
Control Independence in Trace Processors

Abstract

Branch mispredictions are a major obstacle to exploit-
ing instruction-level parallelism, at least in part because
all instructions after a mispredicted branch are squashed.
However, instructions that are control independent of the
branch must be fetched regardless of the branch outcome,
and do not necessarily have to be squashed and re-exe-
cuted. Control independence exists when the two paths fol-
lowing a branch re-converge.

A trace processor microarchitecture is developed to
exploit control independence and thereby reduce branch
misprediction penalties. There are three major contribu-
tions. 1) Trace-level re-convergence is not guaranteed
despite re-convergence at the instruction-level. Novel trace
selection techniques are developed to expose control inde-
pendence at the trace-level. 2) Control independence’s
potential complexity stems from insertion and removal of
instructions from the middle of the instruction window.
Trace processors manage control flow hierarchically
(traces are the fundamental unit of control flow) and this
results in an efficient implementation. 3) Control indepen-
dent instructions must be inspected for incorrect data
dependences caused by mispredicted control flow. Existing
data speculation support is easily leveraged to selectively
re-execute incorrect-data dependent, control independent
instructions.

For five of the SPEC95 integer benchmarks, control
independence improves trace processor performance from
5% to 25%, and 17% on average.

1.  Introduction

Dynamically scheduled superscalar processors achieve
high performance by extracting instruction-level parallel-
ism (ILP) from ordinary, sequential programs. Because
there are data dependences among instructions, finding a
sufficient number of independent instructions to execute in
parallel requires examining and scheduling a large group of
instructions, called the instruction window. The larger this
window, the farther a processor may “look ahead” into the
program — and the greater the chance of finding indepen-
dent instructions.

Branch instructions are a major obstacle to maintaining
a large window of useful instructions because they intro-
duce control dependences: the next group of instructions to
be fetched following a branch instruction depends on the
outcome of the branch. High performance processors deal
with control dependences by using branch prediction. Pre-
dicting branch outcomes allows instruction fetching and
speculative execution to proceed despite unresolved
branches in the window. Unfortunately, branch mispredic-
tions still occur, and current implementations squash all
instructions after a mispredicted branch, thereby limiting
the effective window size. Following a squash, the window
is often empty and several cycles are required to re-fill it
before instruction execution proceeds at full efficiency.

Often only a subset of dynamic instructions immedi-
ately following a branch truly depend on the branch out-
come, however. These instructions are control dependent
on the branch. Other instructions deeper in the window
may be control independent of the mispredicted branch:
they will be fetched regardless of the branch outcome, and
do not necessarily have to be squashed and re-executed
[1,2].

Control independence typically occurs when the two
paths following a branch re-converge before the control
independent instruction, as depicted in Figure 1. Upon
detecting the misprediction, the incorrect control depen-
dent instructions are squashed and replaced with the cor-
rect control dependent ones, but processing of control
independent instructions can proceed relatively unaffected.
Exploiting control independence requires three basic
mechanisms outlined below.

1. The re-convergent point must be identified in order to
distinguish and preserve the control independent
instructions in the window.

2. The processor must support insertion and removal of
control dependent instructions from the middle of the
window.

3. The mispredicted control flow may cause some incor-
rect data dependences to be formed between control
independent instructions and instructions before the re-
convergent point. These incorrect data dependences
must be repaired and the incorrect-data dependent, con-
trol independent instructions selectively re-executed.
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Control independence is an effective technique for miti-
gating the effects of branch mispredictions. A recent study
shows potential performance improvements of 30% in
wide-issue superscalar processors [3]. However, practical
mechanisms for the three outlined requirements need to be
explored. In [3], control dependence information is ideally
conveyed from the compiler to hardware for identifying re-
convergent points, yet simple hardware-only detection of
re-convergent points is desirable. And the reorder buffer of
superscalar processors is managed as a fifo with insertion
and removal of instructions performed only at the head and
tail of the fifo, not in the middle. Arbitrary expansion and
contraction, beginning and ending at any point in the win-
dow, may be complex. Finally, conventional register and
memory dependence mechanisms are inadequate for con-
trol independence. A new overall data flow management
strategy is needed — one that supports data speculation in
general.

In this paper, the trace processor microarchitecture [4,5]
is explored as a practical and effective platform for control
independence.

FIGURE 1. Control independence example.

1.1.  Trace processor control independence
A trace processor (Figure 2) is organized entirely

around traces, long dynamic instruction sequences span-
ning multiple basic blocks and constrained primarily by a
hardware-determined maximum length. Traces introduce a
larger granularity of work and therefore hierarchy.

Rather than predicting, fetching, and dispatching/
renaming instructions as individual units, the frontend of
the trace processor works more efficiently at the higher
level of traces. Traces are predicted using a next-trace pre-
dictor [6] which implicitly predicts multiple branches each
cycle with only a single trace prediction. Traces themselves
are stored in a trace cache [7,8,9,10] for low-latency, high-
bandwidth instruction fetching. Traces are also efficiently
dispatched and renamed as a unit [4]: intra-trace values are
pre-renamed in the trace cache, so only inter-trace values
(live-in and live-out registers) need to be dynamically
renamed.

The instruction window and issue mechanisms are dis-
tributed among multiple processing elements (PEs) [4].

Each PE is allocated a single trace. Fast instruction issue
and bypassing of intra-trace values are possible due to a
small (trace-sized) window and modest, dedicated issue
bandwidth within each PE.

