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Abstract—Delinquent branches and loads remain key
performance limiters in some applications. One ap-
proach to mitigate them is pre-execution. Broadly,
there are two classes of pre-execution: one class re-
peatedly forks small helper threads, each targeting an
individual dynamic instance of a delinquent branch or
load; the other class begins with two redundant threads
in a leader-follower arrangement, and speculatively
reduces the leading thread. The objective of this paper
is to design a new pre-execution microarchitecture that
meets four criteria: (i) retains the simpler coordination
of a leader-follower microarchitecture, (ii) is fully auto-
mated with just hardware, (iii) targets both branches
and loads, (iv) and is effective. We review prior pre-
execution proposals and show that none of them meet
all four criteria.
We develop Slipstream 2.0 to meet all four criteria.

The key innovation in the space of leader-follower archi-
tectures is to remove the forward control-flow slices of
delinquent branches and loads, from the leading thread.
This innovation overcomes key limitations in the only
other hardware-only leader-follower prior works: Slip-
stream and Dual Core Execution (DCE). Slipstream
removes backward slices of confident branches to
pre-execute unconfident branches, which is ineffective
in phases dominated by unconfident branches when
branch pre-execution is most needed. DCE is very
effective at tolerating cache-missed loads, unless their
dependent branches are mispredicted. Removing for-
ward control-flow slices of delinquent branches and
delinquent loads enables two firsts, respectively: (1)
leader-follower-style branch pre-execution without rely-
ing on confident instruction removal, and (2) tolerance
of cache-missed loads that feed mispredicted branches.
For SPEC 2006/2017 SimPoints wherein Slipstream

2.0 is auto-enabled, it achieves geomean speedups of
67%, 60%, and 12%, over baseline (one core), Slip-
stream, and DCE.

Index Terms—branch prediction, prefetching, hard-
to-predict branch, delinquent load, pre-execution,
helper threads, control independence

I. Introduction

Delinquent branches (frequently mispredicted) and loads
(frequently cache-missed) remain major limiters of single-
thread performance. Individually, they are bad. They are
even worse when they coincide: a cache-missed load feeding
a mispredicted branch neutralizes the latency hiding ability

of large window processors, as all the instructions fetched
in the shadow of the miss are squashed.
Figure 1 shows instructions-per-cycle (IPC) of top-

weighted SimPoints from some SPEC 2006 and 2017
benchmarks that exhibit delinquent branches and loads.
The baseline core uses a 5.5KB VLDP prefetcher [1] and
a 64KB TAGE-SC-L branch predictor [2]. The maximum
possible IPC for this 4-wide fetch/retire core is 4 IPC. The
figure shows IPCs for (1) the baseline core and (2) the same
baseline core with perfect branch prediction and perfect
L1 data cache (loads/stores always hit). All of them show
more than 2x upper-bound speedup potential.

Figure 1: IPC potential in benchmarks with delinquent
branches and/or loads.

One approach to mitigate delinquent branches and
loads is to exploit some form of pre-execution via helper
threads. Helper threads resolve delinquent branches and
initiate delinquent loads before the main thread fetches
corresponding instances of these instructions. Broadly,
there are two classes of pre-execution. One class repeatedly
forks small helper threads, each targeting an individual
dynamic instance of a delinquent branch or load. Each
transient helper thread is the backward slice of instructions
leading to the branch/load. The other class begins with
two redundant threads in a leader-follower arrangement.
The leading thread is speculatively reduced by pruning
instructions. Pruning is such that the leading thread still
maintains accurate overall control-flow.
The objective of this paper is to design a new pre-

execution microarchitecture that meets four criteria. It
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should (i) retain the simpler coordination of a leader-
follower microarchitecture as compared to per-dynamic-
instance helper threads, (ii) be fully automated with just
hardware, (iii) target both branches and loads, and (iv)
be effective. We review prior pre-execution proposals and
show that none of them meet all four criteria.
Using terminology from one of the first leader-follower

processors (Slipstream), we propose Slipstream 2.0. The
key innovation in the space of leader-follower architectures
is to remove the forward control-flow slices of delinquent
branches and loads, from the leading thread. The forward
control-flow slice of a delinquent branch includes all
instructions that are control-dependent on the branch, plus
control-independent data-dependent branches with respect
to the branch and their control-dependent regions.
This innovation overcomes key limitations in the only

other hardware-only leader-follower prior works, Slip-
stream [3] and Dual Core Execution (DCE) [4]. Slipstream
removes backward slices of confidently-predicted branches
(replacing the branches with their confident predictions) to
pre-execute unconfident branches, which is ineffective in
phases dominated by unconfident branches when branch
pre-execution is most needed. DCE is very effective at toler-
ating cache-missed loads, unless their dependent branches
are mispredicted. Removing forward control-flow slices of
delinquent branches and delinquent loads enables two firsts,
respectively: (1) leader-follower-style branch pre-execution
without relying on confident instruction removal, and (2)
tolerance of cache-missed loads that feed mispredicted
branches.

A. Pre-execution, Our Objectives, and Past Works Mea-
sured by These Objectives
To review, there are two classes of pre-execution: per-

dynamic-instance helper threads and leader-follower redun-
dant threads. The leader-follower class is attractive because
coordinating the leader and follower is simple [5]. The leader
is always active (although at a higher level it can be enabled
only for profitable phases, as developed in this paper) and
there is a one-to-one control-flow correspondence between
the leader and follower. Thus, it avoids tricky issues of
the first class: it does not need careful timing of forking of
per-dynamic-instance helper threads and careful alignment
of each pre-executed branch outcome to the corresponding
branch in the main thread.
The objective of our work is to propose a pre-execution

microarchitecture that:
1) retains the simple coordination of a leader-follower

microarchitecture,
2) is fully automated with just hardware,
3) targets both branches and loads,
4) and is effective.
To motivate our approach, we characterize past pre-

execution proposals in Table I in terms of our four criteria,
above.

