
A Study of Slipstream Processors

Zach Purser Karthik Sundaramoorthy Eric Rotenberg
North Carolina State University

Department of Electrical and Computer Engineering
Engineering Graduate Research Centel; Campus Box 7914, Raleigh, NC 27695
{zrpursel; ksundal; ericro} @ ece. ncsu. edu, www. tinker: ncsu. edu/ericro/slipstream

Abstract

A slipstream processor reduces the length of a running
program by dynamically skipping computation non-essen-
rial for correct forward progress. The shortened program
runs faster as a result, but it is speculative. So a second,
unreduced copy of the program is run concurrently with
and slightly behind the reduced copy - leveraging a chip
multiprocessor (CMP) or simultaneous multithreading
(SMT). The short program passes its control and data Jlow
outcomes to the full program f o r checking. And as it
checks the short program, the full program fetches and
executes more eficiently due to having an accurate picture
of the future. Both programs are sped up: combined, they
outperform conventional non-redundant execution.

We study slipstreaming with the following key results.
A 12% average performance improvement is achieved
by harnessing an otherwise unused, additional proces-
sor in a C M P Slipstreanling using two small supersca-
lar cores often achieves similar instructions-per-cycle
as one large superscalar core, but with a potentially
faster clock and a more Jlexible architecture.
A majority of the benchmarks show SigniJcant reduc-
tion in the short program (about 50%). Slipstreaming
using an &way SMT processor improves their peifor-
mance from 10% to 20%.
For some benchmarks, including gcc, performance
improvement is due to the short program resolving
branch mispredictions in advance. Others benefit
largely due to value predictions from the short pro-
gram, and the effect is not always reproducible by con-
ventional value prediction tables.
As execution bandwidth is increased, slipstreaming
provides less of a performance advantage - unless
instructions are removed in the short program before
they are fetched. A simple program sequencing mecha-
nism is developed to bypass instruction fetching.

1. Introduction
The slipstream paradigm [21,27] proposes only a frac-

tion of the dynamic instruction stream is needed for a pro-
gram to make full, correct, forward progress. For example,
some instruction sequences have no observable effect.
They produce results that are not subsequently referenced,
or results that do not change the state of the machine. And
then there are instruction sequences whose effects are
observable, but the effects are invariably predictable.
Computation influencing control flow is the most notable
example.

Ineffectual and branch-predictable computation can be
exploited to reduce the length of a running program,
speeding it up. Unfortunately, we cannot know for certain
what instructions can be validly skipped. Constructing a
shorter program is speculative and, ultimately, it must be
checked against the full program to verify it produces the
same overall effect.

Therefore, a slipstream processor concurrently runs
two copies of the program, leveraging either a single-chip
multiprocessor (CMP) [171 or a simultaneous multithread-
ing processor (SMT) [28,31] (the user program is instanti-
ated twice by the operating system and each copy has its
own context). One program always runs slightly ahead of
the other: the leading program is called the advanced
stream, or A-stream, and the trailing program is called the
redundant stream, or R-stream. Hardware monitors the
R-stream and detects I) instructions that repeatedly and
predictably have no observable effect (e.g., unreferenced
writes, non-modifying writes) and 2) branches whose out-
comes are consistently predicted correctly. Future
instances of the ineffectual instructions, branch instruc-
tions, and the computation chains leading up to them are
speculatively removed in the A-stream - but only if there
is high confidence correct forward progress can still be
made, in spite of removing the instructions.

The reduced A-stream fetches, executes, and retires
fewer instructions than it would otherwise, resulting in a

0-7695-0924-WOO $10.00 0 2000 IEEE 269

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

faster program. To verify that the A-stream makes correct
forward progress, all control and data flow outcomes of
the A-stream are passed to the R-stream. The R-stream
checks the outcomes against its own and, if a deviation is
detected, the R-stream’s architectural state is used to
selectively repair the A-stream’s corrupted architectural
state (an infrequent event).

A key point is the R-stream uses the outcomes it is
checking as predictions [20]. This has two advantages.

First, the R-stream fetches and executes more effi-
ciently due to having near-ideal predictions from the
A-stream. Thus, although the unreduced R-stream
retires more instructions, i t keeps pace with the
A-stream and the two programs combined finish
sooner than a single copy of the program would. The
slipstream processor’s approach of speeding up a sin-
gle program via redundancy is analogous to “slip-
streaming” in car racing, where two cars race
nose-to-tail to increase the speed of both cars [191.
Second, by using A-stream outcomes as predictions,
the R-stream leverages existing speculation mecha-
nisms f o r checking the A-stream. Conventional proces-
sors typically have mechanisms in place to check
control flow speculation, and future processors may
incorporate value prediction and mechanisms to check
data flow speculation.

Another benefit of slipstreaming is improved reliability.
Transient faults that affect redundantly-executed instruc-
tions are transparently detectable and recoverable [20,27].
Fault detectionhecovery is transparent because transient
faults are indistinguishable from prediction-induced devi-
ations.

1.1. Contributions

This paper is a follow-up study of our recent slipstream
proposal [27] and makes four new contributions.
1. Understanding slipstreaming.

Slipstreaming can be explained and understood in sev-
eral ways. We describe two different interpretations of
slipstreaming, qualitatively explain where its perfor-
mance improvement is derived from, and expose its
limitations. Insight into the limitations of slipstreaming
allows us to focus efforts on areas that are likely to
payoff.

More comprehensive experimental results provide
important insight and confirm the expectations of our
qualitative arguments. Multiple CMP configurations
are explored - examining multiple CMP configura-
tions is relevant because conclusions change as the
processor cores scale.

2. Slipstreaming using SMT processors.
Slipstreaming was not previously implemented on an
SMT processor. Insufficient reduction in the A-stream
made SMT-based slipstreaming less viable. Artifacts
of our previous instruction-removal mechanism have
been addressed (see next item below), so SMT-based
slipstreaming is now viable and this paper provides
results.

