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ABSTRACT 
Although the best processor design for executing a specific 
workload does depend on the characteristics of the workload, it 
can not be determined without factoring-in the effect of the 
interdependencies between different architectural subcompo-
nents. Consequently, workload characteristics alone do not 
provide accurate indication of which workloads can perform 
close-to-optimal on the same architectural configuration. 
The primary goal of this paper is to demonstrate that, in the 
design of a heterogeneous CMP, reducing the set of essential 
benchmarks based on relative similarity in raw workload be-
havior may direct the design process towards options that re-
sult in sub-optimality of the ultimate design. It is shown that 
the design parameters of the customized processor configura-
tions, what we refer to as the configurational characteristics, 
can yield a more accurate indication of the best way to parti-
tion the workload space for the cores of a heterogeneous sys-
tem to be customized to. 
In order to automate the extraction of the configurational-
characteristics of workloads, a design exploration tool based 
on the Simplescalar timing simulator and the CACTI model-
ing tool is presented. Results from this tool are used to display 
how a systematic methodology can be employed to determine 
the optimal set of core configurations for a heterogeneous 
CMP under different design objectives. In addition, it is shown 
that reducing the set of workloads based on even a single 
widely documented benchmark similarity (between bzip and 
gzip) can lead to a slowdown in the overall performance of a 
heterogeneous-CMP design. 

Categories and Subject Descriptors 
C.1.1 [Single Data Stream Architectures]: RISC/CISC, VLIW 
architectures, Single-instruction-stream 

Keywords 
single-thread performance, customization, heterogeneous 
CMP, design exploration, workload characterization  

1. INTRODUCTION 
Computer architecture research has effectively become the art 
of exposing and exploiting localities in workload behavior. 
Therefore, characterizing and understanding the behavior of 
common workloads can be considered an essential facet of this 
research field. The commercial advent of the chip multiproces-
sor (CMP) in recent years has added to the value of under-
standing the similarities (and differences) between workloads 
– by increasing the viability of heterogeneity. In the context of 

this paper, a heterogeneous-CMP is a CMP in which the cores 
are architected differently, each sacrificing general-purpose 
performance for better workload-specific performance, so as to 
achieve in commune an overall performance that would not be 
attainable otherwise. 
A key challenge in the design of such a system is the question 
of how the workload space should be partitioned for different 
cores to be customized to. It is this design challenge – which 
we refer to as the communal customization problem – that adds 
to the importance of understanding the nature of workload 
similarity. Communal customization is akin to the more estab-
lished notion of workload subsetting [27]. However, the objec-
tive of subsetting is to identify workloads that, in the space of 
workload characteristics, have relatively less Euclidian dis-
tance between each other. The assumption is that such work-
loads are affected similarly by the architectural configuration – 
thus providing potential for less simulation-based evaluation 
cost. In contrast, communal customization involves the identi-
fication of workloads that can attain close-to-optimal perform-
ance with the same architectural configuration.  
The major argument presented in this paper is that, in the de-
sign of a heterogeneous CMP, viewing workload subsetting as 
a substitute for communal customization – or even as a pre-
liminary step to reduce exploration complexity – may direct 
the ultimate design towards suboptimality. The fundamental 
reason for this is that there are complex interdependencies 
between the different units of a processor design. These inter-
dependencies cause different components of the optimal proc-
essor configuration to be affected by the workload behavior as 
a whole (rather than distinct characteristics). In addition, these 
interdependencies are influenced by the physical properties of 
the underlying technology and are thus not reflected in the 
workload characteristics alone. 
 

1.1. Subcomponent Interdependence in Supersca-
lar Processor Design 
Workload characteristics that pertain to functionally independ-
ent subcomponents of a processor design are commonly viewed 
as independent gauges of the optimal configuration of those 
subcomponents. Metrics for the biasness of branches, memory 
access localities and the distribution of dependent instructions 
are microarchitecture-independent examples of such character-
istics that respectively relate to the branch predictor, data 
caches and the scheduling unit. However, the optimal configu-
ration of each of these units is influenced by the clock period 
of the system, while the optimal clock period itself depends on 
the dynamics of how the different units scale. Thus, in the 
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search for an optimal design, the unified clock period inter-
twines the different subcomponents.   
For instance it is ill-conceived to consider similar optimal L1 
cache configurations for two workloads based solely on the fact 
that they have similar spatial/temporal locality of memory ac-
cess and working-set size. This is because other characteristics 
of the workloads (such as the control-flow behavior) affect the 
best configuration for other aspects of the design (such as the 
processor width and pipeline depth), including the clock pe-
riod. The clock period determines the number of cycles neces-
sary for accessing a cache unit with a particular configuration, 
which in turn influences the attainable IPC. Also the physical 
properties of the technology in which the system is imple-
mented determine how the different design aspects scale rela-
tive to each other. These properties are not reflected in the raw 
characteristics of a workload. Moreover, it is not correct to 
assume that these interdependencies are of mere second-order 
effect as they involve issues as critical as the latency between 
back-to-back dependent instructions.  
As an illustrative example, consider three workloads α, β, and 
γ that have equal importance weights. The workloads have 
mostly similar characteristics, other than workloads β and γ 
having much larger working-sets than α, and γ having greater 
branch biasness and less dense dependence chains than α and 
β. Considering the Kiviat graphs of these workloads to be 
those displayed in Figure 1, it is evident that, from the stand-
point of raw workload characteristics, α and β are relatively 
more similar – as they differ only in the size of their working-
set. Thus, a naive observation may conclude that customizing 
one of the two cores for workloads α and β, and the other for 
workload γ, will result in the best overall single-thread per-
formance. 
However, optimal performance with workload β may require a 
large L1 cache, due to its larger working set, and any com-
promise may severely degrade performance, while any increase 
in the L1 cache size may severely degrade the performance of 
workload α due to the high frequency of loads. Although work-
load γ also has a large working set, due its less dense depend-
ence chains and higher branch predictability, it will from an 
IPC standpoint be able to better tolerate cache misses. There-
fore, depending on how the different units scale in the given 
technology, workload γ may be more suitable than β for execu-
tion on a configuration that is also suitable for α. 
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Figure 1: Kiviat graphs of three sample workloads for the archi-
tecture-independent characteristics of: A) Working-set size, B) 
Branch predictability, C) Density of dependence chains, 
D) Frequency of loads, E) Frequency of conditional branches – 
all normalized to a scale of 0~10. 

