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Abstract 

A slipstream processor reduces the length of a running 
program by dynamically skipping computation non-essen- 
rial for  correct forward progress. The shortened program 
runs faster as a result, but it is speculative. So a second, 
unreduced copy of the program is run concurrently with 
and slightly behind the reduced copy - leveraging a chip 
multiprocessor (CMP) or simultaneous multithreading 
(SMT). The short program passes its control and data Jlow 
outcomes to the full program f o r  checking. And as it 
checks the short program, the full program fetches and 
executes more eficiently due to having an accurate picture 
of the future. Both programs are sped up: combined, they 
outperform conventional non-redundant execution. 

We study slipstreaming with the following key results. 
A 12% average performance improvement is achieved 
by harnessing an otherwise unused, additional proces- 
sor in a C M P  Slipstreanling using two small supersca- 
lar cores often achieves similar instructions-per-cycle 
as one large superscalar core, but with a potentially 
faster clock and a more Jlexible architecture. 
A majority of the benchmarks show SigniJcant reduc- 
tion in the short program (about 50%). Slipstreaming 
using an &way SMT processor improves their peifor- 
mance from 10% to 20%. 
For some benchmarks, including gcc, performance 
improvement is due to the short program resolving 
branch mispredictions in advance. Others benefit 
largely due to value predictions from the short pro- 
gram, and the effect is not always reproducible by con- 
ventional value prediction tables. 
As execution bandwidth is increased, slipstreaming 
provides less of a performance advantage - unless 
instructions are removed in the short program before 
they are fetched. A simple program sequencing mecha- 
nism is developed to bypass instruction fetching. 

1. Introduction 
The slipstream paradigm [21,27] proposes only a frac- 

tion of the dynamic instruction stream is needed for a pro- 
gram to make full, correct, forward progress. For example, 
some instruction sequences have no observable effect. 
They produce results that are not subsequently referenced, 
or results that do not change the state of the machine. And 
then there are instruction sequences whose effects are 
observable, but the effects are invariably predictable. 
Computation influencing control flow is the most notable 
example. 

Ineffectual and branch-predictable computation can be 
exploited to reduce the length of a running program, 
speeding it up. Unfortunately, we cannot know for certain 
what instructions can be validly skipped. Constructing a 
shorter program is speculative and, ultimately, it must be 
checked against the full program to verify it produces the 
same overall effect. 

Therefore, a slipstream processor concurrently runs 
two copies of the program, leveraging either a single-chip 
multiprocessor (CMP) [ 171 or a simultaneous multithread- 
ing processor (SMT) [28,31] (the user program is instanti- 
ated twice by the operating system and each copy has its 
own context). One program always runs slightly ahead of 
the other: the leading program is called the advanced 
stream, or A-stream, and the trailing program is called the 
redundant stream, or R-stream. Hardware monitors the 
R-stream and detects I )  instructions that repeatedly and 
predictably have no observable effect (e.g., unreferenced 
writes, non-modifying writes) and 2) branches whose out- 
comes are consistently predicted correctly. Future 
instances of the ineffectual instructions, branch instruc- 
tions, and the computation chains leading up to them are 
speculatively removed in the A-stream - but only if there 
is high confidence correct forward progress can still be 
made, in spite of removing the instructions. 

The reduced A-stream fetches, executes, and retires 
fewer instructions than it would otherwise, resulting in a 
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faster program. To verify that the A-stream makes correct 
forward progress, all control and data flow outcomes of 
the A-stream are passed to the R-stream. The R-stream 
checks the outcomes against its own and, if a deviation is 
detected, the R-stream’s architectural state is used to 
selectively repair the A-stream’s corrupted architectural 
state (an infrequent event). 

A key point is the R-stream uses the outcomes it is 
checking as predictions [20]. This has two advantages. 

First, the R-stream fetches and executes more effi- 
ciently due to having near-ideal predictions from the 
A-stream. Thus, although the unreduced R-stream 
retires more instructions, i t  keeps pace with the 
A-stream and the two programs combined finish 
sooner than a single copy of the program would. The 
slipstream processor’s approach of speeding up a sin- 
gle program via redundancy is analogous to “slip- 
streaming” in car racing, where two cars race 
nose-to-tail to increase the speed of both cars [ 191. 
Second, by using A-stream outcomes as predictions, 
the R-stream leverages existing speculation mecha- 
nisms f o r  checking the A-stream. Conventional proces- 
sors typically have mechanisms in place to check 
control flow speculation, and future processors may 
incorporate value prediction and mechanisms to check 
data flow speculation. 

Another benefit of slipstreaming is improved reliability. 
Transient faults that affect redundantly-executed instruc- 
tions are transparently detectable and recoverable [20,27]. 
Fault detectionhecovery is transparent because transient 
faults are indistinguishable from prediction-induced devi- 
ations. 

1.1. Contributions 

This paper is a follow-up study of our recent slipstream 
proposal [27] and makes four new contributions. 
1. Understanding slipstreaming. 

Slipstreaming can be explained and understood in sev- 
eral ways. We describe two different interpretations of 
slipstreaming, qualitatively explain where its perfor- 
mance improvement is derived from, and expose its 
limitations. Insight into the limitations of slipstreaming 
allows us to focus efforts on areas that are likely to 
payoff. 

More comprehensive experimental results provide 
important insight and confirm the expectations of our 
qualitative arguments. Multiple CMP configurations 
are explored - examining multiple CMP configura- 
tions is relevant because conclusions change as the 
processor cores scale. 

2. Slipstreaming using SMT processors. 
Slipstreaming was not previously implemented on an 
SMT processor. Insufficient reduction in the A-stream 
made SMT-based slipstreaming less viable. Artifacts 
of our previous instruction-removal mechanism have 
been addressed (see next item below), so SMT-based 
slipstreaming is now viable and this paper provides 
results. 

