
Transparent Control Independence (TCI)
Ahmed S. Al-Zawawi Vimal K. Reddy Eric Rotenberg Haitham H. Akkary*

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC

{aalzawa, vkreddy, ericro}@ece.ncsu.edu

*Digital Enterprise Group
Intel Corporation

Hillsboro, OR

haitham.h.akkary@intel.com

ABSTRACT
Superscalar architectures have been proposed that exploit control
independence, reducing the performance penalty of branch
mispredictions by preserving the work of future misprediction-
independent instructions. The essential goal of exploiting control
independence is to completely decouple future misprediction-
independent instructions from deferred misprediction-dependent
instructions. Current implementations fall short of this goal
because they explicitly maintain program order among
misprediction-independent and misprediction-dependent
instructions. Explicit approaches sacrifice design efficiency and
ultimately performance.
We observe it is sufficient to emulate program order. Potential
misprediction-dependent instructions are singled out a priori and
their unchanging source values are checkpointed. These
instructions and values are set aside as a “recovery program”.
Checkpointed source values break the data dependencies with co-
mingled misprediction-independent instructions – now long since
gone from the pipeline – achieving the essential decoupling
objective. When the mispredicted branch resolves, recovery is
achieved by fetching the self-sufficient, condensed recovery
program. Recovery is effectively transparent to the pipeline, in
that speculative state is not rolled back and recovery appears as a
jump to code. A coarse-grain retirement substrate permits the
relaxed order between the decoupled programs. Transparent
control independence (TCI) yields a highly streamlined pipeline
that quickly recycles resources based on conventional speculation,
enabling a large window with small cycle-critical resources, and
prevents many mispredictions from disrupting this large window.
TCI achieves speedups as high as 64% (16% average) and 88%
(22% average) for 4-issue and 8-issue pipelines, respectively,
among 15 SPEC integer benchmarks. Factors that limit the
performance of explicitly ordered approaches are quantified.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General.

General Terms Performance, Design.

Keywords Branch prediction, control independence, selective
recovery, selective re-execution, checkpoints, speculation.

1. INTRODUCTION
The performance of contemporary superscalar pipelines is
profoundly affected by branch prediction accuracy. Even with
modest issue widths of 3 to 6 instructions per cycle, the Intel
Pentium-4 and IBM POWER5 processors form speculative
instruction windows as deep as 126 and 200 instructions,
respectively. A single branch misprediction may flush upwards of
100 in-flight instructions, causing extended retirement stalls as the
pipeline gradually refills. Because of the large per-misprediction
penalty, branch misprediction rates of 5-10% cause a
disproportionate performance loss. Using our detailed cycle-level
simulator of a 4-issue superscalar processor with a pipeline depth
and memory hierarchy modeled after the Pentium-4, a state-of-
the-art perceptron branch predictor [13] often achieves only half
the performance of perfect branch prediction for SPEC integer
benchmarks.
The performance penalty of mispredictions can be reduced by
exploiting control independence [2][5][6][10][19][20][21][22],
depicted in Figure 1. The figure shows a branch and instructions
after it. Instructions between the branch and its reconvergent point
are control-dependent (CD) on the branch, in that the outcome of
the branch affects which CD instructions are fetched. Instructions
after the reconvergent point are control-independent (CI) of the
branch because they are fetched irrespective of the branch’s
outcome. Nonetheless, control-independent data-dependent
(CIDD) instructions are influenced by the branch through data
dependences (either register or memory dependences). For
example, the consumer of R5 (after the reconvergent point)
depends on the first production of R5 (above the branch) if the
branch takes the left path or the second production of R5 if the
branch takes the right path. Therefore, the consumer of R5 is
influenced by the outcome of the branch and is consequently
CIDD with respect to the branch (similarly, control-independent
loads may be influenced by a prior branch through control-
dependent stores). In the example, other instructions after the
reconvergent point are not influenced by the branch in any way,
referred to as control-independent data-independent (CIDI)
instructions.
Conventional superscalar processors recover from a mispredicted
branch by flushing all instructions after it and restarting from
scratch at the branch. In contrast, superscalar processors that
exploit control independence conceptually (i) selectively remove
only the incorrect CD instructions from the window thus
preserving the CI instructions in the window, (ii) insert the correct
CD instructions in their place, and, (iii) among CI instructions,
only the CIDD instructions are selectively re-executed. Thus,
recovery is more selective and this reduces misprediction
penalties. Specifically, the work of misprediction-independent
instructions (CIDI) is saved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

448

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1250662.1250717&domain=pdf&date_stamp=2007-06-09

control-independent
data-dependent

(CIDD)

control-independent
data-independent

(CIDI)

co
nt

ro
l-d

ep
en

de
nt

(CD)

branch
R5<=

reconvergent point

<=R5

R5<=

Figure 1. Example control-flow region.

