
Configurational Workload Characterization

Hashem H. Najaf-abadi

NC State University
hhashem@ece.ncsu.edu

Eric Rotenberg

NC State University
ericro@ece.ncsu.edu

ABSTRACT
Although the best processor design for executing a specific
workload does depend on the characteristics of the workload, it
can not be determined without factoring-in the effect of the
interdependencies between different architectural subcompo-
nents. Consequently, workload characteristics alone do not
provide accurate indication of which workloads can perform
close-to-optimal on the same architectural configuration.
The primary goal of this paper is to demonstrate that, in the
design of a heterogeneous CMP, reducing the set of essential
benchmarks based on relative similarity in raw workload be-
havior may direct the design process towards options that re-
sult in sub-optimality of the ultimate design. It is shown that
the design parameters of the customized processor configura-
tions, what we refer to as the configurational characteristics,
can yield a more accurate indication of the best way to parti-
tion the workload space for the cores of a heterogeneous sys-
tem to be customized to.
In order to automate the extraction of the configurational-
characteristics of workloads, a design exploration tool based
on the Simplescalar timing simulator and the CACTI model-
ing tool is presented. Results from this tool are used to display
how a systematic methodology can be employed to determine
the optimal set of core configurations for a heterogeneous
CMP under different design objectives. In addition, it is shown
that reducing the set of workloads based on even a single
widely documented benchmark similarity (between bzip and
gzip) can lead to a slowdown in the overall performance of a
heterogeneous-CMP design.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architectures]: RISC/CISC, VLIW
architectures, Single-instruction-stream

Keywords
single-thread performance, customization, heterogeneous
CMP, design exploration, workload characterization

1. INTRODUCTION
Computer architecture research has effectively become the art
of exposing and exploiting localities in workload behavior.
Therefore, characterizing and understanding the behavior of
common workloads can be considered an essential facet of this
research field. The commercial advent of the chip multiproces-
sor (CMP) in recent years has added to the value of under-
standing the similarities (and differences) between workloads
– by increasing the viability of heterogeneity. In the context of

this paper, a heterogeneous-CMP is a CMP in which the cores
are architected differently, each sacrificing general-purpose
performance for better workload-specific performance, so as to
achieve in commune an overall performance that would not be
attainable otherwise.
A key challenge in the design of such a system is the question
of how the workload space should be partitioned for different
cores to be customized to. It is this design challenge – which
we refer to as the communal customization problem – that adds
to the importance of understanding the nature of workload
similarity. Communal customization is akin to the more estab-
lished notion of workload subsetting [27]. However, the objec-
tive of subsetting is to identify workloads that, in the space of
workload characteristics, have relatively less Euclidian dis-
tance between each other. The assumption is that such work-
loads are affected similarly by the architectural configuration –
thus providing potential for less simulation-based evaluation
cost. In contrast, communal customization involves the identi-
fication of workloads that can attain close-to-optimal perform-
ance with the same architectural configuration.
The major argument presented in this paper is that, in the de-
sign of a heterogeneous CMP, viewing workload subsetting as
a substitute for communal customization – or even as a pre-
liminary step to reduce exploration complexity – may direct
the ultimate design towards suboptimality. The fundamental
reason for this is that there are complex interdependencies
between the different units of a processor design. These inter-
dependencies cause different components of the optimal proc-
essor configuration to be affected by the workload behavior as
a whole (rather than distinct characteristics). In addition, these
interdependencies are influenced by the physical properties of
the underlying technology and are thus not reflected in the
workload characteristics alone.

1.1. Subcomponent Interdependence in Supersca-
lar Processor Design
Workload characteristics that pertain to functionally independ-
ent subcomponents of a processor design are commonly viewed
as independent gauges of the optimal configuration of those
subcomponents. Metrics for the biasness of branches, memory
access localities and the distribution of dependent instructions
are microarchitecture-independent examples of such character-
istics that respectively relate to the branch predictor, data
caches and the scheduling unit. However, the optimal configu-
ration of each of these units is influenced by the clock period
of the system, while the optimal clock period itself depends on
the dynamics of how the different units scale. Thus, in the

147978-1-4244-2232-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

search for an optimal design, the unified clock period inter-
twines the different subcomponents.
For instance it is ill-conceived to consider similar optimal L1
cache configurations for two workloads based solely on the fact
that they have similar spatial/temporal locality of memory ac-
cess and working-set size. This is because other characteristics
of the workloads (such as the control-flow behavior) affect the
best configuration for other aspects of the design (such as the
processor width and pipeline depth), including the clock pe-
riod. The clock period determines the number of cycles neces-
sary for accessing a cache unit with a particular configuration,
which in turn influences the attainable IPC. Also the physical
properties of the technology in which the system is imple-
mented determine how the different design aspects scale rela-
tive to each other. These properties are not reflected in the raw
characteristics of a workload. Moreover, it is not correct to
assume that these interdependencies are of mere second-order
effect as they involve issues as critical as the latency between
back-to-back dependent instructions.
As an illustrative example, consider three workloads α, β, and
γ that have equal importance weights. The workloads have
mostly similar characteristics, other than workloads β and γ
having much larger working-sets than α, and γ having greater
branch biasness and less dense dependence chains than α and
β. Considering the Kiviat graphs of these workloads to be
those displayed in Figure 1, it is evident that, from the stand-
point of raw workload characteristics, α and β are relatively
more similar – as they differ only in the size of their working-
set. Thus, a naive observation may conclude that customizing
one of the two cores for workloads α and β, and the other for
workload γ, will result in the best overall single-thread per-
formance.
However, optimal performance with workload β may require a
large L1 cache, due to its larger working set, and any com-
promise may severely degrade performance, while any increase
in the L1 cache size may severely degrade the performance of
workload α due to the high frequency of loads. Although work-
load γ also has a large working set, due its less dense depend-
ence chains and higher branch predictability, it will from an
IPC standpoint be able to better tolerate cache misses. There-
fore, depending on how the different units scale in the given
technology, workload γ may be more suitable than β for execu-
tion on a configuration that is also suitable for α.

0
2
4
6
8

10
A

B

CD

E

0
2
4
6
8

10
A

B

CD

E

0
2
4
6
8

10
A

B

CD

E

 (α) (β) (γ)

Figure 1: Kiviat graphs of three sample workloads for the archi-
tecture-independent characteristics of: A) Working-set size, B)
Branch predictability, C) Density of dependence chains,
D) Frequency of loads, E) Frequency of conditional branches –
all normalized to a scale of 0~10.