Slice processor [6], speculative precomputa-
tion [7], and continuous runahead [8]. These meet
criteria 2 and 4: they are fully automated with just
hardware and they are effective at what they target. They
do not meet criteria 1 and 3, however: they are not leader-
follower and they only target loads.
Speculative data-driven multithreading

(DDMT) [9], execution-based prediction using
speculative slices [10], and simultaneous
subordinate microthreading (SSMT) [11], [12].
These approaches do not meet criteria 1 and 2: they are
not leader-follower and they are not fully automated in
hardware. For DDMT and speculative slices, backward
slices of branches and loads are manually identified, and
their trigger (fork) instructions are inserted manually in
the main thread. SSMT is fully automated via a compiler:
for some industry R&D CPU teams, compiler support for
a microarchitecture addition is undesirable as it introduces
a dependence between the two that is both difficult to
justify and challenging to deploy. These approaches meet
criteria 3 and 4: they target both branches and loads, and
in principle there are no fundamental limitations to their
efficacy as compared to competing approaches.
Slipstream processor [3], [13], [14]. Among the

earliest leader-follower architectures, slipstream meets
criterion 1. It also meets criterion 2: it is fully automated
with hardware. To understand slipstream in the context
of criteria 3 and 4, we explain more about how slipstream
works. A slipstream processor runs two redundant copies
of a program in a leader-follower arrangement on dual
superscalar cores (or dual threads in a simultaneous multi-
threading core) to improve single-thread performance and
fault tolerance. The leader (advanced-stream or A-stream)
is speculatively reduced by removing confidently predicted
branches and their backward slices, which are replaced
by the confident predictions. The follower (redundant-
stream or R-stream) receives a complete branch history
from the A-stream: (i) original predictions for removed
confident branches and (ii) pre-executed outcomes for not-
removed unconfident branches. We can conclude that, in
general, slipstream does not meet criterion 4: in phases with
mostly unpredictable branches, where branch pre-execution
matters most, slipstream fails to prune enough instructions
from the leading thread to be effective. Slipstream’s primary
pruning criterion is to replace highly confident branches
and their backward slices with confident predictions. This
criterion is only useful when there is a balanced interleaving
of confident and unconfident branches. This conclusion
is confirmed in the results section. Slipstream also does
not meet criterion 3: it targets branches but not loads.
Slipstream’s backward slice removal does not stop short at
delinquent loads transitively feeding the confident branches,
losing out on the opportunity to convert these now-dead
loads into non-binding prefetch instructions and exploit
high memory level parallelism.
Dual core execution (DCE) [4] . DCE uses dual
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Prior work Criterion 1:
leader-
follower

Criterion 2:
fully
automated
in hardware

Criterion 3:
targets both
branches and
loads

Criterion 4:
effective

Slice processor [6]
Speculative precomputation [7]
Continuous runahead [8]

no yes no
(loads only)

yes

DDMT [9]
Speculative slices [10]
SSMT [11], [12]

no no
(manual
or compiler)

yes yes

Slipstream processor [3], [13], [14] yes yes no
(branches only)

no
(limited branch pre-execution)

Dual core execution (DCE) [4] yes yes no
(loads only)

yes, with caveat
(load -> misp. br.)

Decoupled look ahead (DLA) [5],
[15], [16]

yes no
(tool)

yes branches: no
(limited branch pre-execution)
loads: yes, with caveat
(load -> misp. br.)

Table I: Related work analysis.

redundant threads like slipstream and is fully automated
in hardware, meeting criteria 1 and 2. It does not prune any
instructions in the leading thread, per se. Instead, cache-
missed loads that would otherwise block retirement in the
leading thread for many cycles, and the loads’ forward slices,
are pseudo-retired (load and its dependent instructions are
unstalled and their invalid results discarded). That is, long-
latency loads are dynamically converted to non-binding
prefetches in the leading thread. DCE does not meet
objective 3, however: it only targets loads. Thus, for phases
heavy on delinquent branches and light on delinquent loads,
DCE offers no speedup. DCE meets objective 4, but with
an important caveat: it is highly effective in tolerating long-
latency loads, as long as they do not have any mispredicted
branches in their forward slices. For a pseudo-retired load,
its dependent branches must also be pseudo-retired (owing
to the load not forwarding a value), hence, resolution of
these miss-dependent branches is deferred to the trailing
thread. If the trailing thread detects a mispredicted branch,
the leading thread is squashed and restarted from the
trailing thread: the latency of the load is not hidden because
this latency is transferred to the branch’s misprediction
penalty. In terms of performance, it’s similar to the load
simply blocking retirement for the duration of the miss
(actually it resembles classic runahead [17] since at least
other loads are initiated in the shadow of the squash).

Decoupled look ahead (DLA) [5], [15], [16]. DLA
generalizes dual redundant threads by combining con-
cepts from slipstream and dual core execution. Confident
branches, as determined by offline profiling, and their
backward slices are replaced by unconditional branches
(akin to slipstream). Delinquent loads, as determined by
offline profiling, are reintroduced as non-binding prefetches
if they were initially removed by the confident branch
pruning. As a combination of slipstream and DCE, DLA
meets criteria 1 and 3: it exemplifies leader-follower and
it targets both branches and loads. DLA does not meet

objective 2: it uses an offline tool to prune instructions
from the binary to generate the leading thread’s skeleton.
Objective 4 is mixed: (i) like DCE, it is highly effective in
targeting delinquent loads that feed predictable branches;
(ii) like DCE, it cannot hide the latency of a cache-missed
load that feeds a mispredicted branch; (iii) like slipstream,
branch pre-execution breaks down when it matters most
– DLA cannot achieve sufficient pruning for phases with
mostly unpredictable branches.