1.2. Configurational Characterization 
For the purpose of communal customization, an effective form 
of workload characterization would more transparently reflect 
how relatively suited different workloads are for being exe-
cuted on the same architecture – rather than how relatively 
similar their raw characteristics are. It is intuitive that the 
characteristics of the best architectural configuration for a 
workload possess this quality. Such characterization allows for 
direct and accurate measurement of how well different work-
loads perform on each other’s customized architectures. More-
over, the best architectural configuration for a workload en-
capsulates the effect of the different facets of raw workload 
behavior on the optimal configuration of the different architec-
tural units under the constraints imposed by the interdepend-
encies between them. 
 

1.2.1. Practicality and efficiency 
It is undoubtedly more costly to determine the best architec-
tural configuration for a workload – which requires numerous 
cycle-accurate simulations of the execution of code – than it is 
to extract its conventional workload characteristics. However, 
knowing the best architectural configurations for individual 
workloads enables the best combination of core configurations 
to become extractable through a systematic task of reducing 
the set of workloads/configurations.  
Moreover, determining the best architectural configurations 
for workloads can be performed priori to the design phase that 
is critical for time-to-market demands, as the physical proper-
ties of future generation technologies are often predictable be-
fore commercial feasibility.  
 

1.2.2. Broader implications   
Although we frame our discussion around the design of het-
erogeneous CMPs, the notion of characterizing workloads 
based on their customized architectural configurations can 
have broader implications for processor architecture research 
in general.  
The solidity of conventional methodologies in the evaluation of 
microarchitectural techniques has long been scrutinized [35]. 
This is in part due to the fact that when any component of the 
workload characteristics or architectural configuration change 
the balance between them changes. In actuality, it is this 
change that should be considered representative of the true 
effect of a microarchitectural technique – rather than the 
‘speedup’ it attains over some baseline architecture.  
In other words, for the proper evaluation of a novel architec-
tural technique what should be determined is how the tech-
nique influences the balance between the different architec-
tural units and the workload. The customized processor con-
figuration of a workload can be viewed as an atomic entity 
representing this balance. Standardizing the customized con-
figurations of popular benchmark suites can pave the way to a 
more standard evaluation methodology – the need for which is 
also stressed in [35]. 
Nevertheless, we believe that this issue is of less practical sig-
nificance in the domain of general-purpose processors as such 
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designs are constrained on multiple fronts by widely diverse 
workloads. It is when the workload space is to be split among 
different processing cores that this issue gains significance. 
 

1.3. Outline and Contributions 
In this paper, a simulated-annealing exploration process is 
employed to explore the design space of the superscalar proc-
essor for each of the C integer benchmarks from the 
SPEC2000 suite, and determine their configurational charac-
teristics. 
The contributions of this paper are thus threefold: 1) Introduc-
ing a superscalar design-space exploration framework based 
on the popular Simplescalar simulator [25] and CACTI model-
ing tool [36]. 2) Determining the configurational characteris-
tics of the integer SPEC benchmarks in a specific technology. 
3) Illustrating how configurational workload characterization 
can enable the coherent and systematic extraction of the best 
cores to employ in a heterogeneous CMP. 
The next section explores related work. Section 3 describes the 
functionality of our design-space exploration process. The ex-
ploration methodology and results are presented in Section 4. 
These results are used in Section 5 to evaluate different ap-
proaches to conducting communal customization. Section 6 
concludes the paper. 

2. MOTIVATION AND RELATED WORK 
2.1. Workload Subsetting 
Numerous studies have analyzed different aspects of commer-
cial benchmark suites [1, 2, 3, 4]. Other studies have focused 
on understanding the similarities between different bench-
marks [6, 7] with the objective of reducing the amount of 
simulation required to evaluate architectural innovations. For 
instance, Joshi et al. propose a methodology for measuring the 
similarities between programs based on microarchitecture-
independent characteristics [8]. Hoste et al. use workload simi-
larity to predict application performance [11]. Vandierendonck 
et al., rank SPEC2000 integer benchmarks based on whether 
they exhibited different speedups on different machines, and 
use this as a guideline for identifying similar workloads [29].  
Yi et al. present a thorough summary of workload subsetting 
approaches [27], and propose a statistically rigorous approach 
based on the Placket-Burman design [32]. A similar technique 
is proposed by Dujmovic et al [33]. In these approaches, the 
execution of different workloads is evaluated on different proc-
essor designs in order to expose their architectural bottlenecks 
– which are considered to be indicative of similarity. The as-
sumption on which these approaches are based is that interac-
tion between the different workload characteristics (and their 
corresponding architectural units) is negligible. However, un-
der realistic design constraints the pipelined nature of tradi-
tional processor design brings about interdependence in the 
configuration of seemingly uncorrelated architectural units.  
The uniform clock period determines the pipeline depth and 
the slack observed in different stages. Pipeline slack can 
greatly impacts the performance of non-linear pipelines such 

as the superscalar processor. Figure 2 illustrates how the uni-
fied clock can affect the optimal sizing of the issue queue and 
L1 cache. In each scenario the solid lines represent the delay 
of the issue queue, the dashed lines represent the access delay 
of the L1 cache, and the scales at the bottom represent the 
clock cycles. The propagation delay of the issue queue and the 
delay of the L1 cache are based on a representative sizing of 
these units.  

