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ABSTRACT 
Superscalar architectures have been proposed that exploit control 
independence, reducing the performance penalty of branch 
mispredictions by preserving the work of future misprediction-
independent instructions. The essential goal of exploiting control 
independence is to completely decouple future misprediction-
independent instructions from deferred misprediction-dependent 
instructions. Current implementations fall short of this goal 
because they explicitly maintain program order among 
misprediction-independent and misprediction-dependent 
instructions. Explicit approaches sacrifice design efficiency and 
ultimately performance. 
We observe it is sufficient to emulate program order. Potential 
misprediction-dependent instructions are singled out a priori and 
their unchanging source values are checkpointed. These 
instructions and values are set aside as a “recovery program”. 
Checkpointed source values break the data dependencies with co-
mingled misprediction-independent instructions – now long since 
gone from the pipeline – achieving the essential decoupling 
objective. When the mispredicted branch resolves, recovery is 
achieved by fetching the self-sufficient, condensed recovery 
program. Recovery is effectively transparent to the pipeline, in 
that speculative state is not rolled back and recovery appears as a 
jump to code. A coarse-grain retirement substrate permits the 
relaxed order between the decoupled programs. Transparent 
control independence (TCI) yields a highly streamlined pipeline 
that quickly recycles resources based on conventional speculation, 
enabling a large window with small cycle-critical resources, and 
prevents many mispredictions from disrupting this large window. 
TCI achieves speedups as high as 64% (16% average) and 88% 
(22% average) for 4-issue and 8-issue pipelines, respectively, 
among 15 SPEC integer benchmarks. Factors that limit the 
performance of explicitly ordered approaches are quantified. 

Categories and Subject Descriptors 
C.1.0 [Processor Architectures]: General.  

General Terms Performance, Design. 

Keywords Branch prediction, control independence, selective 
recovery, selective re-execution, checkpoints, speculation. 

1. INTRODUCTION 
The performance of contemporary superscalar pipelines is 
profoundly affected by branch prediction accuracy. Even with 
modest issue widths of 3 to 6 instructions per cycle, the Intel 
Pentium-4 and IBM POWER5 processors form speculative 
instruction windows as deep as 126 and 200 instructions, 
respectively. A single branch misprediction may flush upwards of 
100 in-flight instructions, causing extended retirement stalls as the 
pipeline gradually refills. Because of the large per-misprediction 
penalty, branch misprediction rates of 5-10% cause a 
disproportionate performance loss. Using our detailed cycle-level 
simulator of a 4-issue superscalar processor with a pipeline depth 
and memory hierarchy modeled after the Pentium-4, a state-of-
the-art perceptron branch predictor [13] often achieves only half 
the performance of perfect branch prediction for SPEC integer 
benchmarks. 
The performance penalty of mispredictions can be reduced by 
exploiting control independence [2][5][6][10][19][20][21][22], 
depicted in Figure 1. The figure shows a branch and instructions 
after it. Instructions between the branch and its reconvergent point 
are control-dependent (CD) on the branch, in that the outcome of 
the branch affects which CD instructions are fetched. Instructions 
after the reconvergent point are control-independent (CI) of the 
branch because they are fetched irrespective of the branch’s 
outcome. Nonetheless, control-independent data-dependent 
(CIDD) instructions are influenced by the branch through data 
dependences (either register or memory dependences). For 
example, the consumer of R5 (after the reconvergent point) 
depends on the first production of R5 (above the branch) if the 
branch takes the left path or the second production of R5 if the 
branch takes the right path. Therefore, the consumer of R5 is 
influenced by the outcome of the branch and is consequently 
CIDD with respect to the branch (similarly, control-independent 
loads may be influenced by a prior branch through control-
dependent stores). In the example, other instructions after the 
reconvergent point are not influenced by the branch in any way, 
referred to as control-independent data-independent (CIDI) 
instructions. 
Conventional superscalar processors recover from a mispredicted 
branch by flushing all instructions after it and restarting from 
scratch at the branch. In contrast, superscalar processors that 
exploit control independence conceptually (i) selectively remove 
only the incorrect CD instructions from the window thus 
preserving the CI instructions in the window, (ii) insert the correct 
CD instructions in their place, and, (iii) among CI instructions, 
only the CIDD instructions are selectively re-executed. Thus, 
recovery is more selective and this reduces misprediction 
penalties. Specifically, the work of misprediction-independent 
instructions (CIDI) is saved. 
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Figure 1. Example control-flow region. 

The essential goal of selective recovery is to completely decouple 
the future misprediction-independent instructions (CIDI) from the 
deferred misprediction-dependent instructions (CD and CIDD). 
Existing solutions fall short of this goal because they still 
explicitly maintain program order among the misprediction-
independent and misprediction-dependent instructions. They are 
order-constrained for two reasons in particular: 
■ They evolved from reorder buffer (ROB) based designs which 
require program order for fine-grained retirement. Ultimately 
this means the late-fetched correct CD instructions need to be 
reordered with respect to the early-fetched CI instructions. 
■ When CIDD instructions re-execute with changed values from 
the repaired CD region, they may also need to re-reference 
unchanged values from CIDI instructions. Ultimately this means 
dependence order needs to be maintained among co-mingled 
CIDI instructions and CIDD instructions. 

Explicit program-ordered approaches sacrifice design efficiency 
and performance, because they fail to truly decouple 
misprediction-independent instructions from misprediction-
dependent instructions. 
We propose that it is sufficient to mimic the effect of program 
order between misprediction-independent and misprediction-
dependent instructions. The key innovation is to single out CIDD 
instructions as they are fetched and checkpoint their CIDI-
supplied source values, breaking dependences with the CIDI 
instructions. The CIDD instructions plus checkpointed source 
values are set aside in a FIFO re-execution buffer (RXB) for 
possible selective re-execution later. This is the first proposal for 
truly decoupling CIDI and CIDD instructions. Now, fine-grain 