B. Slipstream 2.0

Inspired by slipstream, our approach begins with dual re-
dundant threads (A-stream, R-stream) in a leader-follower
arrangement for simple coordination. Rather than remove
backward slices of confident branches in the A-stream,
the key idea is to remove forward control-flow slices of
hard-to-predict pre-executable branches and delinquent
loads in the A-stream while still ensuring correct control-
flow overall. The forward control-flow slice of a delinquent
branch includes all instructions that are control-dependent
on the branch, plus control-independent data-dependent
branches with respect to the branch and their control-
dependent regions. A branch is pre-executable if it does
not depend on itself: its forward control-flow slice can be
removed and the next dynamic instance of the branch will
still execute correctly.
We propose a key concept called branch sets. A branch

set is a list of control-independent data-dependent (CIDD)
branches, with respect to a pre-executable branch or a load.
Branch sets are important for two reasons. First, a branch
is pre-executable if it is not in its own branch set. Second,
the branch set describes the forward control-flow slice to
be removed.
We propose a new slipstream processor that automati-

cally identifies branch sets. The responsible hardware unit:
1) identifies delinquent branches and loads,
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2) identifies branches’ probable reconvergent points [18],
to delineate branches’ control-dependent (CD) regions,
and

3) identifies branches’/loads’ probable CIDD branches
using simple forward poisoning of CD regions and
CIDD instructions.

Hard-to-predict branches that are not in their own
branch sets are identified for Delinquent Branch Pre-
execution (DBP). For DBP, the A-stream’s fetch unit:
i. fetches and retains the delinquent branch for pre-
execution,

ii. skips over the delinquent branch’s CD region, and,
iii. for each branch in the delinquent branch’s branch set,

fetches then discards the branch and skips over its CD
region.

An example of a delinquent branch � and its forward
control-flow slice is shown in Figure 2. Its CD region �
has a potential write to r4 �. Because branch � depends
on r4, it is CIDD with respect to the delinquent branch.
The CD regions of both branches � and � have potential
writes to r5, � and �. Because branch � depends on
r5, it is also CIDD (directly via branch-�/write-� and
transitively via branch-�/write-�). The forward control-
flow slice of the delinquent branch is comprised of its CD
region �, its branch set � and �, and the CD regions
	 and 
 of its branch set. In order for the A-stream to
effectively pre-execute the delinquent branch, it needs to
remove its entire forward control-flow slice. This leaves
only the black boxes, labeled A, B, C, and D, including the
delinquent branch and excluding branches in its branch
set. Doing this means that the delinquent branch need
not be predicted and any potential misprediction penalty
is avoided. The delinquent branch and its entire forward
control-flow slice is replaced with a predicate computation.
The R-stream receives this predicate computation as a
highly accurate branch prediction. The R-stream fetches
and executes only the correct CD path of the delinquent
branch, penalty-free (except for any local mispredictions
of branches nested within the skipped CD region), and
locally predicts and resolves its branch set and branch
set’s CD regions. Summing up, the R-stream receives a
pre-executed outcome for the delinquent branch and the
A-stream is insulated from the R-stream’s local resolution
of deferred dependent gaps.
Loads that frequently miss in the L1 and L2 caches are

identified for Delinquent Load Prefetching (DLP). For DLP,
the A-stream’s fetch unit:
i. fetches the delinquent load and converts it to a non-
binding prefetch instruction, and

ii. for each branch in the delinquent load’s branch set,
fetches then discards the branch and skips over its CD
region.

The R-stream receives all A-stream-executed branch
outcomes as accurate predictions, but now any missing
control-flow is the responsibility of the R-stream to flesh-

Figure 2: Example of a delinquent branch and its forward
control-flow slice.

out using its branch predictor plus execution. Missing
control-flow includes discarded branches from the branch
sets as well as branches nested within skipped CD regions.
Note that, although there may be localized gaps between
branches and their reconvergent points (which delineate
CD regions), there is still a one-to-one correspondence in
global control-flow between the A-stream and R-stream.
Slipstream 2.0 meets all four criteria of Section I-A,

unlike past pre-execution work: (1) simple coordination
of leader-follower style pre-execution, (2) fully automated
in hardware, (3) targets both branches and loads, and (4)
effective. It effectively pre-executes branches that are pre-
executable (not self-dependent), even in regions of mostly
unpredictable branches (addressing efficacy weaknesses of
original slipstream and DLA). It tolerates long-latency
loads that feed mispredicted branches, by insulating the
A-stream from the now-localized misprediction recovery in
the R-stream (addressing the load efficacy caveat of DCE
and DLA).
Another advantage of Slipstream 2.0 is that instruction

removal in the A-stream “looks like” traditional branching.
Rather than prune individual arbitrary instructions, as
slipstream and DLA do, Slipstream 2.0 skips entire CD
regions, and only CD regions, by converting their branches
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to “branch-to-reconvergent-point” instead of “branch-to-
taken-target”.
Finally, another contribution of this work is a hardware

mechanism for enabling/disabling Slipstream 2.0 for phases
during which it is profitable/unprofitable, respectively.
Thus, Slipstream 2.0 can be used as a microarchitectural
turbo-boost performance mode.
Results: First, the turbo-boost feature successfully

enables/disables Slipstream 2.0 for benchmark SimPoints
according to need. We find that, for most SimPoints, turbo-
boost is either enabled (8 out of 25 SimPoints) or disabled
(12 out of 25 SimPoints) for almost the entire SimPoint.
Second, for the SimPoints where Slipstream 2.0 is enabled,
geomean speedups of 67%, 60%, and 12%, are observed
over the baseline, slipstream, and DCE, respectively. For
benchmarks with primarily delinquent branches, Slipstream
2.0 is 34%, 23%, and 21%, faster than baseline, slipstream,
and DCE, respectively. For benchmarks with primarily
delinquent loads, Slipstream 2.0 is 84%, 73%, and 9%,
faster than baseline, slipstream, and DCE, respectively.
Third, Slipstream 2.0 utilizes 4% lesser energy and 43%
lesser EDP compared to baseline. Note that these results
are for two cores for Slipstream 2.0 versus only a single
core for baseline. These results are due to shorter execution
time decreasing energy despite redundant core activity,
redundant core activity doesn’t extend much beyond the
two cores’ L1 caches, and turbo-boost ensures energy is
not wasted in unprofitable phases.

