectural state may be included

in each entry of the BQ’s physical counterpart, but this state is

transparent to software and not specified in the ISA.

3. A length register indicates the BQ occupancy. Architecting only

a length register has the advantage of leaving low-level man-

agement concerns to the microarchitect. For example, the BQ

could be implemented as a circular or shifting buffer. Thus, at

the ISA level, the BQ head and tail are conceptual and are not

specified as architectural registers: their physical counterparts are

implementation-dependent.

4. The ISA provides mechanisms to save and restore the BQ state

(queue contents and length register) to memory. This is required

for context-switches. We recommend the approach used in some

commercial ISAs, which is to include the BQ among the special-

purpose registers and leverage move-from and move-to special-

purpose-register instructions to transfer the BQ state to and from

general-purpose registers (which can be saved and restored via

stores and loads, respectively). If this is not possible, then dedi-

cated Save_BQ and Restore_BQ instructions could be used.

The Push_BQ instruction has a single source register specifier to

reference a general-purpose register. If the register contains zero (non-

zero), Push_BQ pushes a 0 (1). Branch_on_BQ is a new conditional

branch instruction. Branch_on_BQ specifies its taken-target like

other conditional branches, via a PC-relative offset. It does not have

any explicit source register specifiers, however. Instead, it pops its

predicate from the BQ and branches or doesn’t branch, accordingly.

The ISA specifies key ordering rules for pushes and pops, that

software must abide by. First, a push must precede its corresponding

pop. Second, N consecutive pushes must be followed by exactly N

consecutive pops in the same order as their corresponding pushes.

Third, N cannot exceed the BQ size.

Figure 6 shows a real example from the benchmark SOPLEX.

Referring to the original code: The loop compares each element of

array test[] to variable theeps. The hard-to-predict branch is at line

3 and its control-dependent instructions are at lines 4-9. Neither the

array nor the variable is updated inside the control-dependent region,

thus, this is a totally separable branch. This branch contributes 31%

of the benchmark’s mispredictions (for ref input).

Decoupling the loop is fairly straightforward. The first loop com-

putes predicates (lines 2-3) and pushes them onto the BQ (line 4). The

second loop pops predicates from the BQ and conditionally executes

the control-dependent instructions, accordingly (line 7).

An ISA enhancement must be carefully specified, so that its future

obsolescence does not impede microarchitects of future generation

processors. Accordingly, CFD is architected as an optional and

scalable co-processor extension:

1. Optional: Inspired by configurability of co-processors in the MIPS

ISA – which specifies optional co-processors 1 (floating-point

unit) and higher (accelerators) – BQ state and instructions can be

encapsulated as an optional co-processor ISA extension. Thus,

future implementations are not bound by the new BQ co-processor

ISA. Codes compiled for CFD must be recompiled for processors

that do not implement the BQ co-processor ISA, but this is no

different than the precedent set by MIPS’ flexible co-processor

specification.

2. Scalable: The BQ co-processor ISA can specify a BQ size of
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 Original Loop 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

for ( … ) {  
   x = test[i];   
   if (x < -theeps) {                                                    // hard-to-predict branch 
      x *= x / penalty_ptr[i]; 
      x *= p[i]; 
      if (x > best) {                                                       // predictable branch 
         best = x; 
         selId = thesolver->id(i); 
      } 
   } 
} 

 Decoupled Loops 
 
1 
2 
3 
4 
5 

First Loop 
for ( … ) { 
  x = test[i]; 
  pred = (x < -theeps);                                              // the predicate is computed 
  Push_BQ(pred);                                                     // then pushed onto the BQ 
} 

 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Second Loop 
for ( … ) { 
  Branch_on_BQ{                                                    // pop the predicate 
      x = test[i]; 
      x *= x / penalty_ptr[i]; 
      x *= p[i]; 
      if (x > best) { 
         best = x; 
         selId = thesolver->id(i); 
      } 
  } 
} 

Figure 6: SOPLEX’ source code.

N: a machine-dependent parameter, thus allowing scalability to

different processor window sizes.

3.2. Software Side

For efficiency, the trip-counts of the first and second loops should not

exceed the BQ size. This is a matter of performance, not correctness,

because software can choose to spill/fill the BQ to/from memory. In

practice, this is an important issue because many of the CFD-class

loops iterate thousands of times whereas we specify a BQ size of 128

in this paper.

We explored multiple solutions but the most straightforward one is

loop strip mining. The original loop is converted to a doubly-nested

loop. The inner loop is similar to the original loop but its trip-count is

bounded by the BQ size. The outer loop iterates a sufficient number

of times to emulate the original loop’s trip-count. Then, CFD is

applied to the inner loop.

Decoupling the loop can be done either manually by the program-

mer or automatically by the compiler. In this paper, CFD was initially

applied manually which was a fairly easy task. In Section 4, we

describe automating CFD in the gcc compiler and in Section 6 we

evaluate how well it compares to the manual implementation.

3.3. Hardware Side

This subsection describes microarchitecture support for CFD. The BQ

naturally resides in the instruction fetch unit. In our design, the BQ is

implemented as a circular buffer. In addition to the software-visible

predicate bit, each BQ entry has the following microarchitectural

state: pushed bit, popped bit, and checkpoint id. For a correctly

written program, a Push_BQ (push) instruction is guaranteed to be

fetched before its corresponding Branch_on_BQ (pop) instruction.

Because of pipelining, however, the push might not execute before

the pop is fetched, referred to as a late push. The pushed bit and

popped bit enable synchronizing the push and pop. We explain BQ

operation separately for the two possible scenarios: early push and

late push.

