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Abstract 
The trace cache has been proposed as a mechanism 

f o r  providing increased fetch bandwidth by allowing the 
processor to fetch across multiple branches in a single 
cycle. But to date predicting multiple branches per cycle 
has meant paying a penalty in prediction accuracy. We 
propose a next trace predictor that treats the traces as 
basic units and explicitly predicts sequences of traces. 
The predictor collects histories of trace sequences (paths) 
and makes predictions based on these histories. The 
basic predictor is enhanced to a hybrid configuration that 
reduces performance losses due to cold starts and 
aliasing in the prediction table. The Return History Stack 
is introduced to increase predictor performance by saving 
path history information across procedure call/returns. 
Overall, the predictor yields about a 26% reduction in 
misprediction rates when compared with the most 
aggressive previously proposed, multiple-branch- 
prediction methods. 

1. Introduction 

Current superscalar processors fetch and issue four to 
six instructions per cycle -- about the same number as in 
an average basic block for integer programs. It is obvious 
that as designers reach for higher levels of instruction 
level parallelism, it will become necessary to fetch more 
than one basic block per cycle. In recent years, there have 
been several proposals put forward for doing so [3,4,12]. 
One of the more promising is the trace cache [9,10], 
where dynamic sequences of instructions, containing 
embedded predicted branches, are assembled as a 
sequential “trace” and are saved in a special cache to be 
fetched as a unit. 

Trace cache operation can best be understood via an 
example. Figure 1 shows a program’s control flow graph 
(CFG), where each node is a basic block, and the arcs 

represent potential transfers of control. In the figure, arcs 
corresponding to branches are labeled to indicate taken 
(T) and not taken (N) paths. The sequence ABD 
represents one possible trace which holds the instructions 
from the basic blocks A, B, and D. This would be the 
sequence of instructions beginning with basic block A 
where the next two branches are not taken and taken, 
respectively. These basic blocks are not contiguous in the 
original program, but would be stored as a contiguous 
block in the trace cache. A number of traces can extracted 
from the CFG -- four possible traces are: 

1: ABD 
2: ACD 
3: EFG 
4: EG 

Of course, many other traces could also be chosen for the 
same CFG, and, in fact, a trace does not necessarily have 
to begin or end at a basic block boundary, which further 
increases the possibilities. Also, note that in a trace 
cache, the same instructions may appear in more than one 
trace. For example, the blocks A, D, E, and G each 
appear twice in the above list of traces. However, the 
mechanism that builds traces should use some heuristic to 
reduce the amount of redundancy in the trace cache; 
beginning and ending on basic block boundaries is a good 
heuristic for doing this. 

W 

Figure 1 Example CFG 
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Associated with the trace cache is a trace fetch unit, 
which fetches a trace from the cache each cycle. To do 
this in a timely fashion, it is necessary to predict what the 
next trace will be. A straightforward method, and the one 
used in [9,10], is to predict simultaneously the multiple 
branches within a trace. Then, armed with the last PC of 
the preceding trace and the multiple predictions, the fetch 
unit can access the next trace. In our example, if trace 1 -- 
ABD -- is the most recently fetched trace, and a multiple 
branch predictor predicts that the next three branch 
outcomes will be T,T,N, then the next trace will implicitly 
be ACD. 

In this paper, we take a different approach to next 
trace prediction -- we treat the traces as basic units and 
explicitly predict sequences of traces. For example, 
referring to the above list of traces, if the most recent trace 
is trace 1, then a next trace predictor might explicitly 
output “trace 2.” The individual branch predictions 
T,?‘,N, are implicit. 

We propose and study next trace predictors that 
collect histories of trace sequences and make predictions 
based on these histories. This is similar to conditional 
branch prediction where predictions are made using 
histories of branch outcomes. However, each trace 
typically has more than two successors, and often has 
many more. Consequently, the next trace predictor keeps 
track of sequences of trace idcntificrs, each idcntificr 
containing multiple bits. We propose a basic predictor 
and then add enhancements to reduce performance losses 
due to cold starts, procedure callheturns, and interference 
due to aliasing in the prediction table. The proposed 
predictor yields substantial performance improvement 
over the previously proposed, multiple-branch-prediction 
methods. For the six benchmarks that we studied the 
average misprediction rate is 26% lower for the proposed 
predictor than for the most aggressive previously 
proposed multiple-branch predictor. 