Trace processor control independence mechanisms are
described in the following three subsections. We begin
with the hierarchical instruction window and how it is
inherently suited to flexible window management. Then,
the interesting problem of ensuring and identifying trace-
level re-convergence is described. Finally, we describe how
the selective misspeculation recovery model of trace pro-
cessors [5] supports the data flow management require-
ments of control independence.

FIGURE 2. Trace processor.

1.1.1.  Exploiting hierarchy: flexible window manage-
ment. The hierarchical instruction window enables flexible
window management in two ways.

1. Hierarchical management of control flow. In some
cases it is possible to isolate the effects of intra-trace
control flow from inter-trace control flow. This is true if
the longest control dependent path of a branch fits
entirely within a trace. If such a branch is mispredicted,
instructions following the branch but in the same trace
are squashed, while subsequent traces are not squashed.
Within a PE, a simple (non-selective) squash model is
preserved, yet at a higher level it appears as if instruc-
tions are inserted/removed from the middle of the
instruction window.

This is called fine-grain control independence (FGCI)
because the branch and its re-convergent point are close
together. Figure 3(a) shows an example in which a
misprediction in PE1 affects only control flow within
the PE, and inter-trace control flow (links between PEs)
is unaffected.
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2. Hierarchical management of resources. If one or more
control dependent paths of a branch are longer than a
trace, then recovering from a misprediction involves
squashing and inserting an arbitrary number of traces in
the middle of the window. To do so, the PEs are man-
aged as a linked-list instead of a fifo. This is no more
complex than fifo management, however, because the
unit of insertion/removal (a trace) is large and therefore
efficient to manage.

This is called coarse-grain control independence
(CGCI) because the branch and its re-convergent point
are in different traces. Figure 3(b) shows an example in
which two traces t2 and t3 must be removed from the
middle of the instruction window and trace t6 inserted
in their place.

FIGURE 3. Flexible window management.

1.1.2.  Trace selection: ensuring and identifying trace-
level re-convergence. Trace-based window management
simplifies arbitrary instruction insertion and removal but
introduces a new problem. Although control flow eventu-
ally re-converges after a branch, trace-level re-convergence
is not guaranteed. Consider Figure 4(a), in which the two
control dependent paths of the branch are of different

lengths. In Figure 4(b), a different set of traces is selected
depending on the direction of the branch, even traces after
the re-convergent point. I.e. re-convergence is not mani-
fested at the trace-level.

FIGURE 4. Trace-level re-convergence problem.

Trace-level re-convergence must be ensured in order to
exploit both FGCI and CGCI. This rests with trace selec-
tion, the algorithm for dividing the dynamic instruction
stream into traces. Essentially, trace selection must syn-
chronize the control dependent paths of a branch so that
regardless of which path is taken, the same sequence of
control independent traces are selected. Traces may be syn-
chronized at the re-convergent point itself, but more gener-
ally at any control independent point after the re-
convergent point. We develop two different trace selection
techniques to address FGCI and CGCI separately.

Small if-then, if-then-else, and nested if-
then-else constructs that do not contain loops or func-
tion calls are ideally suited to FGCI mechanisms. First,
they have fixed-length and relatively short control depen-
dent paths, most of which fit within a trace. Table 5 in
Section 6.2 shows that in the worst case, less than 10% of
these constructs have a control dependent path longer than
32 instructions. Secondly, they account for a large enough
fraction of mispredictions (20% - 60%) to be specially tar-
geted for control independence. Lastly, these regions can
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be precisely and efficiently detected by hardware because
of their directed, acyclic control flow.

We propose a hardware algorithm that detects these for-
ward-branching regions, locates the re-convergent point
that closes the region, and computes the length of the long-
est control dependent path through the region. Trace selec-
tion then uses this information to conceptually “pad” any
selected path until its length matches the longest path. By
equalizing path lengths, trace selection synchronizes con-
trol dependent paths at the re-convergent point — this is
shown in Figure 4(c). This padding technique enables
traces to expand or contract to recover from mispredic-
tions, without affecting the boundaries of subsequent
traces, similar to tasks in multiscalar processors [2].
Section 3 describes how forward-branching regions are
detected and analyzed, and how trace selection uses the
resultant information to expose FGCI.

All other branches are covered by CGCI. In the extreme
case, trace selection could search for the precise, i.e. near-
est, control independent points for all branches, and then
use these points to delineate traces. However, experience
with this approach has yielded negative results. There are
so many re-convergent points that synchronizing at every
one of them creates a large number of small traces, worsen-
ing PE utilization, trace cache performance, and trace pre-
dictor performance.

Instead, trace selection can exploit a limited number of
easily identified, “global” control independent points in the
dynamic instruction stream. Loop back-edges, loop exits,
and subroutine return points are all examples of global re-
convergent points [5,11,3]. To ensure trace-level re-conver-
gence for CGCI branches, traces are delineated at chosen
global re-convergent points — as shown in Figure 4(d).
Then, if a branch is mispredicted, an exposed global re-
convergent point nearest the branch is found in the window
and assumed to be the first control independent trace.
Section 4 describes CGCI trace selection.

1.1.3.  Managing data dependences. A mispredicted
branch instruction causes not only incorrect control flow,
but potentially incorrect data flow as well. After repairing
the control flow, control independent instructions must be
inspected for incorrect data dependences both through reg-
isters and memory, and any incorrect-data dependent
instructions selectively reissued.

A primary feature of trace processors is the pervasive
use of data speculation — value prediction [e.g., 12], load/
store address prediction [e.g., 13], and speculative memory
disambiguation [e.g., 14]. Selective misspeculation recov-
ery, therefore, was anticipated as an important problem and
played a central role in the trace processor microarchitec-
ture [5]. The selective recovery model as it applies to con-
trol independence is reviewed in Section 2.2.