3 . More effective instruction-removal.
Previously, removal-confidence was measured for a
group of instructions as a whole, i.e., for a trace [27]. A
trace-based approach ensures producer instructions are
not removed from the A-stream unless corresponding
consumer instructions are also removed. Not enforcing
this constraint leads to spurious instruction-removal
mispredictions.
Trace-based removal has severe limitations, however
[27]. Frequently-varying removal patterns within a
trace cause the overall confidence to be low, despite
stable patterns among certain dependence chains. As a
result, no instructions in the trace are removed even if
many are removable. And although traces ensure
dependence chains are removed together, chains are
confined to the same trace.
Our new approach measures confidence for instruc-
tions individually, so unrelated instructions do not
dilute confidence. Yet dependence chains still tend to
be removed together and chains are not confined
within a small region.

4. Bypassing instruction fetching.
The A-stream is most effective when both the number
of instructions fetched and executed are reduced.
Reducing the number of fetched instructions requires a
different sequencing model than conventional branch
predictors currently provide. A conventional branch
predictor is modified in a novel and simple way to
bypass fetching of large, dynamic instruction
sequences.

1.2. Paper outline

The paper is organized as follows. Section 2 develops
models for understanding slipstreaming and examines its
fundamental limits. Section 3 reviews the slipstream
microarchitecture and introduces the new instruc-
tion-removal mechanisms. In sections 4 and 5, the simula-
tion environment and results are presented, respectively.
Related work is discussed in Section 6 and conclusions in
Section 7.

270

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

2. Understanding slipstreaming
We present two different interpretations of slipstream-

ing to better understand the paradigm. In subsection 2.1,
the A-stream is interpreted as the “main” thread and the
R-stream “assists” the A-stream. In subsection 2.2, roles
are reversed: the R-stream is the “main” thread and the
A-stream “assists” the R-stream. Actually, the two pro-
grams in a slipstream processor are functionally equivalent
and mutually beneficial, so either interpretation is valid.

We next examine limits of the paradigm to motivate
removing instructions from the A-stream before they are
fetched. Finally, we consider other ways of reducing the
A-stream to highlight the conceptual simplicity of our
chosen approach.

2.1. R-stream: a fast checker
The A-stream does not explicitly derive any perfor-

mance benefit from the R-stream. Rather, the R-stream
checks (and occasionally redirects) the A-stream without
slowing it down. This is possible because checking is
inherently parallel [13,201. As depicted in Figure 1, the
R-stream is a fast checking assist to the A-stream
[20,21,2].

I A-stream I
, - - - - - - - - - - - - . JIJIIJIJ
: Checker j

L ___________,

FIGURE 1. A‘ fast checking assist to the A-stream.

2.2. A-stream:: a program-based predictor
Alternatively,. the A-stream is a program-based predic-

tor f o r the R-stream [7,23,33,5]. For example, the
A-stream assists the performance of the R-stream by
improving its branch prediction accuracy. Dynamic branch
predictions are classified into two groups, conjident and
unconjident [lo], as shown in Figure 2. Confident branch
predictions are more likely to be correct and the corre-
sponding branches and computation feeding the branches
are removed from the A-stream. Confident predictions
represent the most accurate predictions, therefore, remov-
ing the computation needed to verify them is sound, and it
allows the A-stream to focus instead on verifying unconfi-
dent branch predictions. As a result, many branch mispre-
dictions are resolved by the A-stream in advance of when
the R-stream reaches the same point.

The A-stream also serves as an accurate value predictor
[13] for the R-stream. Although only the results of
A-stream-executed instructions are available, the predic-
tions are potentially more accurate than those provided by
conventional value predictors: A-stream “predictions” are

produced by program computation as opposed to being
history-based. Perhaps there is some overlap in what the
A-stream provides and what a conventional value predic-
tor could provide. Initial investigations in Section 5.3 indi-
cate some benchmarks (e.g., gcc) benefit primarily from
the short program resolving branch mispredictions in
advance; others benefit largely due to value predictions
from the A-stream, and the effect is not always reproduc-
ible by conventional value prediction tables. However,
comprehensive comparisons are left for future work.

FIGURE 2. A combined predictor/program for
improving R-stream branch prediction accuracy.

2.3. Importance of bypassing instruction fetch
Prior research has shown that in the absence of any

resource constraints, performance is generally dictated by
mispredicted branches [30,11]. That is, in an ideal proces-
sor with unconstrained fetch and execution bandwidth,
mispredicted branches and their dependence chains tend to
dominate the critical path of the program. The A-stream
cannot reduce this critical path because the dependence
chains of mispredicted branches are not safely removable
from the A-stream - only correctly predicted branches
are safely removable. The A-stream, like a full version of
the program, encounters the same mispredictions and
resolves them in program order. Therefore, slipstreaming
is not likely to provide performance advantages if fetch
and execution bandwidth are unconstrained.

Understanding slipstreaming’s limitations enables us to
focus research efforts on areas that are likely to pay off.
For example, we can reason about the relative importance
of bypassing instruction fetch and execution in the
A-stream. Consider a slipstream processor that reduces the
number of instructions executed in the A-stream, but not
the number of instructions fetched. The A-stream runs on
one core of a CMP and the R-stream on a second core (for
example). As raw execution bandwidth of both cores is
increased, the A-stream starts to lose its edge with respect
to the R-stream. Instruction fetching becomes the bottle-
neck and, from a practical standpoint, the A-stream is not
truly reduced if the number of fetched instructions is not
reduced.

Fortunately, it is possible to bypass even instruction
fetching in the A-stream. The A-stream has a distinct
advantage in this regard because raw instruction fetch
bandwidth cannot be as easily extended as raw execution
bandwidth, e.g., due to taken branches and branch predic-
tor bandwidth.

271

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

2.4. Other ways of reducing the A-stream

One method for reducing the A-stream is removing
branch-predictable computation. Another possibility is
removing value-predictable computation. As was
described in Figure 2 in the context of branch prediction,
an overall better value predictor may be possible by com-
bining a conventional value predictor with the A-stream:
the value predictor identifies and removes highly
value-predictable computation, and the A-stream focuses
instead on hard-to-predict values. The R-stream observes a
stream of accurate values comprised of both unverified
confident values and computed values.