2. Previous work 

A number of methods for fetching multiple basic 
blocks per cycle have been proposed. Yeh et al. [12] 
proposed a Branch Address Cache that predicted multiple 
branch target addresses every cycle. Conte et al. [3] 
proposed an interleaved branch target buffer to predict 
multiple branch targets and detect short forward branches 
that stay within the same cache line. Both these methods 
use conventional instruction caches, and both fetch 
multiple lines based on multiple branch predictions. 
Then, after fetching, blocks of instructions from different 
lines have to be selected, aligned and combined -- this can 
lead to considerable delay following instruction fetch. It 
is this complex logic and delay in the primary pipeline 
that the trace cache is intended to remove. Trace caches 

[9,10] combine blocks of instructions prior to storing 
them in the cache. Then, they can be read as a block and 
fed up the pipeline without having to pass through 
complex steering logic. 

Branch prediction in some form is a fundamental part 
of next trace prediction (either implicitly or explicitly). 
Hardware branch predictors predict the outcome of 
branches based on previous branch behavior. At the heart 
of most branch predictors is a Pattern History Table 
(PHT), typically containing two-bit saturating counters 
[ I l l .  The simplest way to associate a counter with a 
branch instruction is to use some bits from the PC address 
of the branch, typically the least significant bits, to index 
into the PHT [ 111. If the counter’s value is two or three, 
the branch is predicted to be taken, otherwise the branch 
is predicted to be not taken. 

Correlated predictors can increase the accuracy of 
branch prediction because the outcome of a branch tends 
to be correlated with the outcome of previous branches 
[8,13]. The correlated predictor uses a Branch History 
Register (BHR). The BHR is a shift register that is 
usually updated by shifting in the outcome of branch 
instructions -- a one for taken and a zero for not taken. In 
a global correlated predictor there is a single BHR that is 
updated by all branches. The BHR is combined with 
some bits (possibly zero) from a branch’s PC address, 
either by concatenating or using an exclusive-or function, 
to form an index into the PHT. With a correlated 
predictor a PHT entry is associated not only with a branch 
instruction, but with a branch instruction in the context of 
a specific BHR value. When the BHR alone is used to 
index into the PHT, the predictor is a GAg predictor [ 131. 
When an exclusive-or function is used to combine an 
equal number of bits from the BHR and the branch PC 
address, the predictor is a GSHARE predictor [6]. 
GSHARE has been shown to offer consistently good 
prediction accuracy. 

The mapping of instructions to PHT entries is 
essentially implemented by a simple hashing function that 
does not detect or avoid collisions. Aliasing occurs when 
two unrelated branch instructions hash to the same PHT 
entry. Aliasing is especially a problem with correlated 
predictors because a single branch may use many PHT 
entries depending on the value of the BHR, thus 
increasing contention. 

In order to support simultaneous fetching of multiple 
basic blocks, multiple branches must be predicted in a 
single cycle. A number of modifications to the correlated 
predictor discussed above have been proposed to support 
predicting multiple branches at once. Franklin and Dutta 
[4] proposed subgraph oriented branch prediction 
mechanisms that uses local history to form a prediction 
that encodes multiple branches. Yeh, et al. [ 131 proposed 
modifications to a GAg predictor to multiport the 
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predictor and produce multiple branch predictions per 
cycle. Rotenberg et al. [IO] also used the modified GAg 
for their trace cache study. 

Recently, Pate1 et al. [9] proposed a multiple branch 
predictor tailored to work with a trace cache. The 
predictor attempts to achieve the advantages of a 
GSHARE predictor while providing multiple predictions. 
The predictor uses a BHR and the address of the first 
instruction of a trace, exclusive-ored together, to index 
into the PHT. The entries of the PHT have been modified 
to contain multiple two-bit saturating counters to allow 
simultaneous prediction of multiple branches. The 
predictor offers superior accuracy compared with the 
multiported GAg predictor, but does not quite achieve the 
overall accuracy of a single branch GSHARE predictor. 