1.2.  Related work
Lam and Wilson’s limit study [1] demonstrates that con-

trol independence exposes a large amount of instruction-
level parallelism, on the order of 10 to 100, for control-
intensive integer benchmarks. This work was followed up
by Uht and Sindagi [15] in their study of “minimal control
dependences” and showed similar results.

A recent study [3] examines the potential of control
independence in the context of wide-issue superscalar pro-
cessors. An aggressive implementation achieves improve-
ments on the order of 30%. The proposed mechanisms are
complex due to the non-hierarchical superscalar organiza-
tion, and there is a reliance on the compiler to provide
complete control dependence information. Nonetheless,
the study is useful for understanding control independence.

Multiscalar processors [16,2], Dynamic Multithreading
[11], and other multithreaded architectures [17, 18, 19, 20]
exploit control independence by pursuing multiple flows of
control. Either the compiler or hardware partitions the pro-
gram into tasks/threads, or subgraphs of the CFG, which
may contain arbitrary control flow. Branch mispredictions
within a task/thread may not cause subsequent tasks to
squash if they are control independent of the branch.

The instruction reuse buffer [21] provides another way
of exploiting control independence. It saves instruction
input and output operands in a buffer — recurring inputs
can be used to index the buffer and determine the matching
output. In the proposed superscalar processor with instruc-
tion reuse, there is complete squashing after a mispredic-
tion. However, control independent instructions after the
squash can be quickly re-evaluated via the reuse buffer.

Another approach using a dual reorder buffer design is
presented in [22]. A misprediction squashes one of the
reorder buffers, but control and data independent instruc-
tions from the second reorder buffer are preserved.

Dynamic Hammock Predication (DP) [23] is loosely
related to the FGCI concepts developed in this paper, only
in that both techniques exploit if-then-else con-
structs. There are clear distinctions: 1) FGCI places full
trust in branch prediction and reduces penalties when
mispredictions do occur, whereas DP eagerly executes
multiple control dependent paths in anticipation of mispre-
dictions. 2) FGCI implements dynamic detection of control
flow constructs, whereas DP still requires the compiler to
identify and mark if-then-else regions for predica-
tion (FGCI could make DP fully dynamic). 3) Our FGCI
algorithm dynamically analyzes arbitrarily complex,
nested forward-branching code, whereas DP is restricted to
regions containing only a single conditional branch.

The SIMP architecture [33] fetches multiple control
dependent paths after a branch. Special hardware 1) detects
re-convergence and 2) establishes all potential data depen-
dences between control independent instructions and
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instructions before the re-convergent point. The result is an
interesting predication/control independence hybrid:
instructions are selectively discarded but not inserted (simi-
lar to predication approaches); data dependent/control
independent instructions may re-issue several times due to
having multiple, alternative data dependences (similar to
control independence approaches).

The advantages of trace processors in terms of complex-
ity and performance are discussed in [4,5]. Control inde-
pendence in trace processors is briefly introduced in [5]
but, because it is not the focus of that paper, the major
issues are not formalized, conveyed, nor fully understood.
The problem is not formalized in terms of FGCI and CGCI
control flow management, and trace-level reconvergence
and its implications to trace selection are not discussed.
Performance gains are observed in only two of the bench-
marks and these gains are due to manually-inserted, FGCI-
like trace selection hints conveyed in the benchmark bina-
ries; PEs are managed in a fifo queue so CGCI is not
explicitly exploited.

Basic trace selection studies for trace caches and trace
processors can be found in [8,9,10,5,24], and for compilers
in [25,26]. Task selection studies can be found in [27,28].

1.3.  Paper organization
Section 2 describes the trace processor’s novel window

management, i.e. support for instruction insertion/removal
from the middle of the window (both control flow and data
flow aspects). This is followed by trace selection for ensur-
ing trace-level re-convergence, for both FGCI (Section 3)
and CGCI (Section 4). Our experimental setup is described
in Section 5, and Section 6 provides performance analysis.

2.  Trace processor window management

In Section 1.1.1, we highlighted the two ways in which
trace processors flexibly insert and remove instructions
from the middle of the instruction window: FGCI and
CGCI. The following two sections provide details regard-
ing control flow and data flow management, respectively.

2.1.  Managing control flow
Sophisticated control flow management is performed by

the trace processor frontend, shown in Figure 5, since it
controls PE allocation (trace dispatch) and deallocation
(trace squash).

The trace predictor and trace cache together provide
trace-level sequencing. Ideally, during trace-level sequenc-
ing the next trace is predicted correctly, and it hits in the
trace cache. The trace is passed to the dispatch stage where
live-in and live-out registers are renamed, establishing the
register dependences with previous traces in the processor.
The renamed trace is allocated to a PE via the dispatch bus.

Trace-level sequencing does not always provide the
required traces to the PEs. Instruction-level sequencing is
required to construct non-existent traces or repair trace
mispredictions. The trace construction hardware consists
of multiple outstanding trace buffers, one per PE. On a
trace cache miss, the respective trace buffer is notified to
construct a new trace. It uses the trace prediction (starting
PC and branch outcomes) to fetch instructions from the
instruction cache. Meanwhile, the trace dispatch pipe is
stalled — no other traces may pass through renaming
because of the missing trace. However, the fetch stage is
free to continue predicting traces, and these traces are
placed in their outstanding trace buffers despite not reach-
ing the dispatch stage. When the missing trace has been
constructed and pre-renamed, the dispatch pipe is restarted
and supplied with traces from the buffers in sequential
order. The non-blocking fetch pipe allows multiple trace
cache misses to be serviced in parallel, restricted only by
the number of datapaths to/from the instruction cache and
branch predictor.