 

Figure 2: Illustrative scenarios for the design of a processor with 
different clock periods, issue queue and L1 cache sizes. 
 

In scenario a, access to the L1 cache observes considerable 
slack. The overall slack can be reduced by changing the clock 
period, as displayed in scenario b. Doing so, however, deepens 
the pipeline which may improve or degrade overall perform-
ance. So is the case in scenario c, where the slack is further 
reduced by downsizing the issue queue size. Finally in scenario 
d, instead of scaling down the clock period, the size of the L1 
cache is increased to make full benefit of the available two 
cycles. Depending on the working set of the application this 
extra L1 cache capacity may not be of any value, and scenario 
b or c may be of better overall performance.  
 

2.2. The Heterogeneous CMP 
Kumar et al. propose the single-ISA heterogeneous CMP as an 
approach to enhance the throughput of multithreaded work-
loads [14]. In follow-up work they show that the best way to 
design a heterogeneous CMP is actually to tune each individ-
ual core for “a class of applications with common characteris-
tics” [10]. The focus of our paper inherently revolves around 
the question of how workloads should be ‘characterized’ for 
this purpose and what the criterion for ‘commonality’ should 
be. To the best of our knowledge, the only prior studies that 
touch upon the issue of designing the cores of a heterogeneous 
CMP is the aforementioned work by Kumar et al. [10] and a 
more recent study by Lee and Brooks [37].   
Kumar et al. reduce the set of benchmarks based on similarity 
in workload characteristics. By doing so, and limiting the ar-
chitectural diversity of the cores, an exhaustive search of dif-
ferent core-combinations across different groupings of work-
loads is made feasible. This approach is ad hoc in that there is 
no solid justification (other than exploration cost) to reduce the 
benchmark set to a specific size. Lee and Brooks use regres-
sion modeling to enable fast exploration of the microarchitec-
tural design space. Then, through an iterative process (K-
means clustering) centroids are identified for the customized 
architectures. The closest centroid to the customized architec-
ture of each benchmark is assigned as the compromise archi-

a: 

b: 

d: 

c: 

1ns 

0.66ns 

0.66ns 

1ns 
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tecture of that benchmark. This approach is also ad hoc in that 
its outcome is highly dependent on how the different architec-
tural parameters are normalized and weighed. It is however 
the most related approach to that proposed here, and addresses 
the major focus of this paper.  
Therefore, as illustrated in Figure 3, there are in general two 
broad approaches to communal customization. One is to ini-
tially extract a small enough subset of the essential workloads 
for it to be feasible to conduct an exhaustive exploration of the 
workload-architecture combinations. The other is to initially 
determine the optimal architectural configuration for each con-
sidered application and then reduce the set of resultant archi-
tectures to a representative subset. With the availability of the 
optimal configuration for each workload the true closeness 
between them can systematically and accurately be measured 
and the most representative subset determined. 
 

 
                                  (a)                                                      (b) 

Figure 3: Two general approaches to identifying the optimal core 
combination for a heterogeneous CMP: (a) An exhaustive search 
– which for feasibility requires selection of representative work-
loads, (b) Determining the customized architectures of applica-
tions and then reducing the set of architectures. 
 

2.3. Automatic Design Space Exploration 
Due to the sheer size of the superscalar processor design space, 
determining the optimal architectural configuration for a 
workload is itself a demanding task. A wide spectrum of stud-
ies has focused on developing tools to enable efficient explora-
tion of the design space with different degrees of accuracy and 
architectural variability [12, 15, 16, 17]. 
At one end of the spectrum are approaches that are more con-
cerned with specific design details. For instance, AMPLE [12] 
is a wire-driven microarchitectural design space exploration 
framework in which the size of different units and the floor-
planning are customized to workload behavior. Initial mi-
croarchitecture parameters for the initial search point of each 
application are determined based on the application’s charac-
teristics. The clock period is not among the customizable de-
sign parameters and different design units are not pipelinable 
(it only weighs the power benefit of downsizing against its 
performance degradation).  

Due to the non-discrete nature of the clock period, considering 
it as a customizable parameter considerably increases the proc-
essor design space. It is for this reason that prior design explo-
ration studies either limit the design space to a set of pre-
designed configurations [10, 33] or consider a fixed clock pe-
riod across variability in other architectural parameters [12]. 
Both effectively diminish the true performance potential of 
customization (and heterogeneity).  
On the other end of the spectrum are approaches that are more 
concerned with the speed of performance evaluation (and ex-
ploration). For instance, Lee and Brooks introduce a non-
linear microarchitectural regression model, and propose its use 
to enable fast exploration of the processor design space [37]. 
While pipeline depth is among the customizable design pa-
rameters, it is employed as a speed-power factor and not neces-
sarily a parameter influencing the sizing of different units in a 
balanced pipeline design. 
However, the major issue with such mathematical models is 
the space in which their accuracy is verified. In general, mis-
leading conclusions may be drawn on the accuracy of a model 
if the evaluation is conducted in a distorted space. This can 
occur when the evaluated space is a subset of the actual space 
due to the absence of variability in certain parameters, or is its 
superset due to the absence of the enforcement of certain re-
strictions – or a combination of both factors. The problem in 
evaluating superscalar regression models is that accounting for 
independent variability in the pipeline depth of different units 
and enforcing the constraints imposed by a global clock period 
results in a design space that can not be concisely delineated 
(its shape and bounds specified) in parametric form. 
Therefore, there is more difficulty in evaluating the accuracy 
of such models than meets the eye. However, inaccuracy in this 
area can lead to incorrect conclusions when the model is em-
ployed for design-space exploration, principle component 
analysis or clustering. The advocates of using regression mod-
els for design-space exploration argue that employing full-
blown simulation is too time consuming and costly. We how-
ever, argue that the process is highly parallelizable and that 
with sufficient resources (which are typically available in large 
development groups) a design space exploration with reason-
able rigor should be achievable in a matter of days. For this 
reason we believe that basing the exploration process on diffi-
cult-to-verify regression models serves little benefit to such a 
study. 
 