This approach complicates the mechanism for reducing
the A-stream, however. For the A-stream to make correct
forward progress, the effects of removed, value-predict-
able computation must be emulated by updating the state
of the A-stream with values directly, similar to
block/trace/computation reuse [9,8,6] but without the
reuse test. This is why we focused initially on the special
cases of ineffectual and branch-predictable computation:
this computation can be literally removed (i.e., replaced
with nothing), and only the program counter needs to be
updated to skip instructions.

3. Microarchitecture description

A slipstream processor requires two architectural con-
texts, one for each of the A-stream and R-stream, and new
hardware for directing instruction-removal in the A-stream
and communicating state between the threads. A
high-level block diagram of a slipstream processor imple-
mented on top of a two-way chip multiprocessor is shown
in Figure 3, although an SMT processor might also be
used. The shaded boxes show the original processors com-
prising the multiprocessor. Each is a conventional super-
scalarNLIW processor with a branch predictor,
instruction and data caches, and an execution engine -
including the register file and either an in-order pipeline or
out-of-order pipeline with reorder buffer.

Slipstreaming requires four new components.
1. The instruction-removal predictor, or IR-predictor, is a

modified branch predictor. It generates the program
counter (PC) of the next block of instructions to be
fetched in the A-stream. Unlike a conventional branch
predictor, however, the predicted next PC may reflect
skipping past any number of dynamic instructions that
a conventional processor would otherwise fetch and
execute. Also, the IR-predictor indicates which
instructions within a fetched block can be removed
after the instruction fetch stage and before the
decodetdispatch stage.

2. The instruction-removal detector, or IR-detector, mon-
itors the R-stream and detects instructions that could
have been removed from the program, and might pos-
sibly be removed in the future. The IR-detector con-
veys to the IR-predictor that particular instructions
should potentially be skipped by the A-stream when
they are next encountered. Repeated indications by the
IR-detector build up confidence in the IR-predictor,
and the predictor will remove future instances from the
A-stream.

3. The delay bufer is used to communicate control and
data flow outcomes from A-stream to R-stream [20].

4. The recovery controller maintains the addresses of
memory locations that are potentially corrupted in the
A-stream context. A-stream context is corrupted when
the IR-predictor removes instructions that should not
have been removed. Unique addresses are added to and
removed from the recovery controller as stores are pro-
cessed by the A-stream, the R-stream, and the
IR-detector. The cufrent list of memory locations in the
recovery controller is sufficient to recover the
A-stream memory context from the R-stream’s mem-
ory context. The register file is repaired by copying all
values from the R-stream’s register file.

A-stream from IRdetector R-stream

I
Recovery
Controller

FIGURE 3. Slipstream processor using a two-way
chip multiprocessor [27].

The diagram in Figure 3 shows the A-stream on the
leftmost core and the R-stream on the rightmost core. This
is arbitrary and does not reflect specializing the two cores.
A real design would have one core that flexibly supports
either the A-stream or R-stream. In any case, there is a
clear symmetry that makes designing a single core natural.
In both cores, there is an interface to the fetch unit that
overrides the conventional branch predictor, indicated
symbolically with an open switch and a second interface
to the fetch unit. Likewise, both cores show symmetric
interfaces to and from the execution pipeline.

272

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

3.1. Creating the shorter program

3.1.1. Base IR-predictor. The IR-predictor resembles a
conventional branch predictor. In this paper, the IR-predic-
tor is indexed identically to a gshare predictor [151, i.e., an
index is formed by XORing the PC and the global branch
history bits. Each table entry contains information for a
single dynamic basic block.

Tag: This is the start PC of the basic block and is used
to determine whether or not the entry contains infor-
mation for the desired block.
2-bit counter: If the block ends in a conditional branch,
the 2-bit counter predicts its direction.
Conjdence counters. There is a resetting confidence
counter [lo] for each instruction in the block. The
counters are updated by the IR-detector: a counter is
incremented if the corresponding instruction is
detected as removable, otherwise the counter is reset to
zero. If a counter is saturated, then the corresponding
instruction will be removed from the A-stream when it
is next encountered.

Every fetch cycle, the IR-predictor supplies a branch
prediction and an instruction-removal bit vector to the
A-stream fetch unit. The branch prediction is used to
select a PC for the next fetch cycle; potential target PCs
are stored within existing structures of the processor, e.g.,
pre-decoded targets in the instruction cache or branch tar-
get buffer.

The instruction-removal bit vector reflects the state of
the confidence counters for the basic block being fetched.
A bit is set in the vector if the corresponding confidence
counter is saturated, and this directs the fetch unit to
remove the corresponding instruction from the A-stream.
Thus, although all instructions in the basic block are
fetched, potentially many instructions are removed before
the decode stage of the pipeline.

In Figure 3, the IR-predictor is shown as a new compo-
nent outside the processor core that ovemdes the conven-
tional branch predictor. Alternatively, since the
IR-predictor is built on top of a conventional branch pre-
dictor, the core’s predictor and the IR-predictor may be
integrated.

3.1.2. Improved IR-predictor: bypassing instruction
fetch. With the base IR-predictor described in
Section 3.1.1, the A-stream is not reduced in terms of the
number of instructions fetched. Only the number of
instructions executed is reduced. If execution bandwidth is
relatively unconstrained, then the A-stream will not be
effectively reduced.

The A-stream is more effective i f fewerfetch cycles are
expended on it than on the full program. In Figure 4, we

show an example of how the number of fetch cycles can
potentially be reduced. Four basic blocks, labeled A
through D, are to be predicted and fetched. The corre-
sponding table entries in the IR-predictor are shown;
shaded entries indicate that all of the confidence counters
are saturated and the entire basic block is predicted for
removal. The base IR-predictor predicts each block in
sequence, requiring four cycles. During two of these
cycles, the instruction cache fetches instructions and then
throws them all away (basic blocks B and C). Clearly, only
two fetch cycles are required, but it is not known in
advance that instruction fetching of blocks B and C can be
bypassed.

base IR-predictor improved 1R-predictor

FIGURE 4. Reducing fetch cycles in the A-stream.

Interestingly, the effect we want to produce - bypass-
ing basic blocks - is the same effect produced by taken
branches. The improved IR-predictor shown on the
right-hand side of Figure 4 exploits the analogy. The
improved predictor “converts” the branch terminating
block A into a taken branch whose target is block D.
Below, we consider two possible ways to implement this
conversion.