retirement via a reorder buffer is the only reason for explicitly 
maintaining order. To emulate in-order retirement, we propose 
using a coarse-grain checkpoint-based retirement strategy 
[3][9][12][18] which relaxes ordering constraints between 
consecutive checkpoints. 
When a branch is mispredicted, its incorrect CD instructions are 
fetched followed by CI instructions. All instructions – correct and 
incorrect – complete and speculatively release cycle-critical 
resources as they drain from the pipeline (issue queue entries, 
physical registers, etc.). When the mispredicted branch resolves, 
recovery is achieved by fetching a self-sufficient condensed 
“recovery program”: the correct CD instructions (fetched from the 
instruction cache), the CIDD instructions (fetched from the RXB), 
and all input values needed to launch the correct CD and CIDD 
instructions (the branch’s checkpoint and the checkpointed CIDI-
supplied source values of CIDD instructions). Recovery is 
effectively transparent to the pipeline, in that speculative state is 
not rolled back and recovery appears as a jump to code. 
Transparent control independence (TCI) yields a highly 
streamlined pipeline that quickly recycles resources based on 
conventional speculation, enabling a large window with small 
cycle-critical resources, and prevents many mispredictions from 
disrupting this large window. 
Figure 2 shows a high-level view of TCI. Dynamic instructions 
are shown from left to right in the order in which they are fetched 
(fetch time). Correctly fetched and executed instructions are 
shown in white and incorrectly fetched or executed instructions 
are shown in gray. Correctly fetched instructions are labeled with 
their order in sequential program order (incorrect CD instructions 
are labeled with x’s instead). A branch is mispredicted at the 
beginning of the fetch timeline. Thus, incorrect CD instructions 
are fetched first followed by CIDI and CIDD instructions. The 
first correctly fetched instruction is instruction 4. Some time later, 
after fetching instruction 14, the misprediction is finally detected. 
At this point the independent (thanks to input values from the 
branch’s checkpoint and RXB) recovery program is fetched. 
Notice the relaxed order: the recovery program’s instructions 1, 2, 
3, 6’, 10’, and 12’ come after the speculative program’s 
instruction 14 in the timeline. The pipeline does not differentiate 
between the speculative and recovery programs, as shown. The 
speculative state is not rolled back. Instead, the recovery program 
transparently repairs the speculative state. 
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Figure 2. Transparent Control Independence (TCI). 
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This paper makes the following chief contributions: 
■ TCI concept and microarchitecture. We propose a new 
approach that fully decouples misprediction-independent 
instructions from misprediction-dependent instructions, yielding 
a highly streamlined microarchitecture for exploiting control 
independence. The key insight is checkpointing CIDI-supplied 
source values of CIDD instructions. Another important aspect is 
using a relaxed, coarse-grain retirement substrate. 
■ Identifying CIDD instructions. Novel mechanisms are 
developed for assembling the CIDD instructions: the control-
flow stack (CFS) for detecting arbitrary and nested reconvergent 
points, predicting the influenced register set (IRS), poisoning 
registers for identifying CIDD instructions, branch-sets for 
identifying CIDD loads, etc. 
■ RXB reconstruction. Since CIDD slices of multiple branches 
are co-mingled within the RXB, servicing a branch 
misprediction may require repairing CIDD slices of other 
branches and selectively removing CIDD instructions of the 
resolved branch. A simple unified solution – identify CIDD 
instructions in the recovery program itself, as was done the first 
time for the speculative program – enables arbitrary adjustments 
to the RXB while preserving its simple FIFO policy. 
■ Renaming partial programs: We propose a novel technique 
for renaming the recovery program despite its CIDI gaps. 
■ Comparing resource and bandwidth overheads for repairing 
CIDD instructions. We analyze factors that reduce the 
performance of explicit program-ordered approaches and 
measure the impact of these factors. We show TCI uses fewer 
resources and less bandwidth for repairing CIDD instructions. 

Section 2 provides a high-level overview of the proposed TCI 
microarchitecture. Section 3 discusses closely related work and 
identifies factors that reduce performance of previous approaches. 
Section 4 presents the TCI microarchitecture in detail. Section 5 
covers the simulator and methodology. Results are presented in 
Section 6. Additional related work is discussed in Section 7. 
Finally, the paper is summarized in Section 8. 

2. HIGH-LEVEL OVERVIEW OF TCI 
MICROARCHITECTURE 
Figure 3 shows our transparent control independence (TCI) 
architecture. The shaded region highlights a resource-streamlined 
pipeline that aggressively releases resources based on 
conventional speculation. Correct and incorrect instructions alike 

flow through the pipeline as fast as they would with conventional 
speculation, aggressively freeing issue queue entries and physical 
registers [3][9][18][23] on the assumption that branch predictions 
are correct. Instructions drain from the pipeline as soon as they 
complete – there is no reorder buffer (ROB) and precise 
exceptions are achieved via checkpoints [3][9][12][18][23]. 
When a branch is encountered in the fetch unit, its predicted CD 
instructions are fetched from the instruction cache (I-cache), 
highlighted in Figure 3 with Step-1. These are soon followed by 
the branch’s CI instructions, corresponding to Step-2 in the figure. 
Both the predicted CD and CI instructions are renamed with the 
speculative rename map and sent down the pipeline. The branch’s 
CIDD instructions are identified in the dispatch stage and 
duplicates of these instructions are set aside in a FIFO buffer, the 
Selective Re-execution Buffer (RXB), as shown. When these 
instructions issue and read their source operands from the 
physical register file, copies of the source values are also set aside 
with the corresponding instructions in the RXB. If, when the 
branch executes, a misprediction is detected, control is 
temporarily transferred to the correct target of the branch. 
Corresponding to Step-3 in the figure, the branch’s correct CD 
instructions are fetched from the I-cache and renamed using the 
repair rename map, which is initialized from a corresponding 
branch checkpoint thus ensuring the correct CD instructions have 
values in the physical register file to begin execution with. When 
the reconvergent point is encountered again, control is transferred 
to the branch’s CIDD instructions in the RXB, corresponding to 
Step-4 in the figure. These are also renamed using the repair 
rename map to establish linkages with producer instructions prior 
to the reconvergent point. A key point is that the branch’s CIDD 
instructions residing in the RXB do not tie up cycle-critical 
resources (issue queue entries and physical registers) and are 
allocated resources only when control is transferred to the RXB, 
just like instructions that are dispatched from the I-cache. Another 
key point is that CIDDs’ source operands that depend on CIDI 
instructions cannot be resolved by the repair rename map because 
the CIDIs’ values were most likely freed from the physical 
register file already and those that have not been freed are 
inaccessible by the repair rename map anyway; fortunately the 
source values were individually checkpointed previously and are 
in the RXB with the CIDD instructions. 
Loads issue aggressively and are speculative with or without 
branch mispredictions [7]. Store-load dependences are also 
resolved correctly, as we explain in Section 4.5. 
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Figure 3.  Transparent control independence (TCI) architecture. 
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3. UNDERSTANDING RELATED WORK 
3.1  Qualitative Comparisons 
There have been a number of proposals for exploiting control 
independence in superscalar [5][6][10][19][20][21] and 
speculatively multithreaded processors [2][22]. Exploiting control 
independence involves three key implementation issues, and 
different architectures address these issues in different ways and 
with various compromises. 
• Insertion/removal of CD instructions. The key challenge with 
regard to CD instructions is arbitrary insertion/removal of CD 
instructions in the middle of the window. The FIFO reorder buffer 
(ROB) of conventional superscalar processors is structurally 
incompatible with removing incorrect CD instructions and 
inserting correct CD instructions (except the special case in which 
the two branch paths are equal in length), because the ROB can 
no longer be managed as a simple circular FIFO. Among ROB-
based implementations, the ROB can be managed as a linked-list 
at the level of individual instructions [19], segments [19], or 
processing elements [20][22], but at the cost of significant 
complexity. Instruction reuse (or squash reuse) [21] and a related 
dual ROB implementation [6] avoid this complexity by re-
fetching/re-dispatching all instructions after the mispredicted 
branch, emulating the simple control-flow repair model of full 
flushing, but this yields a significantly weakened implementation 
that only saves on re-execution bandwidth of CIDI instructions. 
Two more recent ROB-based implementations (Skipper and Exact 
Convergence) either pre-pad the ROB to make room for 
expansion [5], potentially underutilizing the ROB or 
overdesigning the ROB, or exploit control independence only for 
the special case in which the correct branch target is the 
reconvergent point itself (thus not requiring insertion of any CD 
instructions) [10]. The expandable/contractable window of 
speculative multithreading implementations [2][22] are 
structurally compatible with arbitrary insertion/removal of CD 
instructions, but this is achieved as a byproduct of departing from 
the familiar superscalar paradigm, moreover, mispredictions cause 
full flushing within threads thus not exploiting arbitrary 
reconvergent points. 
• Selectively re-renaming CIDD instructions.  After repairing the 
CD region of the mispredicted branch, CIDD instructions with 
stale source names have to be identified and re-renamed to 
establish linkages with their correct producers (e.g., the R5 
consumer in Figure 1). Some implementations resequence through 
all CI instructions to locate CIDD instructions that require re-
renaming [2][19][20], expending time on scanning through all 
instructions whether or not their source names require fixing. As 
mentioned, instruction reuse [21] and the dual ROB 
implementation [6] flush and re-fetch/re-dispatch all instructions 
after the mispredicted branch, thus needlessly re-renaming all 
instructions. Skipper [5] and Exact Convergence [10] inject proxy 
move instructions at the reconvergent point for logical registers 
influenced by the branch (e.g., R5 in Figure 1), insulating CIDD 
instructions from source name changes. Re-renaming is localized 
to proxy instructions, at the cost of increased physical register 
pressure, issue queue pressure, and ROB pressure for the proxy 
instructions of each protected branch. 
• Selectively re-executing CIDD instructions. After repairing the 
CD region and fixing stale source names of CIDD instructions, all 
CIDD instructions must be selectively re-executed. The drawback 
of the above superscalar based implementations is that selective 