3. XP-SCALAR: A SUPERSCALAR DESIGN-
EXPLORATION FRAMEWORK  
A light-weight superscalar design-space exploration frame-
work named xp-scalar has been developed. The major compo-
nent of the framework consists of a tool that employs a simu-
lated annealing process to find the best superscalar architec-
tural configuration for executing a specific workload. Also 
available is a tool for visualizing the performance of the 
benchmarks on each other’s customized configurations, which 
eases the identification of discrepancies and can help expedite 
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the exploration process. The source code of the framework and 
directions for use are accessible at 
http://www4.ncsu.edu/~hhashem/xpscalar.htm. The tool employs 
the Simplescalar v.4 simulator to perform execution-driven 
simulations, and the CACTI model to approximate the access 
latency of the different units of the superscalar processor. Both 
Simplescalar and CACTI can be employed with or without any 
modification, as long as the format of the input and output 
does not change.  
In each iteration, either the clock period is varied, and the size 
of the issue queue, register-file/ROB, load-store queue, L1 and 
L2 caches, and processor width adjusted to make their access 
times fit within the number of pipeline stages assigned to 
them, or the number of pipeline stages of a unit is varied and 
its configuration appropriately adjusted. Table 1 displays the 
manner in which the tool uses the CACTI output parameters to 
estimate the access latency of different architectural units. 
Note that the issue queue delay consists of wake-up (an asso-
ciative component) and select (a direct mapped component) 
delays. 
After the different units are scaled to fit the product of the 
clock period and their pipeline depth, minus the aggregate 
latch latency, the benchmark is executed on the sim-mase 
simulator (from the Simplescalar toolset) configured corre-
spondingly. If a configuration executes the workload with 
greater IPT (Instructions per Time-unit) than the best observed 
until that point in the exploration, the configuration is re-
corded as the new optimal solution. When a configuration is 
reached for which the IPT is less than half that of the optimal 
configuration, the exploration process rolls back to the optimal 
solution and is continued. 
In this study, power and die area are not considered in the 
evaluation process, and optimum design is concerned only 
with performance. It is however found that under realistic as-
sumptions for the access latency to different superscalar sub-
components, these aspects of the optimum architectural con-
figuration remain within acceptable limits. Extending the tool 
to conduct exploration based on a metric that represents some 
combination of performance, power and die area should not be 
exceptionally difficult.   
 

4. EXPLORATION RESULTS 
4.1. Methodology 
The workloads evaluated are the C integer benchmarks from 
the SPEC2000 suite compiled for the PISA instruction-set. The 
exploration process was conducted on a quad-core hyper-
threaded blade for a period of three weeks. During this period, 
each workload was also executed on the customized architec-
tures of the other workloads. If a workload was found to per-

form better on some other workload’s optimal configuration, 
that configuration would replace its own configuration in order 
to expedite the exploration process. The evaluation of each 
architectural configuration during the exploration process con-
sists of the execution of a 100-million instruction Simpoint 
[34]. A considerably large number of such evaluations need to 
be conducted for each benchmark in order for the evolutional 
process to approach the optimum design. Therefore, in the 
initial stages of the exploration, each evaluation was limited to 
the first 10 million instructions. 
Three microarchitecture-independent technology-dependent 
factors were found to be influential on the ultimate customized 
configurations attained for the benchmarks. Table 2 displays 
the values considered for these parameters in this study. The 
memory access latency determines the amount of time re-
quired to access the main memory, i.e., the latency of a load 
that misses in all cache levels. The front-end latency is the 
amount of time required for an instruction to be retrieved, de-
coded and renamed, i.e., the extra branch misprediction pen-
alty in the Simplescalar simulator. CACTI does not produce 
accurate modeling for block sizes smaller than 8 bytes. There-
fore, we consider this lower bound as the width of the issue 
queue entries. Another important design constant is the latch 
latency which affects the optimum pipeline depth of different 
subcomponents. These values are in general accordance with 
common processor designs. 
Table 3 displays the initial architectural configuration em-
ployed across all benchmarks. Note that only the access laten-
cies (in clock cycles) of the caches are indicated. This is be-
cause the cache configurations are randomly varied to fit the 
product of the clock period and number of access cycles during 
the first iteration of the exploration process if the default does 
not fit. 
 