3.3.1. Early Push. The early push scenario is depicted in Figure 7,

left-hand side.

When the push instruction is fetched, it is allocated the entry at

the BQ tail. It initializes its entry by clearing the pushed and popped

bits. The push instruction keeps its BQ index with it as it flows down

the pipeline 3. When the push finally executes, it checks the popped

bit in its BQ entry. It sees that the popped bit is still unset. This

means the scenario is early push, i.e., the push executed before its pop

counterpart was fetched. Accordingly, the push writes the predicate

into its BQ entry and sets the pushed bit to signal this fact.

Later, the pop instruction is fetched. It is allocated the entry at the

BQ head, which by the ISA ordering rules must be the same entry

as its push counterpart. It checks the pushed bit. It sees that the

pushed bit is set, therefore, it knows to use the predicate that was

pushed earlier. The pop executes right away, either branching or not

branching according to the predicate.

3.3.2. Late Push. The late push scenario is depicted in Figure 7,

right-hand side.

In this scenario, the pop is fetched before the push executes. As

before, when the pop is fetched, it checks the pushed bit to see if the

push executed. In this case the pushed bit is still unset so the pop

knows that a predicate is not available. There are two options: (1)

stall the fetch unit until the push executes, or (2) predict the predicate

using the branch predictor. Our design implements option 2 which

we call a speculative pop. When the speculative pop reaches the

rename stage, a checkpoint is taken. (This is on top of the baseline

core’s branch checkpointing policy, which we thoroughly explore in

Section 5.) Unlike conventional branches, the speculative pop cannot

confirm its prediction – this task rests with the late push instruction.

Therefore, the speculative pop writes its predicted predicate and

checkpoint id into its BQ entry, and signals this fact by setting the

popped bit. This information will be referenced by the late push to

confirm/disconfirm the prediction and initiate recovery if needed.

When the push finally executes, it notices that the popped bit is

set in its BQ entry, signifying a late push. The push compares its

predicate with the predicted one in the BQ entry. If they don’t match,

the push initiates recovery actions using the checkpoint id that was

placed there by the speculative pop. Finally, the push writes the

predicate into its BQ entry and sets the pushed bit.

Empirically, late pushes are very rare in our CFD-modified bench-

marks, less than 0.1% of pops (one per thousand). When fully utilized

by software, a 128-entry BQ separates a push and its correspond-

ing pop by 127 intervening pushes. This typically corresponds to a

push/pop separation of several hundreds of instructions, providing

ample time for a push to execute before its pop counterpart is fetched.

3.3.3. BQ Length. The BQ length (occupancy) is the sum of two

components:

1. net_push_ctr: This is the net difference between the number of

pushes and pops retired from the core up to this point in the

program’s execution. The ISA push/pop ordering rules guarantee

this count will always be greater than or equal to zero and less

than or equal to BQ size. This counter is incremented when a

push retires and decremented when a pop retires.

2. pending_push_ctr: This is the number of pushes in-flight in the

window, i.e., the number of fetched but not yet retired pushes. It is

incremented when a push is fetched, decremented when a push is

retired (because it now counts against net_push_ctr), and possibly

adjusted when a mispredicted branch resolves (see next section).

BQ length must be tracked in order to detect the BQ stall condition.

In particular, if BQ length is equal to BQ size and the fetch unit

3Having the BQ index in the push instruction’s payload enables it to reference its
BQ entry later, when it executes OOO. This is a standard technique for managing
microarchitecture FIFOs such as the reorder buffer and load and store queues.
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Execute ACCESS my BQ entry:
if (popped == true) {
   verify predicted predicate
   if misp. recover early
}
push predicate
pushed = true

Fetch ALLOCATE BQ entry (tail)

Fetch ACCESS BQ entry (head):
if (pushed == true) {  //hit
   use pushed predicate
}
else {                 //miss
   use branch predictor
   record predicted predicate
   popped = true
}

Rename if (miss) {
   take checkpoint
   record chkpt_id in BQ
    for use by late push
}

PUSH BQ POP BQ
Ti

m
e

PUSH BQ

Execute ACCESS my BQ entry:
if (popped == true) {
   verify predicted predicate
   if misp. recover early
}
push predicate
pushed = true

Fetch ALLOCATE BQ entry (tail)

POP BQ

Fetch ACCESS BQ entry (head):
if (pushed == true) {  //hit
   use pushed predicate
}
else {                 //miss
   use branch predictor
   record predicted predicate
   popped = true
}

Rename if (miss) {
   take checkpoint
   record chkpt_id in BQ
    for use by late push
}

Ti
m

e

Figure 7: BQ operation. Two scenarios are shown: early push (left, common) and late push (right, uncommon).

fetches a push instruction, the fetch unit must stall. Note that the

stall condition is guaranteed to pass for a bug-free program. The ISA

push/pop ordering rules guarantee that there are BQ size in-flight pop

instructions prior to the stalled push. The first one of these pops to

retire will unstall the stalled push.

3.3.4. BQ Recovery. The core may need to roll back to a branch

checkpoint, in the case of a mispredicted branch, or the committed

state, in the case of an exception. In either case, the BQ itself needs

to be repaired.

1. Preparing for misprediction recovery: Each branch checkpoint is

augmented with state needed to restore the BQ to that point in the

program execution. Namely, in addition to the usual checkpointed

state (Rename Map Table, etc.), each checkpoint also takes a

snapshot of the BQ head and tail pointers. This is a modest

amount of state compared to other checkpointed state.

2. Preparing for exception recovery: Exception recovery requires

maintaining committed versions of the BQ head and tail pointers,

called arch_head and arch_tail. Arch_head and arch_tail are

incremented when pops and pushes retire, respectively.