Nair [7] proposed “path-based’’ prediction, a form of 
correlated branch prediction that has a single branch 
history register and prediction history table. The 
innovation is that the information stored in the branch 
history register is not the outcome of previous branches, 
but their truncated PC addresses. To make a prediction, a 
few bits from each address in the history register as well 
as a few bits from the current PC address are concatenated 
to form an index into the PHT. Hence, a branch is 
predicted using knowledge of the sequence, or path, of 
instructions that led up to it. This gives the predictor 
more specific information about prior control flow than 
the takednot taken history of branch outcomes. Jacobson 
et al. [SI refined the path-based scheme and applied it to 
next task prediction for multiscalar processors. It is an 
adaptation of the multiscalar predictor that forms the core 
of the path-based next trace predictor presented here. 

3. Path-based next trace predictors 

We consider predictors designed specifically to work 
with trace caches. They predict traces explicitly, and in 
doing so implicitly predict the control instructions within 
the trace. Next trace predictors replace the conventional 
branch predictor, branch target buffer (BTB) and return 
address stack (RAS). They have low latency, and are 
capable of making a trace prediction every cycle. We 
show they also offer better accuracy than conventional 
correlated branch predictors. 

3.1. Naming of traces 

In theory, a trace can be identified by all the PCs in 
the trace, but this would obviously be expensive. A 
cheaper and more practical method is to use the PC value 
for the first instruction in the trace combined with the 
outcomes of conditional branches embedded in the trace. 
This means that indirect jumps can not be internal to a 

trace. We use traces with a maximum length of 16 
instructions. For accessing the trace cache we use the 
following method. We assume a 36 bit identifier, 30 bits 
to identify the starting PC and six bits to encode up to six 
conditional branches. The limit of six branches is 
somewhat arbitrary and is chosen because we observed 
that length 16 traces almost never have more than six 
branches. It is important to note that this limit on 
branches is not required to simplify simultaneous multiple 
branch prediction, as is the case with trace predictors 
using explicit branch prediction. 

3.2. Correlated predictor 

The core of the next trace predictor uses correlation 
based on the history of the previous traces. The 
identifiers of the previous few traces represent a path 
history that is used to form an index into a prediction 
table; see Figure 2. Each entry in the table consists of the 
identifier of the predicted trace (PC + branch outcomes), 
and a two-bit saturating counter. When a prediction is 
correct the counter is incremented by one. When a 
prediction is incorrect and the counter is zero, the 
predicted trace will be replaced with the actual trace. 
Otherwise, the counter is decremented by two and the 
predicted trace entry is unchanged. We found that the 
increment-by- 1, decrement-by-2 counter gives slightly 
better performance than either a one bit or a conventional 
two-bit counter. 

HISTORY REGISTER 

TABLE r---l n Y  Predicted 

Figure 2 Correlated predictor 
Path history is maintained as a shift register that 

contains 16 bit hashed trace identifiers (Figure 2). The 
hashing function uses the outcome of the first two 
conditional branches in the trace identifier as the least 
significant two bits, the two least significant bits of the 
starting PC as the next two bits, the upper bits are formed 
by taking the outcomes of additional conditional branch 
outcomes and exclusive-oring them with the next least 
significant bits of the starting PC. Beyond the last 
conditional branch a value of zero is used for any 
remaining branch outcome bits. 
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The history register is updated speculatively with 
each new prediction. In the case of an incorrect 
prediction the history is backed up to the state before the 
bad prediction. The prediction table is updated only after 
the last instruction of a trace is retired -- it is not 
speculatively updated. 
4 D b 
D back ID 3 back ID 2 back ID 1 back ID Current ID 

INDEX 
Figure 3 Index generation mechanism 

Ideally the index generation mechanism would simply 
concatenate the hashed identifiers from the history register 
to form the index. Unfortunately this is sometimes not 
practical because the prediction table is relatively small so 
the index must be restricted to a limited number of bits. 