4.2. Customization Results 
Table 4 displays the characteristics of the optimum architec-
tural configuration for each of the considered benchmarks. The 
optimum processor width is observed to vary between 3 and 7. 
The optimum ROB size varies between 64 and 1024. The op-
timum clock frequency varies between 1.72 GHz and 5.2 GHz. 
The optimum size for the L1 cache capacity is in the range of 
8K to 256K, while that of the L2 cache is in the range of 128K 
to 4M bytes. 
Please see the xp-scalar website for more up-to-date results 
from further evolution of exploration process, and the effect of 
improvements in the accuracy of modeling the latencies of 
different units – a process that with feedback from the com-
munity will be on-going. The major conclusions drawn here 
are unlikely to be annulled with change in the modeling. 

 

Table 1. The CACTI parameters used to determine the access latency of various units based on architectural parameters. 
 

Arch. Unit Line size Associativity No. of sets No. read ports No. write ports Used component of CACTI output  
L1 data cache line size of cache assoc. of cache no. of sets of cache 2 2 Access time 
L2 data cache line size of cache assoc. of cache no. of sets of cache 2 2 Access time 
wakeup-select 8 bytes fully associative 2 x size of issue queue Issue width 0 Tag comparison 

 8 bytes direct mapped size of issue queue Issue width 0 + Total data-path without output driver 
reg. file (ROB) 8 bytes direct mapped size of ROB 2 x issue width issue width Access time 

LSQ 8 bytes fully associative size of LSQ 2 2 Total data-path without output driver 
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Table 2. Fixed design parameters across all configurations. 
 

memory access latency 50ns 
front-end latency 2ns 

bit-width of IQ entries 64 
latch latency 0.03ns 

  
Table 3. Initial configuration used across all benchmarks. 

 

No. of cycles for memory access 172 
No. of pipeline stages of front-end 6 
Dispatch, issue, and commit width 3 
ROB size 128 
Issue queue size 64 
Min. lat. for awakening of dep. instr. 1 
Pipeline depth of Scheduler/Reg-file 1 
Clock period (ns) 0.33 
L1D access latency 4 
L2D access latency  12 
Load-sotre ques size  64 
Pipeline depth of LSQ 2 

 

5. COMMUNAL CUSTOMIZATION 
5.1. Cross-Configuration Performance  
Once a customized architectural configuration for each bench-
mark has been established, the performance of each bench-
mark on the configuration of other benchmarks can be deter-
mined. This allows for the performance difference between 
different architectures to be extracted, and the architectures 
that provide close-to-optimal performance across numerous 
benchmarks identified. The best core configurations are not 
necessarily among the workload-customized cores. However, 
the broader the workload diversity, the better coverage there 
will be of the design space. 
Table 5 displays the IPT of each of the SPEC2000 benchmarks 
executed on the optimal architecture of all the other bench-
marks. From these results, the percentage slowdown of each 
benchmark when executed on the architectures of other bench-
marks over the performance on its own architecture can be 

extracted. The importance of carefully choosing the cores of a 
heterogeneous CMP is evident in these results with up to ~50% 
slowdown (for mcf) observed for the execution of benchmarks 
on the customized architecture of other benchmark. 
 

5.2. The Best Core Combination 
Before the best set of core configurations to employ in a het-
erogeneous system can be identified, the design-goal needs to 
be determined and a figure of merit that represents that design 
goal. 
If the goal is to minimize the total execution time of a set of 
consecutive benchmarks, as is customary in single-core mi-
roarchitecture research, a representative figure of merit is the 
harmonic-mean of the performance of each benchmark when 
run on the most suitable core available for it. Such a design 
goal however does not account for core-contention. It may thus 
cause preference towards adoption of configurations that per-
form extremely well with a few benchmarks without consider-
ing the burden this may place on other more general configu-
rations.  If the objective is to increase the average performance 
with which an arbitrary benchmark from a set of benchmarks 
will be executed when submitted in isolation to the system, a 
representative figure of merit is the average performance of 
each benchmark on its most suitable core available. 
A more real-world design goal is to minimize the total execu-
tion time of a set of benchmarks that can be executed concur-
rently on separate cores (if available). A representative figure 
of merit for this can be attained by first dividing the perform-
ance of each benchmark when run on the most suitable core 
available for it, by the number of benchmarks with which it 
shares that core, and then taking the harmonic mean. We refer 
to this as the contention-weighed harmonic-mean. 

 

Table 4. The customized architectural configurations for the SPEC2000 benchmarks. 
 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr 

No. of cycles for memory access 112 321 173 186 198 120 198 321 172 213 172 
No. of pipeline stage of the front-end 4 12 6 7 7 4 7 12 6 8 6 
Dispatch, issue, and commit width 5 8 4 4 4 3 4 5 5 7 5 
ROB size 512 64 128 256 64 1024 512 256 512 512 256 
Issue queue size 64 32 32 32 32 64 32 32 64 32 64 
Min. lat. for awakening of dep. Instr. 0 3 1 1 1 0 1 3 1 2 1 
Pipeline depth of Scheduler/Reg-file  1 3 1 2 1 1 2 4 2 4 2 
Clock period 0.49 0.19 0.33 0.31 0.29 0.45 0.29 0.19 0.33 0.27 0.3 
L1D associativity 2 1 1 1 1 2 1 1 8 4 2 
L1D block-size 32 8 8 8 128 128 64 8 64 32 32 
L1D no. of sets 1k 16k 2k 32k 256 1k 2k 2k 128 1k 128 
L1D access latency 2 5 2 4 3 5 3 3 3 5 2 
L2D associativity 4 16 4 8 1 4 8 16 4 16 8 
L2D block-size 64 64 256 64 128 128 512 64 128 128 128 
L2d no. of sets 8k 128 128 1k 4k 8k 32 128 2k 128 1k 
L2D access latency 15 7 4 6 5 27 12 7 12 6 12 
LS-queue size 128 64 256 256 128 64 256 128 256 256 64 

 