The essential goal of selective recovery is to completely decouple
the future misprediction-independent instructions (CIDI) from the
deferred misprediction-dependent instructions (CD and CIDD).
Existing solutions fall short of this goal because they still
explicitly maintain program order among the misprediction-
independent and misprediction-dependent instructions. They are
order-constrained for two reasons in particular:
■ They evolved from reorder buffer (ROB) based designs which
require program order for fine-grained retirement. Ultimately
this means the late-fetched correct CD instructions need to be
reordered with respect to the early-fetched CI instructions.
■ When CIDD instructions re-execute with changed values from
the repaired CD region, they may also need to re-reference
unchanged values from CIDI instructions. Ultimately this means
dependence order needs to be maintained among co-mingled
CIDI instructions and CIDD instructions.

Explicit program-ordered approaches sacrifice design efficiency
and performance, because they fail to truly decouple
misprediction-independent instructions from misprediction-
dependent instructions.
We propose that it is sufficient to mimic the effect of program
order between misprediction-independent and misprediction-
dependent instructions. The key innovation is to single out CIDD
instructions as they are fetched and checkpoint their CIDI-
supplied source values, breaking dependences with the CIDI
instructions. The CIDD instructions plus checkpointed source
values are set aside in a FIFO re-execution buffer (RXB) for
possible selective re-execution later. This is the first proposal for
truly decoupling CIDI and CIDD instructions. Now, fine-grain

retirement via a reorder buffer is the only reason for explicitly
maintaining order. To emulate in-order retirement, we propose
using a coarse-grain checkpoint-based retirement strategy
[3][9][12][18] which relaxes ordering constraints between
consecutive checkpoints.
When a branch is mispredicted, its incorrect CD instructions are
fetched followed by CI instructions. All instructions – correct and
incorrect – complete and speculatively release cycle-critical
resources as they drain from the pipeline (issue queue entries,
physical registers, etc.). When the mispredicted branch resolves,
recovery is achieved by fetching a self-sufficient condensed
“recovery program”: the correct CD instructions (fetched from the
instruction cache), the CIDD instructions (fetched from the RXB),
and all input values needed to launch the correct CD and CIDD
instructions (the branch’s checkpoint and the checkpointed CIDI-
supplied source values of CIDD instructions). Recovery is
effectively transparent to the pipeline, in that speculative state is
not rolled back and recovery appears as a jump to code.
Transparent control independence (TCI) yields a highly
streamlined pipeline that quickly recycles resources based on
conventional speculation, enabling a large window with small
cycle-critical resources, and prevents many mispredictions from
disrupting this large window.
Figure 2 shows a high-level view of TCI. Dynamic instructions
are shown from left to right in the order in which they are fetched
(fetch time). Correctly fetched and executed instructions are
shown in white and incorrectly fetched or executed instructions
are shown in gray. Correctly fetched instructions are labeled with
their order in sequential program order (incorrect CD instructions
are labeled with x’s instead). A branch is mispredicted at the
beginning of the fetch timeline. Thus, incorrect CD instructions
are fetched first followed by CIDI and CIDD instructions. The
first correctly fetched instruction is instruction 4. Some time later,
after fetching instruction 14, the misprediction is finally detected.
At this point the independent (thanks to input values from the
branch’s checkpoint and RXB) recovery program is fetched.
Notice the relaxed order: the recovery program’s instructions 1, 2,
3, 6’, 10’, and 12’ come after the speculative program’s
instruction 14 in the timeline. The pipeline does not differentiate
between the speculative and recovery programs, as shown. The
speculative state is not rolled back. Instead, the recovery program
transparently repairs the speculative state.

incorrect
CD C

ID
I

C
ID

I

correct
CD

C
ID

I

C
ID

I
C

ID
I

C
ID

I

Streamlined Pipeline:
No rollback,

Undifferentiated
instruction stream

drain

free
resources

allocate
resources

speculative program

self-sufficient
recovery program

checkpointed
values

branch
checkpoint

mispredict
branch

detect
mispredict

FETCH TIME

C
ID

I

C
ID

I

C
ID

D

C
ID

D

C
ID

D

C
ID

I
C

ID
I

C
ID

D

C
ID

D
C

ID
D

1 2 3 6' 10'12'

x x x x 4 5 6 7 8 9 10 11 12 13 14 15 16
fetch

Figure 2. Transparent Control Independence (TCI).