C. Paper Outline
Closely related work was discussed in-depth in Sec-

tion I-A. Section II describes the Slipstream 2.0 microarchi-
tecture. Section III describes the simulation infrastructure.
Section IV presents results, including comparisons with
two competing hardware-only leader-follower architectures:
slipstream and DCE. Section IV-D discusses energy impact
of Slipstream 2.0. Section V concludes the paper.

II. Slipstream Processor 2.0
At a high level, Slipstream 2.0 follows the same mi-

croarchitectural blueprint as original Slipstream, so we use
similar terms for the added top-level components. The
microarchitecture is shown in Figure 3.
The A-stream and R-stream run on two cores. Each core

has private L1 instruction and data caches. The L2 and
L3 caches are shared between the cores.
The added units and modifications for both Slipstream

and Slipstream 2.0 are:
• The A-stream’s L1 data cache is speculative, hence, it
discards evicted dirty blocks rather than write them
back [19]. If the A-stream is squashed and restarted
from the R-stream, we follow the invalidate-dirty-block
policy for approximately rolling back the A-stream’s
L1 data cache [19].

• Both use a Delay Buffer to communicate pre-
executed outcomes from the A-stream to the R-stream.

Whereas Slipstream communicated both branch and
value outcomes, Slipstream 2.0 only communicates
branch outcomes.

• Instruction-Removal Detector (IR-detector):
This is the unit that monitors the retired instruction
stream and uses criteria to identify instructions that
should be removed in future instances. The IR-detector
trains the IR-predictor (next bullet) which performs
the actual instruction removal at the superscalar’s
instruction fetch stage. As explained in Section I,
Slipstream 2.0 introduces a wholly new IR-detector,
with criteria based on delinquent branches, delinquent
loads, and their branch sets.

• Instruction-Removal Predictor (IR-predictor):
This is the unit that prunes instructions at the
instruction fetch stage. Whereas Slipstream used per-
dynamic-instance confidence counters for pruning
arbitrary instructions in a context-sensitive (global
branch history) manner, Slipstream 2.0 uses a much
simpler and smaller IR-predictor. It maintains an entry
for each static delinquent pre-executable branch, static
delinquent load, and static branches in their branch
sets.

In the remainder of this section, we focus on the units
with new implementations that distinguish Slipstream 2.0:
IR-detector (Section II-A), IR-predictor (Section II-B), and
Delay Buffer (Section II-C).

A. IR-detector
Figure 4 shows the three subcomponents of the IR-

detector. The boxes labeled “Identify Delinquent Branch-
es/Loads” and “Identify Reconvergent Points” are indepen-
dent support mechanisms that supply information needed
by “Branch Set Analysis”.
1) Identify Reconvergent Points: This subcomponent is

continuously training the reconvergent points of branches
as they retire, independent of the other subcomponents. We
adapted a reconvergence predictor from the literature [18].
The one-entry Active Reconvergence Table (ART) infers

the reconvergent point of one static branch at a time over
multiple dynamic instances of the branch. It examines
program counters (PCs) of instructions retired after the
branch and compares them against the same information
from past instances, analogous to maintaining a high
water mark. These ongoing comparisons gradually increase
confidence in the inferred reconvergent point. The Conf.
field of the ART is incremented after each instance of
the branch. When it saturates, the reconvergent point is
updated for that branch in the Reconvergence Predictor
Table (RPT), and it moves on to analyzing a different
branch that comes along.
The RPT holds potential reconvergent points of all

branches. We adapted the RPT to hold up to three different
reconvergent points per branch. Each has a confidence
counter that is initialized or incremented when that recon-
vergent point is first added or updated, respectively, by
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Figure 3: Slipstream Processor 2.0 microarchitecture. Shaded components and dotted lines represent the newly added
structures and their connectivity.

the ART. When another subcomponent needs to reference
the RPT to get a reconvergent point prediction, the RPT
returns the one with the highest confidence. We found that
this feature is important to filter-out a distant reconvergent
point that may be “truer” in static terms but infrequently
exercised in dynamic terms.
The reconvergence predictor (including ART and RPT)

requires 1.1 KB of storage, as shown in Figure 4.
2) Identify Delinquent Branches/Loads: Delinquent

branches and loads are identified by the Branch/Load
Classifier (BLC) shown in Figure 4. The BLC is indexed
and tagged by PC. Each entry has a bit indicating whether
it is a branch or load. Each entry also has a 16-bit
misprediction/miss counter.
The BLC operates on an epoch basis where an epoch

is 500K cycles. All counters are cleared at the beginning
of an epoch. A branch’s or load’s counter is incremented
each time it is mispredicted or misses in the L2 cache,
respectively.
A separate smaller table called “BLC-Max” incremen-

tally maintains a list of the top-8 delinquent loads and
branches up to the current point in the epoch. When
the BLC is updated, BLC-Max is searched to see if that
branch/load is already in the top-8 (matching BLC index
found, so just update its counter in BLC-Max) or should
knock-off one of the current top-8 (its BLC index does not
match any in BLC-Max but its counter is greater than the
least counter in BLC-Max). By incrementally maintaining
the top-8 list, we avoid serially scanning the BLC for the
top 8 at the end of the epoch.
At the end of the epoch, the top-8 delinquent branches

and/or loads are sent to the third subcomponent for

Branch Set Analysis. The information supplied to Branch
Set Analysis is the PC of the branch or load, whether
it is a branch or load, and a reconvergent-PC if it is a
branch. Thus, at the end of an epoch, the BLC and RPT
supply information to kick-off Branch Set Analysis in the
next epoch for up to 8 branches/loads. Note that these 8
branches/loads are queued in the unit that does Branch
Set Analysis because the analysis is done for one branch
or load at a time. After the BLC and RPT kick-off Branch
Set Analysis for the next epoch, they return to doing their
thing autonomously in the next epoch: the BLC clears all
of its misprediction/miss counters and begins anew and
the RPT continues training reconvergent points as before.
A 128-entry BLC was found to be sufficient to capture

most delinquent loads and branches. The least delinquent
branch/load is replaced when there is contention for space
in the BLC. Altogether, the BLC and BLC-Max combine
for 0.8KB if storage, as shown in Figure 4.
3) Branch Set Analysis: As shown in Figure 4, the