The index generation mechanism is based on the 
method developed to do inter-task prediction for 
multiscalar processors [5] .  The index generation 
mechanism uses a few bits from each of the hashed trace 
identifiers to form an index. The low order bits of the 
hashed trace identifiers are used. More bits are used from 
more recent traces. The collection of selected bits from 
all the traces may be longer than the allowable index, in 
which case the collection of bits is folded over onto itself 
using an exclusive-or function to form the index. In [ 5 ] ,  
the “DOLC” naming convention was developed for 
specifying the specific parameters of the index generation 
mechanism. The first variable ‘D’epth is the number of 
traces besides the last trace that are used for forming the 
index. The other three variables are: number of bits from 
‘O’lder traces, number of bits from the ‘L’ast trace and 
the number of bits from the ‘Current. In the example 
shown in Figure 3 the collection of bits from the trace 
identifiers is twice as long as the index so it is folded in 
half and the two halves are combined with an exclusive- 
or. In other cases the bits may be folded into three parts, 
or may not need to be folded at all. 

3.3. Hybrid predictor 

If the index into the prediction table reads an entry 
that is unrelated to the current path history the prediction 
will almost certainly be incorrect. This can occur when 
the particular path has never occurred before, or because 

the table entry has been overwritten by unrelated path 
history due to aliasing. We have observed that both are 
significant, but for realistically sized tables aliasing is 
usually more important. In branch prediction, even a 
randomly selected table entry typically has about a 50% 
chance of being correct, but in the case of next trace 
prediction the chances of being correct with a random 
table entry is very low. 

To address this issue we operate a second, smaller 
predictor in parallel with the first (Figure 4). The 
secondary predictor requires a shorter learning time and 
suffers less aliasing pressure. The secondary predictor 
uses only the hashed identifier of the last trace to index its 
table. The prediction table entry is similar to the one for 
the correlated predictor except a 4 bit saturating counter is 
used that decrements by 8 on a misprediction. The reason 
for the larger counter will be discussed at the end of this 
section. 

Figure 4 Hybrid predictor 
To decide which predictor to use for any given 

prediction, a tag is added to the table entry in the 
correlated predictor. The tag is set with the low 10 bits of 
the hashed identifier of the immediately preceding trace at 
the time the entry is updated. A ten bit tag is sofficient to 
eliminate practically all unintended aliasing When a 
prediction is being made, the tag is checked against the 
hashed identifier of the preceding trace, if they match the 
correlated predictor is used; otherwise the secondary 
predictor is used. This method increases the likelihood 
that the correlated predictor corresponds to the correct 
context when it is used. This method also allows the 
secondary table to make a prediction when the context is 
very limited, i.e. under startup conditions. 
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The hybrid predictor naturally reduces aliasing 
pressure somewhat, and by modifying it slightly, aliasing 
pressure can be further reduced. If the 4-bit counter of the 
secondary predictor is saturated, its prediction is used, and 
more importantly, when it is correct the correlated 
predictor is not updated. This means if a trace is always 
followed by the same successor the secondary predictor 
captures this behavior and the correlated predictor is not 
polluted. This reduces the number of updates to the 
correlated predictor and therefore the chances of aliasing. 
The relatively large counter, 4-bits, is used to avoid giving 
up the opportunity to use the correlated predictor unless 
there is high probability that a trace has a single successor. 

3.4. Return history stack (RHS) 

The accuracy of the predictor is further increased by a 
new mechanism, the return history stack (RHS). A field is 
added to each trace indicating the number of calls it 
contains. If the trace ends in a return, the number of calls 
is decremented by one. After the path history is updated, 
if there are any calls in the new trace, a copy of the most 
recent history is made for each call and these copies are 
pushed onto a special hardware stack. When there is a 
trace that ends in a return and contains no calls, the top of 
the stack is popped and is substituted for part of the 
history. One or two of the most recent entries from the 
current history within the subroutine are preserved, and 
the entries from the stack replace the remaining older 
entries of the history. When there are five or fewer entries 
in the history, only the most recent hashed identifier is 
kept. When there are more than five entries the two most 
recent hashed identifiers are kept. 