3 .  More effective instruction-removal. 
Previously, removal-confidence was measured for a 
group of instructions as a whole, i.e., for a trace [27]. A 
trace-based approach ensures producer instructions are 
not removed from the A-stream unless corresponding 
consumer instructions are also removed. Not enforcing 
this constraint leads to spurious instruction-removal 
mispredictions. 
Trace-based removal has severe limitations, however 
[27]. Frequently-varying removal patterns within a 
trace cause the overall confidence to be low, despite 
stable patterns among certain dependence chains. As a 
result, no instructions in the trace are removed even if 
many are removable. And although traces ensure 
dependence chains are removed together, chains are 
confined to the same trace. 
Our new approach measures confidence for instruc- 
tions individually, so unrelated instructions do not 
dilute confidence. Yet dependence chains still tend to 
be removed together and chains are not confined 
within a small region. 

4. Bypassing instruction fetching. 
The A-stream is most effective when both the number 
of instructions fetched and executed are reduced. 
Reducing the number of fetched instructions requires a 
different sequencing model than conventional branch 
predictors currently provide. A conventional branch 
predictor is modified in a novel and simple way to 
bypass fetching of large, dynamic instruction 
sequences. 

1.2. Paper outline 

The paper is organized as follows. Section 2 develops 
models for understanding slipstreaming and examines its 
fundamental limits. Section 3 reviews the slipstream 
microarchitecture and introduces the new instruc- 
tion-removal mechanisms. In sections 4 and 5, the simula- 
tion environment and results are presented, respectively. 
Related work is discussed in Section 6 and conclusions in 
Section 7. 
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2. Understanding slipstreaming 
We present two different interpretations of slipstream- 

ing to better understand the paradigm. In subsection 2.1, 
the A-stream is interpreted as the “main” thread and the 
R-stream “assists” the A-stream. In subsection 2.2, roles 
are reversed: the R-stream is the “main” thread and the 
A-stream “assists” the R-stream. Actually, the two pro- 
grams in a slipstream processor are functionally equivalent 
and mutually beneficial, so either interpretation is valid. 

We next examine limits of the paradigm to motivate 
removing instructions from the A-stream before they are 
fetched. Finally, we consider other ways of reducing the 
A-stream to highlight the conceptual simplicity of our 
chosen approach. 

2.1. R-stream: a fast checker 
The A-stream does not explicitly derive any perfor- 

mance benefit from the R-stream. Rather, the R-stream 
checks (and occasionally redirects) the A-stream without 
slowing it down. This is possible because checking is 
inherently parallel [ 13,201. As depicted in Figure 1, the 
R-stream is a fast checking assist to the A-stream 
[20,21,2]. 

I A-stream I 
, - - - - - - - - - - - - .  JIJIIJIJ 
: Checker j 

L ___________,  

FIGURE 1. A‘ fast checking assist to the A-stream. 

2.2. A-stream:: a program-based predictor 
Alternatively,. the A-stream is a program-based predic- 

tor f o r  the R-stream [7,23,33,5]. For example, the 
A-stream assists the performance of the R-stream by 
improving its branch prediction accuracy. Dynamic branch 
predictions are classified into two groups, conjident and 
unconjident [lo], as shown in Figure 2. Confident branch 
predictions are more likely to be correct and the corre- 
sponding branches and computation feeding the branches 
are removed from the A-stream. Confident predictions 
represent the most accurate predictions, therefore, remov- 
ing the computation needed to verify them is sound, and it 
allows the A-stream to focus instead on verifying unconfi- 
dent branch predictions. As a result, many branch mispre- 
dictions are resolved by the A-stream in advance of when 
the R-stream reaches the same point. 

The A-stream also serves as an accurate value predictor 
[13] for the R-stream. Although only the results of 
A-stream-executed instructions are available, the predic- 
tions are potentially more accurate than those provided by 
conventional value predictors: A-stream “predictions” are 

produced by program computation as opposed to being 
history-based. Perhaps there is some overlap in what the 
A-stream provides and what a conventional value predic- 
tor could provide. Initial investigations in Section 5.3 indi- 
cate some benchmarks (e.g., gcc)  benefit primarily from 
the short program resolving branch mispredictions in 
advance; others benefit largely due to value predictions 
from the A-stream, and the effect is not always reproduc- 
ible by conventional value prediction tables. However, 
comprehensive comparisons are left for future work. 

FIGURE 2. A combined predictor/program for 
improving R-stream branch prediction accuracy. 

2.3. Importance of bypassing instruction fetch 
Prior research has shown that in the absence of any 

resource constraints, performance is generally dictated by 
mispredicted branches [30,11]. That is, in an ideal proces- 
sor with unconstrained fetch and execution bandwidth, 
mispredicted branches and their dependence chains tend to 
dominate the critical path of the program. The A-stream 
cannot reduce this critical path because the dependence 
chains of mispredicted branches are not safely removable 
from the A-stream - only correctly predicted branches 
are safely removable. The A-stream, like a full version of 
the program, encounters the same mispredictions and 
resolves them in program order. Therefore, slipstreaming 
is not likely to provide performance advantages if fetch 
and execution bandwidth are unconstrained. 

Understanding slipstreaming’s limitations enables us to 
focus research efforts on areas that are likely to pay off. 
For example, we can reason about the relative importance 
of bypassing instruction fetch and execution in the 
A-stream. Consider a slipstream processor that reduces the 
number of instructions executed in the A-stream, but not 
the number of instructions fetched. The A-stream runs on 
one core of a CMP and the R-stream on a second core (for 
example). As raw execution bandwidth of both cores is 
increased, the A-stream starts to lose its edge with respect 
to the R-stream. Instruction fetching becomes the bottle- 
neck and, from a practical standpoint, the A-stream is not 
truly reduced if the number of fetched instructions is not 
reduced. 