Branch Set Buffer (BSB) learns the branch set for one
branch or load at a time.
First, the BSB dequeues the next branch or load from

its top-8 queue (the queue is not explicitly shown). It
writes the branch/load PC and branch reconvergent-PC
(for branches only) into the first two fields. In this paper,
up to 32 CIDD branches are identified (could do with
much fewer in general). Thus, there are 32 CIDD fields in
the BSB, each comprised of a valid bit and PC; the valid
bits are not explicitly shown but they are initialized to 0.
The control-independent data-independent (CIDI) bit (field
labeled “CIDI branch”) is initialized to 1 for a delinquent
branch starting out branch set analysis. This bit remains
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Figure 4: IR-detector.

1 for as long as the delinquent branch is not itself added
as a CIDD branch (self-dependent). If it is detected as a
CIDD branch with respect to itself, however, the CIDI bit
is cleared. At the end of branch set analysis, a delinquent
branch with CIDI bit of 1 is deemed pre-executable.
Second, the BSB begins the process of identifying CIDD

branches with respect to the delinquent branch/load. This
is facilitated by forward poisoning of logical registers influ-
enced by the branch or load, using the Data Dependence
Tracker (DDT). The DDT is indexed by logical register
specifier (r0-r63 for RISCV ISA) for source/destination
registers. Each DDT entry is a single poison bit indi-
cating whether or not that logical register was directly
or transitively influenced by the most recent instance of
the delinquent branch/load. Each time the delinquent
branch/load is retired (as known by PC field in the
BSB), the DDT is flash-cleared. For a delinquent branch,
each retired instruction in its CD region (as known by
reconvergent-PC in the BSB) sets the poison bit of its
logical destination register if it has one. That is, any register
modified in the CD region is poisoned. After reconvergence,
each retired control-independent instruction propagates
poison bits from any of its logical source registers to any
of its logical destination registers. This aspect identifies
CIDD instructions. If a retired control-independent branch
has any poisoned source registers, it is added to the CIDD
branch list in the BSB if it is not already listed. Moreover,
if this CIDD branch is the same as the delinquent branch
being analyzed (PC match), the BSB clears the CIDI bit
of the delinquent branch (not pre-executable). Finally, if a
CIDD branch is detected, the poisoning process temporarily
reverts to poisoning all logical destination registers in the

CD region of the CIDD branch. This ensures transitive-
CIDD branches will also be detected, where a transitive-
CIDD branch does not directly depend on the delinquent
branch but does depend on one of its other CIDD branches.
The overall process is the same for a delinquent load, with
the exception that it does not have its own CD region
to poison (just CD regions of its CIDD branches as just
explained).
Poisoning is restarted fresh (DDT flash-cleared) at each

retired instance of the delinquent branch/load in the BSB.
The process repeats for multiple instances so that as many
paths as possible are explored. The final field in the BSB,
labeled “Conf.”, is a counter that is incremented for each
instance analyzed. When it saturates, the BSB deems the
CIDD branch list and the CIDI bit to be accurate.
The final step is to train the IR-predictor when this

saturation point is reached. Each IR-predictor entry cor-
responds to a single branch or load. If it is a branch, it
is also annotated as CIDI or CIDD. The IR-predictor is
updated by the BSB as follows. The delinquent branch/load
is added to (if not already present) or updated in (if already
present) the IR-predictor. If it is a delinquent branch, its
CIDI bit in the IR-predictor is updated according to its
CIDI bit in the BSB. Then, all valid CIDD branches in
the BSB (the branch set) are also added to or updated in
the IR-predictor; naturally, their CIDI bits are cleared in
the IR-predictor.
Altogether, the BSB and DDT have a cost of 0.1 KB.

B. IR-predictor
Table II shows the fields of an entry in the IR-predictor.

The A-stream’s instruction fetch unit indexes the IR-
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predictor by PC.
If there is a hit on a load entry, the fetch unit converts

the load to a non-binding prefetch.
If there is a hit on a CIDI branch entry, i.e., “pre-execute

bit” equal to 1, the fetch unit marks the branch for pre-
execution and redirects the fetch PC to its reconvergent-
PC. Marking it for pre-execution means resolution of the
branch one way or the other does not cause a squash in
the A-stream.
Finally, if there is a hit on a CIDD branch entry, i.e., “pre-

execute bit” equal to 0, the fetch unit discards the branch
instruction and redirects the fetch PC to its reconvergent-
PC.
The final field labeled “mispred./miss count” is used

to guide replacement of the least-delinquent branch/load
when the IR-predictor is using all entries.
We used a 128-entry IR-predictor, which has a storage

cost of 1.2 KB.
valid PC branch/

load
pre-execute
bit (CIDI bit)

reconv.
PC

mispred./
miss count

1 bit 30
bits

1 bit 1 bit 30 bits 16 bits

Table II: IR-predictor: 128 entries x 79 bits
.

C. Delay Buffer
Outcomes of A-stream-executed branches are passed to

the R-stream through the Delay Buffer. These outcomes are
used by the R-stream to predict its corresponding branches,
overriding its branch predictor. If a Delay Buffer outcome
turns out to be wrong, the R-stream squashes and restarts
the A-stream.
Each entry in the Delay Buffer is 3 bits. The first bit

indicates whether this branch was executed (1) or discarded
(0) by the A-stream. The second bit indicates the outcome,
if executed. The third bit indicates whether (1) or not
(0) this branch’s CD region was skipped in the A-stream.
Assuming the first bit is most-significant:

• A branch that is executed by the A-stream normally
along with its CD region is encoded as 1x0 (x is out-
come). The R-stream can use the outcome, moreover,
subsequent outcomes line up, too (no gap in Delay
Buffer).