1.2. Configurational Characterization
For the purpose of communal customization, an effective form
of workload characterization would more transparently reflect
how relatively suited different workloads are for being exe-
cuted on the same architecture – rather than how relatively
similar their raw characteristics are. It is intuitive that the
characteristics of the best architectural configuration for a
workload possess this quality. Such characterization allows for
direct and accurate measurement of how well different work-
loads perform on each other’s customized architectures. More-
over, the best architectural configuration for a workload en-
capsulates the effect of the different facets of raw workload
behavior on the optimal configuration of the different architec-
tural units under the constraints imposed by the interdepend-
encies between them.

1.2.1. Practicality and efficiency
It is undoubtedly more costly to determine the best architec-
tural configuration for a workload – which requires numerous
cycle-accurate simulations of the execution of code – than it is
to extract its conventional workload characteristics. However,
knowing the best architectural configurations for individual
workloads enables the best combination of core configurations
to become extractable through a systematic task of reducing
the set of workloads/configurations.
Moreover, determining the best architectural configurations
for workloads can be performed priori to the design phase that
is critical for time-to-market demands, as the physical proper-
ties of future generation technologies are often predictable be-
fore commercial feasibility.

1.2.2. Broader implications
Although we frame our discussion around the design of het-
erogeneous CMPs, the notion of characterizing workloads
based on their customized architectural configurations can
have broader implications for processor architecture research
in general.
The solidity of conventional methodologies in the evaluation of
microarchitectural techniques has long been scrutinized [35].
This is in part due to the fact that when any component of the
workload characteristics or architectural configuration change
the balance between them changes. In actuality, it is this
change that should be considered representative of the true
effect of a microarchitectural technique – rather than the
‘speedup’ it attains over some baseline architecture.
In other words, for the proper evaluation of a novel architec-
tural technique what should be determined is how the tech-
nique influences the balance between the different architec-
tural units and the workload. The customized processor con-
figuration of a workload can be viewed as an atomic entity
representing this balance. Standardizing the customized con-
figurations of popular benchmark suites can pave the way to a
more standard evaluation methodology – the need for which is
also stressed in [35].
Nevertheless, we believe that this issue is of less practical sig-
nificance in the domain of general-purpose processors as such

148

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

designs are constrained on multiple fronts by widely diverse
workloads. It is when the workload space is to be split among
different processing cores that this issue gains significance.

1.3. Outline and Contributions
In this paper, a simulated-annealing exploration process is
employed to explore the design space of the superscalar proc-
essor for each of the C integer benchmarks from the
SPEC2000 suite, and determine their configurational charac-
teristics.
The contributions of this paper are thus threefold: 1) Introduc-
ing a superscalar design-space exploration framework based
on the popular Simplescalar simulator [25] and CACTI model-
ing tool [36]. 2) Determining the configurational characteris-
tics of the integer SPEC benchmarks in a specific technology.
3) Illustrating how configurational workload characterization
can enable the coherent and systematic extraction of the best
cores to employ in a heterogeneous CMP.
The next section explores related work. Section 3 describes the
functionality of our design-space exploration process. The ex-
ploration methodology and results are presented in Section 4.
These results are used in Section 5 to evaluate different ap-
proaches to conducting communal customization. Section 6
concludes the paper.

2. MOTIVATION AND RELATED WORK
2.1. Workload Subsetting
Numerous studies have analyzed different aspects of commer-
cial benchmark suites [1, 2, 3, 4]. Other studies have focused
on understanding the similarities between different bench-
marks [6, 7] with the objective of reducing the amount of
simulation required to evaluate architectural innovations. For
instance, Joshi et al. propose a methodology for measuring the
similarities between programs based on microarchitecture-
independent characteristics [8]. Hoste et al. use workload simi-
larity to predict application performance [11]. Vandierendonck
et al., rank SPEC2000 integer benchmarks based on whether
they exhibited different speedups on different machines, and
use this as a guideline for identifying similar workloads [29].
Yi et al. present a thorough summary of workload subsetting
approaches [27], and propose a statistically rigorous approach
based on the Placket-Burman design [32]. A similar technique
is proposed by Dujmovic et al [33]. In these approaches, the
execution of different workloads is evaluated on different proc-
essor designs in order to expose their architectural bottlenecks
– which are considered to be indicative of similarity. The as-
sumption on which these approaches are based is that interac-
tion between the different workload characteristics (and their
corresponding architectural units) is negligible. However, un-
der realistic design constraints the pipelined nature of tradi-
tional processor design brings about interdependence in the
configuration of seemingly uncorrelated architectural units.
The uniform clock period determines the pipeline depth and
the slack observed in different stages. Pipeline slack can
greatly impacts the performance of non-linear pipelines such

as the superscalar processor. Figure 2 illustrates how the uni-
fied clock can affect the optimal sizing of the issue queue and
L1 cache. In each scenario the solid lines represent the delay
of the issue queue, the dashed lines represent the access delay
of the L1 cache, and the scales at the bottom represent the
clock cycles. The propagation delay of the issue queue and the
delay of the L1 cache are based on a representative sizing of
these units.

Figure 2: Illustrative scenarios for the design of a processor with
different clock periods, issue queue and L1 cache sizes.

In scenario a, access to the L1 cache observes considerable
slack. The overall slack can be reduced by changing the clock
period, as displayed in scenario b. Doing so, however, deepens
the pipeline which may improve or degrade overall perform-
ance. So is the case in scenario c, where the slack is further
reduced by downsizing the issue queue size. Finally in scenario
d, instead of scaling down the clock period, the size of the L1
cache is increased to make full benefit of the available two
cycles. Depending on the working set of the application this
extra L1 cache capacity may not be of any value, and scenario
b or c may be of better overall performance.