449

This paper makes the following chief contributions:
■ TCI concept and microarchitecture. We propose a new
approach that fully decouples misprediction-independent
instructions from misprediction-dependent instructions, yielding
a highly streamlined microarchitecture for exploiting control
independence. The key insight is checkpointing CIDI-supplied
source values of CIDD instructions. Another important aspect is
using a relaxed, coarse-grain retirement substrate.
■ Identifying CIDD instructions. Novel mechanisms are
developed for assembling the CIDD instructions: the control-
flow stack (CFS) for detecting arbitrary and nested reconvergent
points, predicting the influenced register set (IRS), poisoning
registers for identifying CIDD instructions, branch-sets for
identifying CIDD loads, etc.
■ RXB reconstruction. Since CIDD slices of multiple branches
are co-mingled within the RXB, servicing a branch
misprediction may require repairing CIDD slices of other
branches and selectively removing CIDD instructions of the
resolved branch. A simple unified solution – identify CIDD
instructions in the recovery program itself, as was done the first
time for the speculative program – enables arbitrary adjustments
to the RXB while preserving its simple FIFO policy.
■ Renaming partial programs: We propose a novel technique
for renaming the recovery program despite its CIDI gaps.
■ Comparing resource and bandwidth overheads for repairing
CIDD instructions. We analyze factors that reduce the
performance of explicit program-ordered approaches and
measure the impact of these factors. We show TCI uses fewer
resources and less bandwidth for repairing CIDD instructions.

Section 2 provides a high-level overview of the proposed TCI
microarchitecture. Section 3 discusses closely related work and
identifies factors that reduce performance of previous approaches.
Section 4 presents the TCI microarchitecture in detail. Section 5
covers the simulator and methodology. Results are presented in
Section 6. Additional related work is discussed in Section 7.
Finally, the paper is summarized in Section 8.

2. HIGH-LEVEL OVERVIEW OF TCI
MICROARCHITECTURE
Figure 3 shows our transparent control independence (TCI)
architecture. The shaded region highlights a resource-streamlined
pipeline that aggressively releases resources based on
conventional speculation. Correct and incorrect instructions alike

flow through the pipeline as fast as they would with conventional
speculation, aggressively freeing issue queue entries and physical
registers [3][9][18][23] on the assumption that branch predictions
are correct. Instructions drain from the pipeline as soon as they
complete – there is no reorder buffer (ROB) and precise
exceptions are achieved via checkpoints [3][9][12][18][23].
When a branch is encountered in the fetch unit, its predicted CD
instructions are fetched from the instruction cache (I-cache),
highlighted in Figure 3 with Step-1. These are soon followed by
the branch’s CI instructions, corresponding to Step-2 in the figure.
Both the predicted CD and CI instructions are renamed with the
speculative rename map and sent down the pipeline. The branch’s
CIDD instructions are identified in the dispatch stage and
duplicates of these instructions are set aside in a FIFO buffer, the
Selective Re-execution Buffer (RXB), as shown. When these
instructions issue and read their source operands from the
physical register file, copies of the source values are also set aside
with the corresponding instructions in the RXB. If, when the
branch executes, a misprediction is detected, control is
temporarily transferred to the correct target of the branch.
Corresponding to Step-3 in the figure, the branch’s correct CD
instructions are fetched from the I-cache and renamed using the
repair rename map, which is initialized from a corresponding
branch checkpoint thus ensuring the correct CD instructions have
values in the physical register file to begin execution with. When
the reconvergent point is encountered again, control is transferred
to the branch’s CIDD instructions in the RXB, corresponding to
Step-4 in the figure. These are also renamed using the repair
rename map to establish linkages with producer instructions prior
to the reconvergent point. A key point is that the branch’s CIDD
instructions residing in the RXB do not tie up cycle-critical
resources (issue queue entries and physical registers) and are
allocated resources only when control is transferred to the RXB,
just like instructions that are dispatched from the I-cache. Another
key point is that CIDDs’ source operands that depend on CIDI
instructions cannot be resolved by the repair rename map because
the CIDIs’ values were most likely freed from the physical
register file already and those that have not been freed are
inaccessible by the repair rename map anyway; fortunately the
source values were individually checkpointed previously and are
in the RXB with the CIDD instructions.
Loads issue aggressively and are speculative with or without
branch mispredictions [7]. Store-load dependences are also
resolved correctly, as we explain in Section 4.5.

I-cache
Spec.

Rename
Map

Check-
points

Repair
Rename

MapSelective Re-Execution Buffer
(RXB)

Issue
Queue

Phys.
RF

1
2

predicted CD

CI

3
correct

CD

4
re-execute

CIDD

FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

Figure 3. Transparent control independence (TCI) architecture.