• A pre-executed branch is encoded as 1x1 (x is out-
come). The R-stream can use the outcome, but it
knows there may be a gap in the Delay Buffer
after this branch until its reconvergent-PC is fetched.
Thus, the R-stream reverts to its branch predictor
for any branches (if any) that are fetched before the
reconvergent-PC is fetched.

• A branch that was discarded by the A-stream, because
it is CIDD, is encoded as 0-1. The R-stream reverts
to its branch predictor for the A-stream-discarded
branch because there isn’t a valid outcome for it. It
also knows there may be a gap in the Delay Buffer after

this branch until its reconvergent-PC is fetched. Thus,
the R-stream continues using its branch predictor
for any branches (if any) that are fetched before the
reconvergent-PC is fetched.

For the latter two cases, if the Delay Buffer becomes
full before the R-stream fetches the reconvergent-PC, the
A-stream is squashed and restarted.
We used a 256-entry Delay Buffer in this paper. This

translates to just 0.1KB if we assume the method discussed
above, which assumes the R-stream can access the RPT
directly for reconvergent-PCs. Another strategy is to
include a reconvergent-PC in each Delay Buffer entry,
pushed by the A-stream when the third bit is 1. This
translates to 1KB. In the next section, we assume the
higher storage cost for the Delay Buffer.

D. Proactive vs. Reactive DLP
What we have described for DLP, thus far, is proactive-

DLP. The IR-predictor directs the A-stream’s fetch unit
to immediately convert a delinquent load to a prefetch.
The IR-detector also trained the IR-predictor such that
all of the load’s dependent branches are classed as CIDD,
hence, never pre-executable. This introduces a dilemma if
(1) both the load and branch are delinquent and (2) the
branch is eligible for DBP (CIDI with respect to itself).
The problem is that proactive-DLP blocks DBP of the
branch, even though in hindsight it is pre-executable if the
converted load hits.
Reactive-DLP is an alternative that does not leave DBP

opportunity on the table when the load hits.
First, the delinquent load is not immediately converted

to a prefetch. It is converted to a prefetch at the retire
stage, if the load is not resolved when it reaches the head
of the reorder buffer.
Second, we modify how a delinquent load in the IR-

detector trains the IR-predictor with its CIDD branches: if
any of its CIDD branches already exist in the IR-predictor,
their CIDI bits are left as-is. Thus, if one of the load’s CIDD
branches is CIDI with respect to itself, DBP is attempted
for it.
With this modification, the load’s dependent branch is

classed in the IR-predictor as either CIDI (if DBP eligible)
or CIDD (if not DBP eligible), and when the branch is
fetched in the A-stream, its CD region is skipped in either
case. Moreover, in either case, the branch will not cause
a recovery in the A-stream (because its CD region was
skipped). The only difference is how the branch’s execution
is handled: if classed as CIDI, its execution is not discarded
(push Delay Buffer with encoding 1x1, where x is outcome);
if classed as CIDD, its execution is discarded (push Delay
Buffer with encoding 0-1).
Finally, if the load is ultimately converted to a prefetch,

and if its dependent branch was initially classed as CIDI,
we dynamically downgrade the branch from CIDI to CIDD
at the point of pushing its encoding on the Delay Buffer.
The miss means the branch did not reliably pre-execute.
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The downgrade is achieved via a single poison bit per
logical register. The converted load sets the poison bit of
its logical destination register. A retired instruction sets
the poison bit of its logical destination register if any of its
logical source registers are poisoned. When the CIDI branch
retires, if its source(s) are poisoned, it is downgraded from
CIDI to CIDD just prior to pushing its encoding into the
Delay Buffer.

E. Storage cost
The total storage cost for the IR-detector, IR-predictor,

and Delay Buffer, is 4.2KB.
• IR-detector: 2KB (0.8KB for BLC and BLC-Max;
1.1KB for ART and RPT; 0.1KB for BSB and DDT)

• IR-predictor: 1.2KB
• Delay Buffer (if each entry includes a reconvergent-PC
so that R-stream need not access the RPT): 1KB

III. Evaluation
We were able to successfully compile 25 benchmarks,

from the SPEC 2006 and 2017 suites, to the RISCV ISA.
We generated the top-weighted 100 million instruction
SimPoints of these 25 benchmarks.
We use a detailed, cycle-level, execute-at-execute super-

scalar core simulator that executes the RISCV ISA. It
can be configured for a single core or for dual cores in
Slipstream 2.0, Slipstream, or Dual Core Execution modes.
For all experiments, each superscalar core is configured
similarly to the Intel Skylake Desktop Processor (where
we have common and major superscalar parameters we set
them according to Skylake). This configuration is shown
in Table III.
The 22nm technology node provided by McPAT [20] was

used to calculate energy for Slipstream 2.0 (two cores) and
the baseline (one core). New Slipstream 2.0 components
were added to McPAT, with their activity factors gotten
from the timing simulator.

IV. Results
A. Slipstream 2.0 versus Baseline
We begin with speedup of Slipstream 2.0 over the baseline

(single core). Figure 5 shows speedups of the following
configurations over the baseline: Slipstream 2.0 with just
Delinquent Branch Pre-execution (“DBP”), baseline with
perfect branch prediction (“Perfect BP”), Slipstream 2.0
with just Delinquent Load Prefetching (“DLP”), baseline
with perfect data cache (“Perfect DC”), Slipstream 2.0
with both techniques (“DBP+DLP”), and baseline with
both perfect (“Perfect BP+DC”).
Results are only presented here for the 8 benchmarks

for which Slipstream 2.0 is enabled for almost the entire
SimPoint by our automatic turbo boost mechanism. The
turbo boost mechanism is presented later, in Section IV-C.
Section IV-C presents results for all 25 benchmarks, includ-
ing correlation between branch/load MPKI, turbo boost
enabling/disabling, and speedups.