FIGURE 5. Frontend of the trace processor.

On a trace cache hit, the trace is not only dispatched to
the PE but also placed in the corresponding trace buffer.
The trace buffer monitors branch outcomes as they become
available from the PE. If a misprediction is detected, the
trace predictor is backed up to that trace, as are the global
register rename maps. Also, the trace buffer begins repair-
ing the trace from the point of the branch misprediction,
using the simple branch predictor to fetch instructions.
However, subsequent PEs and their traces are not affected
at this point, i.e. they continue processing instructions.
When the mispredicted trace has been repaired, the trace-
level sequencer is restarted in one of two ways, depending
on whether the branch is covered by fine- or coarse-grain
control independence.

1. Fine-grain: Control flow recovery for FGCI is very sim-
ple because the PE arrangement is unaffected. The fron-
tend merely dispatches the repaired trace from its trace
buffer to the affected PE. Within the affected PE, only
instructions after the mispredicted branch are squashed.
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At this point, the register rename map reflects correct
register dependences up to and including the repaired
trace; a trace re-dispatch sequence, described in the
next section, makes a pass through the control indepen-
dent traces to update their register dependences.

2. Coarse-grain: First, the sequencing hardware locates an
exposed global re-convergent point in the window —
the one after and generally nearest the mispredicted
trace. CGCI trace selection (Section 4) detects and
chooses certain global re-convergent points at which to
terminate traces; these points are always “exposed” as
trace boundaries and, therefore, visible to the sequenc-
ing hardware. Note that an exposed global re-conver-
gent point may not exist in the window, in which case
CGCI is not exploited. Even if one is located, it may or
may not actually be control independent with respect to
the mispredicted branch.

Next, the traces between the mispredicted branch and
the first (assumed) control independent trace are
squashed and their PEs deallocated. The trace predictor
fetches the correct control dependent traces and they
are allocated to newly freed PEs. Squashing and allo-
cating PEs proceed in parallel, just as dispatch and
retirement proceed in parallel. If there are more correct
control dependent traces than incorrect ones, then PEs
must be reclaimed from the tail (i.e. the most specula-
tive PE).

Finally, the control flow is successfully repaired when
re-convergence is detected, i.e. when the next trace pre-
diction matches the first control independent trace.
Although re-convergence is not guaranteed, if and when
it occurs, a trace re-dispatch sequence is performed on
the control independent traces to update their register
dependences, as described in the next section.

With CGCI, the logical or program order of PEs can no
longer be inferred from just the head/tail pointers and the
physical order of PEs. Logically inserting and removing
PEs between two arbitrary PEs, i.e. inserting and removing
control dependent traces, requires managing the PEs as a
linked-list. The linked-list control structure is simply a
small table indexed by physical PE number, with each
entry containing three fields: logical PE number (order in
the list) and pointers to the previous and next PEs. Also,
head PE and tail PE pointers are needed as before. The
control structure (table plus head/tail pointers) is consulted
and possibly updated by the trace-level sequencer when
dispatching, retiring, squashing, and re-dispatching traces.

2.2.  Managing data flow
After the sequencing hardware repairs control flow,

incorrect-data dependent, control independent instructions

must be identified and selectively reissued. The first step is
to detect the “source” of a data dependence violation and
reissue that instruction. There are two possible sources: 1)
a stale physical register name representing an incorrect reg-
ister dependence, or 2) a load instruction that loaded an
incorrect version of a memory location. The second step is
to selectively reissue all subsequent data dependent
instructions.

2.2.1.  Stale physical register names. The frontend ini-
tiates a trace re-dispatch sequence after control flow is
repaired. Control independent traces are re-dispatched in
sequential (program) order from the trace buffers to respec-
tive PEs. Live-in registers are renamed using the updated
maps, and live-out registers do not change their mappings.
The source register names of each instruction in the PE-
resident trace are checked against those in the re-dis-
patched trace. Only those instructions with updated register
names are reissued.

2.2.2.  Incorrect loads. For memory dependences, we
leverage the existing mechanism for detecting incorrectly
disambiguated loads [5]. Speculative memory disambigua-
tion is performed in that 1) loads issue as soon as their
addresses are available, irrespective of prior stores in the
window, and 2) load and store addresses may be predicted
or based on speculative values.

All loads and stores are assigned sequence numbers that
indicate their program order within the window. Sequence
numbers are derived from the PE number plus location in
the PE’s trace. A variant of the address resolution buffer
(ARB) [14] resides before the data cache to maintain a list
of speculative versions per address location; i.e. specula-
tive store data is buffered and arranged in program order
via sequence numbers. When a store is performed, it sends
its address, data, and sequence number on one of the cache
ports. When a load is performed, it queries the ARB with
its address and sequence number. The ARB returns the cor-
rect version of data for that load and the sequence number
of the store that produced the data. Thus, loads maintain
two sequence numbers: its own and that of the load data.

Detection of memory dependence violations is based on
loads snooping store addresses and sequence numbers on
the cache ports. A load must reissue if 1) the store address
matches the load address, 2) the store sequence number is
logically less than that of the load (i.e. the store is before
the load in program order), and 3) the store sequence num-
ber is logically greater than that of the load data (i.e. the
load has an incorrect, older version of the data).

If a store has issued to the ARB using an incorrect
address, it must issue again to the correct address. In the
same transaction, it also sends the incorrect address and an
indication to perform a “store undo” operation for that
address. Loads snoop the store undo, and reissue if the
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sequence number of the store undo matches that of their
data.