2.2. The Heterogeneous CMP
Kumar et al. propose the single-ISA heterogeneous CMP as an
approach to enhance the throughput of multithreaded work-
loads [14]. In follow-up work they show that the best way to
design a heterogeneous CMP is actually to tune each individ-
ual core for “a class of applications with common characteris-
tics” [10]. The focus of our paper inherently revolves around
the question of how workloads should be ‘characterized’ for
this purpose and what the criterion for ‘commonality’ should
be. To the best of our knowledge, the only prior studies that
touch upon the issue of designing the cores of a heterogeneous
CMP is the aforementioned work by Kumar et al. [10] and a
more recent study by Lee and Brooks [37].
Kumar et al. reduce the set of benchmarks based on similarity
in workload characteristics. By doing so, and limiting the ar-
chitectural diversity of the cores, an exhaustive search of dif-
ferent core-combinations across different groupings of work-
loads is made feasible. This approach is ad hoc in that there is
no solid justification (other than exploration cost) to reduce the
benchmark set to a specific size. Lee and Brooks use regres-
sion modeling to enable fast exploration of the microarchitec-
tural design space. Then, through an iterative process (K-
means clustering) centroids are identified for the customized
architectures. The closest centroid to the customized architec-
ture of each benchmark is assigned as the compromise archi-

a:

b:

d:

c:

1ns

0.66ns

0.66ns

1ns

149

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

tecture of that benchmark. This approach is also ad hoc in that
its outcome is highly dependent on how the different architec-
tural parameters are normalized and weighed. It is however
the most related approach to that proposed here, and addresses
the major focus of this paper.
Therefore, as illustrated in Figure 3, there are in general two
broad approaches to communal customization. One is to ini-
tially extract a small enough subset of the essential workloads
for it to be feasible to conduct an exhaustive exploration of the
workload-architecture combinations. The other is to initially
determine the optimal architectural configuration for each con-
sidered application and then reduce the set of resultant archi-
tectures to a representative subset. With the availability of the
optimal configuration for each workload the true closeness
between them can systematically and accurately be measured
and the most representative subset determined.

 (a) (b)

Figure 3: Two general approaches to identifying the optimal core
combination for a heterogeneous CMP: (a) An exhaustive search
– which for feasibility requires selection of representative work-
loads, (b) Determining the customized architectures of applica-
tions and then reducing the set of architectures.

2.3. Automatic Design Space Exploration
Due to the sheer size of the superscalar processor design space,
determining the optimal architectural configuration for a
workload is itself a demanding task. A wide spectrum of stud-
ies has focused on developing tools to enable efficient explora-
tion of the design space with different degrees of accuracy and
architectural variability [12, 15, 16, 17].
At one end of the spectrum are approaches that are more con-
cerned with specific design details. For instance, AMPLE [12]
is a wire-driven microarchitectural design space exploration
framework in which the size of different units and the floor-
planning are customized to workload behavior. Initial mi-
croarchitecture parameters for the initial search point of each
application are determined based on the application’s charac-
teristics. The clock period is not among the customizable de-
sign parameters and different design units are not pipelinable
(it only weighs the power benefit of downsizing against its
performance degradation).

Due to the non-discrete nature of the clock period, considering
it as a customizable parameter considerably increases the proc-
essor design space. It is for this reason that prior design explo-
ration studies either limit the design space to a set of pre-
designed configurations [10, 33] or consider a fixed clock pe-
riod across variability in other architectural parameters [12].
Both effectively diminish the true performance potential of
customization (and heterogeneity).
On the other end of the spectrum are approaches that are more
concerned with the speed of performance evaluation (and ex-
ploration). For instance, Lee and Brooks introduce a non-
linear microarchitectural regression model, and propose its use
to enable fast exploration of the processor design space [37].
While pipeline depth is among the customizable design pa-
rameters, it is employed as a speed-power factor and not neces-
sarily a parameter influencing the sizing of different units in a
balanced pipeline design.
However, the major issue with such mathematical models is
the space in which their accuracy is verified. In general, mis-
leading conclusions may be drawn on the accuracy of a model
if the evaluation is conducted in a distorted space. This can
occur when the evaluated space is a subset of the actual space
due to the absence of variability in certain parameters, or is its
superset due to the absence of the enforcement of certain re-
strictions – or a combination of both factors. The problem in
evaluating superscalar regression models is that accounting for
independent variability in the pipeline depth of different units
and enforcing the constraints imposed by a global clock period
results in a design space that can not be concisely delineated
(its shape and bounds specified) in parametric form.
Therefore, there is more difficulty in evaluating the accuracy
of such models than meets the eye. However, inaccuracy in this
area can lead to incorrect conclusions when the model is em-
ployed for design-space exploration, principle component
analysis or clustering. The advocates of using regression mod-
els for design-space exploration argue that employing full-
blown simulation is too time consuming and costly. We how-
ever, argue that the process is highly parallelizable and that
with sufficient resources (which are typically available in large
development groups) a design space exploration with reason-
able rigor should be achievable in a matter of days. For this
reason we believe that basing the exploration process on diffi-
cult-to-verify regression models serves little benefit to such a
study.

3. XP-SCALAR: A SUPERSCALAR DESIGN-
EXPLORATION FRAMEWORK
A light-weight superscalar design-space exploration frame-
work named xp-scalar has been developed. The major compo-
nent of the framework consists of a tool that employs a simu-
lated annealing process to find the best superscalar architec-
tural configuration for executing a specific workload. Also
available is a tool for visualizing the performance of the
benchmarks on each other’s customized configurations, which
eases the identification of discrepancies and can help expedite

Important
workloads

Representative
workloads

Optimal core
combination

Important
workloads

Customized
architectures

Optimal core
combination

Select representative
workloads based on
workload behavior

Search for opt.
core combination

Customize a core for each
workload (configurational
characterization)

Search for opt.
core combination

150

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

the exploration process. The source code of the framework and
directions for use are accessible at
http://www4.ncsu.edu/~hhashem/xpscalar.htm. The tool employs
the Simplescalar v.4 simulator to perform execution-driven
simulations, and the CACTI model to approximate the access
latency of the different units of the superscalar processor. Both
Simplescalar and CACTI can be employed with or without any
modification, as long as the format of the input and output
does not change.
In each iteration, either the clock period is varied, and the size
of the issue queue, register-file/ROB, load-store queue, L1 and
L2 caches, and processor width adjusted to make their access
times fit within the number of pipeline stages assigned to
them, or the number of pipeline stages of a unit is varied and
its configuration appropriately adjusted. Table 1 displays the
manner in which the tool uses the CACTI output parameters to
estimate the access latency of different architectural units.
Note that the issue queue delay consists of wake-up (an asso-
ciative component) and select (a direct mapped component)
delays.
After the different units are scaled to fit the product of the
clock period and their pipeline depth, minus the aggregate
latch latency, the benchmark is executed on the sim-mase
simulator (from the Simplescalar toolset) configured corre-
spondingly. If a configuration executes the workload with
greater IPT (Instructions per Time-unit) than the best observed
until that point in the exploration, the configuration is re-
corded as the new optimal solution. When a configuration is
reached for which the IPT is less than half that of the optimal
configuration, the exploration process rolls back to the optimal
solution and is continued.
In this study, power and die area are not considered in the
evaluation process, and optimum design is concerned only
with performance. It is however found that under realistic as-
sumptions for the access latency to different superscalar sub-
components, these aspects of the optimum architectural con-
figuration remain within acceptable limits. Extending the tool
to conduct exploration based on a metric that represents some
combination of performance, power and die area should not be
exceptionally difficult.