When there is a roll-back, the BQ head and tail pointers are restored

from the referenced checkpoint (on a misprediction) or their com-

mitted versions (on an exception), and all popped bits between the

restored head and tail are cleared. Moreover, pending_push_ctr (the

second component of BQ length) is reduced by the number of entries

between the tail pointers before and after recovery (this corresponds

to the number of squashed push instructions).

3.3.5. Branch Target Buffer. Like all other branch types,

Branch_on_BQ is cached in the fetch unit’s Branch Target Buffer

(BTB) so that there is no penalty for a taken Branch_on_BQ as long

as the BTB hits. The BTB’s role is to detect branches and provide

their taken-targets, in the same cycle that they are being fetched

from the instruction cache. This information is combined with the

taken/not-taken prediction (normal conditional branch) or the popped

predicate (Branch_on_BQ) to select either the sequential or taken tar-

get. As with other branches, a BTB miss for a taken Branch_on_BQ

results in a 1-cycle misfetch penalty (detected in next cycle).

Predicates for potential Branch_on_BQ instructions in the current

fetch bundle are obtained from the BQ in parallel with the BTB

access, because these predicates are always at consecutive entries

starting at the BQ head.

3.4. Optimization

This section describes an optimization on top of CFD, that can reduce

CFD instruction overheads in some cases. We observed that values

used to compute the predicate in the first loop are used again, thus

recomputed, inside the control-dependent region in the second loop.

A simple way to avoid duplication is to communicate values from the

first loop to the second loop using an architectural value queue (VQ)

and VQ push/pop instructions. We call this optimization CFD+.

An interesting trick to leverage existing instruction issue and reg-

ister communication machinery in a superscalar core, is to map the

architectural value queue onto the physical register file. This is fa-

cilitated by the VQ renamer in the rename stage. The VQ renamer

is a circular buffer with head and tail pointers. Its entries contain

physical register mappings instead of values. The mappings indicate

where the values are in the physical register file. A VQ push is allo-

cated a destination physical register from the freelist. Its mapping is

pushed at the tail of the VQ renamer. A VQ pop references the head

of the VQ renamer to obtain its source physical register mapping.

The queue semantics ensure the pop links to its corresponding push

through its mapping. In this way, after renaming, VQ pushes and

pops synchronize in the issue queue and communicate values in the

execution lanes the same way as other producer-consumer pairs. The

physical registers allocated to push instructions are freed when the

pops that reference them retire.

4. CFD Compiler Implementation

We have implemented a compiler pass to perform the CFD code

transformation automatically. The pass needs a list of hard-to-predict

branches derived from profiling or the programmer as input, and

it transforms the inner-loop containing the branch into CFD form.

We will refer to the decoupled first and second loops created by the

compiler pass as the Producer and Consumer loops, respectively.

Algorithm 1 shows the overall CFD compiler implementation. We

start with the CFD function which takes as input a loop and the

hard-to-predict predicates that are contained within the loop.

The first steps of the algorithm are inspired by the Decoupled

Software Pipelining (DSWP) algorithm presented by Ottoni et al.
[25]. In particular, we borrow their strategy of first constructing a

full Program Dependence Graph (PDG) and then consolidating the

strongly connected components (SCCs) into single nodes in the graph

to create a directed acyclic graph (Lines 2-3). If the hard-to-predict

branch forms the root of a control-dependent region which can be

334

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 03,2025 at 23:32:41 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Overall CFD algorithm.

1: function CFD(Loop l, Predicate p)
2: pdg← BuildPDG(l)
3: dag← ConsolidateSCCs(pdg)
4: MarkPredicateSlices(dag,p)
5: AssignStmtsToLoops(dag)
6: if non-empty CFD region found in dag then
7: producer← l
8: consumer← CloneLoop(l)
9: ConnectLoops(producer,consumer)

10: for all control flow decoupled branches, b do
11: Insert Push_BQ(Predicate(b)) in producer just before b
12: Replace b in consumer with Branch_on_BQ
13: end for
14: for all r, def’ed in producer and used in consumer do
15: Insert push in producer at definition of r
16: Replace definition of r in consumer with "r=Pop_VQ()"
17: end for
18: Remove code from producer assigned only to consumer
19: Remove code from consumer assigned only to producer
20: Final Dead and Redundant Code Elimination
21: end if
22: end function

isolated into one or more SCCs, then the branch is separable. We use

the consolidated graph to assign nodes to the Producer and Consumer

loops. Otherwise, if the control-dependent code is part of the same

SCC as the loop’s exit condition, then no decoupling may be possible

(and our algorithm gives up).

In Line 4, we call the MarkPredicateSlices subroutine which car-

ries out the following operations. For each predicate in the loop, it

finds its corresponding node in the dag. All nodes in its forward

slice (all immediate successors and those reached through a depth-

first search (DFS)) are marked as belonging to the Consumer. All

nodes in its backward slice and itself (all immediate predecessors and

those reached through a reverse DFS) are marked as belonging to the

Producer.

At this point, some nodes in dag have been scheduled among

the Producer and Consumer loops, but many nodes may remain un-

scheduled. For example, any node that is both control independent

and data independent from marked nodes will need to be assigned a

loop. AssignStmtsToLoops, on line 5, completes the task of schedul-

ing.

AssignStmtsToLoops. This function simultaneously solves sev-

eral problems. First, it must create a correct schedule. A statement

must be placed in the Producer if any dependent instruction has al-

ready been placed in the Producer. Similarly, a statement must be

placed in the Consumer if any statement it depends upon has already

been placed in the Consumer. These rules must always be enforced.