HISTORY REGISTER 

I I 
I I 

Figure 5 Return history stack implementation 
With the RHS, after a subroutine is called and has 

returned, the history contains information about what 
happened before the call, as well as knowledge of the last 
one or two traces of the subroutine. We found that the 
RHS can significantly increase overall predictor accuracy. 
The reason for the increased accuracy is that control flow 
in a program after a subroutine is often tightly correlated 
to behavior before the call. Without the RHS the 
information before the call is often overflowed by the 

control flow within a subroutine. We are trying to achieve 
a careful balance of history information before the call 
versus history information within the call. For different 
benchmarks the optimal point varies. We found that 
configurations using one or two entries from the 
subroutine provide consistently good behavior. 

The predictor does not use a return address stack 
(RAS), because it requires information on an instruction 
level granularity, which the trace predictor is trying to 
avoid. The RHS can partly compensate for the absence of 
the RAS by helping in the initial prediction after a return. 
If a subroutine is significantly long it will force any pre- 
call information out of the history register, hence 
determining the calling routine, and therefor where to 
return, would be much harder without the RHS. 

4. Simulation methodology 

4.1. Simulator 

To study predictor performance, trace driven 
simulation with the Simplescalar tool set is used [l]. 
Simplescalar uses an instruction set largely based on 
MIPS, with the major deviation being that delayed 
branches have been replaced with conventional branches. 
We use the Gnu C compiler that targets Simplescalar. 
The functional simulator of the Simplescalar instruction 
set is used to produce a dynamic stream of instructions 
that is fed to the prediction simulator. 

For most of this work we considered the predictor in 
isolation, using immediate updates. A prediction of the 
next trace is made and the predictor is updated with the 
actual outcome before the next prediction is made. We 
also did simulations with an execution engine. This 
allows updates to be performed taking execution latency 
into account. We modeled an 8-way out-of-order issue 
superscalar processor with a 64 instruction window. The 
processor had a 128KB trace cache, a 64KB instruction 
cache, and a 4-ported 64KB data cache. The processor 
has 8 symmetric functional units and supports speculative 
memory operations. 

4.2. Trace selection 

For our study, we used traces that are a maximum of 
16 instructions in length and can contain up to six 
branches. The limit on the number of branches is imposed 
only by the naming convention of traces. Any control 
instruction that has an indirect target can not be embedded 
into a trace, and must be at the end of a trace. This means 
that some traces will be shorter than the maximum length. 
As mentioned earlier, instructions with indirect targets are 
not embedded to allow traces to be uniquely identified by 
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their starting address and the outcomes of any conditional 
branches. 

We used very simple trace selection heuristics. More 
sophisticated trace selection heuristics are possible and 
would significantly impact the behavior of the trace 
predictor. A study of the relation of trace selection and 
trace predictability is beyond the scope of this paper. 

4.3. Benchmarks 

We present results from six SpecInt95 benchmarks: 
compress, gcc, go, jpeg, m88ksim and xlisp. All results 
are based on runs of at least 100 million instructions. 

Table 1 Benchmark summary 
Benchmark Input number avg. Static 

of instr. trace traces 
-~ " a h - . . - . - " -  

compress 400000e 104 * lo6 14.5 992 
223 1 

gcc genrec0g.i 117 * lo6 13.9 51337 
go 9 9  133 * lo6 14.8 48736 

jpeg vigo.ppm 166 * lo6 15.8 5462 
m88ksim ctl.in 120" lo6 13.1 2871 

xlisp queens7 first 100 12.4 1393 
million 

this idealized sequential prediction is given in Table 2. 
The mean of the trace misprediction rate is 12.1%. We 
show later that our proposed predictor can achieve levels 
of prediction accuracy significantly better than those 
achievable by this idealized sequential predictor. In the 
results section we refer to the trace prediction accuracy of 
the idealized sequential predictor as "sequential." 