4. EXPLORATION RESULTS
4.1. Methodology
The workloads evaluated are the C integer benchmarks from
the SPEC2000 suite compiled for the PISA instruction-set. The
exploration process was conducted on a quad-core hyper-
threaded blade for a period of three weeks. During this period,
each workload was also executed on the customized architec-
tures of the other workloads. If a workload was found to per-

form better on some other workload’s optimal configuration,
that configuration would replace its own configuration in order
to expedite the exploration process. The evaluation of each
architectural configuration during the exploration process con-
sists of the execution of a 100-million instruction Simpoint
[34]. A considerably large number of such evaluations need to
be conducted for each benchmark in order for the evolutional
process to approach the optimum design. Therefore, in the
initial stages of the exploration, each evaluation was limited to
the first 10 million instructions.
Three microarchitecture-independent technology-dependent
factors were found to be influential on the ultimate customized
configurations attained for the benchmarks. Table 2 displays
the values considered for these parameters in this study. The
memory access latency determines the amount of time re-
quired to access the main memory, i.e., the latency of a load
that misses in all cache levels. The front-end latency is the
amount of time required for an instruction to be retrieved, de-
coded and renamed, i.e., the extra branch misprediction pen-
alty in the Simplescalar simulator. CACTI does not produce
accurate modeling for block sizes smaller than 8 bytes. There-
fore, we consider this lower bound as the width of the issue
queue entries. Another important design constant is the latch
latency which affects the optimum pipeline depth of different
subcomponents. These values are in general accordance with
common processor designs.
Table 3 displays the initial architectural configuration em-
ployed across all benchmarks. Note that only the access laten-
cies (in clock cycles) of the caches are indicated. This is be-
cause the cache configurations are randomly varied to fit the
product of the clock period and number of access cycles during
the first iteration of the exploration process if the default does
not fit.

4.2. Customization Results
Table 4 displays the characteristics of the optimum architec-
tural configuration for each of the considered benchmarks. The
optimum processor width is observed to vary between 3 and 7.
The optimum ROB size varies between 64 and 1024. The op-
timum clock frequency varies between 1.72 GHz and 5.2 GHz.
The optimum size for the L1 cache capacity is in the range of
8K to 256K, while that of the L2 cache is in the range of 128K
to 4M bytes.
Please see the xp-scalar website for more up-to-date results
from further evolution of exploration process, and the effect of
improvements in the accuracy of modeling the latencies of
different units – a process that with feedback from the com-
munity will be on-going. The major conclusions drawn here
are unlikely to be annulled with change in the modeling.

Table 1. The CACTI parameters used to determine the access latency of various units based on architectural parameters.

Arch. Unit Line size Associativity No. of sets No. read ports No. write ports Used component of CACTI output
L1 data cache line size of cache assoc. of cache no. of sets of cache 2 2 Access time
L2 data cache line size of cache assoc. of cache no. of sets of cache 2 2 Access time
wakeup-select 8 bytes fully associative 2 x size of issue queue Issue width 0 Tag comparison

 8 bytes direct mapped size of issue queue Issue width 0 + Total data-path without output driver
reg. file (ROB) 8 bytes direct mapped size of ROB 2 x issue width issue width Access time

LSQ 8 bytes fully associative size of LSQ 2 2 Total data-path without output driver

151

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

Table 2. Fixed design parameters across all configurations.

memory access latency 50ns
front-end latency 2ns

bit-width of IQ entries 64
latch latency 0.03ns

Table 3. Initial configuration used across all benchmarks.

No. of cycles for memory access 172
No. of pipeline stages of front-end 6
Dispatch, issue, and commit width 3
ROB size 128
Issue queue size 64
Min. lat. for awakening of dep. instr. 1
Pipeline depth of Scheduler/Reg-file 1
Clock period (ns) 0.33
L1D access latency 4
L2D access latency 12
Load-sotre ques size 64
Pipeline depth of LSQ 2

5. COMMUNAL CUSTOMIZATION
5.1. Cross-Configuration Performance
Once a customized architectural configuration for each bench-
mark has been established, the performance of each bench-
mark on the configuration of other benchmarks can be deter-
mined. This allows for the performance difference between
different architectures to be extracted, and the architectures
that provide close-to-optimal performance across numerous
benchmarks identified. The best core configurations are not
necessarily among the workload-customized cores. However,
the broader the workload diversity, the better coverage there
will be of the design space.
Table 5 displays the IPT of each of the SPEC2000 benchmarks
executed on the optimal architecture of all the other bench-
marks. From these results, the percentage slowdown of each
benchmark when executed on the architectures of other bench-
marks over the performance on its own architecture can be

extracted. The importance of carefully choosing the cores of a
heterogeneous CMP is evident in these results with up to ~50%
slowdown (for mcf) observed for the execution of benchmarks
on the customized architecture of other benchmark.

5.2. The Best Core Combination
Before the best set of core configurations to employ in a het-
erogeneous system can be identified, the design-goal needs to
be determined and a figure of merit that represents that design
goal.
If the goal is to minimize the total execution time of a set of
consecutive benchmarks, as is customary in single-core mi-
roarchitecture research, a representative figure of merit is the
harmonic-mean of the performance of each benchmark when
run on the most suitable core available for it. Such a design
goal however does not account for core-contention. It may thus
cause preference towards adoption of configurations that per-
form extremely well with a few benchmarks without consider-
ing the burden this may place on other more general configu-
rations. If the objective is to increase the average performance
with which an arbitrary benchmark from a set of benchmarks
will be executed when submitted in isolation to the system, a
representative figure of merit is the average performance of
each benchmark on its most suitable core available.
A more real-world design goal is to minimize the total execu-
tion time of a set of benchmarks that can be executed concur-
rently on separate cores (if available). A representative figure
of merit for this can be attained by first dividing the perform-
ance of each benchmark when run on the most suitable core
available for it, by the number of benchmarks with which it
shares that core, and then taking the harmonic mean. We refer
to this as the contention-weighed harmonic-mean.