Fortunately, some flexibility does exist that can be leveraged for opti-

mization. For example, if a statement produces no side-effects, then

we can optionally schedule it in both loops. This flexibility allows to

choose between replicating work and communicating values depend-

ing on which is more efficient. We use a simple heuristic to solve

both problems at once as shown in Algorithm 2.

In lines 2-7, each node is initially marked as NoReplicate to mean

that it must be scheduled in only one loop. Next, we figure out if

the node has any side-effects (stores or function calls) which would

prevent replication, and if it does not, it is marked MaybeReplicate

to mean that we can possibly schedule it in both loops.

The second for-all loop visits all nodes in topological order, which

means we must visit a node’s predecessors in an earlier iteration. This

makes it easy to reason about predecessors since they have already

been processed.

In lines 9-15, we assign a node to a loop if it was not assigned

one in MarkPredicateSlices. Note, we prefer to place a node in

the Producer unless forced to place it in the Consumer. Once we

Algorithm 2 Assign all statements to the Producer and/or Consumer

loops.

1: function ASSIGNSTMTSTOLOOPS(PDG dag)
2: for all n ∈ dag do
3: Mark n as NoReplicate
4: if n has no side-effects then
5: Mark n as MaybeReplicate
6: end if
7: end for
8: for all n ∈ dag, in topological order do
9: if n has not been placed in a loop then

10: if any predecessor of n is in the Consumer then
11: place n in the Consumer
12: else
13: place n in the Producer
14: end if
15: end if
16: if n placed in Producer and n marked MaybeReplicate then
17: if n communicates to Consumer
18: and EstCost(n) > CommThreshold then
19: n marked NoReplicate (values will be communicated)
20: else
21: n marked Replicate
22: end if
23: end if
24: end for
25: end function

know where the node will be scheduled, we need to determine if it

is better to communicate or replicate any values it produces for the

Consumer loop. Lines 16-23 form this judgement. First, we check

to make sure that the node is in the Producer and that it is marked

MaybeReplicate. To determine if we should replicate, we compare

the estimated runtime cost (EstCost) of the node against a minimal

threshold that determines when communication will be cheaper. If

the node is expensive to execute, we mark the node as NoReplicate

which means that any register it defines must be communicated to

the Consumer loop. Otherwise, we mark the node as Replicate and

it will be computed in both loops. For all of our results, we use

CommThreshold=2.

Final Code Generation. If a non-empty CFD region is found

(line 6 of Algorithm 1), we finalize the loops and generate the code.

This process is shown in lines 7-20. First, we clone the loop (line 8)

and use the original as the Producer and the clone as the Consumer.

Next, we connect the loops so that the program will first execute the

Producer and then the Consumer. This entails redirecting the exits

of the Producer to the pre-header of the Consumer. The Consumer’s

exits, since they are a clone of the original loop, remain unchanged.

Also, our implementation works on an SSA graph, so we also fix the

phi-nodes at the pre-header of the Consumer loop and exits of the

Consumer loop. Also while connecting the loops, we perform the

loop strip mining transformation described in Section 3.2. This is

easily accomplished by inserting a new outer loop to surround both

the Producer and Consumer and by forcing a break from each loop

every BQ size iterations. Early breaks/returns are handled by keeping

a loop count in the Producer and passing that count to the Consumer

for it to use as its trip count.

Next, we insert the necessary predicate and value communication.

In lines 10-13, we visit all predicates that are computed in the Pro-

ducer loop and communicated to the Consumer loop. We insert a

Push_BQ in the Producer and place a Branch_on_BQ in the Con-

sumer in place of the original branch. This loop will always handle

the original hard-to-predict predicates but additional predicates may

also be included if the partitioning algorithm places a predicate in

the Producer that has control-dependent instructions in the Consumer.

Ideally, the partitioning algorithm should limit the frequency of this

case.

In lines 14-17, we insert value communication between the pro-
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AMD Bobcat ARM Cortex A15 IBM Power6 INTEL Pentium 4
Fetch-to-Execute 13 15 13 20

Table 2: Minimum fetch-to-execute latency in cycles.

ducer and consumer loops. Any register that is defined in the Producer

and used in the Consumer must be communicated. The push is placed

at the definition in the Producer and the pop is placed at the same

point (the cloned register definition) in the Consumer.

Finally, the Producer and Consumer code is cleaned up. All instruc-

tions assigned the Consumer partition are removed from the Producer

loop and vice versa for the Consumer loop. Then, a final dead and

redundant code elimination pass eliminates other inefficiencies, like

empty basic blocks and useless control-flow paths.

5. Evaluation Environment

The microarchitecture presented in Section 3 is faithfully modeled in

a detailed execution-driven, execute-at-execute, cycle-level simulator.

The simulator runs Alpha ISA binaries. Recall, in Section 2, we

used x86 binaries to locate hard-to-predict (easy-to-predict) branches,

owing to our use of PIN. Our collected data confirms that hard-to-

predict (easy-to-predict) branches in x86 binaries are hard-to-predict

(easy-to-predict) in Alpha binaries. The predictability is influenced

far more by program structure than the ISA that it gets mapped to.

Section 2 described the four benchmark suites used. All bench-

marks are compiled to the Alpha ISA using gcc with -O3 level opti-

mization. (We built gcc from scratch using the trunk SVN repository

in the gcc-4 development line.) When applied, if-conversion and CFD

modify the benchmark source. The modified benchmarks are verified

by compiling natively to the x86 host, running them to completion,

and verifying outputs (software queues are used to emulate the CFD

queues).