re-execution of CIDD instructions (or deferred execution of CIDD 
instructions in the case of Skipper [5]) increases pressure on 
cycle-critical resources. Issue queue entries and source and 
destination physical registers cannot be released for completed 
CIDD instructions because they may need to selectively re-
execute. Release is delayed until corresponding branches resolve. 
This is inefficient compared to conventional speculation, which 
releases resources aggressively (issue queue slots and even 
physical registers in some designs [3][9][18][23]) since 
misprediction recovery involves rolling back to the mispredicted 
branch anyway. 
TCI compares favorably with previous control independence 
architectures. The choice of a checkpoint-based, ROB-free 
superscalar substrate with counter-based physical register 
allocation/deallocation is meaningful, as this substrate is 
structurally compatible with arbitrary insertion/removal of 
instructions in an order-agnostic way as long as producer-
consumer dependences are respected. Thus, TCI avoids the 
complexity of linked-list ROB management [19][20], the 
performance degradation of full flushing [21], and the 
underutilization of ROB padding [5]. And unlike speculative 
multithreading [2][22], TCI maintains a familiar (superscalar) 
execution model and exploits arbitrary reconvergent points. With 
TCI, CIDD instructions are selectively re-renamed using the 
compressed (CIDD instructions only) RXB, unlike 
implementations that re-inspect all CI instructions [2][19][20]. 
Moreover, selective re-execution of CIDDs does not come at the 
price of tying up precious cycle-critical resources such as issue 
queue slots and physical registers. In contrast, previous 
superscalar implementations increase resource pressure even in 
the case of correct speculation, potentially impeding performance 
in the common case (either by degrading IPC for an undersized 
resource or increasing cycle time for an oversized resource). 

3.2 Resource and Bandwidth Overheads 
Different methods for re-renaming and re-executing CIDD 
instructions result in different resource and bandwidth overheads, 
influencing performance. In this section, we compare the resource 
and bandwidth overheads for repairing CIDD instructions, for 
different generalized models on a common substrate. The 
common substrate is a 4-issue ROB-free checkpointed processor 
with aggressive register reclamation (described in Section 5). Due 
to a common high-performance flexible-window substrate, we do 
not capture the performance differences among different CD 
insertion/removal methods (for example, the penalty of 
reservation based approaches [5] is not captured). 
Three generalized re-renaming models are considered. Proxy uses 
proxy move instructions to insulate CI instructions from source 
name changes, and only the proxies are re-renamed. Seq CI 
sequences through all CI instructions to update stale source 
names. Seq CIDD re-renames only the CIDD instructions, like in 
TCI. Seq CIDD requires TCI’s mechanisms (specifically, 
poisoning) for distinguishing a CIDD instruction’s source 
operands as coming from either CIDI or CD/CIDD instructions –
only sources coming from CD or other CIDD instructions should 
be re-renamed. 
Two models are considered for selective re-execution of CIDD 
instructions. Hold IQ is conservative, as it holds all instructions in 
the issue queue. Drain IQ is aggressive, as it drains instructions 
from the issue queue when they issue. For the Drain IQ model, 
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selective re-execution is achieved differently for Proxy, Seq CI, 
and Seq CIDD. Proxy holds proxy and CIDD instructions in the 
issue queue, signified as Drain IQ (partial). Seq CI uses a re-
execution buffer (RXB) containing all CI instructions. Seq CIDD 
uses a compressed RXB containing only CIDD instructions. 
Table 1 compares the resource and bandwidth requirements for 
repairing CIDD instructions, for Base (conventional recovery), 
Proxy, Seq CI, and Seq CIDD, on both Hold IQ and Drain IQ re-
execution substrates (Base always drains). In addition, the last 
column in Table 1 cites specific implementations of these 
approaches from the literature. Resources are further divided into 
registers, issue queue entries, and RXB entries. Bandwidth is 
further divided into re-renaming and re-execution bandwidth. 
Note that TCI (Drain IQ/Seq CIDD) is qualitatively the best or 
tied for best in every category. TCI may re-rename fewer or more 
instructions than Proxy, depending on the number of proxy 
instructions and CIDD instructions. 

Issue Re- Re-
Queue renaming execution

Base none none none CIDD + CIDI CIDD + CIDI
CIDD +
proxy

Seq CI all all none CIDD + CIDI CIDD [19],[20]
Seq CIDD all all none CIDD CIDD

some CIDI + CIDD + CIDD +
CIDD + proxy proxy proxy

Seq CI none none all CIDD + CIDI CIDD [2],[6]
Seq CIDD none none CIDD CIDD CIDD TCI

none

Registers RXB

ªCited for the use of proxy inst., and not skipper style control independence.

 CI  resequencing 
bandwidth

proxy [5]ª,[10]

proxy

Hold  resources  until 
branch resolves Related 

work

H
ol

d 
IQ

D
ra

in
 IQ

Proxy all all

Proxy 

none

Model

 
Figure 4 shows the harmonic mean of IPCs for 14 of the SPEC 
integer benchmarks listed in Table 3, for the seven models. 
Benchmark mcf has been excluded from the harmonic mean 
because its extremely low IPC drowns out trends. The issue queue 
size is varied to understand resource pressure. The resource 
inefficiency of the Hold IQ re-execution substrate is a major 
bottleneck with small issue queues. In fact, Base outperforms all 
Hold IQ models, for issue queues with fewer than 256 entries. 
This is because the issue queue limits the overall window size 
when all instructions are held in the issue queue. 
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Figure 4. Performance of different CIDD repair models. 

Ideally, all instructions should free all cycle-critical resources 
speculatively, allowing for a bigger window, and CIDD 
instructions should only be re-allocated resources when selective 
re-execution is required after a branch misprediction. Drain IQ 
strives for this goal. However, Proxy falls short of this ideal 
scenario because proxy and CIDD instructions remain in the issue 
queue for possible selective re-execution. The residual issue 

queue pressure is evident in Figure 4: Proxy is unique in its 
sensitivity to issue queue size compared to other models with 
Drain IQ. In fact, for a 16-entry issue queue, Proxy has no 
performance advantage over conventional recovery (Base) let 
alone the other selective recovery approaches. On the other hand, 
a 64-entry issue queue enables Proxy to overtake Seq CI. Overall, 
Seq CIDD (TCI) performs the best due to its combined bandwidth 
and resource efficiency. Figure 5 shows similar trends for the 
benchmark gzip, individually. 
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Figure 5. Performance of different CIDD repair models (gzip). 
Figure 6 shows the performance sensitivity of Drain IQ/Seq CI 
and Drain IQ/Seq CIDD to the RXB size. Seq CI is very sensitive 
to RXB size: all instructions are inserted into the RXB, therefore, 
the RXB limits the overall window size (like a ROB). In contrast, 
Seq CIDD is much less sensitive to the RXB size: only CIDD 
instructions are inserted into the RXB, therefore, the RXB does 
not limit the overall window size. 
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Figure 6. Sensitivity to RXB size. 