This same mechanism works for control independent
loads that are incorrectly disambiguated due to mispre-
dicted branches. When a store is removed from the win-
dow, i.e. if it is among the incorrect control dependent
instructions, it schedules a store undo operation (only if it
has performed already). A store on the correct control
dependent path is brought into the window late, and may
appear as a normal disambiguation violation when control
independent loads observe the late-performed store.

Sequence number comparisons first requires translating
physical to logical sequence numbers. In [5], because the
PEs are organized in a physical ring, the mapping is fairly
direct. Now, due to the arbitrary arrangement of PEs, trans-
lation requires consulting the linked-list control structure
(each PE maintains a copy). Recall that the linked-list table
maintains physical to logical PE translations: this field
exists solely for disambiguation support.

2.2.3.  Selectively reissuing dependence chains. After
detecting the “source” of a data dependence violation (stale
register name or incorrect load), the violating instruction is
reissued. The second step is to selectively reissue all subse-
quent data dependent instructions. This happens transpar-
ently in the trace processor because instructions remain in
the PEs until they retire. Therefore, if an instruction has
already issued and it receives one or more additional val-
ues, it simply reissues as many times as is necessary.

3.  Trace selection for FGCI

An example of FGCI trace selection is shown in
Figure 6. Basic blocks are labeled with a letter A through
H, and block sizes are shown in parentheses. Control flow
edges are labeled with the longest path length leading to
that edge. The maximum trace length is 16 in the example.

The branch in block A is a candidate for FGCI because
the maximum length of any of its control dependent paths
is 10 instructions, well within the maximum trace length.
The region enclosed in the dashed box (the branch in block
A and its control dependent instructions) is called the
embeddable region, and the dynamic region size of this
region is its maximum path length, 10.

During trace construction, if a branch with an
embeddable region is encountered, the accrued trace length
is incremented by the branch’s dynamic region size, irre-
spective of which control dependent path is actually
selected. The result will be one of four traces as shown in
the table of Figure 6. First, not all traces are 16 instructions
long, only the trace which actually embeds the longest con-
trol dependent path. Second, all traces end at the same
instruction, namely the last instruction in basic block H.
This of course achieves the desired effect: if the trace pre-

dictor predicts one trace and it turns out to be incorrect, it
can be replaced with one of the alternate traces without
changing the sequence of subsequent control independent
traces. Third, any of three branch mispredictions is covered
by this region — the branches in basic blocks A, B, and E.

Exposing FGCI first requires finding branches with
embeddable regions (Section 3.1). A FGCI-algorithm is
applied to each newly-encountered branch to check if it has
an embeddable region. If it does, the goal of the algorithm
is to determine 1) the re-convergent PC that closes the
region and 2) the dynamic region size. The latter amounts
to computing the longest path through a topologically
sorted DAG [29] in hardware. This gathered information is
cached so that it does not have to be re-computed each time
a branch is encountered. Then, trace selection can use the
cached information to conceptually pad traces
(Section 3.2).

FIGURE 6. Example of an embeddable region.

3.1.  FGCI-algorithm
For brevity, a detailed description of the FGCI-algo-

rithm is deferred to the corresponding thesis [32].
The underlying idea is to serially scan a static block of

instructions following a forward conditional branch. Only a
single pass is required. Conceptually, each instruction is
modeled as a node having one or more incoming control
flow edges, each edge having a value equal to the maxi-
mum path length leading to the edge. The algorithm
assigns a value to the node equal to the maximum value of
incoming edges plus one for the current instruction. In this
way, the longest control dependent path lengths are propa-
gated from incoming edges to outgoing edges.

The key to the algorithm, therefore, is determining all
incoming edges to an instruction. The implicit edge
between two sequential instructions is readily apparent.
The edges between branches and their targets require
explicit storage. When a branch instruction is scanned, its
taken target PC is recorded along with the path length up to
the branch. Each scanned instruction checks its PC against
the list of accumulated branch targets: a hit indicates an
incoming edge and its path length is available.

trace

{A,E,G,H}

{A,E,F,H}

{A,B,D,F,H}

{A,B,C,F,H}

length

16
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15
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6 6
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E (3)

9 8 4

4
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1
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embeddable region

guaranteed stop point

C
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During scanning, the most distant taken target among
forward branches is maintained. The re-convergent point is
detected when scanning reaches this target. The dynamic
region size is equal to the maximum path length propagated
to the re-convergent instruction. The branch forming the
region is not a candidate for FGCI, however, if any com-
puted path length exceeds the maximum trace length
before re-convergence, or if a backward branch, function
call, or indirect branch is encountered before re-conver-
gence.

The FGCI-algorithm has several characteristics amena-
ble to hardware implementation [32]. First, it performs a
single pass which yields a simple controller and simple
state maintenance (3 words of state plus a 4- to 8- entry
associative array for edges). Second, limiting the scan rate
to 1 instruction/cycle helps manage complexity as well as
reduce bandwidth to the instruction cache. The design is
relatively non-intrusive to the cache port — for the CFG in
Figure 6, 2 or 3 cache line fetches are initiated over 21
cycles, for a line size of 16 words.

The information computed by the FGCI-algorithm is
written into a cache called the branch information table
(BIT). All forward conditional branches allocate entries in
the BIT, whether they have an embeddable region or not,
because trace selection needs to know this determination.
For a 16K-entry BIT and a trace length of 32 instructions, a
BIT entry is 4 bytes long: a tag (16 bits), a flag indicating
embeddable or not (1 bit), the dynamic region size (5 bits),
and the re-convergent point in the form of an offset from
the start of the region (10 bits is reasonable).