Table 4. The customized architectural configurations for the SPEC2000 benchmarks.
 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr

No. of cycles for memory access 112 321 173 186 198 120 198 321 172 213 172
No. of pipeline stage of the front-end 4 12 6 7 7 4 7 12 6 8 6
Dispatch, issue, and commit width 5 8 4 4 4 3 4 5 5 7 5
ROB size 512 64 128 256 64 1024 512 256 512 512 256
Issue queue size 64 32 32 32 32 64 32 32 64 32 64
Min. lat. for awakening of dep. Instr. 0 3 1 1 1 0 1 3 1 2 1
Pipeline depth of Scheduler/Reg-file 1 3 1 2 1 1 2 4 2 4 2
Clock period 0.49 0.19 0.33 0.31 0.29 0.45 0.29 0.19 0.33 0.27 0.3
L1D associativity 2 1 1 1 1 2 1 1 8 4 2
L1D block-size 32 8 8 8 128 128 64 8 64 32 32
L1D no. of sets 1k 16k 2k 32k 256 1k 2k 2k 128 1k 128
L1D access latency 2 5 2 4 3 5 3 3 3 5 2
L2D associativity 4 16 4 8 1 4 8 16 4 16 8
L2D block-size 64 64 256 64 128 128 512 64 128 128 128
L2d no. of sets 8k 128 128 1k 4k 8k 32 128 2k 128 1k
L2D access latency 15 7 4 6 5 27 12 7 12 6 12
LS-queue size 128 64 256 256 128 64 256 128 256 256 64

Table 5. The performance of each benchmark (rows) on the customized architectures (columns) of other benchmarks.
 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr

bzip 3.15 2.02 1.73 2.41 2.11 2.56 2.09 2.03 3.05 2.24 2.95
crafty 0.78 2.31 1.15 2.11 1.91 0.48 1.97 2.06 1.29 2.12 1.30
gap 1.39 2.75 3.02 2.60 2.92 0.89 2.89 2.79 2.00 2.47 2.05
gcc 1.17 2.17 1.42 2.27 2.03 0.75 2.02 1.63 1.79 2.06 1.80
gzip 1.78 2.56 2.02 2.88 3.13 1.28 3.01 2.14 2.39 2.57 2.37
mcf 0.74 0.40 0.30 0.45 0.29 0.93 0.32 0.41 0.52 0.42 0.52

parser 1.86 2.11 2.19 2.08 2.47 1.32 2.62 1.86 2.39 2.15 2.30
perl 0.85 2.02 0.90 1.81 1.67 0.54 1.65 2.07 1.32 1.81 1.30

twolf 1.65 0.98 0.81 1.26 0.88 1.18 1.10 0.91 1.83 1.16 1.77
vortex 1.68 2.98 2.55 3.09 2.91 1.07 3.41 2.78 2.61 3.43 2.54

vpr 1.56 1.33 1.13 1.72 1.09 1.05 1.36 1.29 2.00 1.51 2.09

152

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

Table 6 displays the best set of cores to employ for different
core-counts, in order to maximize the harmonic-mean, average
and contention-weighed harmonic-mean of the IPT (respec-
tively represented by har, avg and cw-har) of the integer
SPEC2000 benchmarks. These results were attained from the
results of Table 5, by conducting a complete search of all pos-
sible core-combinations. A tool for automating this task is also
part of the xp-scalar framework. These results show that a
well-designed two-core heterogeneous CMP, can provide
~10% and ~20% speedup in average and harmonic-mean IPT
respectively, over the best single-core configuration.

Table 6. The best core combinations and their performance.

 customized core(s) avg. IPT har. IPT
best config for avg. & har. IPT gcc 2.06 1.57

2 best configs for avg. IPT parser, twolf 2.27 1.76
2 best configs for har. IPT gcc, mcf 2.12 1.88

2 best configs for cw-har. IPT bzip, crafty 2.18 1.87
3 best configs for avg. IPT crafty, parser, twolf 2.35 1.82
3 best configs for har. IPT crafty, mcf, twolf 2.27 2.05

4 best configs for avg. & har. IPT crafty, mcf, parser, twolf 2.32 2.08
each benchmark on its own

customized architecture

-

2.38

2.12

Figure 4 displays the single-thread performance attainable
from executing the benchmarks when the number of core con-
figurations available is limited. These results show that the
choice of available configurations can greatly impact individ-
ual benchmark performance. For instance, the benchmarks
twolf and parser displays around 40% and 25% speedup re-
spectively over the best single configuration when the best two
configurations for average IPT are employed. Similarly, the
benchmark mcf attains close to 2x speedup over the best single
configuration when the best two cores for harmonic mean per-
formance are available. However, the availability of the cus-
tomized architectural configuration of mcf provides hardly any
benefit for the other benchmarks (only bzip attains a slight
performance enhancement). This shows how other parameters,
such as the importance-weight of benchmarks, can influence
the best core combination. For instance if mcf were to have a
considerably lower importance-weight than the other bench-
marks, the best two configurations for harmonic-mean per-
formance would potentially be different.

0
0.5

1
1.5

2
2.5

3
3.5

bz
ip

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

av
g

ha
r

On best single core
On best of tw o cores for avg IPT
On best of tw o cores for har IPT
On best of tw o cores cw -har IPT
On ow n customized core

Figure 4: The IPT of the execution of different benchmarks on
the best available core, with different configurations.

5.3. Reducing the benchmarks by subsetting
Two of the benchmarks of the SPEC2000 suite that have been
widely found to be similar based on workload characteristics,

are bzip and gzip [30], with one ending up as the representa-
tive benchmark of the other. However, as the results of Tables
5 and 6 show, these two benchmarks have very different cus-
tomized architectural configurations. Specifically, the bench-
mark bzip attains 33% slowdown when executed on the cus-
tomized configuration of gzip, and the reverse scenario results
in gzip observing 43% slowdown. This illustrates the fact that
the effect of directing workloads to architectures based on the
characteristics of the workloads can be drastically adverse.