The misprediction rate for traces tends to be lower 
than that obtained by simply multiplying the branch 
misprediction rate by the number of branches because 
branch mispredictions tend to be clustered. When a trace 
is mispredicted, multiple branches within the same trace 
are often mispredicted. Xlisp is the exception, with hard 
to predict branches tending to be in different traces. With 
the aggressive target prediction mechanisms none of the 
benchmarks showed substantial target misprediction. 
Table 2 Prediction accuracy for sequential predictors 

Benchmark 16-bit Gshare Number of Mispredic 
branch Branches tion of 

-I -I ~ m k e d i c t i o n  -"-"---..".-e.". er Trace " -" -~ " "---11"" traces -- 
compress 9.2 2.1 17.9 

gcc 8.0 2.1 14.0 
go 16.6 1.8 24.5 

jpeg 6.9 1 .o 6.7 
m88ksim 1.6 1.8 3.1 

5. Performance 
5.2. Performance with unbounded tables 

5.1. Sequential branch predictor 

For reference we first determined the trace prediction 
accuracy that could be achieved by taking proven control 
flow prediction components and predicting each control 
instruction sequentially. In sequential prediction each 
branch is explicitly predicted and at the time of the 
prediction the outcomes of all previous branches are 
known. This is useful for comparisons although it is not 
realizable because it would require multiple accesses to 
predict a single trace and requires knowledge of the 
branch addresses within the trace. The best multiple 
branch predictors to date have attempted to approximate 
the behavior of this conceptual sequential predictor. 

We used a 16-bit GSHARE branch predictor, a 
perfect branch target buffer for branches with PC-relative 
and absolute address targets, a 64K entry correlated 
branch target buffer for branches with indirect targets [2], 
and a perfect return address predictor. All of these 
predictors had ideal (immediate) updates. When 
simulating this mechanism, if one or more predictions 
within a trace was incorrect we counted it as one trace 
misprediction. This configuration represents a very 
aggressive, ideal predictor. The prediction accuracy of 

To determine the potential of path-based next trace 
prediction we first studied performance assuming 
unbounded tables. In this study, each unique sequence of 
trace identifiers maps to its own table entry. I.e. there is 
no aliasing. 

We consider varying depths of trace history, where 
depth is the number of traces, besides the most recent 
trace, that are combined to index the prediction table. For 
a depth of zero only the identifier of the most recent trace 
is used. We study history depths of zero through seven. 

Figure 6 presents the results for unbounded tables, the 
mean of the misprediction rate is 8.0% for the RHS 
predictor at the maximum depth. For comparisons, the 
"sequential" predictor is based on a 16-bit Gshare 
predictor that predicts all conditional branches 
sequentially. For all the benchmarks the proposed path- 
based predictor does better than the idealized sequential 
predictor. On average, the misprediction rate is 34% 
lower for the proposed predictor. In the cases of gcc and 
go the predictor has less than half the misprediction rate 
of the idealized sequential predictor. 
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Figure 6 Next trace prediction with unbounded tables 
For all benchmarks, the hybrid predictor has a higher 

prediction accuracy than using the correlated predictor 
alone. The benchmarks with more static traces see a 
larger advantage from the hybrid predictor because they 
contain more unique sequences of traces. Because the 
table size is unbounded the hybrid predictor is not 
important for aliasing, but is important for making 
predictions when the correlated predictor entry is cold. 

For four out of the six benchmarks adding the return 
history stack (RHS) increases prediction accuracy. 
Furthermore, the four improved benchmarks see a more 
significant increase due to the RHS than the two 
benchmarks hurt by the RHS see a decrease. For 
benchmark compress the predictor does better without the 
RHS. For compress, the information about the subroutine 
being thrown away by the RHS is more important than the 
information before the subroutine that is being saved. 

Xlisp extensively uses recursion, and to minimize 
overhead it uses unusual control flow to backup quickly to 
the point before the recursion without iteratively 

performing returns. This behavior confuses the return 
history stack because there are a number of calls with no 
corresponding returns. However, it is hard to determine 
how much of the performance loss of RHS with xlisp is 
caused by this problem and how much is caused by loss of 
information about the control flow within subroutines. 