Figure 7 focuses on the re-rename bandwidth of Drain IQ/Seq 
CIDD. The RXB contains CIDD instructions for multiple 
branches in program order. Thus, other branches’ CIDD 
instructions may increase the time to re-sequence, compared to re-
sequencing only the CIDD instructions of the mispredicted 
branch. The latter model is labeled Drain IQ/Seq Br CIDD in the 
graph. The graph shows little performance difference between the 
two models. Moreover, there is little performance difference even 
with Ideal, which re-sequences in 0 cycles. 
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Figure 7. Seq CIDD bandwidth. 

Table 1. Resource and bandwidth usage for repairing CIDD 
instructions. 
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4. TCI MICROARCHITECTURE 
4.1 Identifying and Inserting CIDD 
Instructions into RXB 
This section explains how CIDD instructions are identified and 
inserted into the RXB by the speculative rename map, in a 
process called poisoning. 

4.1.1 Reconvergent Point and Influenced Register 
Set (IRS) Predictor 
The compiler or a hardware predictor can be used to identify 
branches’ reconvergent points. In this paper, we use the dynamic 
reconvergence predictor proposed by Collins et al. [8]. We 
augment the predictor to provide additional information for each 
branch. First, the predictor keeps track of the maximum path 
length through a branch’s control-dependent (CD) region, among 
paths that were traversed. This information is useful for guiding 
when to apply control independence. We select a maximum CD 
path length above which it is not worthwhile to exploit control 
independence due to the sheer number of incorrect CD 
instructions. Second, we add a learning mechanism to collect a 
branch’s influenced register set (IRS). As the predictor monitors 
retired instructions for reconvergence, it keeps track of logical 
registers written to after the branch and before reconvergence is 
detected. The use of confidence ensures repetition, so that enough 
different paths are traversed through a branch’s CD region to 
yield a representative IRS. 

4.1.2 Control-Flow Stack (CFS) 
When a branch is dispatched, we must detect its reconvergent 
point among later instructions as they are dispatched. The 
reconvergent point marks the beginning of CI instructions, so it is 
at this point that we need to mark, or “poison”, influenced 
registers (indicated by the branch’s IRS) in the speculative 
rename map. 
A novel hardware mechanism called the control-flow stack (CFS) 
detects reconvergent points in the dispatch stage. When a 
checkpointed branch is dispatched, its reconvergent PC and 
checkpoint tag (to identify the branch) are pushed onto the CFS 
top-of-stack. 
The next reconvergent point in the dynamic instruction stream is 
detected by comparing the PCs of newly dispatched instructions 
to the reconvergent PC at the top-of-stack. If there is a match, 
then the branch corresponding to the current top-of-stack has 
reconverged. We know which branch this is via the checkpoint 
tag at the current top-of-stack. Since the beginning of control-
independent instructions has been reached, the branch’s IRS is 
used to poison influenced registers at this time. Poisoning 
registers is explained in the next section. Finally, the CFS top-of-
stack is popped (removed), re-exposing the next reconvergent 
point to search for. 
The CFS can detect cases in which multiple branches have the 
same dynamic reconvergent point. If the reconvergent PC of a 
newly dispatched branch matches the reconvergent PC at the CFS 
top-of-stack, then the new branch and the branch corresponding to 
the CFS top-of-stack have the same dynamic reconvergent point.1 
                                                                 
1 They do not have the same dynamic reconvergent point if the call depths 

of the two branches are different, e.g., due to recursion. We make the 
test definitive by tracking call depth in the dispatch stage and including 

In this case, the new branch does not push a new entry onto the 
CFS, implicitly “merging” with the CFS top-of-stack.  
There are three cases in which a branch is forced to inherit the 
reconvergent point of its encompassing branch region: if the 
branch does not have a predicted reconvergent PC, if there are no 
free checkpoints, or if the branch is confidently predicted. The 
branch corresponding to the CFS top-of-stack is the closest 
encompassing branch. Thus, the new branch inherits the 
reconvergent point of its encompassing branch simply by not 
pushing onto the CFS and instead merging as explained above. 
The CFS only needs as many entries as there are checkpoints (16 
entries in this paper). CFS entries of branches that resolve before 
they reconverge are collapsed away (since they are not popped). 

4.1.3 Poison Vectors 
After a branch’s CD region is fetched and its reconvergent point 
is detected by the CFS, we are ready to use the branch’s IRS to 
poison registers and thereby identify CIDD instructions. Each 
influenced register specified in the IRS must be poisoned. 
We provide a 16-bit poison vector per entry in the speculative 
rename map. A logical register is poisoned if one or more bits are 
set in its poison vector. Moreover, which bits are set indicates 
which branches a logical register is influenced by. A 
checkpointed branch is identified by its checkpoint tag. A non-
checkpointed branch is identified by the checkpoint tag of the 
branch from which it inherited its reconvergent point (discussed 
in Section 4.1.2). Since we use 16 checkpoints in this paper, a 
poison vector has 16 bits. 
When a branch reconverges, the poison vector of each influenced 
register, specified by the IRS, is updated in the speculative 
rename map. In particular, the poison bit corresponding to the 
branch’s checkpoint tag is set. 
CIDD instructions can now be identified during renaming. When 
an instruction’s logical source registers are renamed, the 
corresponding poison vectors are ORed together. If the ORed 
vector has any bits set, the instruction is CIDD with respect to one 
or more branches. Also, the ORed vector overwrites the poison 
vector of the logical destination register, in the speculative 
rename map. This propagates poison status for identifying indirect 
CIDD instructions. 
When a checkpoint is freed, the corresponding poison bit is 
cleared in all poison vectors. Given that all branches associated 
with the checkpoint are now resolved, no future instructions 
should be considered CIDD with respect to these branches. 
Only the speculative rename map, repair rename map, and 
checkpoints have poison vectors. Poison vectors in the repair 
rename map and checkpoints are discussed in Section 4.2. 

4.1.4 Inserting CIDD instructions into the RXB 
CIDD instructions are inserted into the RXB in program order at 
the dispatch stage. When a CIDD instruction issues and reads its 
source values from the physical register file, it replaces its source 
mappings in its entry in the RXB with the source values (a bit is 
set within its entry in the RXB to signify that source values have 
replaced source mappings). 
                                                                                                           

call depths in CFS entries. If the new branch’s reconvergent PC and call 
depth match the CFS top-of-stack, then the branches have the same 
dynamic reconvergent point. 
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4.2 Misprediction Recovery 
When a misprediction is detected, the fetch unit temporarily 
redirects fetching to the correct target of the mispredicted branch. 
Correct CD instructions are fetched from the instruction cache 
and renamed using the repair rename map initialized from a 
checkpoint at the branch. The repair rename map, like the 
speculative rename map, has its own CFS to detect the 
reconvergent point again that marks the end of the correct CD 
region (its CFS also identifies new nested branch regions). At this 
point, the branch’s CIDD instructions are fetched from the RXB, 
re-renamed using the repair rename map, and re-injected into the 
pipeline. Finally, the repair rename map is used to fix up the 
speculative rename map and checkpoints. 

4.2.1 Reconstructing the RXB 
The RXB contains CIDD instructions with respect to all 
unresolved branches. This means the RXB must be reconstructed 
when recovering from a branch misprediction, as follows. 

• Case A. There may be instructions from the branch’s incorrect 
CD path in the RXB, that were thought to be CIDD with respect 
to other prior branches. These have to be removed from the 
middle of the RXB. 

• Case B. New instructions from the correct CD path may be 
CIDD with respect to other prior branches. These have to be 
inserted into the middle of the RXB. 