Two additional pieces of information are stored in
block As table entry. First, the predicted directions of
any bypassed branches must be stored, in this case, the
predicted directions of the branches in blocks B and C.
The reason is all control flow information must be
pushed onto the delay buffer to be consumed by the
R-stream, in spite of partially bypassing instruction
fetching in the A-stream. Second, a target address must
be stored, in this case, the start PC of block D. The tar-
get address overrides the next PC computation per-
formed by the fetch unit. The additional information
(bypassed predictions and corresponding target
address) is accumulated for block A’s entry as the
IR-detector sequentially updates the entries of blocks
B, C, and D.
Effectively, the branch terminating block A is now a
multi-way branch. It has more potential targets than its
original taken and fall-through targets because it inher-
its the targets of skipped blocks. The processor’s
branch target buffer may be modified to store multiple
targets per branch. Now, dynamically-created target
addresses do not have to be stored in the IR-predictor.

273

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

The bypassed predictions still need to be stored and,
conveniently, this path information is sufficient to
select the appropriate target address from the branch
target buffer.

BIT

3.1.3. IR-detector. The IR-detector consumes retired
R-stream instructions, addresses, and values. The instruc-
tions are buffered and, based on data dependences, cir-
cuitry among the buffers is dynamically configured to
establish connections from consumer to producer instruc-
tions. In other words, a reverse dataflow graph (R-DFG) is
constructed. The graph is finite in size, so the oldest
instructions exit the graph to make room for newer
instructions. Removal information for exiting instructions
are’used to update the IR-predictor.

As new instructions are merged into the R-DFG, the
IR-detector watches for any of three triggering conditions
for instruction removal. Triggering conditions are unrefer-
enced writes (a write followed by a write to the same loca-
tion, with no intervening read), non-modifying writes
[12,14,16,29] (writing the same value to a location as
already exists at that location), and correctly-predicted
branch instructions. When a triggering condition is
observed, the corresponding instruction is selected for
removal. Then, the circuits forming the R-DFG
back-propagate the selection status to predecessor instruc-
tions. Predecessors may also be selected if certain criteria
(described later) are met.

The IR-detector is shown in Figure 5. A single R-DFG
is shown, however, the buffering could be partitioned into
multiple smaller R-DFGs. The latter approach reduces the
sizekomplexity of each individual R-DFG but still allows
a large analysis scope for killing values (observing another
write to the same location).

IR-prcdlclor
- kill inbtructions

VALUE PU0I)UCEE
BIT

R-DFG

1 I

FIGURE 5. IR-detector.

The operand rename table in Figure 5 is similar to a
register renamer but it can track both memory addresses
and registers. A single entry of the operand rename table is
shown in Figure5. To merge an instruction into the
R-DFG, each source operand is checked in the rename
table to get the most recent producer of the value (check
the valid bit and producer field). The instruction uses this
information to establish connections with its producer
instructions, i.e., set up the back-propagation logic (if the
buffering is partitioned into smaller R-DFGs, connections
cannot be made across partition boundaries). The ref bit is
set for each source operand indicating the values have

been used. If the instruction writes a registerlmemory
location, the corresponding operand rename table entry is
checked to detect non-modifyinghnreferenced writes and
to kill values, as follows.

If the valid bit is set, and the current instruction pro-
duced the same value as indicated in the value field,
then the current instruction is a non-modifying write.
The current instruction is selected for removal as it is
merged into the R-DFG. No fields are updated in the
rename table entry since the old producer remains
‘‘live’’ in this case.
If the valid bit is set and the new and old values do not
match, the old producer indicated by the producer field
is killed. Furthermore, if the ref bit is not set, then the
old producer is an unreferenced write and is selected
for removal. Finally, all fields in the rename table entry
are updated to reflect the new producer.

Correctly predicted branch instructions are selected for
removal when they are merged into the R-DFG.

Finally, any other instruction x may be selected for
removal via the R-DFG back-propagation circuitry, if
three conditions are met.
I . All of x’s dependent instructions must be known, i.e.,

x’s production(s) must be killed by other production(s).
2. All of x’s dependent instructions must be selected for

removal.
3. All of x’s dependent instructions must have been

removed by the IR-predictor this time around.

When a basic block becomes the oldest basic block in
the analysis scope, the appropriate entry for that basic
block is updated in the IR-predictor, i.e., confidence
counters are incremented for selected instructions and
reset for non-selected instructions.

The third (highlighted) condition above is the major
innovation with respect to our previous instruc-
tion-removal mechanism. Previously, this constraint was
not needed because dependence chains were confined to a
trace and a single confidence counter was maintained for
the entire trace; this ensured producers and consumers
were removed together or not at all, but it also resulted in
unrelated chains diluting overall confidence. The dilution
problem is fixed by maintaining confidence for instruc-
tions individually; however, this can lead to partial-chain
removal and the specifically bad situation of removing a
producer but not the consumer. The third constraint above
ensures a producer’s counter saturates only after all con-
sumers’ counters saturate. The end result: 1) our new
approach measures confidence for instructions individu-
ally, so unrelated instructions do not dilute confidence, yet
2) dependence chains still tend to be removed as a unit,
and chains are not confined within a small region other
than to reduce R-DFG complexity.

274

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

3.2. Delay buffer

The delay buffer is a simple FIFO queue that allows the
A-stream to communicate control flow and data flow out-
comes to the R-stream. The A-stream pushes both a com-
plete history of branch outcomes and a partial history of
operand values onto the delay buffer. This is shown in
Figure 3 with a solid arrow from the reorder buffer of the
A-stream (left-most processor) to the delay buffer. Value
history is partial because only a subset of the program is
executed by the A-stream. Complete control history is
available, however, because the IR-predictor predicts all
branches even though the A-stream may not fetch all
instructions (Section 3.1.2).

The R-stream pops control and data flow information
from the delay buffer. This is shown in Figure 3 with solid
arrows from delay buffer to the instruction cache and exe-
cution core of the R-stream (right-most processor). Branch
outcomes from the delay buffer are routed to the instruc-
tion cache to direct instruction fetching. Source operand
values and loadlstore addresses from the delay buffer are
merged with their respective instructions after the instruc-
tions have been fetchedhenamed and before they enter the
execution engine. To know which values/addresses go
with which instructions, the delay buffer also includes
information about which instructions were skipped by the
A-stream (for which there is no data flow information
available).