Branch Prediction BP: 64KB TAGE-SC-L [2],
BTB: 4K entries, 4-way, RAS:
32 entries

Hardware Prefetcher VLDP [1]: 5.5 Kb
L1 I and D caches 32KB, 8-way, 4 cycles
shared L2 cache 256KB, 4-way, 12 cycles
shared L3 cache 8 MB, 16-way, 42 cycles
DRAM 250 cycles
Fetch/Retire Width 4 instr./cycle
Issue/Execute Width 8 instr./cycle
ROB/IQ/LDQ/STQ 224/100/72/72
execution lanes 4 simple ALU, 2 load/store, 2

FP/complex ALU
Fetch-to-Execute
Latency

10 cycle

Physical RF 288
Checkpoints 32, OoO reclamation
Slipstream Delay buffer size: 256 entries

Table III: Core configuration with parameters modeled
after Intel Skylake Desktop Processor, for in-common major
superscalar parameters.

1) DBP: Benchmarks with high branch MPKI are
evident from the speedup of “Perfect BP”: bzip, astar,
hmmer, and mcf. These four benchmarks achieve 17% to
28% speedup with DBP. There is still a gap between DBP
and “Perfect BP” because not all mispredictions can be
pre-executed. Table IV breaks down mispredictions into
three types. For example, for astar:

• 53% of mispredictions were pre-executed because they
originated from pre-executable (CIDI) branches, such
as branch-1 in Figure 6 (line 7). These otherwise-
mispredicted branches were resolved penalty-free in
the A-stream.

• 29% of mispredictions originated from hypothetically
pre-executable (CIDI) branches, but they were nested
inside the skipped CD regions of the other pre-executed
branches, above. These mispredictions were deferred
and resolved with a local squash penalty in the
R-stream, although the A-stream is not squashed.
Branch-2 in Figure 6 (line 8) is an example of a pre-
executable branch, that was not pre-executed, due to
being in the skipped CD region of the pre-executed
branch-1.

• 18% of mispredictions originated from CIDD branches.
CIDD branches are not pre-executable because the
next dynamic instance depends on the CD region of the
previous dynamic instance; so the CD region cannot
be skipped in the A-stream, hence, a mispredicted
instance is resolved with a penalty in the A-stream.
We argue that helper threads, in general, cannot help
this very serial class of code: a branch that depends
on itself.

In the case of astar, another reason for the gap w.r.t.
“Perfect BP” is that branch 1 is not purely CIDI with
respect to the occasional loop-carried memory dependency
with the store at line 13 of Figure 6.
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Figure 5: Speedups of Slipstream 2.0 (DBP, DLP, DBP+DLP) over baseline. Baseline with perfect branch prediction
and/or data cache also shown as a gauge.

misprediction type astar bzip hmmer mcf
CIDI misprediction,
pre-executed 53% 42% 71% 75%
CIDI misprediction,
not pre-executed 29% 29% 3% 0%
CIDD misprediction 18% 29% 26% 25%

Table IV: Breakdown of misp. according to branch type.

Figure 6: Astar code fragment.

2) DLP: DLP benefits benchmarks suffering primarily
from L2/L3 cache misses, which are evident from the
speedup of “Perfect DC”. Libquantum, lbm, omnetpp, mcf,
and bwaves, see speedups ranging from 13% to 2.9x. Among
these, mcf is notable in having many branch mispredictions
that depend on cache-missed loads. Slipstream 2.0 insulates
the A-stream from miss-dependent mispredictions that
resolve in the R-stream (i.e., A-stream is not restarted).
Without this effect, mcf’s speedup would decrease from
1.54 (DLP) to 1.35 (as measured for DCE in Sec. IV-B).

This effect is also evident in benchmarks with a milder
delinquent load problem and high branch MPKI: bzip2 and
hmmer get 22% and 17% improvement over baseline with
DLP, respectively, which is quite close to “Perfect DC” for
them (24% and 21%, respectively).
3) DBP+DLP: All benchmarks show speedups when

DBP and reactive-DLP (§II-D) are combined, and the
combination matches or exceeds DBP or DLP alone.
DBP+DLP achieves a geometric mean speedup of 67%.

B. Comparisons w/ Slipstream 1.0 and DCE
Classic slipstream’s instruction removal rate is very low

for applications with high branch MPKI. For example, for
astar, the A-stream’s retired instruction count is reduced by
only 4%. Bzip2 and hmmer are similar. The A-stream pays
the penalties of all mispredictions – always the case with
classic slipstream – and has negligible instruction removal
to counterbalance the penalties. As a result, Slipstream
1.0 achieves no speedup over the baseline for high MPKI
benchmarks, as seen in Figure 7. DBP overcomes this
by identifying CIDI branches to pre-execute in the A-
stream: the A-stream is not slowed by any instances of
these branches by way of skipping their CD regions.
Classic slipstream achieves 11% to 14% speedup for

libquantum, mcf, and omnetpp. The branches in these
benchmarks are highly confident and there is decent
instruction removal (Fig. 8a) and few A-stream restarts
(Fig. 8b). Even though some delinquent loads are tran-
sitively removed from the A-stream, owing to classic
slipstream’s back-propagation, some loads still execute
in the A-stream thus achieving some prefetching effect.
In contrast, DLP ensures that all delinquent loads are
converted to prefetches.
While bzip2, hmmer, astar, and mcf are notable for high

branch MPKIs, they also have non-negligible cache misses.
From Figure 7, DLP alone achieves speedups of 1.22, 1.17,
1.03, and 1.54, respectively, whereas DCE achieves speedups
of 1.03, 1.13, 0.95 (slowdown), and 1.35, respectively. Both
DLP and DCE convert delinquent loads to prefetches in
the A-stream. Unlike DLP, DCE does not remove the
loads’ forward control-flow slices and instead relies on the
loads’ dependent branches to be predicted correctly. Thus,
DCE must rollback the A-stream if a dependent branch
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Figure 7: Comparisons among Slipstream 1.0, DCE, and Slipstream 2.0 (DBP, DLP, and DBP+DLP).