• Case C. Instructions in the RXB that are only CIDD with 
respect to the branch being serviced should be selectively 
removed from the RXB, since they will not be revisited again. 
Instructions in the RXB that are CIDD with respect to other 
branches (whether or not they are also CIDD with respect to the 
current branch) must remain in the RXB. Note that these two 
types of instructions are co-mingled in the RXB. 
There is only one solution and it is simple, because it is analogous 
to initial CIDD identification and insertion into the RXB 
described in the previous section. The recovery program for the 
current branch is comprised of the correct CD instructions from 
the instruction cache and all instructions in the RXB logically 
after the resolved branch’s reconvergent point. (The recovery 
program is not as efficient as it could be because it has CIDD 
instructions of other branches that are not also CIDD with respect 
to the current branch.) Poisoning of the recovery program via the 
repair rename map can once again construct the RXB contents. 
As a preliminary step, the RXB tail pointer is moved back to the 
branch (even though the branch may not be in the RXB 
physically, the branch knows its logical position in the RXB). 
This naturally takes care of any incorrect CD instructions in the 
RXB since they will get overwritten by the adjusted tail pointer 
(case A). Then, poisoning the recovery program using the repair 
rename map will naturally (1) insert new CIDD instructions with 
respect to prior branches from among the correct CD instructions 
(case B), and (2) insert old CIDD instructions only if they are 
CIDD with respect to remaining unresolved branches (case C). 
Since CIDD instructions are concurrently fetched from the RXB 
(while fetching the recovery program) and inserted into the RXB 
(while constructing a new recovery program), we need a 
mechanism to prevent overwriting CIDD instructions in the RXB 
before they are fetched. We set up a pre-read pointer into the 
RXB, that points to the first CI instruction with respect to the 
resolved branch. Since we moved the tail pointer to the branch, 

the pre-read pointer is logically after the tail pointer. The pre-read 
pointer is where fetching of CIDD instructions is supposed to 
begin. If we wait until the correct CD path is fetched, some of the 
CIDD instructions beginning at the pre-read pointer could get 
clobbered by the advancing tail pointer. Therefore, using the pre-
read pointer, we begin pre-reading CIDD instructions from the 
RXB right away so that they cannot get clobbered. They are 
transferred to a Temp Buffer, from which fetching of CIDD 
instructions will eventually begin (after the correct CD 
instructions are fetched from the instruction cache). 
Figure 8 shows a detailed RXB reconstruction example with two 
branches, B1 and B2, and respective reconvergent points R1 and 
R2. Logical positions of B1/R1 and B2/R2 with respect to RXB 
instructions are indicated with wide black arrows. RXB 
instructions are labeled with their position # in the dynamic 
instruction stream. Noncontiguous numbers merely highlight that 
CIDD instructions are noncontiguous. Instruction x is not 
numbered because it is an incorrect CD instruction of 
mispredicted branch B2. Furthermore, instructions are marked 
with either a rectangle or oval: rectangles are CIDD with respect 
to B1, ovals are CIDD with respect to B2, rectangle+oval are 
CIDD with respect to both B1 and B2. Below we step through 
each of the frames (a)-(g). 
(a) Frame (a) shows the initial state of the RXB. B1 has no CD 

instructions in the RXB since there are no branches prior to it. 
B1 has four CIDD instructions after R1: 9, x, 16, 20. B2 has one 
(incorrect) CD instruction, x. Instruction x is not in the RXB 
because of B2 but rather because it is CIDD with respect to B1. 
B2 has two CIDD instructions after R2: 18, 20. 

(b) In frame (b), mispredicted branch B2 is detected, causing the 
RXB tail to rollback to just after B2 (instruction x), and the 
RXB pre-read pointer to initiate at the first CIDD instruction 
past B2’s reconvergent point R2 (instruction 16). 

(c) In frame (c), new instructions 11 and 12 – correct CD 
instructions with respect to B2 – are fetched from the 
instruction cache (I$) and dispatched for the first time to the 
issue queue (To IQ). Moreover, instruction 12 is inserted into 
the RXB because it is CIDD with respect to B1. Instruction 12 
is inserted at the RXB tail (which then advances) thereby 
replacing instruction x. Note also that pre-reading has begun: 
instruction 16 is transferred to the Temp Buffer so that it is not 
clobbered by B2’s incoming correct CD instructions. 

(d) Similarly, in frame (d), we continue fetching and dispatching 
the remainder of B2’s correct CD instructions (13 and 14). Both 
13 and 14 are dispatched to the issue queue but only 14 is 
inserted into the RXB, since 14 is CIDD with respect to B1. 
Meanwhile we continue pre-reading instructions (18) into the 
Temp Buffer. 

(e) In frame (e), no more instructions are fetched from the I$ 
because B2’s reconvergent point R2 has been reached from the 
correct CD path. We begin reinjecting and/or recirculating 
CIDD instructions from the Temp Buffer. Frame (e) shows 
instruction 16 leaving the Temp Buffer only to be recirculated 
back to the RXB (CIDD on unresolved B1). It is not reinjected 
into the issue queue because it is not CIDD on B2 (the 
mispredicted branch). 
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(f) However, instruction 18 in frame (f) is reinjected into the issue 
queue (CIDD on resolved B2) and not recirculated back to the 
RXB since it is not CIDD on B1. 

(g) Finally, in frame (g), instruction 20 is both reinjected into the 
issue queue and recirculated to the RXB from the Temp Buffer, 
because it is CIDD on both B1 and B2. Since the Temp Buffer is 
empty, we are done servicing B2. 

4.2.2 Poisoning via Repair Rename Map 
The repair rename map’s poison vectors are initialized from the 
mispredicted branch’s checkpoint. While fetching the correct CD 
instructions from the instruction cache and CIDD instructions from 
the RXB, the poison vectors are managed the same way as 
described for the speculative rename map (Section 4.1.3), except for 
a subtle modification. The poison vectors of logical registers that 
would have been updated by CIDI instructions, simply are not, 
because they are not observed by the repair rename map. These 
logical registers represent “holes” in the repair rename map and 
their poison vectors cannot be referenced by an instruction’s source 
registers. Fortunately, we know two things: (1) the poison vector 
generated by a CIDI instruction is all 0’s because it is not CIDD 
with respect to any unresolved branch, and (2) a CIDI instruction is 
observed once (and only once) in either the speculative rename map 
(CIDI immediately) or repair rename map (CIDI eventually). So, 
when a source register of a CIDD instruction references a CIDI 
production for the first and only time (signaled by an all-0 poison 
vector in the rename map), a sticky bit (“CIDI_supplied”) associated 
with the source register in the RXB is set to indicate that the source 
register’s poison vector is by definition all 0s. Once 
CIDI_supplied=1, in future passes, an all-0 poison vector is used 
instead of referencing an absent poison vector in the repair rename 
map. 
The outcome of poisoning by the repair rename map indicates what 
to do with each instruction. For correct CD instructions from the 
instruction cache, the choices are: insert or do not insert into the 
RXB. For CIDD instructions from the RXB, the choices are: 
reinject only, insert (i.e., recirculate) only, reinject and insert, or 
discard. An instruction is inserted into the RXB if poisoning 
indicates that it is CIDD with respect to any unresolved branches. 
An instruction is reinjected into the pipeline if poisoning indicates 
that it is CIDD with respect to the mispredicted branch being 
serviced. 