More importantly, using workload characteristics to eliminate
benchmarks from the exploration process in the design of a
heterogeneous system can lead to suboptimality in the final
design solution. If gzip is assigned as the representative
benchmark for bzip, a reevaluation of the dual-core combina-
tion for harmonic-mean IPT finds the configurations of bzip
and crafty to be the best solution. These two configurations
however result in a harmonic-mean IPT of ~1.87, and a ~0.5%
slowdown compared to when gcc and mcf are employed. Al-
though the effect is small, this example shows the effect of
excluding a single benchmark based on subsetting, and proves
how relative similarity in workload characteristics can be mis-
leading if interpreted incorrectly.
The regions of code and compilation settings employed in the
aforementioned studies may differ from that employed here.
Nevertheless, relative similarity in workload behavior is a dis-
crete property and major similarities are not expected to be
affected by minor variations in the characteristics. Therefore,
we believe that as long as the regions of code are roughly rep-
resentative of the whole benchmark, such a cross-publication
comparison is legitimate.

5.4. Assigning Surrogates
While a complete search of the core combinations can provide
an accurate solution for the best core combination, it provides
little insight into how the different benchmarks relate to each
other with respect to their optimal architectural configurations.
It thus provides no avenue for less-quantifiable factors, such as
design-complexity (which relies largely on human judgment),
to weigh in on the choice of core combination. There is also,
on a lesser note, the fact that the complexity of a complete
search grows quadratically with the number of benchmarks
considered.
A more valuable representation of this information would hier-
archically reflect how the optimal configurations of certain
benchmarks can serve as surrogates for others. This informa-
tion is embedded in the cross-configuration performance re-
sults (Table 5), but needs to be extracted into a more human-
readable representation. While the use of the dendrogram is
customary in displaying subsetting properties, its use for dis-
playing the potential for surrogating (assigning the customized
architecture of one benchmark to another) can potentially be
misleading.
Specifically, the elements that fall into the same subset accord-
ing to a dendrogram are more related to each other than they
are to components of other subsets. Therefore, to increase clus-
tering, two clusters fully merge into a super-cluster that en-

153

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

compasses all the elements of both. This however, is not the
case when assigning surrogate architectures. A benchmark
may be better off with a totally different surrogate when its
current surrogate is itself assigned a surrogate. For instance,
from Tables 5 and 6, the benchmark bzip attains best perform-
ance on the customized configuration of twolf from among the
three best configurations for harmonic-mean IPT. However,
from among the best two for harmonic-mean IPT, bzip attains
better performance on the configuration of mcf, while twolf
does so on that of gcc.
A complete surrogating-graph is a graph that conveys all the
cross-configuration information (such as that in Table 5). In
the following subsections we explore greedy approaches to
formulate reduced surrogating-graphs. An issue of importance
is that if the customized architecture of workload A is the sur-
rogate of another workload B, whether A should itself be al-
lowed to be assigned a surrogate, e.g. the architecture of C.
Another issue is that if workload A has been assigned the sur-
rogate architecture of another workload B, whether A’s own
architecture should be allowed to become the surrogate of an-
other workload C – which effectively translates into B’s archi-
tecture becoming the surrogate of C. These issues, which we
refer to as forward-propagation and backward-propagation of
surrogates, are illustratively demonstrated in figure 5.
In all the following illustrations a circled benchmark means
that the architectural configuration of the benchmark serves as
surrogate for benchmarks connected to it by a downward edge.
The number on each edge indicates the order of the corre-
sponding surrogate assignment.

Figure 5: Forward and backward propagation of surrogates with
three benchmarks/architectures (A, B and C).

5.4.1. Non-propagation of Surrogates
Figure 6 displays how workloads are grouped together and
assigned customized architectures without propagation of sur-
rogates. Employing the remaining architectures (i.e., those of
gap, twolf, vortex, and crafty) results in a harmonic-mean IPT
of 1.83, and an average of 5.66% in performance slowdown
across all benchmarks compared to the ideal case of all
benchmarks being executed on their own customized architec-
tures. Three of these benchmarks are among the four deter-
mined as the best for average and harmonic-mean IPT through
a complete search – for which a harmonic mean IPT of 2.08
was attained (see Table 6). The bulk of the slowdown is due to
the very last assignment; surrogating mcf the customized ar-
chitecture of twolf as surrogate. Adding mcf to the set of archi-
tectures results in a harmonic-mean IPT of 2.1 and reduces the
average slowdown to ~1.6%. This however is achieved at the
cost of 5 cores.

Figure 6: The reduced surrogating-graph through the greedy
assignment of surrogate architectures to benchmarks – with no
propagation of surrogates.

The issue with this approach is that by prohibiting the propa-
gation of surrogates, the assignment of surrogates becomes
limited to a number of architectures that happened to have
been extremely good surrogates for a limited number of work-
loads. Moreover, this approach is not extendable and will not
provide a solution for a heterogeneous design with a smaller
number of cores. The methodology will eventually reach a
point were none of the remaining workloads can be surrogated.

5.4.2. Propagation of Surrogates
Figure 7 displays the outcome of the greedy assignment of sur-
rogates to benchmarks with forward and backward propagation
of surrogates. Double-line edges indicate the architecture that
is the surrogate of some other workload itself being surrogated.
The top circled workload in each group of connected work-
loads indicates the workload whose architecture is used as sur-
rogate for all the workloads in the group. For traceability, Ap-
pendix A displays the cross-configuration percentage slow-
downs of the benchmarks with the links that are selected ac-
cording to this greedy assignment of surrogates marked with a
star (*).

Figure 7: The reduced surrogating-graph through greedy as-
signment of surrogate architectures to benchmarks – with full
propagation of surrogates.

It is observable that a very different grouping is attained with
this approach compared to when propagation is disallowed. A
heterogeneous system that employs the customized architec-
tures for gzip and twolf results in a harmonic-mean IPT of 1.74
and an average slowdown of ~18% across all benchmarks
compared to an ideal system. An interesting scenario that oc-
curs twice in this example is that, in the greedy assignment of
surrogates, the benchmark such as vpr (parser) is surrogated
by the customized configuration of the benchmark twolf (gzip)
which is itself already surrogated by vpr (parser). This phe-
nomenon, which we refer to as feedback-surrogating, prevents
the assignment of surrogates from being continued until only a
single configuration is remaining.