Table 5. The performance of each benchmark (rows) on the customized architectures (columns) of other benchmarks. 
  bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr 

bzip 3.15 2.02 1.73 2.41 2.11 2.56 2.09 2.03 3.05 2.24 2.95 
crafty 0.78 2.31 1.15 2.11 1.91 0.48 1.97 2.06 1.29 2.12 1.30 
gap 1.39 2.75 3.02 2.60 2.92 0.89 2.89 2.79 2.00 2.47 2.05 
gcc 1.17 2.17 1.42 2.27 2.03 0.75 2.02 1.63 1.79 2.06 1.80 
gzip 1.78 2.56 2.02 2.88 3.13 1.28 3.01 2.14 2.39 2.57 2.37 
mcf 0.74 0.40 0.30 0.45 0.29 0.93 0.32 0.41 0.52 0.42 0.52 

parser 1.86 2.11 2.19 2.08 2.47 1.32 2.62 1.86 2.39 2.15 2.30 
perl 0.85 2.02 0.90 1.81 1.67 0.54 1.65 2.07 1.32 1.81 1.30 

twolf 1.65 0.98 0.81 1.26 0.88 1.18 1.10 0.91 1.83 1.16 1.77 
vortex 1.68 2.98 2.55 3.09 2.91 1.07 3.41 2.78 2.61 3.43 2.54 

vpr 1.56 1.33 1.13 1.72 1.09 1.05 1.36 1.29 2.00 1.51 2.09 
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Table 6 displays the best set of cores to employ for different 
core-counts, in order to maximize the harmonic-mean, average 
and contention-weighed harmonic-mean of the IPT (respec-
tively represented by har, avg and cw-har) of the integer 
SPEC2000 benchmarks. These results were attained from the 
results of Table 5, by conducting a complete search of all pos-
sible core-combinations. A tool for automating this task is also 
part of the xp-scalar framework. These results show that a 
well-designed two-core heterogeneous CMP, can provide 
~10% and ~20% speedup in average and harmonic-mean IPT 
respectively, over the best single-core configuration. 
 

Table 6. The best core combinations and their performance. 
 

 customized core(s) avg. IPT har. IPT 
best config for avg. & har. IPT gcc 2.06 1.57 

2 best configs for avg. IPT parser, twolf 2.27 1.76 
2 best configs for har. IPT gcc, mcf 2.12 1.88 

2 best configs for cw-har. IPT bzip, crafty 2.18 1.87 
3 best configs for avg. IPT crafty, parser, twolf 2.35 1.82 
3 best configs for har. IPT crafty, mcf, twolf 2.27 2.05 

4 best configs for avg. & har. IPT crafty, mcf, parser, twolf 2.32 2.08 
each benchmark on its own 

customized architecture 

 

- 
 

 

2.38 
 

 

2.12 
 

 

 

Figure 4 displays the single-thread performance attainable 
from executing the benchmarks when the number of core con-
figurations available is limited. These results show that the 
choice of available configurations can greatly impact individ-
ual benchmark performance. For instance, the benchmarks 
twolf and parser displays around 40% and 25% speedup re-
spectively over the best single configuration when the best two 
configurations for average IPT are employed. Similarly, the 
benchmark mcf attains close to 2x speedup over the best single 
configuration when the best two cores for harmonic mean per-
formance are available. However, the availability of the cus-
tomized architectural configuration of mcf provides hardly any 
benefit for the other benchmarks (only bzip attains a slight 
performance enhancement). This shows how other parameters, 
such as the importance-weight of benchmarks, can influence 
the best core combination. For instance if mcf were to have a 
considerably lower importance-weight than the other bench-
marks, the best two configurations for harmonic-mean per-
formance would potentially be different. 
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Figure 4: The IPT of the execution of different benchmarks on 
the best available core, with different configurations.  
 

5.3. Reducing the benchmarks by subsetting 
Two of the benchmarks of the SPEC2000 suite that have been 
widely found to be similar based on workload characteristics, 

are bzip and gzip [30], with one ending up as the representa-
tive benchmark of the other. However, as the results of Tables 
5 and 6 show, these two benchmarks have very different cus-
tomized architectural configurations. Specifically, the bench-
mark bzip attains 33% slowdown when executed on the cus-
tomized configuration of gzip, and the reverse scenario results 
in gzip observing 43% slowdown. This illustrates the fact that 
the effect of directing workloads to architectures based on the 
characteristics of the workloads can be drastically adverse. 

More importantly, using workload characteristics to eliminate 
benchmarks from the exploration process in the design of a 
heterogeneous system can lead to suboptimality in the final 
design solution. If gzip is assigned as the representative 
benchmark for bzip, a reevaluation of the dual-core combina-
tion for harmonic-mean IPT finds the configurations of bzip 
and crafty to be the best solution. These two configurations 
however result in a harmonic-mean IPT of ~1.87, and a ~0.5% 
slowdown compared to when gcc and mcf are employed. Al-
though the effect is small, this example shows the effect of 
excluding a single benchmark based on subsetting, and proves 
how relative similarity in workload characteristics can be mis-
leading if interpreted incorrectly.  
The regions of code and compilation settings employed in the 
aforementioned studies may differ from that employed here. 
Nevertheless, relative similarity in workload behavior is a dis-
crete property and major similarities are not expected to be 
affected by minor variations in the characteristics. Therefore, 
we believe that as long as the regions of code are roughly rep-
resentative of the whole benchmark, such a cross-publication 
comparison is legitimate. 
 