450

3. UNDERSTANDING RELATED WORK
3.1 Qualitative Comparisons
There have been a number of proposals for exploiting control
independence in superscalar [5][6][10][19][20][21] and
speculatively multithreaded processors [2][22]. Exploiting control
independence involves three key implementation issues, and
different architectures address these issues in different ways and
with various compromises.
• Insertion/removal of CD instructions. The key challenge with
regard to CD instructions is arbitrary insertion/removal of CD
instructions in the middle of the window. The FIFO reorder buffer
(ROB) of conventional superscalar processors is structurally
incompatible with removing incorrect CD instructions and
inserting correct CD instructions (except the special case in which
the two branch paths are equal in length), because the ROB can
no longer be managed as a simple circular FIFO. Among ROB-
based implementations, the ROB can be managed as a linked-list
at the level of individual instructions [19], segments [19], or
processing elements [20][22], but at the cost of significant
complexity. Instruction reuse (or squash reuse) [21] and a related
dual ROB implementation [6] avoid this complexity by re-
fetching/re-dispatching all instructions after the mispredicted
branch, emulating the simple control-flow repair model of full
flushing, but this yields a significantly weakened implementation
that only saves on re-execution bandwidth of CIDI instructions.
Two more recent ROB-based implementations (Skipper and Exact
Convergence) either pre-pad the ROB to make room for
expansion [5], potentially underutilizing the ROB or
overdesigning the ROB, or exploit control independence only for
the special case in which the correct branch target is the
reconvergent point itself (thus not requiring insertion of any CD
instructions) [10]. The expandable/contractable window of
speculative multithreading implementations [2][22] are
structurally compatible with arbitrary insertion/removal of CD
instructions, but this is achieved as a byproduct of departing from
the familiar superscalar paradigm, moreover, mispredictions cause
full flushing within threads thus not exploiting arbitrary
reconvergent points.
• Selectively re-renaming CIDD instructions. After repairing the
CD region of the mispredicted branch, CIDD instructions with
stale source names have to be identified and re-renamed to
establish linkages with their correct producers (e.g., the R5
consumer in Figure 1). Some implementations resequence through
all CI instructions to locate CIDD instructions that require re-
renaming [2][19][20], expending time on scanning through all
instructions whether or not their source names require fixing. As
mentioned, instruction reuse [21] and the dual ROB
implementation [6] flush and re-fetch/re-dispatch all instructions
after the mispredicted branch, thus needlessly re-renaming all
instructions. Skipper [5] and Exact Convergence [10] inject proxy
move instructions at the reconvergent point for logical registers
influenced by the branch (e.g., R5 in Figure 1), insulating CIDD
instructions from source name changes. Re-renaming is localized
to proxy instructions, at the cost of increased physical register
pressure, issue queue pressure, and ROB pressure for the proxy
instructions of each protected branch.
• Selectively re-executing CIDD instructions. After repairing the
CD region and fixing stale source names of CIDD instructions, all
CIDD instructions must be selectively re-executed. The drawback
of the above superscalar based implementations is that selective

re-execution of CIDD instructions (or deferred execution of CIDD
instructions in the case of Skipper [5]) increases pressure on
cycle-critical resources. Issue queue entries and source and
destination physical registers cannot be released for completed
CIDD instructions because they may need to selectively re-
execute. Release is delayed until corresponding branches resolve.
This is inefficient compared to conventional speculation, which
releases resources aggressively (issue queue slots and even
physical registers in some designs [3][9][18][23]) since
misprediction recovery involves rolling back to the mispredicted
branch anyway.
TCI compares favorably with previous control independence
architectures. The choice of a checkpoint-based, ROB-free
superscalar substrate with counter-based physical register
allocation/deallocation is meaningful, as this substrate is
structurally compatible with arbitrary insertion/removal of
instructions in an order-agnostic way as long as producer-
consumer dependences are respected. Thus, TCI avoids the
complexity of linked-list ROB management [19][20], the
performance degradation of full flushing [21], and the
underutilization of ROB padding [5]. And unlike speculative
multithreading [2][22], TCI maintains a familiar (superscalar)
execution model and exploits arbitrary reconvergent points. With
TCI, CIDD instructions are selectively re-renamed using the
compressed (CIDD instructions only) RXB, unlike
implementations that re-inspect all CI instructions [2][19][20].
Moreover, selective re-execution of CIDDs does not come at the
price of tying up precious cycle-critical resources such as issue
queue slots and physical registers. In contrast, previous
superscalar implementations increase resource pressure even in
the case of correct speculation, potentially impeding performance
in the common case (either by degrading IPC for an undersized
resource or increasing cycle time for an oversized resource).

3.2 Resource and Bandwidth Overheads
Different methods for re-renaming and re-executing CIDD
instructions result in different resource and bandwidth overheads,
influencing performance. In this section, we compare the resource
and bandwidth overheads for repairing CIDD instructions, for
different generalized models on a common substrate. The
common substrate is a 4-issue ROB-free checkpointed processor
with aggressive register reclamation (described in Section 5). Due
to a common high-performance flexible-window substrate, we do
not capture the performance differences among different CD
insertion/removal methods (for example, the penalty of
reservation based approaches [5] is not captured).
Three generalized re-renaming models are considered. Proxy uses
proxy move instructions to insulate CI instructions from source
name changes, and only the proxies are re-renamed. Seq CI
sequences through all CI instructions to update stale source
names. Seq CIDD re-renames only the CIDD instructions, like in
TCI. Seq CIDD requires TCI’s mechanisms (specifically,
poisoning) for distinguishing a CIDD instruction’s source
operands as coming from either CIDI or CD/CIDD instructions –
only sources coming from CD or other CIDD instructions should
be re-renamed.
Two models are considered for selective re-execution of CIDD
instructions. Hold IQ is conservative, as it holds all instructions in
the issue queue. Drain IQ is aggressive, as it drains instructions
from the issue queue when they issue. For the Drain IQ model,