Fortunately, it is possible to bypass even instruction 
fetching in the A-stream. The A-stream has a distinct 
advantage in this regard because raw instruction fetch 
bandwidth cannot be as easily extended as raw execution 
bandwidth, e.g., due to taken branches and branch predic- 
tor bandwidth. 
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2.4. Other ways of reducing the A-stream 

One method for reducing the A-stream is removing 
branch-predictable computation. Another possibility is 
removing value-predictable computation. As was 
described in Figure 2 in the context of branch prediction, 
an overall better value predictor may be possible by com- 
bining a conventional value predictor with the A-stream: 
the value predictor identifies and removes highly 
value-predictable computation, and the A-stream focuses 
instead on hard-to-predict values. The R-stream observes a 
stream of accurate values comprised of both unverified 
confident values and computed values. 

This approach complicates the mechanism for reducing 
the A-stream, however. For the A-stream to make correct 
forward progress, the effects of removed, value-predict- 
able computation must be emulated by updating the state 
of the A-stream with values directly, similar to 
block/trace/computation reuse [9,8,6] but without the 
reuse test. This is why we focused initially on the special 
cases of ineffectual and branch-predictable computation: 
this computation can be literally removed (i.e., replaced 
with nothing), and only the program counter needs to be 
updated to skip instructions. 

3. Microarchitecture description 

A slipstream processor requires two architectural con- 
texts, one for each of the A-stream and R-stream, and new 
hardware for directing instruction-removal in the A-stream 
and communicating state between the threads. A 
high-level block diagram of a slipstream processor imple- 
mented on top of a two-way chip multiprocessor is shown 
in Figure 3, although an SMT processor might also be 
used. The shaded boxes show the original processors com- 
prising the multiprocessor. Each is a conventional super- 
scalarNLIW processor with a branch predictor, 
instruction and data caches, and an execution engine - 
including the register file and either an in-order pipeline or 
out-of-order pipeline with reorder buffer. 

Slipstreaming requires four new components. 
1. The instruction-removal predictor, or IR-predictor, is a 

modified branch predictor. It generates the program 
counter (PC) of the next block of instructions to be 
fetched in the A-stream. Unlike a conventional branch 
predictor, however, the predicted next PC may reflect 
skipping past any number of dynamic instructions that 
a conventional processor would otherwise fetch and 
execute. Also, the IR-predictor indicates which 
instructions within a fetched block can be removed 
after the instruction fetch stage and before the 
decodetdispatch stage. 

2. The instruction-removal detector, or IR-detector, mon- 
itors the R-stream and detects instructions that could 
have been removed from the program, and might pos- 
sibly be removed in the future. The IR-detector con- 
veys to the IR-predictor that particular instructions 
should potentially be skipped by the A-stream when 
they are next encountered. Repeated indications by the 
IR-detector build up confidence in the IR-predictor, 
and the predictor will remove future instances from the 
A-stream. 

3. The delay bufer is used to communicate control and 
data flow outcomes from A-stream to R-stream [20]. 

4. The recovery controller maintains the addresses of 
memory locations that are potentially corrupted in the 
A-stream context. A-stream context is corrupted when 
the IR-predictor removes instructions that should not 
have been removed. Unique addresses are added to and 
removed from the recovery controller as stores are pro- 
cessed by the A-stream, the R-stream, and the 
IR-detector. The cufrent list of memory locations in the 
recovery controller is sufficient to recover the 
A-stream memory context from the R-stream’s mem- 
ory context. The register file is repaired by copying all 
values from the R-stream’s register file. 

A-stream from IRdetector R-stream 

I .  ..................................... 
Recovery 
Controller 

FIGURE 3. Slipstream processor using a two-way 
chip multiprocessor [27]. 

The diagram in Figure 3 shows the A-stream on the 
leftmost core and the R-stream on the rightmost core. This 
is arbitrary and does not reflect specializing the two cores. 
A real design would have one core that flexibly supports 
either the A-stream or R-stream. In any case, there is a 
clear symmetry that makes designing a single core natural. 
In both cores, there is an interface to the fetch unit that 
overrides the conventional branch predictor, indicated 
symbolically with an open switch and a second interface 
to the fetch unit. Likewise, both cores show symmetric 
interfaces to and from the execution pipeline. 
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3.1. Creating the shorter program 

3.1.1. Base IR-predictor. The IR-predictor resembles a 
conventional branch predictor. In this paper, the IR-predic- 
tor is indexed identically to a gshare predictor [ 151, i.e., an 
index is formed by XORing the PC and the global branch 
history bits. Each table entry contains information for a 
single dynamic basic block. 

Tag: This is the start PC of the basic block and is used 
to determine whether or not the entry contains infor- 
mation for the desired block. 
2-bit counter: If the block ends in a conditional branch, 
the 2-bit counter predicts its direction. 
Conjdence counters. There is a resetting confidence 
counter [lo] for each instruction in the block. The 
counters are updated by the IR-detector: a counter is 
incremented if the corresponding instruction is 
detected as removable, otherwise the counter is reset to 
zero. If a counter is saturated, then the corresponding 
instruction will be removed from the A-stream when it 
is next encountered. 

Every fetch cycle, the IR-predictor supplies a branch 
prediction and an instruction-removal bit vector to the 
A-stream fetch unit. The branch prediction is used to 
select a PC for the next fetch cycle; potential target PCs 
are stored within existing structures of the processor, e.g., 
pre-decoded targets in the instruction cache or branch tar- 
get buffer. 

The instruction-removal bit vector reflects the state of 
the confidence counters for the basic block being fetched. 
A bit is set in the vector if the corresponding confidence 
counter is saturated, and this directs the fetch unit to 
remove the corresponding instruction from the A-stream. 
Thus, although all instructions in the basic block are 
fetched, potentially many instructions are removed before 
the decode stage of the pipeline. 