3.2.  FGCI trace selection
When a forward conditional branch is encountered dur-

ing trace selection, the branch PC is used to access FGCI
information from the BIT. If the information does not exist,
a BIT miss handler initiates the FGCI-algorithm and trace
construction stalls until the handler completes.

If the BIT indicates the branch is a candidate for FGCI,
and the current trace length plus the dynamic region size of
the branch does not exceed the maximum trace length con-
straint, then the following actions are performed.

1. The cumulative trace length is incremented by the
dynamic region size.

2. Incrementing of the cumulative trace length is halted
while a given path through the embeddable region (as
dictated by branch prediction) is added to the trace.

3. Incrementing the cumulative trace length resumes when
the re-convergent point (from the BIT) is reached.

Managing the cumulative trace length in this way guaran-
tees paths shorter than the longest path through the
embeddable region are effectively “padded” to the longest
path length.

If the current trace length plus the dynamic region size
of the branch exceeds the maximum trace length con-
straint, then the current trace is terminated before the
branch. Deferring the branch to the next trace ensures all
potential FGCI is exposed.

4.  Trace selection and heuristics for CGCI

Trace selection and the trace processor frontend coordi-
nate to exploit CGCI. Trace selection delineates traces at
key global re-convergent points. When a misprediction is
detected, the frontend chooses one of the points (based on
heuristics), if there are any in the window, to serve as the
trace-level re-convergent point for recovery.

4.1.  CGCI trace selection
In this paper, we consider only two types of global re-

convergent points. These are the targets of return instruc-
tions and the not-taken targets of backward branches,
shown with black dots in Figure 7(a) and Figure 7(b),
respectively.

The default trace selection algorithm terminates traces
at the maximum trace length or at any indirect branch
instruction; indirect branches include jump indirect, call
indirect, and return instructions. Therefore, default trace
selection already ensures trace-level re-convergence at the
exits of functions, i.e. return targets.

An additional CGCI trace selection constraint, called
ntb, terminates traces at predicted not-taken backward
branches. This ensures trace-level re-convergence at the
exits of loops.

FIGURE 7. Global re-convergent points.

4.2.  CGCI heuristics
Trace selection only ensures trace-level re-convergence

at easily identified, global re-convergent points. When a
branch misprediction is detected, one from possibly many
such points in the window must be chosen as the trace-
level re-convergent point used for recovery actions. Only
two CGCI heuristics are considered.

• RET: The frontend locates the nearest trace that ends in
a return instruction. The immediately subsequent trace
is assumed to be the first control independent trace.

(b)

call

(a)

return
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• MLB-RET: If the mispredicted branch is a backward
branch, we assume it is a loop branch as depicted in
Figure 7(b). Based on this assumption, the frontend
locates the nearest trace whose starting PC matches the
not-taken target of the branch; it is likely the correct re-
convergent point. This heuristic, Mispredicted Loop
Branch (MLB), is always considered first. However, if
the mispredicted branch is not a backward branch, then
the RET heuristic is applied.

The RET heuristic is designed to cover arbitrary mispre-
dictions within a function since control flow re-converges
at the function exit. However, due to nested functions, there
may be any number of other return instructions before the
intended function exit. Choosing the nearest return instruc-
tion, therefore, is only a guess. Often, the result is better
than intended — when the chosen return is closer than the
function exit, but still control independent with respect to
the misprediction. Other times, however, the chosen return
is on the incorrect control dependent path.

The MLB heuristic (of MLB-RET) is designed to specif-
ically and accurately cover mispredicted loop branches, a
substantial source of branch mispredictions (refer to
Table 5). Loops with small bodies and a small but unpre-
dictable number of iterations fall in this category, and there
are often many control independent traces after the mispre-
dicted loop branch.

The RET heuristic requires only default trace selection,
whereas MLB-RET requires, in addition, the ntb selection
constraint to expose loop exits.

5.  Experimental setup

A detailed, fully-execution driven trace processor simu-
lator is used to evaluate control independence. The simula-
tor was developed using the simplescalar toolset [30].

Table 1 summarizes the major parameters in the trace
processor configuration; a comprehensive description can
be found in [32]. Several of the parameters are worth dis-
cussing. First, a very large trace predictor is used to achieve
high overall branch prediction accuracies (which are
reported in the next section). Also, the frontend and execu-
tion pipelines are not heavily-pipelined. Together the accu-
rate trace predictor and small branch misprediction penalty
potentially skew results in the conservative direction (i.e.
less benefit from control independence). However, also
note that 16 PEs are simulated in anticipation of future
large instruction windows, and for which control indepen-
dence techniques are likely to be more relevant. The maxi-
mum trace length (and hence PE window size) is 32
instructions.

Five of the SPEC95 integer benchmarks, shown in
Table 2, were simulated to completion.

6.  Results

Two sets of experiments are presented. The first set
focuses on the impact of FGCI and CGCI trace selection in
a trace processor without control independence mecha-
nisms. This is required to isolate the effects of trace selec-
tion on trace cache performance, trace predictor
performance, and PE utilization. The second set evaluates
the performance of control independence.

6.1.  Performance impact of trace selection
Default trace selection terminates traces at a maximum

length of 32 instructions or at any jump indirect, call indi-
rect, or return instruction. The ntb trace selection termi-
nates traces at predicted not-taken backward branches, and
fg denotes FGCI trace selection. The selection-only experi-
ments are prefixed with base to indicate no control inde-
pendence, and are followed by the trace selection

TABLE 1. Trace processor configuration.
frontend latency 2 cycles (fetch + dispatch)

trace predictor
(hybrid)

216-entry path-based pred.: 8 traces hist.