3.3. IR-misprediction recovery

An instruction-removal misprediction, or IR-mispre-
diction, occurs when A-stream instructions were removed
that should not have been. The A-stream has no way of
detecting the IR-misprediction, therefore, it continues
instruction retirement and corrupts its architectural state.
Two things are required to recover from an IR-mispredic-
tion. First, the IR-misprediction must be detected and, sec-
ond, the corrupted state must be pinpointed for efficient
recovery actions.

IR-mispredictions are detectable by the R-stream
because either the control or data flow outcomes from the
delay buffer will not match its redundantly computed out-
comes. In other words, IR-mispredictions usually surface
as branch or value mispredictions in the R-stream.

Some IR-mispredictions take awhile to cause any visi-
ble symptoms in the A-stream. For example, a store may
be removed incorrectly and the next load to the same loca-
tion may not occur for a very long time. The IR-detector
can detect these IR-mispredictions much sooner by com-
paring its computed removal information against the cor-
responding predicted removal information - if they
differ, computation was removed that should not have

been. Thus, the IR-detector serves the dual-role of updat-
ing the IR-predictor and checking for IR-mispredictions.

When an IR-misprediction is detected, the reorder
buffer of the R-stream is flushed. The R-stream architec-
tural state now represents a precise point in the program to
which all other components in the processor are re-syn-
chronized. The IR-predictor is backed up to the precise
program counter, the delay buffer is flushed, the reorder
buffer of the A-stream is flushed, and the A-stream’s pro-
gram counter is set to that of the R-stream.

All that remains is restoring the corrupted register and
memory state of the A-stream so it is consistent with the
R-stream. Because register state is finite, the entire register
file of the R-stream is copied to the A-stream register file.
The movement of data (both register and memory values)
occurs via the delay buffer, in the reverse direction, as
shown with dashed arrows in Figure 3 .

The recovery controller receives control signals and the
addresses of store instructions from the A-stream, the
R-stream, and the IR-detector, as shown in Figure 3 . The
control signals indicate when to start or stop tracking a
memory address (only unique addresses need to be
tracked). After detecting an IR-misprediction, stores may
either have to be “undone” or “done” in the A-stream.

e

4.

The recovery controller tracks addresses of stores
retired in the A-stream but not yet retired in the
R-stream. After detecting an IR-misprediction, these
A-stream stores must be “undone” since the R-stream
has not yet performed the companion, redundant store.
The recovery controller tracks addresses of stores
retired in the R-stream and skipped in the A-stream,
only until the IR-detector verifies that the stores are
truly ineffectual. When an IR-misprediction is
detected, all unverified, predicted-ineffectual stores are
“done” in the A-stream by copying data from the
redundant locations in the R-stream.

Simulation environment
We developed a detailed execution-driven simulator of

a slipstream processor. The simulator faithfully models the
architecture depicted in Figure 3 and outlined in Section 3:
the A-stream produces real, possibly incorrect Val-
uedaddresses and branch outcomes, the R-stream and
IR-detector check the A-stream and initiate recovery
actions, A-stream state is recovered from the R-stream
state, etc. The simulator itself is validated via a functional
simulator run independently and in parallel with the
detailed timing simulator [26]. The functional simulator
checks retired R-stream control flow and data flow out-
comes.

275

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

The Simplescalar [3] compiler and ISA are used. We
use the SPEC95 integer benchmarks (-03 optimization)
run to completion (Table 1).

TABLE 1. Benchmarks.
benchmark input dataset instr. count

124 million
cccp.i -0 cccp.s

m88ksim
per1
vortex

keg I vigo.ppm I 166 million
li I test.lso (weens 7) I 202 million ..

-c < ctl.in (dcrand.big) 121 million
scrabble.pl < scrabbleh 108 million
vortex.in (persons.250) 101 million

instruction

instruction removal. The removal confidence threshold is
32. The IR-detector has a scope of 256 instructions and the
R-DFG is unpartitioned. The delay buffer stores 256
instructions (data flow buffer) and 4K branch predictions
(control flow buffer). The recovery controller tracks any
number of store addresses, although we observe not too
many outstanding addresses in practice. The recovery
latency (after the IR-misprediction is detected) is 5 cycles
to startup the recovery pipeline, followed by 4 register
restores per cycle, and lastly 4 memory restores per cycle.

size/assoc/repl = 64kB/4 -way/LRU
line size = 16 instructions

5. Results

data cache

5.1. Slipstream performance results

miss penalty = 12 cycles
size/assoc/repl = 64kB/4-way/LRU
line size = 64 bytes

execution
latencies

cache w y interleaved I

address generation = 1 cycle
memory access = 2 cycles (hit)

integer ALU ops = 1 cycle
complex ops = MIPS RIOOOO latencies

miss penalty = 14 cycles
reorder buffer: 64, 128, or 256 entries

n fully-symmetric function units (n = issue b/w)
In loads/stores Der cycle (n = issue b/w) I

IR-predictor

IR-detector

delay buffer

recovery
controller

Microarcl

z20 entries
qshare-indexed (16 bits of global branch history)
block size = 16
16 confidence counters per entry
confidence threshold = 32

of outstanding store ad&. = unconstrained I
recovery latency (afrer IR-misp. detected):

5 cycles to start up recovery pipeline
4 reg. restoredcycle (64 regs performed 1st)
4 mem. restoreslcycle (mem performed 2nd)
:. min. latency (no memory) = 21 cycles

tecture parameters are listed in Table 2. Thc
top half of the table lists parameters for individual proces-
sors within a CMP or, alternatively, a single SMT proces-
sor. The bottom half describes the four slipstream
components. A large IR-predictor is used for accurate

In this section, we compare the performance of eight
models. Three are superscalar configurations (SS). Four
are chip-multiprocessor configurations (CMP) with slip-
streaming. One is a simultaneous multithreading configu-
ration (SMT) with slipstreaming.