In Figure 3, the IR-predictor is shown as a new compo- 
nent outside the processor core that ovemdes the conven- 
tional branch predictor. Alternatively, since the 
IR-predictor is built on top of a conventional branch pre- 
dictor, the core’s predictor and the IR-predictor may be 
integrated. 

3.1.2. Improved IR-predictor: bypassing instruction 
fetch. With the base IR-predictor described in 
Section 3.1.1, the A-stream is not reduced in terms of the 
number of instructions fetched. Only the number of 
instructions executed is reduced. If execution bandwidth is 
relatively unconstrained, then the A-stream will not be 
effectively reduced. 

The A-stream is more effective i f fewerfetch cycles are 
expended on it than on the full program. In Figure 4, we 

show an example of how the number of fetch cycles can 
potentially be reduced. Four basic blocks, labeled A 
through D, are to be predicted and fetched. The corre- 
sponding table entries in the IR-predictor are shown; 
shaded entries indicate that all of the confidence counters 
are saturated and the entire basic block is predicted for 
removal. The base IR-predictor predicts each block in 
sequence, requiring four cycles. During two of these 
cycles, the instruction cache fetches instructions and then 
throws them all away (basic blocks B and C). Clearly, only 
two fetch cycles are required, but it is not known in 
advance that instruction fetching of blocks B and C can be 
bypassed. 

base IR-predictor improved 1R-predictor 

FIGURE 4. Reducing fetch cycles in the A-stream. 

Interestingly, the effect we want to produce - bypass- 
ing basic blocks - is the same effect produced by taken 
branches. The improved IR-predictor shown on the 
right-hand side of Figure 4 exploits the analogy. The 
improved predictor “converts” the branch terminating 
block A into a taken branch whose target is block D. 
Below, we consider two possible ways to implement this 
conversion. 

Two additional pieces of information are stored in 
block As table entry. First, the predicted directions of 
any bypassed branches must be stored, in this case, the 
predicted directions of the branches in blocks B and C. 
The reason is all control flow information must be 
pushed onto the delay buffer to be consumed by the 
R-stream, in spite of partially bypassing instruction 
fetching in the A-stream. Second, a target address must 
be stored, in this case, the start PC of block D. The tar- 
get address overrides the next PC computation per- 
formed by the fetch unit. The additional information 
(bypassed predictions and corresponding target 
address) is accumulated for block A’s entry as the 
IR-detector sequentially updates the entries of blocks 
B,  C, and D. 
Effectively, the branch terminating block A is now a 
multi-way branch. It has more potential targets than its 
original taken and fall-through targets because it inher- 
its the targets of skipped blocks. The processor’s 
branch target buffer may be modified to store multiple 
targets per branch. Now, dynamically-created target 
addresses do not have to be stored in the IR-predictor. 

273 

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 18,2025 at 22:26:38 UTC from IEEE Xplore.  Restrictions apply. 



The bypassed predictions still need to be stored and, 
conveniently, this path information is sufficient to 
select the appropriate target address from the branch 
target buffer. 

BIT 

3.1.3. IR-detector. The IR-detector consumes retired 
R-stream instructions, addresses, and values. The instruc- 
tions are buffered and, based on data dependences, cir- 
cuitry among the buffers is dynamically configured to 
establish connections from consumer to producer instruc- 
tions. In other words, a reverse dataflow graph (R-DFG) is 
constructed. The graph is finite in size, so the oldest 
instructions exit the graph to make room for newer 
instructions. Removal information for exiting instructions 
are’used to update the IR-predictor. 

As new instructions are merged into the R-DFG, the 
IR-detector watches for any of three triggering conditions 
for instruction removal. Triggering conditions are unrefer- 
enced writes (a write followed by a write to the same loca- 
tion, with no intervening read), non-modifying writes 
[12,14,16,29] (writing the same value to a location as 
already exists at that location), and correctly-predicted 
branch instructions. When a triggering condition is 
observed, the corresponding instruction is selected for 
removal. Then, the circuits forming the R-DFG 
back-propagate the selection status to predecessor instruc- 
tions. Predecessors may also be selected if certain criteria 
(described later) are met. 

The IR-detector is shown in Figure 5. A single R-DFG 
is shown, however, the buffering could be partitioned into 
multiple smaller R-DFGs. The latter approach reduces the 
sizekomplexity of each individual R-DFG but still allows 
a large analysis scope for killing values (observing another 
write to the same location). 

IR-prcdlclor 
- kill inbtructions 

VALUE PU0I)UCEE 
BIT 

R-DFG 

1 I 

FIGURE 5. IR-detector. 

The operand rename table in Figure 5 is similar to a 
register renamer but it can track both memory addresses 
and registers. A single entry of the operand rename table is 
shown in Figure5. To merge an instruction into the 
R-DFG, each source operand is checked in the rename 
table to get the most recent producer of the value (check 
the valid bit and producer field). The instruction uses this 
information to establish connections with its producer 
instructions, i.e., set up the back-propagation logic (if the 
buffering is partitioned into smaller R-DFGs, connections 
cannot be made across partition boundaries). The ref bit is 
set for each source operand indicating the values have 

been used. If the instruction writes a registerlmemory 
location, the corresponding operand rename table entry is 
checked to detect non-modifyinghnreferenced writes and 
to kill values, as follows. 

If the valid bit is set, and the current instruction pro- 
duced the same value as indicated in the value field, 
then the current instruction is a non-modifying write. 
The current instruction is selected for removal as it  is 
merged into the R-DFG. No fields are updated in the 
rename table entry since the old producer remains 
‘‘live’’ in this case. 
If the valid bit is set and the new and old values do not 
match, the old producer indicated by the producer field 
is killed. Furthermore, if the ref bit is not set, then the 
old producer is an unreferenced write and is selected 
for removal. Finally, all fields in the rename table entry 
are updated to reflect the new producer. 

Correctly predicted branch instructions are selected for 
removal when they are merged into the R-DFG. 