216-entry simple pred.: 1 trace hist.

trace cache
size/assoc/repl = 128kB/4-way/LRU

trace line size = 32 instructions

instruction cache

2-way interleaved, 1 basic block/cycle

size/assoc/repl = 64kB/4-way/LRU

line size = 16 instructions

miss penalty = 12 cycles

branch predictor 16K-entry tagless BTB, 2-bit counters

BIT 8K-entry, 4-way assoc.

trace construction b/w 1 port to instr. cache, branch pred., BIT

processing elements 16 PEs, 4-way issue per PE

global result buses
8 buses, up to 4 can be used by 1 PE

extra 1-cycle result bypass latency

cache buses 8 buses, up to 4 can be used by 1 PE

data cache

size/assoc/repl = 64kB/4-way/LRU

line size = 64 bytes

miss penalty = 14 cycles

execution latencies

address generation = 1 cycle

memory access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

load re-issue penalty = 1 cycle (snoop lat.)

TABLE 2. Benchmarks.

benchmark input dataset # dynamic instr.

compress 400000 e 2231 104 million

gcc -O3 genrecog.i 117 million

go 9 9 133 million

ijpeg vigo.ppm 166 million

xlisp queens 7 202 million
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algorithm(s) used. Default trace selection is always in
effect and, therefore, is not explicitly specified. The four
experiments are: base, base(ntb), base(fg), and
base(fg,ntb).

Performance results in instructions per cycle (IPC) are
tabulated in Table 3. Also, the performance improvement
with respect to base is graphed in Figure 8. Additional
selection constraints (fg, ntb) tend to affect basic perfor-
mance adversely. To help understand why, Table 4 shows
the impact of selection on trace length, trace mispredic-
tions, and trace cache misses (the latter two are given as
misses per 1000 instructions and as a rate).

FIGURE 8. Performance impact of trace selection.

Additional selection constraints always decreases aver-
age trace length, and from Table 4, this almost always
increases trace mispredictions per 1000 instructions. The
trace predictor uses a path history of traces, and reducing
the lengths of traces effectively reduces the amount of
implicit branch history. Also, synchronizing trace selection
among many disjoint paths — in nested hammocks (fg) or
after exiting a loop (ntb) — reduces the number of unique
traces significantly. Yet it is this uniqueness that provides a
very distinct context for making predictions [31].

Reducing the average trace length also results in a waste
of issue buffers in the PEs, effectively making the instruc-
tion window smaller. The only positive effect is on trace
cache performance, but the benefit is generally overshad-
owed by costlier trace mispredictions.

The base(ntb) model improves performance slightly for
three of the five benchmarks, but for compress and xlisp,
performance degrades by 5% and 10%, respectively. The
effect is pronounced in xlisp because trace length drops by

25%, double what other benchmarks experience. The
base(fg) model degrades performance between 2% and 3%
for four of five benchmarks.

6.2.  Performance of control independence
In this section, we evaluate the performance of four con-

trol independence models:

• RET: coarse-grain only, using the RET heuristic.

• MLB-RET: coarse-grain only, using the MLB-RET heu-
ristic.

• FG: fine-grain only.

• FG + MLB-RET: fine-grain and coarse-grain using the
MLB-RET heuristic.

Figure 9 (performance improvement over base) shows
that control independence improves performance substan-
tially. Coarse-grain control independence performs uni-
formly well across the benchmarks, with the exception of
ijpeg. The RET model improves performance by about 5%
for gcc, nearly 10% for xlisp, and about 20% for compress
and go. Going from RET to MLB-RET improves perfor-
mance moderately for gcc and go, due to greater mispre-
diction coverage and establishing more precise control
independent points for backward branches. The improve-
ment is perhaps moderate due to overlapping coverage
between the two kinds of global re-convergent points. For
xlisp, MLB-RET drops performance with respect to RET, an
artifact of ntb trace selection.

FIGURE 9. Performance of control independence.

To give insight into the performance of FGCI, condi-
tional branch statistics are shown in Table 5. Branches are
classified into those that can be captured by FGCI, all other
forward branches, and backward branches. FGCI branches
are further divided into those whose regions fit (≤ 32) or do
not fit (>32) in a trace; a trace length of 32 can capture
almost all FGCI-type branches. The fraction of dynamic
branches and mispredictions are given for each class.

TABLE 3.  IPC without control independence.
base base(ntb) base(fg) base(fg,ntb)

gcc 4.44 4.51 4.34 4.36

go 3.17 3.20 3.07 3.10

comp 2.02 1.92 1.96 1.92

ijpeg 7.12 7.24 6.96 6.96

xlisp 4.72 4.31 4.72 4.34
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FGCI branches account for 23% to 41% of all branches,
and over 60% of all mispredictions, in compress and ijpeg.
This explains why the model FG performs very well on
these benchmarks, namely a 20% to 25% performance
improvement.

FGCI branches account for 24% of all mispredictions in
go, yet FG actually degrades performance by less than 1%.
Looking further into the misprediction behavior of go, we
have noticed that FGCI has large potential in some fre-
quently executed code (e.g. the “addlist” function), but that
neighboring mispredictions not covered by FGCI nullify
this potential; combined with the minor adverse effects of
fg trace selection, the result is no gain. In contrast, the
MLB-RET model performs well by capturing clusters of
mispredictions in these same code regions.