Energy is measured using McPAT [19], which we augmented with

energy accounting for the BQ (CFD, CFD+) and VQ (CFD+). Per-

access energy for the BQ and VQ is obtained from CACTI tagless

rams, and every read/write access is tracked during execution.

The parameters of our baseline core are configured as close as

possible to those of Intel’s Sandy Bridge core [35]. The baseline core

uses the state-of-art ISL-TAGE predictor [28]. Additionally, in an ef-

fort to find the best-performing baseline, we explored the design space

of misprediction recovery policies, including checkpoint policies (in-

order vs. OoO reclamation, with confidence estimator [13] versus

without) and number of checkpoints (from 0 to 64). We confirmed

that: (1) An aggressive policy (OoO reclamation, confidence-guided

checkpointing) performs best. (2) The harmonic mean IPC, across

all applications of all workloads, levels off at 8 checkpoints.

The fetch-to-execute pipeline depth is a critical parameter as it

factors into the branch misprediction penalty. Table 2 shows the

minimum fetch-to-execute latency (number of cycles) for modern

processors from different vendors. The latency ranges from 13 to

20 cycles [6, 17, 18, 7]. We conservatively use 10 cycles for this

parameter. We also perform a sensitivity study with this parameter in

Section 6.1.1.

Table 3 shows the baseline core configuration. The checkpoint

management policy and number of checkpoints remain unchanged

throughout our evaluation, even for studies that scale other window

resources.

6. Results and Analysis

To evaluate the impact of our work on the top contributors of branch

mispredictions in the targeted applications, we identify the regions to

Branch Prediction BP: 64KB ISL-TAGE predictor  
       - 16 tables: 1 bimodal, 15 partially-tagged. In addition to, IUM, SC, LP. 
       - History lengths: {0, 3, 8, 12, 17, 33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, 1930} 
 
BTB: 4K entries, 4-way set-associative 
RAS: 64 entries 

Memory Hierarchy Block size: 64B 
Victim caches: each cache has a 16-entry FA victim cache 
L1: split, 64KB each, 4-way set-associative, 1-cycle access latency 
L2: unified, private for each core, 512KB, 8-way set-associative, 20-cycle access latency 
     - L2 stream prefetcher: 4 streams, each of depth 16 
L3: unified, shared among cores, 8MB, 16-way set-associative, 40-cycle access latency 
Memory: 200-cycle access latency 

Fetch/Issue/Retire Width 4 instr./cycle 

ROB/IQ/LDQ/STQ 168/54/64/36 (modeled after Sandy Bridge) 

Fetch-to-Execute  Latency 10-cycle 

Physical RF 236 

Checkpoints 8, OoO reclamation, confidence estimator (8K entries, 4-bit resetting counter, gshare index) 

CFD • BQ: 96B   (128 6-bit entries) 
• VQ renamer: 128B (128 8-bit entries) 

Table 3: Baseline core configuration.

Application Skip (B) Overhead
CFD CFD+ Compiler (CFD+)

astar(BigLakes) 11.61 1.86 - -

astar(Rivers) 0.53 1.81 - -

eclat 7.10 1.28 1.12 1.14

gromacs 0.74 1.03 1.02 -

jpeg-compr 0.00 1.08 1.06 1.09

mcf 0.70 1.15 1.14 1.20

namd 2.17 1.01 - -

soplex(pds) 9.94 1.02 1.02 1.04

soplex(ref) 49.25 0.90 - 1.41

tiff-2-bw 0.00 1.00 - 1.00

Application Skip (B) If-Conversion
clustalw 0.04 1.0

fasta 0.00 1.0

gsm 0.00 1.03

hmmer 0.02 1.0

jpeg-decompr 0.00 1.0

quick-sort 0.19 1.06

sjeng 0.17 1.02

Table 4: Application skip distances and overheads.

be simulated as follows. Given the set of top mispredicting branches

and the functions in which they reside, we fast-forward to the first

occurrence of the first encountered function of interest, warm up for

10M retired instructions, and then simulate for a certain number of

retired instructions. When simulating the unmodified binary for the

baseline, we simulate 100M retired instructions. When simulating

binaries modified for CFD or if-conversion, we simulate as many

retired instructions as needed in order to perform the same amount of

work as 100M retired instructions of the unmodified binary. Table 4

shows the fast-forward (skip) distances of the applications and the

overheads incurred by the modified binaries. Overhead is the factor by

which retired instruction count increases (e.g., 1.5 means 1.5 times)

for the same simulated region. In all cases except SOPLEX(ref), the

modified binaries are simulated for more than 100M retired instruc-

tions4. Speedup is calculated as: cyclesbaseline/cyclesCFD, where

cyclesbaseline is the number of cycles to simulate 100M instructions

of the unmodified binary and cyclesCFD is the number of cycles to

simulate overhead_factor x 100M instructions of the CFD-modified

binary which corresponds to the same simulated region.

Table 5 shows detailed information about the modified source code,

most importantly: (1) the affected branches and (2) the fraction of

time spent in the functions containing these branches, as found by

gprof-monitored native execution5.

4SOPLEX(ref) is an exception. The original loop contains many variables whose
live ranges overlap, increasing pressure on architectural registers and resulting in many
stack spills/fills. CFD’s two loops reduce register contention by virtue of some variables
shifting exclusively to the first or second loop, eliminating most of the stack spills/fills,
resulting in fewer retired instructions.