Finally, any other instruction x may be selected for 
removal via the R-DFG back-propagation circuitry, if 
three conditions are met. 
I .  All of x’s dependent instructions must be known, i.e., 

x’s production(s) must be killed by other production(s). 
2. All of x’s dependent instructions must be selected for 

removal. 
3. All  of x’s dependent instructions must have been 

removed by the IR-predictor this time around. 

When a basic block becomes the oldest basic block in 
the analysis scope, the appropriate entry for that basic 
block is updated in the IR-predictor, i.e., confidence 
counters are incremented for selected instructions and 
reset for non-selected instructions. 

The third (highlighted) condition above is the major 
innovation with respect to our previous instruc- 
tion-removal mechanism. Previously, this constraint was 
not needed because dependence chains were confined to a 
trace and a single confidence counter was maintained for 
the entire trace; this ensured producers and consumers 
were removed together or not at all, but it also resulted in 
unrelated chains diluting overall confidence. The dilution 
problem is fixed by maintaining confidence for instruc- 
tions individually; however, this can lead to partial-chain 
removal and the specifically bad situation of removing a 
producer but not the consumer. The third constraint above 
ensures a producer’s counter saturates only after all con- 
sumers’ counters saturate. The end result: 1) our new 
approach measures confidence for instructions individu- 
ally, so unrelated instructions do not dilute confidence, yet 
2) dependence chains still tend to be removed as a unit, 
and chains are not confined within a small region other 
than to reduce R-DFG complexity. 
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3.2. Delay buffer 

The delay buffer is a simple FIFO queue that allows the 
A-stream to communicate control flow and data flow out- 
comes to the R-stream. The A-stream pushes both a com- 
plete history of branch outcomes and a partial history of 
operand values onto the delay buffer. This is shown in 
Figure 3 with a solid arrow from the reorder buffer of the 
A-stream (left-most processor) to the delay buffer. Value 
history is partial because only a subset of the program is 
executed by the A-stream. Complete control history is 
available, however, because the IR-predictor predicts all 
branches even though the A-stream may not fetch all 
instructions (Section 3.1.2). 

The R-stream pops control and data flow information 
from the delay buffer. This is shown in Figure 3 with solid 
arrows from delay buffer to the instruction cache and exe- 
cution core of the R-stream (right-most processor). Branch 
outcomes from the delay buffer are routed to the instruc- 
tion cache to direct instruction fetching. Source operand 
values and loadlstore addresses from the delay buffer are 
merged with their respective instructions after the instruc- 
tions have been fetchedhenamed and before they enter the 
execution engine. To know which values/addresses go 
with which instructions, the delay buffer also includes 
information about which instructions were skipped by the 
A-stream (for which there is no data flow information 
available). 

3.3. IR-misprediction recovery 

An instruction-removal misprediction, or IR-mispre- 
diction, occurs when A-stream instructions were removed 
that should not have been. The A-stream has no way of 
detecting the IR-misprediction, therefore, it continues 
instruction retirement and corrupts its architectural state. 
Two things are required to recover from an IR-mispredic- 
tion. First, the IR-misprediction must be detected and, sec- 
ond, the corrupted state must be pinpointed for efficient 
recovery actions. 

IR-mispredictions are detectable by the R-stream 
because either the control or data flow outcomes from the 
delay buffer will not match its redundantly computed out- 
comes. In other words, IR-mispredictions usually surface 
as branch or value mispredictions in the R-stream. 

Some IR-mispredictions take awhile to cause any visi- 
ble symptoms in the A-stream. For example, a store may 
be removed incorrectly and the next load to the same loca- 
tion may not occur for a very long time. The IR-detector 
can detect these IR-mispredictions much sooner by com- 
paring its computed removal information against the cor- 
responding predicted removal information - if they 
differ, computation was removed that should not have 

been. Thus, the IR-detector serves the dual-role of updat- 
ing the IR-predictor and checking for IR-mispredictions. 

When an IR-misprediction is detected, the reorder 
buffer of the R-stream is flushed. The R-stream architec- 
tural state now represents a precise point in the program to 
which all other components in the processor are re-syn- 
chronized. The IR-predictor is backed up to the precise 
program counter, the delay buffer is flushed, the reorder 
buffer of the A-stream is flushed, and the A-stream’s pro- 
gram counter is set to that of the R-stream. 

All that remains is restoring the corrupted register and 
memory state of the A-stream so it is consistent with the 
R-stream. Because register state is finite, the entire register 
file of the R-stream is copied to the A-stream register file. 
The movement of data (both register and memory values) 
occurs via the delay buffer, in the reverse direction, as 
shown with dashed arrows in Figure 3 .  

The recovery controller receives control signals and the 
addresses of store instructions from the A-stream, the 
R-stream, and the IR-detector, as shown in Figure 3 .  The 
control signals indicate when to start or stop tracking a 
memory address (only unique addresses need to be 
tracked). After detecting an IR-misprediction, stores may 
either have to be “undone” or “done” in the A-stream. 

e 

4. 

The recovery controller tracks addresses of stores 
retired in the A-stream but not yet retired in the 
R-stream. After detecting an IR-misprediction, these 
A-stream stores must be “undone” since the R-stream 
has not yet performed the companion, redundant store. 
The recovery controller tracks addresses of stores 
retired in the R-stream and skipped in the A-stream, 
only until the IR-detector verifies that the stores are 
truly ineffectual. When an IR-misprediction is 
detected, all unverified, predicted-ineffectual stores are 
“done” in the A-stream by copying data from the 
redundant locations in the R-stream. 