451

selective re-execution is achieved differently for Proxy, Seq CI,
and Seq CIDD. Proxy holds proxy and CIDD instructions in the
issue queue, signified as Drain IQ (partial). Seq CI uses a re-
execution buffer (RXB) containing all CI instructions. Seq CIDD
uses a compressed RXB containing only CIDD instructions.
Table 1 compares the resource and bandwidth requirements for
repairing CIDD instructions, for Base (conventional recovery),
Proxy, Seq CI, and Seq CIDD, on both Hold IQ and Drain IQ re-
execution substrates (Base always drains). In addition, the last
column in Table 1 cites specific implementations of these
approaches from the literature. Resources are further divided into
registers, issue queue entries, and RXB entries. Bandwidth is
further divided into re-renaming and re-execution bandwidth.
Note that TCI (Drain IQ/Seq CIDD) is qualitatively the best or
tied for best in every category. TCI may re-rename fewer or more
instructions than Proxy, depending on the number of proxy
instructions and CIDD instructions.

Issue Re- Re-
Queue renaming execution

Base none none none CIDD + CIDI CIDD + CIDI
CIDD +
proxy

Seq CI all all none CIDD + CIDI CIDD [19],[20]
Seq CIDD all all none CIDD CIDD

some CIDI + CIDD + CIDD +
CIDD + proxy proxy proxy

Seq CI none none all CIDD + CIDI CIDD [2],[6]
Seq CIDD none none CIDD CIDD CIDD TCI

none

Registers RXB

ªCited for the use of proxy inst., and not skipper style control independence.

 CI resequencing
bandwidth

proxy [5]ª,[10]

proxy

Hold resources until
branch resolves Related

work

H
ol

d
IQ

D
ra

in
 IQ

Proxy all all

Proxy

none

Model

Figure 4 shows the harmonic mean of IPCs for 14 of the SPEC
integer benchmarks listed in Table 3, for the seven models.
Benchmark mcf has been excluded from the harmonic mean
because its extremely low IPC drowns out trends. The issue queue
size is varied to understand resource pressure. The resource
inefficiency of the Hold IQ re-execution substrate is a major
bottleneck with small issue queues. In fact, Base outperforms all
Hold IQ models, for issue queues with fewer than 256 entries.
This is because the issue queue limits the overall window size
when all instructions are held in the issue queue.

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256
Issue Queue Size

H
ar

m
on

ic
 m

ea
n

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

Figure 4. Performance of different CIDD repair models.

Ideally, all instructions should free all cycle-critical resources
speculatively, allowing for a bigger window, and CIDD
instructions should only be re-allocated resources when selective
re-execution is required after a branch misprediction. Drain IQ
strives for this goal. However, Proxy falls short of this ideal
scenario because proxy and CIDD instructions remain in the issue
queue for possible selective re-execution. The residual issue

queue pressure is evident in Figure 4: Proxy is unique in its
sensitivity to issue queue size compared to other models with
Drain IQ. In fact, for a 16-entry issue queue, Proxy has no
performance advantage over conventional recovery (Base) let
alone the other selective recovery approaches. On the other hand,
a 64-entry issue queue enables Proxy to overtake Seq CI. Overall,
Seq CIDD (TCI) performs the best due to its combined bandwidth
and resource efficiency. Figure 5 shows similar trends for the
benchmark gzip, individually.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256
Issue Queue Size

IP
C

Drain IQ/Seq CIDD (TCI)
Drain IQ/Seq CI
Drain IQ (Partial)/Proxy
Base
Hold IQ/Seq CIDD
Hold IQ/Seq CI
Hold IQ/Proxy

Figure 5. Performance of different CIDD repair models (gzip).
Figure 6 shows the performance sensitivity of Drain IQ/Seq CI
and Drain IQ/Seq CIDD to the RXB size. Seq CI is very sensitive
to RXB size: all instructions are inserted into the RXB, therefore,
the RXB limits the overall window size (like a ROB). In contrast,
Seq CIDD is much less sensitive to the RXB size: only CIDD
instructions are inserted into the RXB, therefore, the RXB does
not limit the overall window size.

0.0

0.5

1.0

1.5

2.0

2.5

32 64 128 256 512
RXB Size

H
ar

m
on

ic
 m

ea
n

IP
C

Seq CIDD

Seq CI

Figure 6. Sensitivity to RXB size.