5The fraction of time spent in the function(s) of interest is found using gprof while
running the x86 binaries (compiled using gcc with -O3) to completion 3 times on an idle,
freshly rebooted Sandy Bridge Processor running in single-user mode.
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Application File name Function Time spent Loop line Branch line Loop strip mining Communicate values
astar Way_.cpp makebound2 20% (BigLakes) 57 62-63, 79-80 Y N

47% (Rivers) 96-97, 113-114

130-131, 147-148

164-165, 181-182

eclat eclat.cc get_intersect 46% 205 207, 211 Y Y

gromacs ns.c ns5_core 11% 1503 1507, 1508, 1510 N Y

jpeg-compr jcdctmgr.c forward_DCT 83% 322 251 N Y

jcphuf.c encode_mcu_AC_first 488 489

encode_mcu_AC_refine 662 663, 686 N

mcf pbeampp.c primal_bea_mpp 39% 165 171 Y Y

namd ComputeNonbondedBase.h ComputeNonbondedUtil 5% 397 410 Y N

soplex spxsteeppr.cc selectLeaveX 5% (pds) 291 295 Y Y

selectEnterX 17% (ref) 449 452 N

tiff-2-bw tif_lzw.c LZWDecode 100% 377 411 N N

Application File name Function Time spent Branch Line
clustalw pairalign.c forward_pass 98% 384, 388, 391-393

reverse_pass 436, 440, 443-444

diff 526-527, 529-530

555-556, 558-559

fasta dropnfa.c FLOCAL_ALIGN 47% 1085-1086, 1096-1097

1099-1101, 1104

gsm add.c gsm_div 49% 228

long_term.c Calculation_of_the_LTP_parameters 152

hmmer fast_algorithms.c P7Viterbi 100% 135-137, 142, 147

jpeg-decompr jdhuff.c HUFF_EXTEND 50% 372

jdphuff.c 207

quick-sort qsort_large.c compare 43% 26

sjeng moves.c make 10% 1305

search.c remove_one 515

Table 5: Details of modified code: CFD (left), If-Conversion (right).
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Figure 8: Performance and energy impact of CFD.

6.1. CFD

6.1.1. Manual CFD. We manually apply then evaluate: CFD and

CFD+. Figure 8a shows that CFD increases performance by up to

41% and 13% on average, while CFD+ increases performance by up

to 43% and 14% on average 6.

Figure 8b shows that CFD reduces energy consumption by up to

41% and 17% on average, while CFD+ reduces energy consumption

by up to 41% and 19% on average.

Figure 9 shows speedup with CFD as the minimum fetch-to-

execute latency is varied from five to twenty cycles. As expected,

CFD gains increase as the pipeline depth increases. The baseline

IPC worsens with increasing depth, whereas CFD’s eradication of

mispredicted branches makes IPC insensitive to pipeline depth. Thus,

as is true with better branch prediction, CFD has the added benefit

of exacting performance gains from frequency scaling (i.e., deeper

pipelining).

6The time spent in the functions of interest (shown in Table 5) along with the presented
speedups, can be used in Amdahl’s law to estimate the speedup of the whole benchmark.
For example, ASTAR(Rivers) is sped up by 34% (s=1.34) in its CFD region which
accounts for 47% of its original execution time (f=0.47); thus, we estimate 14% (1.14)
speedup overall.
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Figure 9: Varying the minimum fetch-to-execute latency.
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Figure 10: CFD speedups as we scale the processor structures.

To project the gains of CFD+ on future processor generations, we

evaluate it under larger instruction windows. Figure 10 shows the

projection of CFD gains on two additional configurations labeled in

the graph with ROB size7. The average performance improvement

increases to 20%.

6.1.2. Automated CFD. We present results of our CFD compiler

pass for six applications: ECLAT, JPEG, MCF, SOPLEX (pds and

ref), and TIFF-2-BW. Figure 11 compares the performance improve-

ments and energy savings of manual CFD+ vs. automated CFD+.

The two approaches yield close results for five of the six applications.

For SOPLEX(ref), the compiler was unable to register-promote a

global variable accessed within the first loop, causing it to be repeat-

edly loaded within the loop, increasing the instruction overhead and

decreasing speedup. The employed alias analysis cannot confirm that

the global variable is not stored to by a store within the loop. Inspec-

tion of the whole benchmark gives us confidence that interprocedural

alias analysis would be able to confirm safety of register-promoting

the global variable, because its address is never taken.

As for the other four benchmarks:

1. NAMD, GROMACS: We simply have not yet attempted these

7[ROB,IQ,LDQ,STQ,PRF] are as follows for the two additional configurations: [256,
82, 96, 54, 324] and [384, 122, 216, 82, 452]. Other parameters match those of the
baseline, shown in Table 3 in Section 5.
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Figure 11: Comparison of manual and automated CFD.

benchmarks but do not anticipate difficulty. NAMD was de-

prioritized due to low MPKI and we recently added GROMACS

to the mix.

2. ASTAR (Rivers and Biglakes): This benchmark has complexity

that is not yet supported by our compiler pass: (1) It has a partially

separable branch. Note that all other targeted benchmarks have

only totally separable branches. (2) The control-dependent instruc-

tion in the branch’s backward slice is a store, hence, if-converting

the backward slice requires the transformation described in Sec-

tion 2.2. (3) It has two nested, separable branches (one partially

separable and one totally separable). We explore this complexity,

in depth, in Section 6.1.3.

6.1.3. ASTAR Case Study. One of the most interesting cases we

encountered in this work is ASTAR. Figure 12 shows a simplified

version of ASTAR’s original and decoupled loops.

ASTAR has a few challenging features that require special care

when decoupling its loop. First, there are two nested hard-to-predict

branches, with the inner predicate depending on a memory reference

that is only safe if the outer predicate is true (lines 3 and 4 of original

loop). Second, there is a short loop-carried dependency between the

outer predicate and one of its control-dependent instructions (line 7

of original loop): this is a partially separable branch.