Simulation environment 
We developed a detailed execution-driven simulator of 

a slipstream processor. The simulator faithfully models the 
architecture depicted in Figure 3 and outlined in Section 3:  
the A-stream produces real, possibly incorrect Val- 
uedaddresses and branch outcomes, the R-stream and 
IR-detector check the A-stream and initiate recovery 
actions, A-stream state is recovered from the R-stream 
state, etc. The simulator itself is validated via a functional 
simulator run independently and in parallel with the 
detailed timing simulator [26]. The functional simulator 
checks retired R-stream control flow and data flow out- 
comes. 
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The Simplescalar [3] compiler and ISA are used. We 
use the SPEC95 integer benchmarks ( -03  optimization) 
run to completion (Table 1). 

TABLE 1. Benchmarks. 
benchmark input dataset instr. count 

124 million 
cccp.i -0 cccp.s 

m88ksim 
per1 
vortex 

keg I vigo.ppm I 166 million 
li I test.lso (weens 7) I 202 million .. 

-c < ctl.in (dcrand.big) 121 million 
scrabble.pl < scrabbleh 108 million 
vortex.in (persons.250) 101 million 

instruction 

instruction removal. The removal confidence threshold is 
32. The IR-detector has a scope of 256 instructions and the 
R-DFG is unpartitioned. The delay buffer stores 256 
instructions (data flow buffer) and 4K branch predictions 
(control flow buffer). The recovery controller tracks any 
number of store addresses, although we observe not too 
many outstanding addresses in practice. The recovery 
latency (after the IR-misprediction is detected) is 5 cycles 
to startup the recovery pipeline, followed by 4 register 
restores per cycle, and lastly 4 memory restores per cycle. 

size/assoc/repl = 64kB/4 -way/LRU 
line size = 16 instructions 

5. Results 

data cache 

5.1. Slipstream performance results 

miss penalty = 12 cycles 
size/assoc/repl = 64kB/4-way/LRU 
line size = 64 bytes 

execution 
latencies 

cache w y  interleaved I 

address generation = 1 cycle 
memory access = 2 cycles (hit) 

integer ALU ops = 1 cycle 
complex ops = MIPS RIOOOO latencies 

miss penalty = 14 cycles 
reorder buffer: 64, 128, or 256 entries 

n fully-symmetric function units (n = issue b/w) 
In loads/stores Der cycle (n = issue b/w) I 

IR-predictor 

IR-detector 

delay buffer 

recovery 
controller 

Microarcl 

z20 entries 
qshare-indexed (16 bits of global branch history) 
block size = 16 
16 confidence counters per entry 
confidence threshold = 32 

# of outstanding store ad&. = unconstrained I 
recovery latency (afrer IR-misp. detected): 

5 cycles to start up recovery pipeline 
4 reg. restoredcycle (64 regs performed 1st) 
4 mem. restoreslcycle (mem performed 2nd) 
:. min. latency (no memory) = 21 cycles 

tecture parameters are listed in Table 2. Thc 
top half of the table lists parameters for individual proces- 
sors within a CMP or, alternatively, a single SMT proces- 
sor. The bottom half describes the four slipstream 
components. A large IR-predictor is used for accurate 

In this section, we compare the performance of eight 
models. Three are superscalar configurations (SS). Four 
are chip-multiprocessor configurations (CMP) with slip- 
streaming. One is a simultaneous multithreading configu- 
ration (SMT) with slipstreaming. 

SS(64x4): A single 4-way superscalar processor with 
64 ROB entries. 
SS( 128x8): A single 8-way superscalar processor with 
128 ROB entries. 
SS(256x16): A single 16-way superscalar processor 
with 256 ROB entries. 
CMP(2x64x4): Slipstreaming on a CMP composed of 
two SS(64x4) cores. 
CMP(2x64x4)hyp: Same as previous, but A-stream 
can bypass instruction fetching. 
CMP(2x128x8): Slipstreaming on a CMP composed 
of two SS( 128x8) cores. 
CMP(2~128x8)hyp: Same as previous, but A-stream 
can bypass instruction fetching. 
SMT(128xS)hyp: Slipstreaming on SMT, where the 
SMT is built on top of SS( 128x8). 

For consistent comparisons, the same (gshare-based) 
IR-predictor provides branch predictions in all of the pro- 
cessor models, and the base superscalar processor models 
ignore the instruction-removal information. Performance 
is measured in retired instructions-per-cycle (IPC). For 
slipstream models, IPC is computed as the number of 
retired R-stream instructions (i.e., the full program, 
counted only once) divided by the number of cycles 
required for both the A-stream and R-stream to complete 
(total execution time). 

IPC performance of the eight models is shown in 
Figure 6.  The first conclusion is a slipstream processor can 
exploit a second, otherwise unused processor to dramati- 
cally improve single-program performance. From 
Figure 7, CMP(2x64x4) performs on average 12% better 
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4 

p 3  

2 

1 

0 

El SS (64x4) 
SS (1 28x8) 

1 OCMP/2x64x4\ 
OSS (256x16) n n 

comp gcc go jpeg ti m88k ped vortex 

FIGURE 6. IPC results. 

IR-predictor (Section 3.1.2). From Figure 7, 
CMP(2x64x4)hyp on average performs 13% better than 
SS(64x4), a modest change from CMP(2x64x4). As 
expected, it is more important to bypass instruction fetch- 
ing for larger processor cores. CMP(2x128x8)hyp on 
average performs 10% better than SS( 128x8), whereas 
CMP(2x 128x8) performs 7% better. With the improved 
IR-predictor, slipstream performance improvement 
increases from 8% to 16% for gcc, from 8% to 14% for li, 
from 17% to 21% for m88ksim, from 15% to 19% for perl, 
and from 15% to 20% for vortex. 

In Figure 8, we compare the performance of slip- 
streaming on two small processors to the performance of a 
larger processor. The larger processor has the same total 
number of ROB entries and issue bandwidth as the two 
smaller processors combined. For half of the benchmarks 
(ped ,  gcc, li, m88ksim), CMP(2x64x4)hyp actually per- 
forms from 4% to 8% better than SS(128x8). Overall, 
CMP(2x64x4)hyp performs comparably to the more com- 
plex, less flexible SS(128x8) processor - within 5% on 
average. The results are more pronounced for 
CMP(2~128~8)/byp,  which on average performs 7% bet- 
ter than SS(256x16). 