SS(64x4): A single 4-way superscalar processor with
64 ROB entries.
SS(128x8): A single 8-way superscalar processor with
128 ROB entries.
SS(256x16): A single 16-way superscalar processor
with 256 ROB entries.
CMP(2x64x4): Slipstreaming on a CMP composed of
two SS(64x4) cores.
CMP(2x64x4)hyp: Same as previous, but A-stream
can bypass instruction fetching.
CMP(2x128x8): Slipstreaming on a CMP composed
of two SS(128x8) cores.
CMP(2~128x8)hyp: Same as previous, but A-stream
can bypass instruction fetching.
SMT(128xS)hyp: Slipstreaming on SMT, where the
SMT is built on top of SS(128x8).

For consistent comparisons, the same (gshare-based)
IR-predictor provides branch predictions in all of the pro-
cessor models, and the base superscalar processor models
ignore the instruction-removal information. Performance
is measured in retired instructions-per-cycle (IPC). For
slipstream models, IPC is computed as the number of
retired R-stream instructions (i.e., the full program,
counted only once) divided by the number of cycles
required for both the A-stream and R-stream to complete
(total execution time).

IPC performance of the eight models is shown in
Figure 6. The first conclusion is a slipstream processor can
exploit a second, otherwise unused processor to dramati-
cally improve single-program performance. From
Figure 7, CMP(2x64x4) performs on average 12% better

276

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

5 .

4

p 3

2

1

0

El SS (64x4)
SS (1 28x8)

1 OCMP/2x64x4\
OSS (256x16) n n

comp gcc go jpeg ti m88k ped vortex

FIGURE 6. IPC results.

IR-predictor (Section 3.1.2). From Figure 7,
CMP(2x64x4)hyp on average performs 13% better than
SS(64x4), a modest change from CMP(2x64x4). As
expected, it is more important to bypass instruction fetch-
ing for larger processor cores. CMP(2x128x8)hyp on
average performs 10% better than SS(128x8), whereas
CMP(2x 128x8) performs 7% better. With the improved
IR-predictor, slipstream performance improvement
increases from 8% to 16% for gcc, from 8% to 14% for li,
from 17% to 21% for m88ksim, from 15% to 19% for perl,
and from 15% to 20% for vortex.

In Figure 8, we compare the performance of slip-
streaming on two small processors to the performance of a
larger processor. The larger processor has the same total
number of ROB entries and issue bandwidth as the two
smaller processors combined. For half of the benchmarks
(ped , gcc, li, m88ksim), CMP(2x64x4)hyp actually per-
forms from 4% to 8% better than SS(128x8). Overall,
CMP(2x64x4)hyp performs comparably to the more com-
plex, less flexible SS(128x8) processor - within 5% on
average. The results are more pronounced for
CMP(2~128~8)/byp, which on average performs 7% bet-
ter than SS(256x16).

-5% I I l l

- 1 0%

FIGURE 7. Performance improvement using a
second processor for slipstreaming.

The second conclusion is the benefit of slipstreaming
decreases as more execution bandwidth is made available.
This is evident from the first and third bars of Figure 7.
For all except m88ksim and vortex, the performance
improvement of CMP(2x128x8) over SS(128x8) is less
than the improvement of CMP(2x64x4) over SS(64x4).
For example, perl drops from a 30% improvement down to
a 15% improvement as the window size and issue band-
width of the processor core is doubled. This is evidence
for the arguments made in Section 2.3.

The above result motivates reducing the number of
instructions fetched in the A-stream, using the improved

10% +

I
20%

15%

5% E
g -5%

g -10%

p! 0%
al 11 m88k per1

' -15%

-25% '
-30%

-35% 1
FIGURE 8. Perf. of slipstreaming on two small
processors vs. perf. of a single large processor.

Finally, we examine the performance of slipstreaming
on an SMT processor. The performance improvement of
SMT(128x8)hyp over SS(128x8) is shown in Figure 9.
For half of the benchmarks, performance improves by
more than 10%. Gcc, li, p e d , and m88ksim improve by
12%, 13%, 16%, and 19%, respectively. Performance is
degraded between I % and 4% for compress, go, and vor-
tex, and over 25% for jpeg. Compress showed a small loss
even for the CMP(2x128x8) model, so one would expect
the same for SMT(128x8)hyp. The reason is the A-stream
is less effective for compress and IR-mispredictions
degrade performance. G o was also borderline in the

277

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

CMP(2x128x8) case. Vortex and jpeg utilize the
SS(128x8) processor well - in fact, they exceed half of
the peak IPC - and the A-stream steals useful processor
bandwidth from the R-stream. The effect is more pro-
nounced for jpeg than for vortex because jpeg exhibits lit-
tle reduction in its A-stream (Figure 10).

20%

15%

10%

c 5% ”

f 0%
B E -5%

-10%

-15%

-20%

-25%

-30%

-

FIGURE 9. Performance improvement of
SMT(128x8)hyp over SS(128x8).

5.2. Instruction removal

Figure 10 shows the fraction of original dynamic
instructions removed from the A-stream. Nearly half of
the program is removed for gcc, li, perl, and vortex, and
about two-thirds of m88ksim is removed. About 20% of
compress is removed, and only 10% for go and jpeg.

1

- : 30%
0
3 j 20%
2 - 10%

0%
comp gcc go jpeg li m88k perl vortex

FIGURE 10. Breakdown of instruction removal.

Removing only 10% of the program simply does not
buffer the R-stream from many branch mispredictions. But
20% removal in compress is significant, and it is surpris-
ing slipstream performance improvements are not higher.
The problem with compress is three-fold: there are fre-
quent branch mispredictions, their dependence chains are
quite long, and the chains have long-latency arithmetic
operations. Removing 20% of compress can perhaps
buffer the R-stream against any one of these three, but not
two or three combined.

Figure 10 also breaks down the reasons for instruction
removal. On average, branches are the primary source, at
just over a third of the removed instructions (“branches”).
Ineffectual writes are about a third of removed instructions
(“writes”). Among instructions removed due to back-prop-
agation (“prop -”), most are in dependence chains of
removed branches (“prop branches”).