A

B

C

A

B

C

forward
propagation

backward
propagation

1

2 1

2
mcf

gcc perl

crafty

1

2

3 4
5 6 7

vpr

gap

gzip

parser
9

8

10

bzip
11

twolf

vortex

mcf
gcc bzip

gzip parser

perl

twolf

vortex vpr

crafty

gap
1 2 3 4 5 6

7

154

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

Propagation of surrogates untangles the process of assigning
surrogates. However, it may result in a benchmark being sur-
rogated by an unsuitable architecture, while more suitable op-
tions are available. This is intensified when the both forward
and backward propagation are employed together. For instance
in Figure 7, the surrogate assignment with order 10 results in
both forms of propagation. – rendering the architecture of gzip
as the surrogate for perl and gcc.
Figure 8 displays the outcome with only forward-propagation
of surrogates. The corresponding assignments are marked in
appendix A with underlining. The architectures determined as
the best two candidates for a heterogeneous system are the cus-
tomized architectures of mcf and vpr. The harmonic-mean IPT
with these benchmarks is 1.75.

Figure 8: The reduced surrogating-graph through the greedy
assignment of surrogate architectures to benchmarks – with for-
ward propagation of surrogates.

In these examples, all benchmarks are considered to have an
equal importance weight. To consider different importance
weights, the slowdowns due to surrogating must be weighed by
the importance weight of corresponding workloads in order to
guide the exploration process to a design that is more favorable
for workloads that consume most of the system’s time. The
frequency of job submissions of a particular workload type may
be considered an indication of the importance weight of a
workload. The product of the frequency of workload submis-
sion and the execution time of the workload can also be used to
weigh the importance of a workload. However, the execution
time of a workload depends on the configuration on which it is
executed. This will further complicate the exploration process,
unless rough approximations of the relative execution times
are employed.

5.5. Multi-threaded Performance
The major difference between the multithreaded and single-
threaded scenarios is the issue of contention for core access.
For instance in the design represented by Figure 8, ten bench-
marks employ the customized configuration of vpr as their
surrogate architecture, which is inconsequential as long as jobs
are considered to be submitted individually. But with concur-
rent jobs, the effect of contention in access to a core that is the
surrogate of numerous workloads becomes an issue of concern.
Contention can be dealt with in two manners. Either submitted
workloads stall until their assigned surrogate core is free, or
they are directed to the next most suitable available core. In the

former case, if the objective is to minimize the average execu-
tion time of submitted jobs the optimum design is no different
than that for single-thread performance. If the objective is to
minimize the average turnaround time of jobs, then in addition
to minimizing the average slowdown of workloads the aggre-
gate importance weight of workloads assigned to a configura-
tion should be balanced too. This problem is similar to the
problem dubbed as the Balanced Partitioning of Minimum
Spanning Trees (BPMST) problem [31].
In the case where jobs are directed to the available core that is
most suitable, the optimum core combination is more compli-
cated to determine as it is dependent on the distribution of job
submissions. Little research has been conducted on the distri-
bution of job submissions with respect to their workload behav-
ior in multi-processor systems. However, with a Poisson distri-
bution and an average submission period proportional to the
average execution time, temporary hot-spots and redirection of
workloads to cores other than their surrogate customized core
will be infrequent, allowing a BPMST-based assignment of
surrogate cores to provide an acceptable solution. As the
burstyness of the distribution increases however the benefit of
heterogeneity will diminish.
We defer the analysis of approaches to communal customiza-
tion for multi-threaded performance and the effect of different
distributions of job submission of for future work.

6. CONCLUSION
A superscalar design space exploration tool that allows varia-
tion in the sizing of different units of the superscalar processor
is employed to determine the optimal architectural configura-
tion for each of the integer SPEC benchmarks. The best core
combinations to employ based on different criterions were de-
termined, and it is shown that through initially reducing the
set of workloads based on similarity in raw characteristics,
may result in lower performance. This shows that the optimal
architectures for executing workloads provide a more valuable
source of information about the similarities between the work-
loads with respect to their resource needs.
As a summary, Table 7 illustrates the overall single thread
performance of a 2-core heterogeneous system attained
through different techniques.

Table 7: Summary of performance results for a dual-core CMP
Scenario \ Metric Harmonic mean IPC Slowdown compared to ideal

Ideal (every workload employing its own
customized arch). 2.12

0%

Homogeneous system with all cores designed
for best overall performance (gcc). 1.57

26%

Heterogeneous system with core arch’s
determined through complete search (gcc, mcf). 1.88

11%

Heterogeneous system with core arch’s
determined through greedy assignment of
surrogates with propagation of surrogates.

1.74

18%

Acknowledgments
This research was supported in part by NSF grants CCF-
0429843 and CCF-0702632, and an Intel grant. Any opinions,
findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the NSF.