5.4. Assigning Surrogates 
While a complete search of the core combinations can provide 
an accurate solution for the best core combination, it provides 
little insight into how the different benchmarks relate to each 
other with respect to their optimal architectural configurations. 
It thus provides no avenue for less-quantifiable factors, such as 
design-complexity (which relies largely on human judgment), 
to weigh in on the choice of core combination. There is also, 
on a lesser note, the fact that the complexity of a complete 
search grows quadratically with the number of benchmarks 
considered. 
A more valuable representation of this information would hier-
archically reflect how the optimal configurations of certain 
benchmarks can serve as surrogates for others. This informa-
tion is embedded in the cross-configuration performance re-
sults (Table 5), but needs to be extracted into a more human-
readable representation. While the use of the dendrogram is 
customary in displaying subsetting properties, its use for dis-
playing the potential for surrogating (assigning the customized 
architecture of one benchmark to another) can potentially be 
misleading.  
Specifically, the elements that fall into the same subset accord-
ing to a dendrogram are more related to each other than they 
are to components of other subsets. Therefore, to increase clus-
tering, two clusters fully merge into a super-cluster that en-
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compasses all the elements of both. This however, is not the 
case when assigning surrogate architectures. A benchmark 
may be better off with a totally different surrogate when its 
current surrogate is itself assigned a surrogate. For instance, 
from Tables 5 and 6, the benchmark bzip attains best perform-
ance on the customized configuration of twolf from among the 
three best configurations for harmonic-mean IPT. However, 
from among the best two for harmonic-mean IPT, bzip attains 
better performance on the configuration of mcf, while twolf 
does so on that of gcc. 
A complete surrogating-graph is a graph that conveys all the 
cross-configuration information (such as that in Table 5). In 
the following subsections we explore greedy approaches to 
formulate reduced surrogating-graphs. An issue of importance 
is that if the customized architecture of workload A is the sur-
rogate of another workload B, whether A should itself be al-
lowed to be assigned a surrogate, e.g. the architecture of C. 
Another issue is that if workload A has been assigned the sur-
rogate architecture of another workload B, whether A’s own 
architecture should be allowed to become the surrogate of an-
other workload C – which effectively translates into B’s archi-
tecture becoming the surrogate of C. These issues, which we 
refer to as forward-propagation and backward-propagation of 
surrogates, are illustratively demonstrated in figure 5.  
In all the following illustrations a circled benchmark means 
that the architectural configuration of the benchmark serves as 
surrogate for benchmarks connected to it by a downward edge. 
The number on each edge indicates the order of the corre-
sponding surrogate assignment.  

 
Figure 5: Forward and backward propagation of surrogates with 
three benchmarks/architectures (A, B and C). 
 

5.4.1. Non-propagation of Surrogates 
Figure 6 displays how workloads are grouped together and 
assigned customized architectures without propagation of sur-
rogates. Employing the remaining architectures (i.e., those of 
gap, twolf, vortex, and crafty) results in a harmonic-mean IPT 
of 1.83, and an average of 5.66% in performance slowdown 
across all benchmarks compared to the ideal case of all 
benchmarks being executed on their own customized architec-
tures. Three of these benchmarks are among the four deter-
mined as the best for average and harmonic-mean IPT through 
a complete search – for which a harmonic mean IPT of 2.08 
was attained (see Table 6). The bulk of the slowdown is due to 
the very last assignment; surrogating mcf the customized ar-
chitecture of twolf as surrogate. Adding mcf to the set of archi-
tectures results in a harmonic-mean IPT of 2.1 and reduces the 
average slowdown to ~1.6%. This however is achieved at the 
cost of 5 cores.  
 

 
Figure 6: The reduced surrogating-graph through the greedy 
assignment of surrogate architectures to benchmarks – with no 
propagation of surrogates. 
 

The issue with this approach is that by prohibiting the propa-
gation of surrogates, the assignment of surrogates becomes 
limited to a number of architectures that happened to have 
been extremely good surrogates for a limited number of work-
loads. Moreover, this approach is not extendable and will not 
provide a solution for a heterogeneous design with a smaller 
number of cores. The methodology will eventually reach a 
point were none of the remaining workloads can be surrogated. 
 

5.4.2. Propagation of Surrogates 
Figure 7 displays the outcome of the greedy assignment of sur-
rogates to benchmarks with forward and backward propagation 
of surrogates. Double-line edges indicate the architecture that 
is the surrogate of some other workload itself being surrogated. 
The top circled workload in each group of connected work-
loads indicates the workload whose architecture is used as sur-
rogate for all the workloads in the group. For traceability, Ap-
pendix A displays the cross-configuration percentage slow-
downs of the benchmarks with the links that are selected ac-
cording to this greedy assignment of surrogates marked with a 
star (*). 

 
Figure 7: The reduced surrogating-graph through greedy as-
signment of surrogate architectures to benchmarks – with full 
propagation of surrogates.   
 

It is observable that a very different grouping is attained with 
this approach compared to when propagation is disallowed. A 
heterogeneous system that employs the customized architec-
tures for gzip and twolf results in a harmonic-mean IPT of 1.74 
and an average slowdown of ~18% across all benchmarks 
compared to an ideal system. An interesting scenario that oc-
curs twice in this example is that, in the greedy assignment of 
surrogates, the benchmark such as vpr (parser) is surrogated 
by the customized configuration of the benchmark twolf (gzip) 
which is itself already surrogated by vpr (parser). This phe-
nomenon, which we refer to as feedback-surrogating, prevents 
the assignment of surrogates from being continued until only a 
single configuration is remaining.  
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Propagation of surrogates untangles the process of assigning 
surrogates. However, it may result in a benchmark being sur-
rogated by an unsuitable architecture, while more suitable op-
tions are available. This is intensified when the both forward 
and backward propagation are employed together. For instance 
in Figure 7, the surrogate assignment with order 10 results in 
both forms of propagation. – rendering the architecture of gzip 
as the surrogate for perl and gcc.  
Figure 8 displays the outcome with only forward-propagation 
of surrogates. The corresponding assignments are marked in 
appendix A with underlining. The architectures determined as 
the best two candidates for a heterogeneous system are the cus-
tomized architectures of mcf and vpr. The harmonic-mean IPT 
with these benchmarks is 1.75. 