4.2.3 Reinjecting CIDD Instructions 
Only CIDD instructions from the RXB that are CIDD with respect 
to the branch being serviced are reinjected into the pipeline. These 
are re-renamed to bind physical registers and thereby facilitate re-
execution. 
CIDI instructions are absent from re-renaming, just as they were 
absent from poisoning. Now, additionally, CIDD instructions from 
the RXB that are not reinjected are also absent from re-renaming. 
The latter instructions are CIDD with respect to other branches but 
not with respect to the branch being serviced. They are tantamount 
to CIDI instructions with respect to the branch being serviced 
(“implicit” CIDI instructions), and need not be re-executed. As 
such, they are not re-allocated storage and do not participate in re-
renaming. 
When re-renaming a source register of a reinjected CIDD 
instruction, we need to determine if it depends on an explicit or 
implicit CIDI instruction (the two cases outlined above) versus a CD Figure 8 . RXB reconstruction example. 
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or reinjected CIDD instruction. If it depends on an explicit or 
implicit CIDI instruction, then the source value (if available) or 
source mapping from the RXB is used in lieu of re-renaming, 
because the repair rename map has a stale name. Otherwise, the 
correct mapping is obtained from the repair rename map. 
The source register depends on an explicit CIDI instruction if its 
CIDI_supplied bit in the RXB is set. The source register depends on 
an implicit CIDI instruction if its poison vector in the repair rename 
map does not have the current branch’s bit set. Note, it is safe to 
reference the poison vector because all CIDD instructions in the 
RXB undergo poisoning. It is only unsafe to reference the poison 
vector in the case of explicit CIDI instructions, which is why the 
CIDI_supplied bit is checked first. 
The reinjected CIDD instruction is allocated a new physical 
destination register and updates the repair rename map accordingly. 
If a CIDD instruction is both inserted (i.e., recirculated) into the 
RXB and reinjected into the pipeline, its source registers may be 
updated in the RXB, analogous to what was described in Section 
4.1.4. Specifically, when it redispatches, a re-renamed source 
register updates the corresponding source mapping in the RXB. 
When it reissues, it reads values from the physical register file for 
source registers that did not reuse values from the RXB. These new 
values replace corresponding source mappings in the RXB. 

4.2.4 Merging Repair/Speculative Rename Maps 
When RXB reconstruction is completed, the repair rename map is 
logically at the same point in the dynamic instruction stream as the 
speculative rename map. Some mappings in the speculative rename 
map have to be repaired using the repair rename map. Specifically, 
any speculative mapping whose poison vector has the branch’s bit 
set may be incorrect (it may have changed due to the control-flow 
adjustment). We simply copy the corresponding mapping from the 
repair rename map to the speculative rename map. All poison 
vectors in the repair rename map are copied. 
Checkpoint maps are repaired the same way, as the repair rename 
map resequences through the RXB and reaches checkpoints along 
the way. 

4.3 Conventional Recovery 
If a branch misprediction is detected before the fetch unit has 
reached the branch’s reconvergent point, then there is no need to 
transfer control to the repair rename map and RXB, as there are no 
CI instructions with respect to the branch yet. This scenario is easily 
detected by checking if the mispredicted branch has not yet popped 
the CFS (not reconverged). In this case, the speculative rename map 
is simply restored to the checkpoint corresponding to the 
mispredicted branch as in conventional recovery. 

4.4 Servicing Multiple Branch Mispredictions 
TCI supports servicing new mispredictions concurrently with the 
one being serviced, if the new mispredictions are logically after the 
repair rename map. A new misprediction will begin servicing when 
the repair rename map logically reaches it, in a natural continuation 
of RXB reconstruction. After fetching the correct CD instructions of 
the new misprediction, CIDD instructions of both the initial and 
new mispredictions are reinjected concurrently. If a new 
misprediction is logically before the repair rename map, we wait 
until the initial RXB reconstruction completes before servicing the 

new misprediction; however, an earlier misprediction that has not 
reconverged is serviced immediately via conventional recovery. 

4.5 Store/Load Queues and CIDD Loads 
Loads issue speculatively and dependence violations are detected by 
comparing completed stores against the load queue. Also, stores 
commit in order. A key issue is that loads and stores may need to be 
inserted and removed from the middle of the load/store queues as 
mispredicted branches alternate CD paths, so that loads and stores 
remain ordered. Rather than do this literally, we apply the same 
technique that we used to adjust the RXB. Tail pointers are moved 
back, and control independent loads/stores are pre-read and 
recirculated into shifted positions. Note that this is equivalent to 
what a conventional superscalar does, only it refetches the control 
independent loads and stores from the instruction cache instead of 
recirculating them from the load/store queues themselves. 
Exploiting control independence increases load violations, due to 
mispredicted branches that fetch incorrect CD stores (false memory 
dependences) or delay correct CD stores (true memory 
dependences). We define CIDD loads – these are CI loads 
influenced by stores within prior branches’ CD regions. CIDD loads 
are predicted at dispatch by accessing the store-set predictor 
(indexed by load PC). Predicted CIDD loads are then copied into 
the RXB like normal CIDD instructions. Accordingly, a CIDD load 
and its poisoned CIDD descendants will be re-injected from the 
RXB when a branch misprediction is detected (if the CIDD load 
depends on it), eliminating an exception if the branch misprediction 
removes or inserts an influencing store. 
A conventional store-set predictor works for stores currently in the 
window, but stores fetched late have no way to convey their 
influence to the CIDD loads. To improve the accuracy of the store-
set predictor, we augment it with branch proxies for potential stores 
(called branch-sets). Hence, the modified store-set predictor will 
predict if the window contains any potentially violating stores, both 
current stores and potential late stores. 

4.6 Reconvergence Predictor Misinformation 
The reconvergence predictor may provide a flawed reconvergent 
PC, incomplete IRS, or misleading CD path length for a branch. 
Inaccuracies are detected when fetching CD instructions of the 
branch. If inaccurate information is detected during the first pass 
through the CD region, it can be amended. If detected during the 
second pass (repairing mispredicted branch), it is handled by 
forgoing control independence. We call the latter “downgrades” 
(downgrade to conventional recovery). The frequency of 
downgrades is reported in results. 

5. SIMULATION METHODOLOGY 
We implemented the TCI microarchitecture on a detailed cycle-
level simulator. Table 2 shows microarchitecture parameters. A 
functional simulator is run concurrently with and independently of 
the timing simulator, to confirm correctness. For comparison, the 
baseline is TCI with the dynamic reconvergence predictor disabled, 
which ensures conventional (full) recovery for all branch 
mispredictions. Thus, the baseline is a checkpoint-based superscalar 
processor with aggressive register reclamation [3]. 
We use 11 SPEC2K integer benchmarks and 4 SPEC95 integer 
benchmarks compiled with the Simplescalar gcc compiler [4] for the 
PISA ISA with -O3 optimization. Reference inputs are used.  
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64KB, 4-way, 64B line,  
LRU, L1hit = 1 cycle

2MB, 8-way, 64B line,
LRU, L2hit = 10 cycles,

L2miss = 200 cycles
Branch predictor perceptron (128KB)

Memory dependence
prediction

Physical registers 256
Checkpoints 16

CFS 16 entries
Issue width 4 or 8

# pipeline stages 20
Issue queue 32 or 64

Load/store queue
(LSQ)

Re-execution buffer
(RXB)

Temp buffer (TB) 128

512

256

L1 I & D caches

L2 unified cache

store/branch sets

 