Figure 7 focuses on the re-rename bandwidth of Drain IQ/Seq
CIDD. The RXB contains CIDD instructions for multiple
branches in program order. Thus, other branches’ CIDD
instructions may increase the time to re-sequence, compared to re-
sequencing only the CIDD instructions of the mispredicted
branch. The latter model is labeled Drain IQ/Seq Br CIDD in the
graph. The graph shows little performance difference between the
two models. Moreover, there is little performance difference even
with Ideal, which re-sequences in 0 cycles.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

4-issue 8-issue 4-issue 8-issue

Harmonic mean Gzip

IP
C Seq CI

Seq CIDD
Seq Br CIDD
Ideal

Figure 7. Seq CIDD bandwidth.

Table 1. Resource and bandwidth usage for repairing CIDD
instructions.

452

4. TCI MICROARCHITECTURE
4.1 Identifying and Inserting CIDD
Instructions into RXB
This section explains how CIDD instructions are identified and
inserted into the RXB by the speculative rename map, in a
process called poisoning.

4.1.1 Reconvergent Point and Influenced Register
Set (IRS) Predictor
The compiler or a hardware predictor can be used to identify
branches’ reconvergent points. In this paper, we use the dynamic
reconvergence predictor proposed by Collins et al. [8]. We
augment the predictor to provide additional information for each
branch. First, the predictor keeps track of the maximum path
length through a branch’s control-dependent (CD) region, among
paths that were traversed. This information is useful for guiding
when to apply control independence. We select a maximum CD
path length above which it is not worthwhile to exploit control
independence due to the sheer number of incorrect CD
instructions. Second, we add a learning mechanism to collect a
branch’s influenced register set (IRS). As the predictor monitors
retired instructions for reconvergence, it keeps track of logical
registers written to after the branch and before reconvergence is
detected. The use of confidence ensures repetition, so that enough
different paths are traversed through a branch’s CD region to
yield a representative IRS.

4.1.2 Control-Flow Stack (CFS)
When a branch is dispatched, we must detect its reconvergent
point among later instructions as they are dispatched. The
reconvergent point marks the beginning of CI instructions, so it is
at this point that we need to mark, or “poison”, influenced
registers (indicated by the branch’s IRS) in the speculative
rename map.
A novel hardware mechanism called the control-flow stack (CFS)
detects reconvergent points in the dispatch stage. When a
checkpointed branch is dispatched, its reconvergent PC and
checkpoint tag (to identify the branch) are pushed onto the CFS
top-of-stack.
The next reconvergent point in the dynamic instruction stream is
detected by comparing the PCs of newly dispatched instructions
to the reconvergent PC at the top-of-stack. If there is a match,
then the branch corresponding to the current top-of-stack has
reconverged. We know which branch this is via the checkpoint
tag at the current top-of-stack. Since the beginning of control-
independent instructions has been reached, the branch’s IRS is
used to poison influenced registers at this time. Poisoning
registers is explained in the next section. Finally, the CFS top-of-
stack is popped (removed), re-exposing the next reconvergent
point to search for.
The CFS can detect cases in which multiple branches have the
same dynamic reconvergent point. If the reconvergent PC of a
newly dispatched branch matches the reconvergent PC at the CFS
top-of-stack, then the new branch and the branch corresponding to
the CFS top-of-stack have the same dynamic reconvergent point.1

1 They do not have the same dynamic reconvergent point if the call depths

of the two branches are different, e.g., due to recursion. We make the
test definitive by tracking call depth in the dispatch stage and including

In this case, the new branch does not push a new entry onto the
CFS, implicitly “merging” with the CFS top-of-stack.
There are three cases in which a branch is forced to inherit the
reconvergent point of its encompassing branch region: if the
branch does not have a predicted reconvergent PC, if there are no
free checkpoints, or if the branch is confidently predicted. The
branch corresponding to the CFS top-of-stack is the closest
encompassing branch. Thus, the new branch inherits the
reconvergent point of its encompassing branch simply by not
pushing onto the CFS and instead merging as explained above.
The CFS only needs as many entries as there are checkpoints (16
entries in this paper). CFS entries of branches that resolve before
they reconverge are collapsed away (since they are not popped).

4.1.3 Poison Vectors
After a branch’s CD region is fetched and its reconvergent point
is detected by the CFS, we are ready to use the branch’s IRS to
poison registers and thereby identify CIDD instructions. Each
influenced register specified in the IRS must be poisoned.
We provide a 16-bit poison vector per entry in the speculative
rename map. A logical register is poisoned if one or more bits are
set in its poison vector. Moreover, which bits are set indicates
which branches a logical register is influenced by. A
checkpointed branch is identified by its checkpoint tag. A non-
checkpointed branch is identified by the checkpoint tag of the
branch from which it inherited its reconvergent point (discussed
in Section 4.1.2). Since we use 16 checkpoints in this paper, a
poison vector has 16 bits.
When a branch reconverges, the poison vector of each influenced
register, specified by the IRS, is updated in the speculative
rename map. In particular, the poison bit corresponding to the
branch’s checkpoint tag is set.
CIDD instructions can now be identified during renaming. When
an instruction’s logical source registers are renamed, the
corresponding poison vectors are ORed together. If the ORed
vector has any bits set, the instruction is CIDD with respect to one
or more branches. Also, the ORed vector overwrites the poison
vector of the logical destination register, in the speculative
rename map. This propagates poison status for identifying indirect
CIDD instructions.
When a checkpoint is freed, the corresponding poison bit is
cleared in all poison vectors. Given that all branches associated
with the checkpoint are now resolved, no future instructions
should be considered CIDD with respect to these branches.
Only the speculative rename map, repair rename map, and
checkpoints have poison vectors. Poison vectors in the repair
rename map and checkpoints are discussed in Section 4.2.