Figure 8: Instruction removal (slipstream 1.0) and A-stream restarts-per-1K-instructions (all).

was mispredicted, exposing the prefetch’s latency in the
misprediction penalty. DLP elides the dependent branch
and its CD region in the A-stream and lets them resolve
locally in the R-stream.
Bzip2, astar, and mcf, show 20% to 30% better speedups

with DBP+DLP compared to DCE. For applications
that do not have many branch mispredictions, such as
libquantum, lbm, and omnetpp, DBP+DLP performs
within 5% the speedup provided by DCE. Thus, DBP+DLP
effectively builds upon DCE and achieves better speedups
for control-bound applications as well: DBP eliminates
mispredictions of pre-executable branches and DLP extends
DCE’s latency tolerance to misses feeding mispredicted
branches. Overall, DBP+DLP provides a geometric mean
speedup of 12% compared to DCE.
C. Microarchitectural Turbo Boost
The heuristic used to turn on/off the A-stream (Fig. 10),

is based on exceeding MPKI thresholds of DBP-classed
branches and DLP-classed loads during each epoch. A-
stream utilization is shown in Figure 9b for all 25
benchmarks. 8 benchmarks enable A-stream for 100%
of execution time and show speedups with DBP+DLP
(Figure 9c). 17 benchmarks disable A-stream for 60% or
more of execution time: (i) 10 have low branch and load
MPKIs (Figure 9a) and are either high-IPC or bound by
true data dependencies. (ii) 3 have delinquent branches
or loads only during certain phases and hence had A-
stream enabled for 10%-40% of execution time. (iii) 4
(perlbench, sjeng, leela_s, wrf_s) have high MPKI among
non-pre-executable branches (ineligible for DBP), hence,
the heuristic correctly disables the A-stream for these. Thus,

turbo enables Slipstream 2.0 for low-IPC applications that
benefit from DBP and DLP.

D. Energy measurements
Figure 11 shows energy and energy-delay-product (EDP)

of Slipstream 2.0 (two cores) normalized to the baseline
(one core). Despite using two cores and additional (albeit
quite small) components, the average energy expenditure
is 4% less than the baseline with a single core. The main
reason is that the reduced execution time leads to lower
static energy. There is an increase in dynamic energy as a
result of redundant execution. But the benefit from reduced
static energy outweighs the increase in dynamic energy
significantly. In astar, bzip2, and hmmer, we expend 12%
to 24% more energy, but if we factor-in the speedups and
measure EDP we see that they do better than the baseline.
Memory-bound applications that benefited the most from
DLP see a significant drop in energy. Their EDP is much
lower than the baseline as well. On average, Slipstream 2.0
reduces total energy by 4% and EDP by 43% compared to
the baseline.

V. Summary and Future Work
We presented Slipstream 2.0, a new pre-execution mi-

croarchitecture that meets four criteria: (i) retains the
simpler coordination of a leader-follower microarchitecture
as compared to per-dynamic-instance helper threads, (ii)
is fully automated with just hardware, (iii) targets both
branches and loads, (iv) is effective in exploiting that which
is targeted. We reviewed prior pre-execution proposals and
showed none of them meet all four criteria. Slipstream 2.0’s
key innovation in the space of leader-follower architectures
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(a) Branch Mispredicts per 1K instructions (MPKI) and Cache Average Access Time (AAT) across applications.

(b) A-stream utilization for slipstream processors 2.0.

(c) Speedup of Slipstream 2.0 DBP+DLP relative to the baseline.

Figure 9: Slipstream 2.0 as microarchitectural turbo boost.

Figure 10: Heuristic for enabling/disabling A-stream.

is to remove the forward control-flow slices of pre-executable
delinquent branches and delinquent loads, from the leading
thread.
In addition to being the first pre-execution proposal

that meets all four criteria, it includes a simple auto-
enable/disable mechanism making it a useful microarchi-
tectural turbo-boost feature and it economically reduces
the leading thread by a simple adaptation of conven-
tional branching (“branch-to-reconvergent-point” instead
of “branch-to-target”).
We compared Slipstream 2.0 to the baseline single

Figure 11: Energy and EDP of Slipstream 2.0 (dual cores)
normalized to baseline (single core).

core and the only other hardware-only leader-follower
prior works in pre-execution: Slipstream (targets branches)
and Dual Core Execution (DCE) (targets loads). For
SPEC 2006/2017 SimPoints wherein Slipstream 2.0 is auto-
enabled, it achieves geomean speedups of 67%, 60%, and
12%, over baseline, Slipstream, and DCE. For SimPoints
with primarily delinquent branches, Slipstream 2.0 is 34%,
23%, and 21%, faster than baseline, Slipstream, and DCE.
For SimPoints with primarily delinquent loads, Slipstream
2.0 is 84%, 73%, and 9%, faster than baseline, Slipstream,
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and DCE. It gives an average reduction of 43% in Energy
Delay Product (EDP) and 4% in energy compared to
baseline. Finally, it adds only 4.2KB in storage cost for the
IR-detector, IR-predictor, and Delay Buffer.
An important byproduct of this work is understanding

that only a certain class of delinquent branch can be effec-
tively pre-executed. A delinquent branch is “pre-executable”
if it is not in its own forward control-flow slice, i.e., future
dynamic instances of the branch are not data-dependent
on the outcomes of previous dynamic instances. Moreover,
if there are two pre-executable delinquent branches, ‘A’
and ‘B’, and ‘B’ is either control-dependent or control-
independent data-dependent (CIDD) on ‘A’, then ‘A’ and
‘B’ cannot both be selected for pre-execution, because ‘B’
is in the forward control-flow slice of ‘A’. Thus, along with
the more well-known problem of dependent load misses,
non-pre-executable branches remain a performance limiter
for Slipstream 2.0 and, we posit, any previous pre-execution
microarchitecture. This insight points to much needed
future work.
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