 
Figure 8: The reduced surrogating-graph through the greedy 
assignment of surrogate architectures to benchmarks – with for-
ward propagation of surrogates. 
 

In these examples, all benchmarks are considered to have an 
equal importance weight. To consider different importance 
weights, the slowdowns due to surrogating must be weighed by 
the importance weight of corresponding workloads in order to 
guide the exploration process to a design that is more favorable 
for workloads that consume most of the system’s time. The 
frequency of job submissions of a particular workload type may 
be considered an indication of the importance weight of a 
workload. The product of the frequency of workload submis-
sion and the execution time of the workload can also be used to 
weigh the importance of a workload. However, the execution 
time of a workload depends on the configuration on which it is 
executed. This will further complicate the exploration process, 
unless rough approximations of the relative execution times 
are employed. 
 

5.5. Multi-threaded Performance 
The major difference between the multithreaded and single-
threaded scenarios is the issue of contention for core access. 
For instance in the design represented by Figure 8, ten bench-
marks employ the customized configuration of vpr as their 
surrogate architecture, which is inconsequential as long as jobs 
are considered to be submitted individually. But with concur-
rent jobs, the effect of contention in access to a core that is the 
surrogate of numerous workloads becomes an issue of concern. 
Contention can be dealt with in two manners. Either submitted 
workloads stall until their assigned surrogate core is free, or 
they are directed to the next most suitable available core. In the 

former case, if the objective is to minimize the average execu-
tion time of submitted jobs the optimum design is no different 
than that for single-thread performance. If the objective is to 
minimize the average turnaround time of jobs, then in addition 
to minimizing the average slowdown of workloads the aggre-
gate importance weight of workloads assigned to a configura-
tion should be balanced too. This problem is similar to the 
problem dubbed as the Balanced Partitioning of Minimum 
Spanning Trees (BPMST) problem [31]. 
In the case where jobs are directed to the available core that is 
most suitable, the optimum core combination is more compli-
cated to determine as it is dependent on the distribution of job 
submissions. Little research has been conducted on the distri-
bution of job submissions with respect to their workload behav-
ior in multi-processor systems. However, with a Poisson distri-
bution and an average submission period proportional to the 
average execution time, temporary hot-spots and redirection of 
workloads to cores other than their surrogate customized core 
will be infrequent, allowing a BPMST-based assignment of 
surrogate cores to provide an acceptable solution. As the 
burstyness of the distribution increases however the benefit of 
heterogeneity will diminish.  
We defer the analysis of approaches to communal customiza-
tion for multi-threaded performance and the effect of different 
distributions of job submission of for future work. 
 

6. CONCLUSION 
A superscalar design space exploration tool that allows varia-
tion in the sizing of different units of the superscalar processor 
is employed to determine the optimal architectural configura-
tion for each of the integer SPEC benchmarks. The best core 
combinations to employ based on different criterions were de-
termined, and it is shown that through initially reducing the 
set of workloads based on similarity in raw characteristics, 
may result in lower performance. This shows that the optimal 
architectures for executing workloads provide a more valuable 
source of information about the similarities between the work-
loads with respect to their resource needs.  
As a summary, Table 7 illustrates the overall single thread 
performance of a 2-core heterogeneous system attained 
through different techniques. 
 

Table 7: Summary of performance results for a dual-core CMP 
Scenario \ Metric Harmonic mean IPC Slowdown compared to ideal 

Ideal (every workload employing its own 
customized arch). 2.12 

 
0% 

 

Homogeneous system with all cores designed 
for best overall performance (gcc). 1.57 

 
26% 

 

Heterogeneous system with core arch’s 
determined through complete search (gcc, mcf). 1.88 

 
11% 

 

Heterogeneous system with core arch’s 
determined through greedy assignment of 
surrogates with propagation of surrogates. 

1.74 
 

18% 
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Appendix A:  
The percentage slowdown of each benchmark on the customized 
cores of other benchmarks (see main text for description of mark-
ings).  
 

 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr 
bzip 0% 35% 45% 23% 33% 18% 33% 35% *3.1% 28% 6% 

crafty 66% 0% 50% 8% 17% 79% 14% 10% 44% *8% 43% 
gap 53% 8% 0% 13% *3.3% 70% 4% 7% 33% 18% 32% 
gcc 48% *4.4% 37% 0% 10% 66% 11% 28% 21% 9% 20% 
gzip 43% 18% 35% 7% 0% 59% *3.8% 31% 23% 17% 24% 
mcf 20% 56% 67% 51% 68% 0% 65% 55% 44% 54% 44% 

parser 29% 19% 16% 20% *5% 49% 0% 29% 8% 17% 12% 
perl 58% *2% 56% 12% 19% 73% 20% 0% 36% 12% 37% 
twolf 9% 46% 55% 31% 51% 35% 39% 50% 0% 36% *3.2% 

vortex 51% 13% 25% 9% 15% 68% *0.5% 18% 23% 0% 25% 
vpr 25% 36% 45% 17% 47% 49% 34% 38% *4.3% 27% 0% 
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