4.1.4 Inserting CIDD instructions into the RXB
CIDD instructions are inserted into the RXB in program order at
the dispatch stage. When a CIDD instruction issues and reads its
source values from the physical register file, it replaces its source
mappings in its entry in the RXB with the source values (a bit is
set within its entry in the RXB to signify that source values have
replaced source mappings).

call depths in CFS entries. If the new branch’s reconvergent PC and call
depth match the CFS top-of-stack, then the branches have the same
dynamic reconvergent point.

453

4.2 Misprediction Recovery
When a misprediction is detected, the fetch unit temporarily
redirects fetching to the correct target of the mispredicted branch.
Correct CD instructions are fetched from the instruction cache
and renamed using the repair rename map initialized from a
checkpoint at the branch. The repair rename map, like the
speculative rename map, has its own CFS to detect the
reconvergent point again that marks the end of the correct CD
region (its CFS also identifies new nested branch regions). At this
point, the branch’s CIDD instructions are fetched from the RXB,
re-renamed using the repair rename map, and re-injected into the
pipeline. Finally, the repair rename map is used to fix up the
speculative rename map and checkpoints.

4.2.1 Reconstructing the RXB
The RXB contains CIDD instructions with respect to all
unresolved branches. This means the RXB must be reconstructed
when recovering from a branch misprediction, as follows.

• Case A. There may be instructions from the branch’s incorrect
CD path in the RXB, that were thought to be CIDD with respect
to other prior branches. These have to be removed from the
middle of the RXB.

• Case B. New instructions from the correct CD path may be
CIDD with respect to other prior branches. These have to be
inserted into the middle of the RXB.

• Case C. Instructions in the RXB that are only CIDD with
respect to the branch being serviced should be selectively
removed from the RXB, since they will not be revisited again.
Instructions in the RXB that are CIDD with respect to other
branches (whether or not they are also CIDD with respect to the
current branch) must remain in the RXB. Note that these two
types of instructions are co-mingled in the RXB.
There is only one solution and it is simple, because it is analogous
to initial CIDD identification and insertion into the RXB
described in the previous section. The recovery program for the
current branch is comprised of the correct CD instructions from
the instruction cache and all instructions in the RXB logically
after the resolved branch’s reconvergent point. (The recovery
program is not as efficient as it could be because it has CIDD
instructions of other branches that are not also CIDD with respect
to the current branch.) Poisoning of the recovery program via the
repair rename map can once again construct the RXB contents.
As a preliminary step, the RXB tail pointer is moved back to the
branch (even though the branch may not be in the RXB
physically, the branch knows its logical position in the RXB).
This naturally takes care of any incorrect CD instructions in the
RXB since they will get overwritten by the adjusted tail pointer
(case A). Then, poisoning the recovery program using the repair
rename map will naturally (1) insert new CIDD instructions with
respect to prior branches from among the correct CD instructions
(case B), and (2) insert old CIDD instructions only if they are
CIDD with respect to remaining unresolved branches (case C).
Since CIDD instructions are concurrently fetched from the RXB
(while fetching the recovery program) and inserted into the RXB
(while constructing a new recovery program), we need a
mechanism to prevent overwriting CIDD instructions in the RXB
before they are fetched. We set up a pre-read pointer into the
RXB, that points to the first CI instruction with respect to the
resolved branch. Since we moved the tail pointer to the branch,

the pre-read pointer is logically after the tail pointer. The pre-read
pointer is where fetching of CIDD instructions is supposed to
begin. If we wait until the correct CD path is fetched, some of the
CIDD instructions beginning at the pre-read pointer could get
clobbered by the advancing tail pointer. Therefore, using the pre-
read pointer, we begin pre-reading CIDD instructions from the
RXB right away so that they cannot get clobbered. They are
transferred to a Temp Buffer, from which fetching of CIDD
instructions will eventually begin (after the correct CD
instructions are fetched from the instruction cache).
Figure 8 shows a detailed RXB reconstruction example with two
branches, B1 and B2, and respective reconvergent points R1 and
R2. Logical positions of B1/R1 and B2/R2 with respect to RXB
instructions are indicated with wide black arrows. RXB
instructions are labeled with their position # in the dynamic
instruction stream. Noncontiguous numbers merely highlight that
CIDD instructions are noncontiguous. Instruction x is not
numbered because it is an incorrect CD instruction of
mispredicted branch B2. Furthermore, instructions are marked
with either a rectangle or oval: rectangles are CIDD with respect
to B1, ovals are CIDD with respect to B2, rectangle+oval are
CIDD with respect to both B1 and B2. Below we step through
each of the frames (a)-(g).
(a) Frame (a) shows the initial state of the RXB. B1 has no CD

instructions in the RXB since there are no branches prior to it.
B1 has four CIDD instructions after R1: 9, x, 16, 20. B2 has one
(incorrect) CD instruction, x. Instruction x is not in the RXB
because of B2 but rather because it is CIDD with respect to B1.
B2 has two CIDD instructions after R2: 18, 20.