These challenges are naturally handled by CFD. The nested con-

ditions are handled by decoupling the original loop into three loops.

The first loop evaluates the outermost condition. The second loop,

guarded by the outermost condition, evaluates the combined condi-

tion. The third loop guards the control-dependent instructions by the

overall condition. The loop-carried dependency is handled by hoist-

ing then if-converting the short loop-carried dependencies (shown in

lines 12 and 13 of the second loop).

Due to the high percentage of branch mispredictions that are fed

by the L3 cache and main memory, we expect a significant increase

in performance gains when we apply CFD to ASTAR under large

instruction windows. Figure 13 shows the effective IPC of the un-

modified binaries (baseline) and the CFD binaries, as we scale the

window size. Our expectations are confirmed for CFD.

6.2. If-Conversion
For completeness, we manually apply if-conversion (using condi-

tional moves) to branches with small control-dependent regions (in-

dividual and nested hammocks). Figure 14 shows that if-conversion

increases performance up to 76% and 23% on average, and reduces

energy consumption by up to 35% and 16% on average.

Note that there is no overlap between the if-converted and control-

flow decoupled applications.

 Original Loop 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

for ( … ) {                                                     
  index1=index-yoffset-1;                                                         // 8 instances of this body exist 
  if (waymap[index1].fillnum != fillnum)                              // hard-to-predict branch (outer predicate) 
    if (maparp[index1] == 0) {                                                 // hard-to-predict branch (inner predicate) 
      bound2p[bound2l]=index1; 
      bound2l++; 
      waymap[index1].fillnum=fillnum;                                     // loop-carried dependency 
      waymap[index1].num=step; 
    } 
} 

 Decoupled Loops 

 
1 
2 
3 
4 
5 
 

First Loop 
for ( … ) { 
  index1=index-yoffset-1;  
  pred = (waymap[index1].fillnum != fillnum);                     // the outer predicate is computed 
  Push_BQ(pred);                                                                     // then pushed onto the BQ 
} 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Second Loop 
for ( … ) {  
  Branch_on_BQ{                                                                    // pop the outer predicate 
      index1=index-yoffset-1; 
      output = waymap[index1].fillnum;  
       pred = (output != fillnum) & (maparp[index1] == 0);  // evaluate the overall predicate 
      Push_BQ(pred);                                                                 // push the overall predicate 
      CMOV(output, fillnum, pred);                                           // conditional move        
      waymap[index1].fillnum = output;                                     // always  store  
  } 
  else Push_BQ(0);                                                                   // needed since we always pop in the 3rd loop  
} 

 
17 
18 
19 
20 
21 
22 
23 
24 

Third Loop 
for ( … ) {  
  Branch_on_BQ{                                                                    // pop the overall predicate 
      index1=index-yoffset-1; 
      bound2p[bound2l]=index1; 
      bound2l++; 
      waymap[index1].num=step; 
  } 
} 

Figure 12: ASTAR source code.
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Figure 14: Impact of if-conversion.
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7. Related Work

There has been a lot of work on predication and branch pre-execution.

We focus on the most closely related work.

Various ingenious techniques for predication have been proposed,

such as: software predication [2], predication using hyperblocks [22],

dynamic hammock predication [16], wish branches [15], dynamic

predication based on frequently executed paths [14], and predicate

prediction [26], to name a few. In this paper, predication (i.e., if-

conversion) is a key enabling mechanism for applying CFD to par-

tially separable branches.

CFD resembles branch pre-execution [11, 36, 27, 8, 9]. The key

difference is that CFD preserves the simple sequencing model of

conventional superscalar processors: in-order instruction fetching

of a single thread. This is in contrast with pre-execution which re-

quires thread contexts or cores, and a suite of mechanisms for forking

helper threads (careful timing, value prediction, etc.) and coordi-

nating them in relation to the main thread. With CFD, a simplified

microarchitecture stems from software/hardware collaboration, sim-

ple ISA push/pop rules, and recognition that multiple threads are not

required for decoupling.

We now discuss several branch pre-execution solutions in more

detail.

Farcy et. al. [11] identified backward slices of applicable branches,

and used a stride value predictor to provide live-in values to the

slices and in this way compute predictions several loop iterations

in advance. The technique requires a value predictor and relies on

live-in value predictability. CFD does not require either.

Zilles and Sohi [36] proposed pre-executing backward slices of

hard-to-predict branches and frequently-missed loads using spec-
ulative slices. Fork point selection, construction and speculative

optimization of slices were done manually. Complex mechanisms are

needed to carefully align branch predictions generated by speculative

slices with the correct dynamic branch instances. Meanwhile, CFD’s

Push_BQ/Branch_on_BQ alignment is far simpler, always delivers

correct predicates, and has been automated in the compiler.

Roth and Sohi [27] developed a profile-driven compiler to extract

data-driven threads (DDTs) to reduce branch and load penalties.

The threads are non-speculative and their produced values can be

integrated into the main thread via register integration. Branches

execute more quickly as a result. Similarly, CFD is non-speculative

and automation is demonstrated in this paper. CFD interacts directly

with the fetch unit, eliminating the entire branch penalty. It also does

not have the microarchitectural complexity of register integration.

The closest aspect is the VQ renamer, but the queue-based linking of

pushes and pops via physical register mappings is simpler, moreover,

it is an optional enhancement for CFD.

Chappell et al. [8] proposed Simultaneous Subordinate Mi-

crothreading (SSMT) as a general approach for leveraging unused

execution capacity to aid the main thread. Originally, programmer-

crafted subordinate microthreads were used to implement a large,

virtualized two-level branch predictor. Subsequently, an automatic

run-time microthread construction mechanism was proposed for pre-

executing branches [9].