SimPoint
3.2

(100m) Base TCI Base TCI IQ32 IQ64 IQ32 IQ64 IQ32 IQ64 IQ32 IQ64
bzip2-program-ref 406 2.73 2.74 12.74 12.17 1.57 1.60 1.83 1.91 115% 124% 168% 208%
compress95-bigtest-ref 374 0.31 0.31 10.01 9.92 1.60 1.62 1.80 1.89 98% 120% 119% 171%
crafty-ref 1466 0.06 0.06 5.67 6.17 2.41 2.43 3.11 3.33 55% 61% 81% 108%
gap-ref 1619 0.99 1.04 2.18 2.27 2.86 2.95 3.62 3.96 20% 24% 26% 33%
gcc-expr-ref 89 0.11 0.12 4.99 5.60 2.36 2.38 3.02 3.13 46% 50% 66% 81%
go95-5stone21-ref 138 0.02 0.02 20.65 21.21 1.21 1.21 1.32 1.33 186% 205% 254% 342%
gzip-graphic-ref 774 0.73 0.73 10.42 10.56 1.63 1.64 1.89 1.94 102% 113% 128% 178%
ijpeg95-specmun-ref 84 0.63 0.63 4.67 4.83 2.51 2.54 3.37 3.59 42% 44% 66% 76%
li95-ref 329 0.00 0.00 5.24 6.42 2.42 2.45 3.05 3.22 52% 59% 79% 96%
mcf-ref 441 128.13 128.87 5.02 4.75 0.10 0.10 0.10 0.11 1% 2% 1% 1%
parser-ref 2803 0.04 0.04 7.69 7.66 1.75 1.85 1.99 2.19 53% 71% 61% 90%
perlbmk-diffmail-ref 117 0.04 0.04 2.34 2.40 2.97 3.00 4.21 4.45 25% 28% 38% 46%
twolf-ref 1075 0.02 0.03 13.43 16.59 1.36 1.41 1.49 1.58 86% 116% 101% 149%
vortex-two-ref 407 0.97 0.99 0.29 0.30 3.54 3.63 5.18 5.66 3% 3% 4% 5%
vpr-route-ref 528 5.48 6.91 9.98 9.62 1.18 1.24 1.32 1.44 73% 95% 73% 97%

Base IPC
4-issue 8-issue

Perfect %IPC improvement
4-issue 8-issueBenchmarks

L2 load Branch misp. 
miss/1k inst /1k inst
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For all benchmarks, a single simulation point of 100 million 
instructions was selected using the SimPoint 3.2 [27] toolkit. In 
addition, predictors and caches are warmed up for 10 million 
instructions prior to starting the simulation point. Table 3 shows 
benchmarks, inputs, and selected simulation points. 

6. RESULTS 
We present performance results for five models: Base (the 
baseline described in Section 5), Proxy, Seq CI, TCI, and Perfect 
(the baseline with perfect branch prediction). Proxy, Seq CI, and 
TCI leverage the Drain IQ re-execution substrate (see Section 3). 
Table 3 shows the IPCs for Base for 4-issue and 8-issue pipelines 
with 32-entry and 64-entry issue queues. IPC improvement of 
Perfect over Base is also shown in Table 3. 

6.1 Performance and Analysis 
Figure 9 shows the performance improvement of the various 
models over Base, for 4-issue pipelines with 32-entry and 64-
entry issue queues. The 64-entry issue queue results are shown as 
error bars with respect to the 32-entry bars. TCI improves IPC by 
up to 61% (64%) over Base with a 32-entry (64-entry) issue 
queue. The average IPC improvement of TCI over Base, across all 
benchmarks, is 16% for both issue queue sizes. 
Figure 10 shows corresponding IPC improvements over Base for 
8-issue pipelines. The maximum improvement of TCI over Base 
increases to 78% (88%) for a 32-entry (64-entry) issue queue, as 
the opportunity cost of mispredictions is higher for the wider 
pipeline. On average, TCI achieves 20% (22%) IPC improvement 
over Base for a 32-entry (64-entry) issue queue. 

Table 2. Microarchitecture. Table 3. Benchmarks.

Figure 9. Performance improvement for 4-issue pipeline. 

Figure 10. Performance improvement for 8-issue pipeline. 
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TCI consistently and significantly outperforms Seq CI, making 
clear that resequencing all CI instructions after a misprediction 
does not fully capitalize on control independence opportunity. 
Furthermore, as a consequence of limiting the window to the size 
of the RXB, Seq CI degrades performance on some benchmarks 
with respect to the ROB-free Base.  
Proxy is not resource efficient. As seen in Figure 9 and Figure 10, 
for the 32-entry issue queue, TCI outperforms Proxy in all 
benchmarks. In some benchmarks (e.g., li, vpr), Proxy degrades 
with respect to Base as a result of issue queue pressure caused by 
proxy and CIDD instructions. The average gain for Proxy drops 
from 11% to 6% on a 4-issue pipeline when the issue queue size 
is reduced from 64 to 32. In contrast, TCI and Seq CI are less 
sensitive to the issue queue size. 
To understand the performance improvements of TCI, we refer to 
measurements in Table 3 (L2 load misses per 1000 instructions, 
branch mispredictions per 1000 instructions) and Figure 11. The 
latter provides a breakdown of branch mispredictions. Some 
mispredictions are not covered because they have a maximum CD 
path length that exceeds our chosen threshold of 256 (Non-CI Br) 
or they resolve before reconverging. For some mispredictions, 
control independence is attempted (CI Br) but it fails due to 
downgrade scenarios, two of which are (i) incomplete IRS (IRS 
downgrade) and (ii) exceed temp buffer (TB downgrade) thereby 
preventing RXB expansion. Control independence cannot be 
exploited in these cases. Due to this, in some benchmarks where 
branch misprediction rates are fairly high, Perfect shows great 
promise but TCI cannot exploit enough control independence 
resulting in more modest performance gains (e.g.,bzip,compress). 
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To not artificially favor misprediction-tolerance, we chose the high 
quality perceptron predictor [13]. Notice in Table 3 branch 
misprediction rates for TCI are typically higher than for Base. This 
is mainly due to gaps in global history (branches in mispredicted 
CD regions are omitted from global history used by future 
branches). We found the perceptron predictor to be relatively more 
resilient to history gaps than gshare. Further, TCI can tolerate some 
extra mispredictions. 
We analyze the 64-entry issue queue results by grouping 
benchmarks based on branch misprediction rates (Table 3) and 
control independence coverage (CI coverage) (Figure 11): 
■ Group A (bzip, compress, go, gzip, twolf, and vpr): High 

misprediction frequency (9 to 21/1K inst.). Gzip and twolf post 
significant speedups due to high CI coverage (92% and 83%): 64% 
and 52% on 4-issue, and 88% and 64% on 8-issue. Go posts a 
medium speedup: 30% for 4-issue and 35% for 8-issue. Though it 
has the highest branch misprediction frequency, benefits are 
limited by medium CI coverage (64%), leaving about 7.6 

mispredictions uncovered per 1000 instructions. For bzip, 
compress, and vpr, CI coverage is moderate (54%, 54% and 40%) 
leading to moderate speedups: 7%, 11%, and 14% for 4-issue, and 
7%, 14%, and 19% for 8-issue. 
■ Group B (crafty, gcc, ijpeg, li, and parser): Moderate 
misprediction frequency (4 to 8/1K inst.). For crafty, gcc, ijpeg, 
and parser, CI coverage is medium to high (55%-88%), yielding 
modest speedups: 11%, 10%, 28%, and 11% on 4-issue, and 17%, 
12%, 45% and 12% on 8-issue. Li shows low speedups (1-3%) due 
to its low CI coverage (37%). In li, most branch mispredictions 
resolve before fetching their reconvergent points. 
■ Group C (gap, perl, and vortex): Low misprediction frequency 
(less than 3/1K inst.). Group C does not benefit from TCI due to 
excellent accuracy in the simulated regions, yielding performance 
close to Perfect. 
■ Group D (mcf): Moderate misprediction frequency, but very 
high L2 miss rate. For mcf, the simulated region is dominated by a 
high frequency of serialized L2 misses, as shown in the third 
column of Table 3. Despite high CI coverage (81%), the penalty of 
branch mispredictions is masked since they occur in the shadow of 
L2 misses. This is confirmed by the negligible gains for Perfect. 