mcf

bzip

perl

twolf

vortex

crafty gap

1

2

3

4

5

6

7
gzip

parser

gcc

8

vpr
9

155

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

References
[1] S. Bird, A. Phansalkar, L. John, A. Mericasa, R. Indukuru, “Per-
formance Characterization of SPEC CPU Benchmarks on Intel's Core
Microarchitecture based processor”, SPEC Benchmark Workshop,
Jan. 2007
[2] T Mitra, T Chiueh, “Dynamic 3D Graphics Workload Characteri-
zation and the Architectural Implications”, MICRO-99, p.62-71, Nov.
16-18, 1999, Haifa, Israel.
[3] G. A. Abandah and E.S. Davidson, “Configuration Independent
Analysis for Characterizing Shared-Memory Applications,” Proc.
12th Int’l Parallel Processing Symp., 1998, pp. 357-398.
[4] E. Sohmaier, H. Shan, “Architecture Independent Performance
Characterization and Benchmarking for Scientific Applications,”
Proc. of the Intl. Workshop on Modeling, Analysis, and Simulation of
Computer and Telecom. Systems (MASCOTS’04), pp. 467-474 2004.
[6] L. Eeckhout, H. Vandierendonck and K. De Bosschere “Quantify-
ing the Impact of Input Data Sets on Program Behavior and its Appli-
cations.” Jour. of Instruction-Level Parallelism, Vol. 5, April 2003.
[7] H. Vandierendonck, K. Bosschere, “Many Benchmarks Stress the
Same Bottlenecks”, Proc. of the Workshop on Computer Arch. Eval.
using Commercial Workloads (CAECW-7), pp. 57-71, 2004.
[8] A. Joshi, A. Phansalkar, L. Eeckhout, L. John, "Measuring
Benchmark Similarity Using Inherent Program Characteristics," IEEE
Transactions on Computers, vol. 55, no. 6, pp. 769-782, Jun., 2006.
[9] A. S. Dhodapkar and J. E. Smith, “Managing Multiconfiguration
Hardware via Dynamic Working Set Analysis,” Proc. Int’l Symp.
Computer Architecture, IEEE CS Press, 2002, pp. 233-244.
[10] R. Kumar, D. M. Tullsen, N. P. Jouppi, “Core architecture opti-
mization for heterogeneous chip multiprocessors”, Parallel Architec-
tures and Compilation Techniques (PACT), pp. 23-32, 2006.
[11] K. Hoste, A. Phansalkar, A. Georges, L. John, “Performance
prediction based on inherent program similarity”, Proceedings of the
15th international conference on Parallel architectures and compila-
tion techniques (PACT), 2006.
[12] M. Ekpanyapong, S. Kyu Lim, C. Ballapuram, and H. S. Lee,
"Wire-driven Microarchitectural Design Space Exploration," IEEE
International Symp. on Circuits and Systems, p1867-1870, 2005.
[13] J. Huh, D. Burger, and S. W. Keckler, “Exploring the Design
Space of Future CMPs,” Proceedings of PACT, Sept. 2001.
[14] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. “Single-ISA Heterogeneous Multi-core Architectures: The
Potential for Processor Power Reduction”, In International Sympo-
sium on Microarchitecture, Dec. 2003.
[15] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis, "Mi-
croarchitecture Evaluation with Physical Planning", Proc. Of the De-
sign Automation Conference, Anaheim, pp. 32 - 36, June 2003.
[16] Y. Ma, Z. Li, J. Cong, X. Hong, “Micro-architecture Pipelining
Optimization with Throughput-Aware Floorplann-ing”, ACM/IEEE
Asia South Pacific Design Automation Conference, Japan, Jan. 2007.
[17] D. Marculescu, A. Iyer, “Application-driven processor design
exploration for power-performance trade-off analysis”, ICCD, 2001.
[18] K. Skadron and P. S. Ahuja, "Hydrascalar: A multipath-capable
simulator," Newsletter of the IEEE Tech. Committee on Computer
Architecture, Jan 2001.
[19] P. J. Joseph, K. Vaswani, M. J. Thazhuthaveetil, "A Predictive
Performance Model for Superscalar Processors," MICRO-39, pp. 161-
170, 2006.
[20] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Am-
dahl's Law Through EPI Throttling”, In Proceedings of International
Symposium on Computer Architecture, 2005.

[21] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai,”The impact
of performance asymmetry in emerging multicore architectures”, In
Proceedings of International Symp. on Computer Architecture, 2005.
[22] S. Ghiasi and D. Grunwald, “Aide de camp: Asymmetric dual
core design for power and energy reduction”, In University of Colo-
rado Technical Report CU-CS-964-03, 2003.
[23] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heteroge-
neous processors in server systems”, Computing Frontiers, 2005.
[24] E. Grochowski, R. Ronen, J. Shen, and H. Wang, “Best of both
latency and throughput”, ICCD, 2004.
[25] T. Austin, E. Larson, D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” Computer, vol.35, no.2, Feb. 2002.
[26] R. H. J. M. Otten, L. P. P. P Van Ginneken, “Stop criteria in
simulated annealing”, ICCD, 1988.
[27] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. K. John,
"Evaluating Benchmark Subsetting Approaches" International Sym-
posium on Workload Characterization, October 2006, pp 93-104
[28] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Four
Generations of SPEC CPU Benchmarks: What has changed and what
has not”, Tech Report TR-041026-01-1. Oct. 2004.
[29] H. Vandierendonck, K. De Bosschere, “Experiments with Sub-
setting Benchmark Suites,” Workshop on Workload Charact., 2004.
[30] A. Phansalkar, A. Joshi, L. Eeckhout, L. John, “Measuring Pro-
gram Similarity: Experiments with SPEC CPU Benchmark Suites”,
ISPASS, pp. 10-20, 2005
[31] M. Andersson, J. Gudmundsson, C. Levcopoulos, G. Narasim-
han, “Balanced Partition of Minimum Spanning Trees”, International
Conference on Computational Science, pp. 26-35, 2002
[32] J. Yi, D. Lilja, and D. Hawkins, "A Statistically Rigorous Ap-
proach for Improving Simulation Methodology," Proc. 9th Ann. Int'l
Symp. High-Performance Computer Architecture, pp. 281–291, 2003.
[33] J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of
SPEC benchmarks”, ACM SIGMETRICS Performance Evaluation
Review, vol. 26, no. 3, pp. 2-9, 1998.
[34] M. Laurenzano, B. Simon, A. Snavely and M. Gunn, “Low Cost
Trace-Driven Memory Simulation Using SimPoint,” Workshop on
Binary Instrumentation and Applications (held in conjunction with
PACT2005) , Sep. 2005, St. Louis, MO.
[35] “The Use and Abuse of SPEC: An ISCA Panel,” IEEE Micro,
vol. 23, no. 4, pp. 73-77, Jul/Aug, 2003.
[36] Steven J. E. Wilton and Norman P. Jouppi. CACTI: An enhanced
cache access and cycle time model. IEEE Journal of Solid-State Cir-
cuits, 31(5):677–688, May 1996.
[37] B. Lee and D. Brooks, “Illustrative design space studies with
microarchitectural regression models”, In International Symp. on
High-Performance Computer Architecture, 2007.

Appendix A:
The percentage slowdown of each benchmark on the customized
cores of other benchmarks (see main text for description of mark-
ings).

 bzip crafty gap gcc gzip mcf parser perl twolf vortex vpr
bzip 0% 35% 45% 23% 33% 18% 33% 35% *3.1% 28% 6%

crafty 66% 0% 50% 8% 17% 79% 14% 10% 44% *8% 43%
gap 53% 8% 0% 13% *3.3% 70% 4% 7% 33% 18% 32%
gcc 48% *4.4% 37% 0% 10% 66% 11% 28% 21% 9% 20%
gzip 43% 18% 35% 7% 0% 59% *3.8% 31% 23% 17% 24%
mcf 20% 56% 67% 51% 68% 0% 65% 55% 44% 54% 44%

parser 29% 19% 16% 20% *5% 49% 0% 29% 8% 17% 12%
perl 58% *2% 56% 12% 19% 73% 20% 0% 36% 12% 37%
twolf 9% 46% 55% 31% 51% 35% 39% 50% 0% 36% *3.2%

vortex 51% 13% 25% 9% 15% 68% *0.5% 18% 23% 0% 25%
vpr 25% 36% 45% 17% 47% 49% 34% 38% *4.3% 27% 0%

156

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 04,2025 at 17:07:30 UTC from IEEE Xplore. Restrictions apply.