5.3. Performance with bounded tables 

We now consider finite sized predictors. The table 

component with respect to size. We study correlated 
predictors with tables of 214, 2’’ and 216 entries. For each 
size we consider a number of configurations with different 
history depths. The configurations for the index 
generation function were chosen based on trial-and-error. 
Although better configurations are no doubt possible we 
do not believe differences would be significant. 

for the correlated predictor is the most significant I 

1 

I 
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Figure 7 Next trace prediction 
We use a RHS that has a maximum depth of 128. 

This depth is more than sufficient to handle all the 
benchmarks except for the recursive section of xlisp, 
where the predictor is of little use, anyway. 

Performance results are in Figure 7. Three of the 
benchmarks stress the finite-sized predictors: gcc, go and 
jpeg. In these predictors the deviation from the 
unbounded tables is very pronounced, as is the deviation 
between the different table sizes. As expected, the 
deviation becomes more pronounced with longer histories 
because there are more unique sequences of trace 
identifiers being used and, therefore, more aliasing. 

Go has the largest number of unique sequences of 
trace identifiers, and apparently suffers from aliasing 
pressure the most. At first, as history depth is increased 
the miss rate goes down. As the history depth continues 
to increase, the number of sequences competing for the 
finite size table increases aliasing. The detrimental effects 
of aliasing eventually starts to counter the gain of going to 
deeper histories and at some point dominates and causes a 
negative effect for increased history depth. The smaller 

the table size, the sooner the effects of aliasing start to 
become a problem. It is important to focus on the 
behavior of this benchmark and the other two larger 
benchmarks -- gcc and jpeg, because in general the other 
benchmarks probably have relatively small working sets 
compared to most realistic programs. 

We see that for realistic tables, the predictor can 
achieve very high prediction accuracies. In most cases, 
the predictor achieves miss rates significantly below the 
idealized sequential predictor. The only benchmark 
where the predictor can not do better than sequential 
prediction is for a small, 214 entry, table for jpeg. But 
even in this case it can achieve performance very close to 
the sequential, and probably closer than a realistic 
implementation of Gshare modified for multiple branches 
per cycle throughput. For our predictor the means of the 
mispredict rates are 10.0%, 9.5% and 8.9% for the 
maximum depth configuration with 214, 2'' and 216 entry 
tables respectively. These are all significantly below the 
12.1 % misprediction rate of the sequential predictor, 26% 
lower for the 216 predictor. 
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Table 3 Index generation configurations used 

Depth D-0-L-C for D-0-L-C for D-0-L-C for 
14 bit Index 15 bit Index 16 bit Index 

x ~ . - - ~ -  " - ~ ~  

0 0-0-0-14 (Ip) 0-0-0-15 ( lp)  0-0-0-16 (Ip) 
1 1-0-6-8 (Ip) 1-0-7-8 (lp) 1-0-7-9 (Ip) 
3 3-5-7-11 (2p) 3-5-8-12 (2p) 3-5-9-13 (2p) 
5 5-3-6-1 1 (2p) 5-4-5-9 (2p) 5-5-5-7 (2p) 
7 7-4-7-1 1 (3p) 7-4-9-12 (3p) 7-5-7-1 1 (3p) 

5.4. Impact of delayed updates 

Thus far simulation results have used immediate 
updates. In a real processor the history register would be 
updated with each predicted trace, and the history would 
be corrected when the predictor backs up due to a 
misprediction. The table entry would not be updated until 
the last instruction of a trace has retired. 

Table 4 Impact of real updates 
P 

Benchmark Misprediction Misprediction 
with ideal ujdates- 

compress 5.8 5.8 
gcc 10.5 10.5 

b e g  3.5 3.6 ' 
m88ksim 2.4 2.1 

xlisn 4.7 4.8 

with real update 
- - - ~ - - ~ " ~ ~  

go 9.3 9.3 

To make sure this does not make a significant impact 
on prediction accuracy, we ran a set of simulations where 
an execution engine was simulated. The configuration of 
the execution engine is discussed in section 4.1. The 
predictor being modeled has 216 entries and a 7-3-6-8 
DOLC configuration. Table 4 shows the impact of 
delayed updates, and it is apparent that delayed updates 
are not significant to the performance of the predictor. In 
one case, m88ksim, the delayed updates actually increased 
prediction accuracy. The delayed updates has the effect 
of increasing the amount of hysteresis in the prediction 
table which in some cases can increase performance. 