In the Branch Decoupled Architecture (BDA), proposed by Tyagi

et al. [33], the fetch unit steers copies of the branch slice to a dedi-

cated core as the unmodified dynamic instruction stream is fetched.

Creating the pre-execution slice as main thread instructions are being

fetched provides no additional fetch separation between the branch’s

backward slice and the branch, conflicting with more recent evidence

of the need to trigger helper threads further in advance, e.g., Zilles

and Sohi [36]. Without fetch separation, the branch must still be pre-

dicted and its resolution may be marginally accelerated by a dedicated

execution backend for the slice.

Mahlke et al. [21] implemented a predicate register file in the

fetch stage, a critical advance in facilitating software management

of the fetch unit of pipelined processors. The focus of the work,

however, was compiler-synthesized branch prediction: synthesizing

computation to generate predictions, writing these predictions into

the fetch unit’s predicate register file, and then having branches

reference the predicate registers as predictions. The synthesized

computation correlates on older register values because the branch’s

source values are not available by the time the branch is fetched,

hence, this is a form of branch prediction. Mahlke et al. alluded to

the theoretical possibility of truly resolving branches in the fetch unit,

and August et al. [3] further explored opportunities for such early-
resolved branches: cases where the existing predicate computation is

hoisted early enough for the consuming branch to resolve in the fetch

unit. These cases tend to exist in heavily if-converted code such as

hyperblocks as these large scheduling regions yield more flexibility

for code motion. Quinones et al. [26] adapted the predicate register

file for an OOO processor, and in so doing resorted to moving it

into the rename stage so that it can be renamed. Thus, the renamed

predicate register file serves as an overriding branch predictor for

the branch predictor in the fetch unit. CFD’s branch queue (BQ)

is innovative with respect to the above, in several ways: (1) The

BQ provides renaming implicitly by allocating new entries at the

tail. This allows for hoisting all iterations of a branch’s backward

slice into CFD’s early loop, whereas it is unclear how this can be

done with an indexed predicate register file as the index is static. (2)

Another advantage is accessing the BTB (to detect Branch_on_BQ

instructions) and BQ in parallel, because we always examine the BQ

head (Section 3.3.5). In contrast, accessing a predicate register file

requires accessing the BTB first, to get the branch’s register index,

and then accessing the predicate register file.

NSR [5] does not predict branches at all, rather, a branch waits

in the fetch stage for an enqueued outcome from the execute stage.

To avoid fetch stalls, a few instructions must be scheduled by the

programmer or compiler in between the branch and its producer

instruction. This is like branch delay slots except that, because the

fetch unit can stall, no explicit NOPs need to be inserted when no

useful instructions can be scheduled. NSR is a 5-stage in-order

pipeline so its static scheduling requirement is of similar complexity

to branch delay slot scheduling. CFD-class branches require our

“deep” static scheduling technique (for in-order and out-of-order

pipelines, alike) which in turn requires CFD’s ISA, software, and

hardware support.

Decoupled access/execute architectures [30, 4] are alternative im-

plementations of OOO execution, and not a technique for hiding the

fetch-to-execute penalty of mispredicted branches. DAE’s access and

execute streams, which execute on dual cores, each have a subset of

the original program’s branches. To keep them in sync on the same

overall control-flow path, they communicate branch outcomes to each

other through queues. However, each core still suffers branch penal-

ties for its subset of branches. Bird et al. took DAE a step further

and introduced a third core for executing all control-flow instructions,

the control processor (CP). CP directs instruction fetching for the

other two cores (AP and DP). CP depends on branch conditions cal-

culated in the DP, however. These loss-of-decoupling (LOD) events
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are equivalent to exposing the fetch-to-execute branch penalty in a

modern superscalar processor.

The concept of loop decoupling has been applied in compilers for

parallelization. For instance, decoupled software pipelining [25, 34,

12] parallelizes a loop by creating decoupled copies of the loop on two

or more cores that cooperate to execute each iteration. All predicates

in the backward slices of instructions in the decoupled loops that are

not replicated must be communicated. However, predicates are not

sent directly to the instruction fetch unit of the other core. Rather, the

predicates are forwarded as values through memory or high speed

hardware queues and evaluated in the execution stage by a branch

instruction.

8. Conclusion
In this paper, we explored the control-flow landscape by characteriz-

ing branches with high misprediction contributions in four benchmark

suites. We classified branches based on the sizes of their control-

dependent regions and the nature of their backward slices (predicate

computation), as these two factors give insight into possible solutions.

This exercise uncovered an important class of high misprediction

contributors, called separable branches. A separable branch has a

large control-dependent region, too large for if-conversion to be prof-

itable, and its backward slice does not contain any of the branch’s

control-dependent instructions or contains just a few. This makes

it possible to separate all iterations of the backward slice from all

iterations of the branch and its control-dependent region. CFD is

a software/hardware collaboration for exploiting separability with

low complexity and high efficacy. The loop containing the separable

branch is split into two loops (software): the first contains only the

branch’s predicate computation and the second contains the branch

and its control-dependent instructions. The first loop communicates

branch outcomes to the second loop through an architectural queue

(ISA). Microarchitecturally, the queue resides in the fetch unit to drive

timely, non-speculative fetching or skipping of successive dynamic

instances of the control-dependent region (hardware).

Measurements of native execution of the four benchmark suites

show separable branches are an important class of branches, compara-

ble to the class of branches for which if-conversion is profitable both

in terms of number of static branches and MPKI contribution. CFD

eradicates mispredictions of separable branches, yielding significant

time and energy savings for regions containing them.
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