5.3. Prediction

In Figure 11, we show the performance improvement
of three models with respect to SS(64x4). The first is
SS(64x4) with conventional value prediction added. A
large context-based value predictor (CVP) [24] is used
(218 and 2*’ entries in the first and second levels, respec-
tively). The second is CMP(2x64x4)/byp, but the R-stream
does not use A-stream values speculatively (“no value pre-
diction”). The third is CMP(2x64x4)hyp.

We only consider benchmarks that show reasonably
large improvements with any of the models (eliminating
compress, go, jpeg) . For gcc and li, better branch predic-
tion is the largest benefit due to slipstreaming, not value
prediction (we can tell because the second and third bars
are close). Also, CVP provides only minor improvements
for these benchmarks. For m88ksim, value prediction is
the dominant factor and CVP is superior. For perl and vor-
tex, value prediction is the larger benefit due to slipstream-
ing, however, CVP does not provide the same benefit.
Perhaps in perl , better branch prediction is needed to bet-
ter exploit value predictions.

- 1 PSS(64x4) + context-based value prediction I ”” ,”

3 30%
f 25%
v)

w

L g 20%

g 10%
- E 15%

E
P
.- 5%

z 0%
comp gcc go J 11 m88k ped

-50% A ” ” ”.. ”

FIGURE 11. Measuring the relative importance of
branch and value prediction benefits.

6. Related work
Advanced-streadRedundant-stream Simultaneous

Multithreading (AR-SMT) [20] is based on the realization
that microarchitecture performance trends and fault toler-
ance are related. Time redundancy - running a program
twice to detect transient faults - is cheaper than hardware
redundancy but it doubles execution time. AR-SMT runs
the two programs simultaneously [28] but delayed (via the

278

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

delay buffer), reducing the performance overhead of time
redundancy. Results are compared by communicating all
retired A-stream results to the R-stream, and the R-stream
performs the checks. Here, the R-stream leverages specu-
lation concepts [131 - the A-stream results can be used as
ideal predictions. The R-stream fetchedexecutes with
maximum efficiency, further reducing the performance
overhead of time redundancy. And the method for compar-
ing the A-stream and the R-stream is conveniently in
place, in the form of misprediction-detection hardware. In
summary, AR-SMT leverages the underlying microarchi-
tecture to achieve broad coverage of transient faults with
low overhead, both in terms of performance and changes
to theiexisting design.

DIVA [2] and SRT [18] are two other examples of
fault-tolerant architectures designed for commodity
high-performance microprocessors. DIVA detects a vari-
ety of faults, including design faults, by using a verified
checker to validate computation of the complex processor
core. DIVA leverages an AR-SMT technique - the sim-
ple checker is able to keep pace with the core by using the
values it is checking as predictions. SRT improves on
AR-SMT in a variety of ways, including a formal and sys-
temadc treatment of SMT applied to fault tolerance (e.g.,
spheres of replication).

Researchers have demonstrated a significant amount of
redundancy, repetition, and predictability in general pur-
pose programs [6,8,9,12,13,14,16,24,25,29]. This prior
research forms a basis for creating the shorter program in
slipstream processors. A technical report [21] showed 1) it
is possible to ideally construct significantly reduced pro-
grams that produce correct final output, and 2) AR-SMT is
a convenient execution model to exploit this property.

Tullsen et. al. [28] and Yamamoto and Nemirovsky
[3 11 proposed simultaneous multithreading for flexibly
exploiting thread-level and instruction-level parallelism.
Olukotun et. al. [171 motivate using chip multiprocessors.

Farcy et. al. [7] proposed resolving branch mispredic-
tions early by extracting the computation leading to
branches. Zilles and Sohi [33] similarly studied the com-
putation chains leading to mispredicted branches and
loads that miss in the level-two cache. They suggest iden-
tifying a difficult subset of the program for pre-execution
[22,23], potentially prefetching branch predictions and
cache lines that would otherwise be mispredictions and
cache misses. Re-execution typically involves pruning a
small kernel from a larger program region and running it
as a prefetch engine [22]. Roth and Sohi [23] developed a
new paradigm called Speculative Data-Driven Multi-
threading that implements pre-execution generally. Rather
than spawn many specialized kernels on-the-fly, our
approach uses a single, functionally complete, and persis-
tent program (A-stream). Slipstreaming avoids the con-

ceptual and possibly real complexity of forking private
contexts, within which the specialized kernels must run.

Speculative multithreading architectures [e.g., 1,17,26]
speed up a single program by dividing it into specula-
tively-parallel threads. The speculation model uses one
architectural context and future threads are spawned
within temporary, private contexts, each inherited from the
preceding thread’s context. Future thread contexts are
merged into the architectural context as threads complete.
Our speculation model uses redundant architectural con-
texts, so no forking or merging is needed. And strictly
speaking, there are no dependences between the architec-
turally-independent threads, rather, outcomes are commu-
nicated as predictions via a simple FIFO queue. Register
and memory mechanisms of the underlying processor are
relatively unchanged by slipstreaming (particularly if
there is an existing interface for consuming value predic-
tions at the rename stage). In contrast, speculative multi-
threading often requires elaborate inter-thread
registedmemory dependence mechanisms.

SSMT [5] runs microthreads simultaneously with an
application to optimize its performance. Microthreads are
small routines designed in conjunction with applications
and the processor. For example, microthreads may per-
form cache prefetching, improve branch prediction accu-
racy [5], or optimize exception handling [32].

The Datascalar paradigm [4] runs redundant programs
on multiple processor-and-memory cores to eliminate
memory read requests.

7. Summary and conclusions
Integrating multiple architectural contexts on a single

chip is an important trend, and it is difficult to conceive of
more effective uses for a billion transistors. The slipstream
paradigm extracts more functionality from a CMP or SMT
processor, without fundamentally reorganizing it. The
operating system may flexibly choose among multiple
operating modes based on system and user requirements:
high job throughput and parallel-program performance
(conventional SMT/CMP), improved single-program per-
formance and reliability (slipstreaming), or fully-reliable
operation with low impact on single-program performance

In this paper, we developed a new and more effective
instruction-removal mechanism for creating the shorter
program. It measures removal-confidence on a per-instruc-
tion basis, eliminating many flaws of the prior trace-based
approach and leveraging conventional branch predictors.
The new approach reduces the A-stream significantly
(often by 50%), but also accurately.