5.5. A cost-reduced predictor 

The cost of the proposed predictor is primarily a 
function of the size of the correlated predictor's table. 
The size of the correlated predictor's table is the number 
of entries multiplied by the size of an entry. The size of 
an entry is 48 bits: 36 bits to encode a trace identifier, two 
bits for the counter plus 10 bits for the tag. 

A much less expensive predictor can be constructed, 
however, by observing that before the trace cache can be 
accessed, the trace identifier read from the prediction 
table must be hashed to form a trace cache index. For 

practical sized trace caches this index will be in the range 
of 10 bits. Rather than storing the full trace identifier, the 
hashed cache index can be stored in the table, instead. 
This hashed index can be the same as the hashed 
identifier that is fed into the history register (Figure 2). 
That is, the Hashing Function can be moved to the input 
side of the prediction table to hash the trace identifier 
before it is placed into the table. This modification should 
not affect prediction accuracy in any significant way and 
reduces the size of the trace identifier field from 36 bits to 
10 bits. The full trace identifier is still stored in the trace 
cache as part of its entry and is read out as part of the 
trace cache access. The full trace identifier is used during 
execution to validate that the control flow implied by the 
trace is correct. 

6. Predicting an alternate trace 

Along with predicting the next trace, an alternate 
trace can be predicted at the same time. This alternate 
trace can simplify and reduce the latency for recovering 
when it is determined that a prediction is incorrect. In 
some implementations this may allow the processor to 
find and fetch an alternate trace instead of resorting to 
building a trace from scratch. 

Alternate trace prediction is implemented by adding 
another field to the correlated predictor. The new field 
contains the identifier of the alternate prediction. When 
the prediction of the correlated predictor is incorrect the 
alternate prediction field is updated. If the saturating 
counter is zero the identifier in the prediction field is 
moved to the alternate field, the prediction field is then 
updated with the actual outcome. If the saturating counter 
is non-zero the identifier of the actual outcome is written i 
into the alternate field. I 

~ Figure 8 shows the performance of the alternate trace 
predictor for two representative benchmarks. The graphs 

1 

I 

I show the misprediction rate of the primary 216 entry table 
predictor as well as the rate at which both the primary and 

prediction. For compress, 213 of the mispredictions are 

i 
i 
I alternate are mispredicted. A large percent of the 

mispredictions by the predictor are caught by the alternate 

caught by the alternate, for gcc it is slightly less than half. 
It is notable that for alternate prediction the aliasing effect 
quickly dominates the benefit of more history because it 
does not require as much history to make a prediction of 
the two most likely traces, so the benefit of more history is 

There are two reasons alternate trace prediction 
works well. First, there are cases where some branch is 
not heavily biased; there may be two traces with similar 
likelihood. Second, when there are two sequences of 
traces aliased to the same prediction entry, as one 
sequence displaces the other, it moves the other's likely 

I 
I 
~ 

I 

1 

1 

significantly smaller. i 
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prediction to the alternate slot. When a prediction is made 
for the displaced sequence of traces, and the secondary 
predictor is wrong, the alternate is likely to be correct. 
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Figure 8 Alternate trace prediction accuracy 

7. Summary 

We have proposed a next trace predictor that treats 
the traces as basic units and explicitly predicts sequences 
of traces. The predictor collects histories of trace 
sequences and makes predictions based on these histories. 
In addition to the basic predictor we proposed 
enhancements to reduce performance losses due to cold 
starts, procedure callheturns, and the interference in the 
prediction table. The predictor yields consistent and 
substantial improvement over previously proposed, 
multiple-branch-prediction methods. On average the 
predictor had a 26% lower mispredict rate than the most 
aggressive previously proposed multiple-branch predictor. 
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