Returning to Table 5, gcc, go, ijpeg, and xlisp have large
FGCI regions (13 to 40 instructions) with many conditional
branches enclosed (3 to 4). The average dynamic region
size of FGCI branches is from 1 to 8 instructions smaller
than the corresponding static code region.

Backward branches account for a large fraction of
mispredictions, 20% for four of the benchmarks and 60%
for xlisp. Unfortunately for xlisp, applying ntb trace selec-
tion — so the MLB-RET heuristic can cover these mispre-
dictions — also worsens the prediction accuracy of the
backward branches. While MLB-RET performs only
slightly better than base, it improves performance by 10%
over base(ntb) — i.e. CGCI is being exploited, if only to
break even with base.

In summary, using FGCI and CGCI techniques together
achieves the best performance improvement on average:
13% (FG + MLB-RET). Clearly, some techniques work
better than others depending on the benchmark, perhaps
suggesting the need for adaptive trace selection. Using the
best-performing technique for each benchmark, control
independence achieves an average improvement of 17%.

7.  Summary

Control independence is a promising technique for
overcoming the branch misprediction bottleneck. Trace
processors exploit hierarchy to manage the complexity of
implementing control independence, while maintaining the
performance advantages of a contiguous instruction win-
dow and a relatively accurate single flow-of-control.

The ideas presented in this paper can be summarized as
follows.

• A primary source of control independence complexity
is the insertion and removal of instructions at arbitrary
points in the window. Fortunately, the hierarchical
instruction window of trace processors accommodates
flexible control flow management. In the case of fine-
grain control independence (FGCI), control flow recov-
ery is localized within a single PE. In the case of
coarse-grain control independence (CGCI), control
flow recovery involves multiple PEs, but treating traces
as the fundamental unit of control flow results in effi-
cient recovery actions.

TABLE 4. Impact of trace selection on trace length, mispredictions, and misses.
gcc go compress ijpeg xlisp

base
avg. trace length 24.0 27.2 24.9 31.1 19.7
trace misp. rate 4.2 (10.1%) 7.3 (19.9%) 10.6 (26.3%) 3.1 (9.5%) 4.8 (9.4%)

trace $ miss rate 4.7 (11.2%) 10.2 (27.7%) 0.0 (0.0%) 0.3 (1.1%) 0.0 (0.0%)

base(ntb)
avg. trace length 21.6 24.4 21.6 30.1 14.7
trace misp. rate 4.3 (9.3%) 7.4 (18.1%) 11.2 (24.2%) 3.0 (9.0%) 6.0 (8.8%)

trace $ miss rate 4.1 (8.8%) 9.7 (23.7%) 0.0 (0.0%) 0.3 (0.9%) 0.0 (0.0%)

base(fg)
avg. trace length 21.8 23.9 24.6 28.9 18.9
trace misp. rate 4.4 (9.7%) 8.1 (19.2%) 10.8 (26.5%) 3.8 (11.0%) 4.9 (9.2%)

trace $ miss rate 4.0 (8.8%) 9.4 (22.4%) 0.0 (0.0%) 0.2 (0.7%) 0.0 (0.0%)

base(fg,ntb)
avg. trace length 19.7 21.6 21.2 28.1 14.2
trace misp. rate 4.7 (9.2%) 8.3 (17.9%) 10.9 (23.2%) 3.9 (10.8%) 6.0 (8.6%)

trace $ miss rate 3.6 (7.2%) 9.0 (19.4%) 0.0 (0.0%) 0.2 (0.7%) 0.0 (0.0%)

TABLE 5. Conditional branch statistics.
gcc go comp ijpeg xlisp

F
G

C
I

br
an

ch
es

≤ 32 frac. br. 21.4% 24.5% 40.8% 22.5% 10.0%
frac. misp. 20.3% 24.4% 63.1% 60.6% 3.0%

> 32
frac. br. 1.9% 2.6% 0.1% 2.0% 0.0%

frac. misp. 1.3% 2.7% 0.0% 1.9% 0.0%
misp. rate 2.8% 8.7% 14.6% 14.8% 1.0%

dyn. region size 11.3 13.8 4.3 31.9 13.2
stat. region size 12.9 16.4 5.7 40.2 16.3

# cond. br. in reg. 3.2 2.6 1.6 4.3 3.8

other
forward
branches

frac. br. 58.3% 52.8% 23.6% 24.8% 63.2%
frac. misp. 55.8% 51.8% 17.8% 15.8% 36.1%
misp. rate 2.9% 8.5% 7.1% 3.7% 1.9%

backward
branches

frac. br. 18.4% 20.1% 35.5% 50.7% 26.7%
frac. misp. 22.6% 21.1% 19.1% 21.7% 60.9%
misp. rate 3.8% 9.1% 5.1% 2.5% 7.4%

overall branch misp. rate 3.1% 8.7% 9.4% 5.8% 3.3%
 branch misp./1000 instr. 4.7 10.4 13.5 3.8 5.1
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• Traces facilitate flexible control flow management but
introduce a new problem: trace-level re-convergence is
not guaranteed despite re-convergence at the instruc-
tion-level. Novel FGCI and CGCI trace selection tech-
niques were developed for ensuring trace-level re-
convergence.

• Trace processors exploit a variety of data speculation
techniques and, therefore, already incorporate high-per-
formance, selective data recovery mechanisms. These
mechanisms are easily leveraged to selectively re-exe-
cute incorrect-data dependent, control independent
instructions.

Control independence improves trace processor perfor-
mance from 5% to 25%, and 17% on average. Exploration
of other, more sophisticated CGCI heuristics holds the
potential for even larger performance gains.
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