We also developed a new and simple sequencing mech-
anism that enables the A-stream to skip over large
dynamic sequences of instructions.

(AR-SMT / SRT).

279

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

Finally, we reasoned about the sources of. slipstream
performance, and its limitations. This focused our explora-
tion of the architecture and led us to some key results.

A 12% average performance improvement is achieved
by harnessing an otherwise unused, additional proces-
sor in a CMP. Slipstreaming using two small supersca-
lar cores often achieves similar IPC as one large
superscalar core, but with a potentially faster clock and
a more flexible architecture. For programs with suffi-
ciently reduced A-streams, slipstreaming on an 8-way
SMT processor improves performance from 10%-20%.
For some programs, performance improvement is due
to the A-stream resolving branch mispredictions in
advance. Others benefit largely from A-stream value
predictions, and the effect is not always reproducible
using conventional value prediction tables.
As more execution bandwidth is made available, slip-
streaming provides less performance improvement.
But if the A-stream is able to bypass instruction fetch-
ing, slipstreaming retains its edge - because raw
instruction fetch bandwidth is not as easily extended as
raw execution bandwidth.

References

[11

[2]

H. Akkary and M. Driscoll. A Dynamic Multithreading
Processor. 31st Int’l Symp. on Microarch., Dec 1998.
T. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. 32nd Int’l Symp. on Microarch.,
Nov. 1999.
D. Burger, T. Austin, and S. Bennett. Evaluating Future
Microprocessors: The Simplescalar Toolset. Tech. Rep.
CS-TR-96-1308, CS Dept., Univ. of Wisconsin, July 1996.
D. Burger, S. Kaxiras, and J. Goodman. DataScalar Archi-
tectures. 24th Int’l Symp. on Comp. Arch., June 1997.
R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous Subordinate Microthreading (SSMT). 26th
Int’l Symp. on Comp. Arch., May 1999.
D. Connors and W.-M. Hwu. Compiler-Directed Dynamic
Computation Reuse: Rationale and Initial Results. 32nd
Inr’l Symp. on Microarch., Nov. 1999.
A. Farcy, 0. Temam, R. Espasa, and T. Juan. Dataflow
Analysis of Branch Mispredictions and its Application to
Early Resolution of Branch Outcomes. 31st Int’l Symp. on
Microarch., Dec. 1998.
A. GonzAlez, J. Tubella, and C. Molina. Trace-Level Reuse.
Int’l Conj on Parallel Processing, Sep. 1999.
J. Huang and D. Lilja. Exploiting Basic Block Value Local-
ity with Block Reuse. 5th Int’l Symp. on High-Perf Comp.
Arch., Jan. 1999.

[IO] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning Confi-
dence to Conditional Branch Predictions. 29th Int’l Symp.
on Microarch., Dec. 1996.

[l 11 M. Lam and R. Wilson. Limits of Control Flow on Parallel-
ism. 19th Int’l Symp. on Comp. Arch., May 1992.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[I21 K. Lepak and M. Lipasti. On the Value Locality of Store
Instructions. 27th Int’l Symp. on Comp. Arch., June 2000.

[I31 M. Lipasti. Value Locality and Speculative Execution. PhD
Thesis, Camegie Mellon University, April 1997.

[141 M. Martin, A. Roth, and C. Fischer. Exploiting Dead Value
Information. 30th Int’l. Symp. on Microarch., Dec 1997.

[151 S. McFarling. Combining Branch Predictors. Tech. Rep.
TN-36, WRL, June 1993.

[161 C. Molina, A. Gonzalez, and J. Tubella. Reducing Memory
Traffic via Redundant Store Instructions HPCN 1999.

[I71 K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and
K.-Y. Chang. The Case for a Single-Chip Multiprocessor.

[I81 S. Reinhardt and S. Mukherjee. Transient Fault Detection
via Simultaneous Multithreading. 27th Int’l Symp. on
Comp. Arch., June 2000.

[I91 D. Ronfeldt. Social Science at 190 MPH on NASCAR’s
Biggest Superspeedways. First Monday Journal (on-line),
Vol. 5 No. 2, Feb. 7,2000.

[20] E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. 29th Int’l Symp. on
Fault-Tolerant Computing, June 1999.

[21] E. Rotenberg. Exploiting Large Ineffectual Instruction
Sequences. Tech. Rep., ECE Dept., NC State, Nov. 1999.

[22] A. Roth, A. Moshovos, and G. Sohi. Dependence Based
Prefetching for Linked Data Structures. ASPLOS-VIII, Oct.
1998.

[23] A. Roth and G . Sohi. Speculative Data-Driven Multithread-
ing. Tech. Rep. CS-TR-2000-1414, CS Dept., Univ. of Wis-
consin, April 2000.

[24] Y. Sazeides and J. E. Smith. Modeling Program Predictabil-
ity. 25th Int’l Symp. on Comp. Arch., June 1998.

[25] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. 24th
Int ’1 Symp. on Comp. Arch., June 1997.

(261 G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar Pro-
cessors. 22nd Intl. Symp. on Comp. Arch., June 1995.

[27] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip-
stream Processors: Improving both Performance and Fault
Tolerance. ASPLOS-IX, Nov. 2000.

[28] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R.
Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor.
23rd Int’l Symp. on Comp. Arch., May 1996.

[29] D. Tullsen and J. Seng. Storageless Value Prediction Using
Prior Register Values. 26th Int’l Symp. on Comp. Arch.,
May 1999.

[30] D. Wall. Limits of Instructional-Level Parallelism. ASP-

[31] W. Yamamoto and M. Nemirovsky. Increasing Superscalar
Performance through Multistreaming. Parallel Architec-
tures and Compilation Techniques, June 1995.

[32] C. Zilles, J. Emer, and G. Sohi. The Use of Multithreading
for Exception Handling. 32nd Int’l Symp. on Microarch.,
Nov. 1999.

[33] C. Zilles and G. Sohi. Understanding the Backward Slices
of Performance Degrading Instructions. 27th Int’l Symp. on
Comp. Arch., June 2000.

ASPLOS-VII, Oct. 1996.

Los-ry ~ p r i i 1991.

280

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore. Restrictions apply.