6.2 Instruction Breakdown 
Figure 12 characterizes retired instructions in the context of branch 
mispredictions. SBM (“shadow of branch misprediction”) refers to 
control independent instructions that are logically in the window 
when a prior misprediction is detected. (In TCI, these are preserved 
whereas Base squashes and re-fetches them.) In contrast, 
instructions before mispredictions or instructions fetched after a 
misprediction has initiated servicing, are not considered to be in the 
shadow of a branch misprediction (Non-SBM). SBM instructions 
represent control independence opportunity, Non-SBM do not. 
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SBM instructions are broken down further into those that were 
inserted into the RXB (CIDD) and those that were not (CIDI). 
Among those that were inserted into the RXB, we indicate if they 
had to be reinjected (CIDD reinject) or not (CIDD no-reinject). 
SBM+CIDD reinject occurs when the instruction is CIDD with 
respect to the mispredicted branch (must re-execute). SBM+CIDD 
no-reinject occurs when the instruction is not CIDD with respect to 
the mispredicted branch, but rather a different correctly predicted 
branch. Thus, SBM+CIDD no-reinject is tantamount to SBM+CIDI 
with respect to the misprediction. 
Summing up, the top two classes in Figure 12 (SBM+CIDD no-
reinject, SBM+CIDI) represent savings compared to conventional 
(full) recovery. Benchmarks in Group A and Group B have the 
largest percentages of these misprediction-independent instructions 
(7%-33% for Group A and 4%-11% for Group B). Their speedups 

Figure 11. Breakdown of branch mispredictions. 

Figure 12 . Breakdown of all instructions. 

458



in Figure 9 and Figure 10 correlate well with their percentages of 
saved instructions. 

7. ADDITIONAL RELATED WORK 
We already compared and contrasted TCI with the following control 
independence architectures in Section 3 and, in the interest of space, 
that discussion is not repeated here: speculative multithreading 
architectures such as Multiscalar [22] and DMT [2], trace processors 
[20], and superscalar based implementations including instruction 
reuse [21], dual ROBs [6], Skipper [5], exact convergence [10], and 
a generic implementation [19]. 
ReSlice [24] uses slice re-execution to selectively recover from data 
misspeculation. Correct repair is guaranteed by checking for 
sufficient slice conditions. In general, ReSlice is designed for any 
data misspeculation handling including control-flow influenced data 
misspeculation, but it was studied only for thread-level speculation 
(TLS). ReSlice aborts slice re-execution if there are branches 
(whether in the slice or not) that change the slice’s instructions. As 
we illustrated with the example in Section 4.2.1 of two co-mingled 
CIDD slices, RXB reconstruction allows slices to change, moreover, 
the co-mingled slices can resequence in any order, with correct 
results. 
The continual flow pipeline (CFP) [23] is related to our work in that 
CFP takes an analogous approach for releasing resources of L2 miss 
dependent instructions. However, CFP does not exploit control 
independence. 
Multipath execution [1][11][14][25][26] reduces misprediction 
penalties, but also decreases performance and increases power 
consumption when both paths of a correctly predicted branch are 
fetched/executed. Predication (e.g., [15][17]) has the same 
drawback of consuming excess resources by fetching/executing 
multiple paths, and also delays forwarding of correct speculative 
values outside of predicated blocks. 

8. SUMMARY 
For misprediction-inflicted workloads running on deep superscalar 
pipelines, exploiting control independence is an effective means for 
reducing the performance penalty of branch mispredictions. 
The essential goal of exploiting control independence is to 
completely decouple future misprediction-independent instructions 
from deferred misprediction-dependent instructions. Previous 
implementations fall short of complete decoupling because they still 
explicitly maintain order among all instructions. TCI is successful 
because it enforces order indirectly, by breaking dependences 
between co-mingled misprediction-independent and misprediction-
dependent instructions. TCI facilitates truly selective recovery in 
terms of burning a minimum amount of extra resources and 
bandwidth on a condensed recovery stream, yielding higher 
performance than all previous approaches and presenting a 
qualitatively compelling streamlined design. 

9. ACKNOWLEDGMENTS 
This research was supported by NSF grant No. CCR-0429843, NSF 
CAREER grant No. CCR-0092832, and generous funding and 
equipment donations from Intel. Any opinions, findings, and 
conclusions or recommendations expressed herein are those of the 
authors and do not necessarily reflect the views of the NSF. 

10. REFERENCES 
[1] P. Ahuja, K. Skadron, M. Martonosi, D. Clark. Multipath 

Execution: Opportunities and Limits. ICS, 1998. 
[2] H. Akkary and M. Driscoll. A Dynamic Multithreading 

Processor. MICRO-31, 1998. 
[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Processing 

and Recovery: Towards Scalable Large Instruction Window 
Processors. MICRO-36, 2003. 

[4] D. Burger, T. Austin, S. Bennett. Evaluating Future 
Microprocessors: The Simplescalar Toolset. July 1996. 

[5] C-Y. Cher,T. Vijaykumar. Skipper: A Microarchitecture for 
Exploiting Control-flow Independence. MICRO-34,2001. 

[6] Y. Chou et al. Reducing Branch Misprediction Penalties via 
Dynamic Control Independence Detection. ICS, 1999. 

[7] G. Chrysos and J. Emer. Memory Dependence Prediction Using 
Store Sets. ISCA-25, 1998. 

[8] J. D. Collins et al. Control Flow Optimizations Via Dynamic 
Reconvergence Prediction. MICRO-37, 2004. 

[9] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order 
Commit Processors. HPCA-10, 2004. 

[10] A. Gandhi et al. Reducing Branch Misprediction Penalty via 
Selective Branch Recovery. HPCA-10, 2004. 

[11] T. Heil and J. Smith. Selective Dual Path Execution. Tech. 
Report, ECE Department, UW-Madison, 1996. 

[12] W.-M. Hwu and Y. N. Patt. Checkpoint repair for out-of-order 
execution machines. IEEE Transactions on Computers, 
36(12):1496-1514, Dec. 1987. 

[13] D. A. Jimenez and C. Lin. Dynamic Branch Prediction with 
Perceptrons. HPCA-7, 2001. 

[14] A. Klauser, A. Paithankar, D. Grunwald. Selective Eager 
Execution on the Polypath Architecture. ISCA-25, 1998. 

[15] A. Klauser et al. Dynamic Hammock Predication for Non-
predicated Instruction Set Architectures. PACT, 1998. 

[16] A. R. Lebeck et al. A Large, Fast Instruction Window for 
Tolerating Cache Misses. ISCA-29, 2002. 

[17] S. Mahlke et al. A Comparison of Full and Partial Predicated 
Execution Support for ILP Processors. ISCA-22, 1995. 

[18] M. Moudgill et al. Register Renaming and Dynamic Speculation: 
an Alternative Approach. MICRO-26, 1993. 

[19] E. Rotenberg, Q. Jacobson, J. Smith. A Study of Control 
Independence in Superscalar Processors. HPCA-5, 1999. 

[20] E. Rotenberg and J. Smith. Control Independence in Trace 
Processors. MICRO-32, 1999. 

[21] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. ISCA-24, 
1997. 

[22] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar 
Processors. ISCA-22, 1995. 

[23] S. T. Srinivasan et al. Continual Flow Pipelines. ASPLOS-XI, 
2004. 

[24] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. Reslice: 
Selective Re-execution of Long-Retired Misspeculated 
Instructions Using Forward Slicing. MICRO-38, 2005. 

[25] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Path 
Execution. ISCA-25, 1998. 

[26] S. Wallace, D. Tullsen, B. Calder. Instruction Recycling on a 
Multiple-Path Processor. HPCA, 1999 

[27]  T. Sherwood et al. Automatically Characterizing Large Scale 
Program Behavior. ASPLOS-X, 2002. 

459



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