-5% I I l l  

- 1 0% 

FIGURE 7. Performance improvement using a 
second processor for slipstreaming. 

The second conclusion is the benefit of slipstreaming 
decreases as more execution bandwidth is made available. 
This is evident from the first and third bars of Figure 7. 
For all except m88ksim and vortex, the performance 
improvement of CMP(2x128x8) over SS( 128x8) is less 
than the improvement of CMP(2x64x4) over SS(64x4). 
For example, perl drops from a 30% improvement down to 
a 15% improvement as the window size and issue band- 
width of the processor core is doubled. This is evidence 
for the arguments made in Section 2.3. 

The above result motivates reducing the number of 
instructions fetched in the A-stream, using the improved 

10% + 

I 
20% 

15% 

5% E 
g -5% 

g -10% 

p! 0% 
al 11 m88k per1 

' -15% 

-25% ' 
-30% 

-35% 1 
FIGURE 8. Perf. of slipstreaming on two small 
processors vs. perf. of a single large processor. 

Finally, we examine the performance of slipstreaming 
on an SMT processor. The performance improvement of 
SMT( 128x8)hyp over SS( 128x8) is shown in Figure 9. 
For half of the benchmarks, performance improves by 
more than 10%. Gcc,  li, p e d ,  and m88ksim improve by 
12%, 13%, 16%, and 19%, respectively. Performance is 
degraded between I %  and 4% for compress, go, and vor- 
tex, and over 25% for jpeg.  Compress showed a small loss 
even for the CMP(2x128x8) model, so one would expect 
the same for SMT( 128x8)hyp. The reason is the A-stream 
is less effective for compress and IR-mispredictions 
degrade performance. G o  was also borderline in the 
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CMP(2x128x8) case. Vortex and jpeg utilize the 
SS(128x8) processor well - in fact, they exceed half of 
the peak IPC - and the A-stream steals useful processor 
bandwidth from the R-stream. The effect is more pro- 
nounced for jpeg than for vortex because jpeg exhibits lit- 
tle reduction in its A-stream (Figure 10). 

20% 

15% 

10% 

c 5% ” 

f 0% 
B E -5% 

-10% 

-15% 

-20% 

-25% 

-30% 

- 

FIGURE 9. Performance improvement of 
SMT(128x8)hyp over SS(128x8). 

5.2. Instruction removal 

Figure 10 shows the fraction of original dynamic 
instructions removed from the A-stream. Nearly half of 
the program is removed for gcc,  li, perl, and vortex, and 
about two-thirds of m88ksim is removed. About 20% of 
compress is removed, and only 10% for go and jpeg.  

1 

- : 30% 
0 
3 j  20% 
2 - 10% 

0% 
comp gcc go jpeg li m88k perl vortex 

FIGURE 10. Breakdown of instruction removal. 

Removing only 10% of the program simply does not 
buffer the R-stream from many branch mispredictions. But 
20% removal in compress is significant, and it is surpris- 
ing slipstream performance improvements are not higher. 
The problem with compress is three-fold: there are fre- 
quent branch mispredictions, their dependence chains are 
quite long, and the chains have long-latency arithmetic 
operations. Removing 20% of compress can perhaps 
buffer the R-stream against any one of these three, but not 
two or three combined. 

Figure 10 also breaks down the reasons for instruction 
removal. On average, branches are the primary source, at 
just over a third of the removed instructions (“branches”). 
Ineffectual writes are about a third of removed instructions 
(“writes”). Among instructions removed due to back-prop- 
agation (“prop -”), most are in dependence chains of 
removed branches (“prop branches”). 

5.3. Prediction 

In Figure 11,  we show the performance improvement 
of three models with respect to SS(64x4). The first is 
SS(64x4) with conventional value prediction added. A 
large context-based value predictor (CVP) [24] is used 
(218 and 2*’ entries in the first and second levels, respec- 
tively). The second is CMP(2x64x4)/byp, but the R-stream 
does not use A-stream values speculatively (“no value pre- 
diction”). The third is CMP(2x64x4)hyp. 

We only consider benchmarks that show reasonably 
large improvements with any of the models (eliminating 
compress, go, jpeg) .  For gcc and li, better branch predic- 
tion is the largest benefit due to slipstreaming, not value 
prediction (we can tell because the second and third bars 
are close). Also, CVP provides only minor improvements 
for these benchmarks. For m88ksim, value prediction is 
the dominant factor and CVP is superior. For perl and vor- 
tex, value prediction is the larger benefit due to slipstream- 
ing, however, CVP does not provide the same benefit. 
Perhaps in perl ,  better branch prediction is needed to bet- 
ter exploit value predictions. 

- 1  PSS(64x4) + context-based value prediction I ”” ,” 

3 30% 
f 25% 
v) 

w 

L g 20% 

g 10% 
- E 15% 

E 
P 
.- 5% 

z 0% 
comp gcc go J 11 m88k ped 

-50% A . . ... . . .. .. .. .. . ... ” .... ... ” ”.. . .......... ” 

FIGURE 11. Measuring the relative importance of 
branch and value prediction benefits. 

6. Related work 
Advanced-streadRedundant-stream Simultaneous 

Multithreading (AR-SMT) [20] is based on the realization 
that microarchitecture performance trends and fault toler- 
ance are related. Time redundancy - running a program 
twice to detect transient faults - is cheaper than hardware 
redundancy but it doubles execution time. AR-SMT runs 
the two programs simultaneously [28] but delayed (via the 
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delay buffer), reducing the performance overhead of time 
redundancy. Results are compared by communicating all 
retired A-stream results to the R-stream, and the R-stream 
performs the checks. Here, the R-stream leverages specu- 
lation concepts [ 131 - the A-stream results can be used as 
ideal predictions. The R-stream fetchedexecutes with 
maximum efficiency, further reducing the performance 
overhead of time redundancy. And the method for compar- 
ing the A-stream and the R-stream is conveniently in 
place, in the form of misprediction-detection hardware. In 
summary, AR-SMT leverages the underlying microarchi- 
tecture to achieve broad coverage of transient faults with 
low overhead, both in terms of performance and changes 
to theiexisting design. 

DIVA [2] and SRT [18] are two other examples of 
fault-tolerant architectures designed for commodity 
high-performance microprocessors. DIVA detects a vari- 
ety of faults, including design faults, by using a verified 
checker to validate computation of the complex processor 
core. DIVA leverages an AR-SMT technique - the sim- 
ple checker is able to keep pace with the core by using the 
values it is checking as predictions. SRT improves on 
AR-SMT in a variety of ways, including a formal and sys- 
temadc treatment of SMT applied to fault tolerance (e.g., 
spheres of replication). 

Researchers have demonstrated a significant amount of 
redundancy, repetition, and predictability in general pur- 
pose programs [6,8,9,12,13,14,16,24,25,29]. This prior 
research forms a basis for creating the shorter program in 
slipstream processors. A technical report [21] showed 1) it 
is possible to ideally construct significantly reduced pro- 
grams that produce correct final output, and 2) AR-SMT is 
a convenient execution model to exploit this property. 

Tullsen et. al. [28] and Yamamoto and Nemirovsky 
[3 11 proposed simultaneous multithreading for flexibly 
exploiting thread-level and instruction-level parallelism. 
Olukotun et. al. [ 171 motivate using chip multiprocessors. 

Farcy et. al. [7] proposed resolving branch mispredic- 
tions early by extracting the computation leading to 
branches. Zilles and Sohi [33] similarly studied the com- 
putation chains leading to mispredicted branches and 
loads that miss in the level-two cache. They suggest iden- 
tifying a difficult subset of the program for pre-execution 
[22,23], potentially prefetching branch predictions and 
cache lines that would otherwise be mispredictions and 
cache misses. Re-execution typically involves pruning a 
small kernel from a larger program region and running it 
as a prefetch engine [22]. Roth and Sohi [23] developed a 
new paradigm called Speculative Data-Driven Multi- 
threading that implements pre-execution generally. Rather 
than spawn many specialized kernels on-the-fly, our 
approach uses a single, functionally complete, and persis- 
tent program (A-stream). Slipstreaming avoids the con- 

ceptual and possibly real complexity of forking private 
contexts, within which the specialized kernels must run. 

Speculative multithreading architectures [e.g., 1,17,26] 
speed up a single program by dividing it into specula- 
tively-parallel threads. The speculation model uses one 
architectural context and future threads are spawned 
within temporary, private contexts, each inherited from the 
preceding thread’s context. Future thread contexts are 
merged into the architectural context as threads complete. 
Our speculation model uses redundant architectural con- 
texts, so no forking or merging is needed. And strictly 
speaking, there are no dependences between the architec- 
turally-independent threads, rather, outcomes are commu- 
nicated as predictions via a simple FIFO queue. Register 
and memory mechanisms of the underlying processor are 
relatively unchanged by slipstreaming (particularly if 
there is an existing interface for consuming value predic- 
tions at the rename stage). In contrast, speculative multi- 
threading often requires elaborate inter-thread 
registedmemory dependence mechanisms. 

SSMT [ 5 ]  runs microthreads simultaneously with an 
application to optimize its performance. Microthreads are 
small routines designed in conjunction with applications 
and the processor. For example, microthreads may per- 
form cache prefetching, improve branch prediction accu- 
racy [5], or optimize exception handling [32]. 

The Datascalar paradigm [4] runs redundant programs 
on multiple processor-and-memory cores to eliminate 
memory read requests. 

7. Summary and conclusions 
Integrating multiple architectural contexts on a single 

chip is an important trend, and it is difficult to conceive of 
more effective uses for a billion transistors. The slipstream 
paradigm extracts more functionality from a CMP or SMT 
processor, without fundamentally reorganizing it. The 
operating system may flexibly choose among multiple 
operating modes based on system and user requirements: 
high job throughput and parallel-program performance 
(conventional SMT/CMP), improved single-program per- 
formance and reliability (slipstreaming), or fully-reliable 
operation with low impact on single-program performance 

In this paper, we developed a new and more effective 
instruction-removal mechanism for creating the shorter 
program. It measures removal-confidence on a per-instruc- 
tion basis, eliminating many flaws of the prior trace-based 
approach and leveraging conventional branch predictors. 
The new approach reduces the A-stream significantly 
(often by 50%), but also accurately. 

We also developed a new and simple sequencing mech- 
anism that enables the A-stream to skip over large 
dynamic sequences of instructions. 

(AR-SMT / SRT). 
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Finally, we reasoned about the sources of. slipstream 
performance, and its limitations. This focused our explora- 
tion of the architecture and led us to some key results. 

A 12% average performance improvement is achieved 
by harnessing an otherwise unused, additional proces- 
sor in a CMP. Slipstreaming using two small supersca- 
lar cores often achieves similar IPC as one large 
superscalar core, but with a potentially faster clock and 
a more flexible architecture. For programs with suffi- 
ciently reduced A-streams, slipstreaming on an 8-way 
SMT processor improves performance from 10%-20%. 
For some programs, performance improvement is due 
to the A-stream resolving branch mispredictions in 
advance. Others benefit largely from A-stream value 
predictions, and the effect is not always reproducible 
using conventional value prediction tables. 
As more execution bandwidth is made available, slip- 
streaming provides less performance improvement. 
But if the A-stream is able to bypass instruction fetch- 
ing, slipstreaming retains its edge - because raw 
instruction fetch bandwidth is not as easily extended as 
raw execution bandwidth. 
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