(b) In frame (b), mispredicted branch B2 is detected, causing the
RXB tail to rollback to just after B2 (instruction x), and the
RXB pre-read pointer to initiate at the first CIDD instruction
past B2’s reconvergent point R2 (instruction 16).

(c) In frame (c), new instructions 11 and 12 – correct CD
instructions with respect to B2 – are fetched from the
instruction cache (I$) and dispatched for the first time to the
issue queue (To IQ). Moreover, instruction 12 is inserted into
the RXB because it is CIDD with respect to B1. Instruction 12
is inserted at the RXB tail (which then advances) thereby
replacing instruction x. Note also that pre-reading has begun:
instruction 16 is transferred to the Temp Buffer so that it is not
clobbered by B2’s incoming correct CD instructions.

(d) Similarly, in frame (d), we continue fetching and dispatching
the remainder of B2’s correct CD instructions (13 and 14). Both
13 and 14 are dispatched to the issue queue but only 14 is
inserted into the RXB, since 14 is CIDD with respect to B1.
Meanwhile we continue pre-reading instructions (18) into the
Temp Buffer.

(e) In frame (e), no more instructions are fetched from the I$
because B2’s reconvergent point R2 has been reached from the
correct CD path. We begin reinjecting and/or recirculating
CIDD instructions from the Temp Buffer. Frame (e) shows
instruction 16 leaving the Temp Buffer only to be recirculated
back to the RXB (CIDD on unresolved B1). It is not reinjected
into the issue queue because it is not CIDD on B2 (the
mispredicted branch).

454

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Tail

RXB
Head

Selective Re-execution Buffer
(RXB)

B1 R1 R2B2

x9 16 18 20

Hi
a

RXB
Pre-read

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Tail

RXB
Head

B1 R1 R2B2

9 16 18 20

Hi
b

x

Hi14

14

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9

16 18

20

RXB
Pre-read

12

R2

RXB
Tail

14

d13,1413

16

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9 16

18 20

12

R2

RXB
Tail

16

14

Hi
e

Hi18 To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9 16

18
20

12

R2

RXB
Tail

14

f

Hi20 To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1

9 16

20

12
RXB
Tail

14

20

20

g

Hi12

12

To IQ

To RXB
Temp Buffer (TB)ID

I$

RXB
Head

B1 R1 B2

9

16

18 20

RXB
Pre-read

12

R2

RXB
Tail

c11,1211

(f) However, instruction 18 in frame (f) is reinjected into the issue
queue (CIDD on resolved B2) and not recirculated back to the
RXB since it is not CIDD on B1.

(g) Finally, in frame (g), instruction 20 is both reinjected into the
issue queue and recirculated to the RXB from the Temp Buffer,
because it is CIDD on both B1 and B2. Since the Temp Buffer is
empty, we are done servicing B2.

4.2.2 Poisoning via Repair Rename Map
The repair rename map’s poison vectors are initialized from the
mispredicted branch’s checkpoint. While fetching the correct CD
instructions from the instruction cache and CIDD instructions from
the RXB, the poison vectors are managed the same way as
described for the speculative rename map (Section 4.1.3), except for
a subtle modification. The poison vectors of logical registers that
would have been updated by CIDI instructions, simply are not,
because they are not observed by the repair rename map. These
logical registers represent “holes” in the repair rename map and
their poison vectors cannot be referenced by an instruction’s source
registers. Fortunately, we know two things: (1) the poison vector
generated by a CIDI instruction is all 0’s because it is not CIDD
with respect to any unresolved branch, and (2) a CIDI instruction is
observed once (and only once) in either the speculative rename map
(CIDI immediately) or repair rename map (CIDI eventually). So,
when a source register of a CIDD instruction references a CIDI
production for the first and only time (signaled by an all-0 poison
vector in the rename map), a sticky bit (“CIDI_supplied”) associated
with the source register in the RXB is set to indicate that the source
register’s poison vector is by definition all 0s. Once
CIDI_supplied=1, in future passes, an all-0 poison vector is used
instead of referencing an absent poison vector in the repair rename
map.
The outcome of poisoning by the repair rename map indicates what
to do with each instruction. For correct CD instructions from the
instruction cache, the choices are: insert or do not insert into the
RXB. For CIDD instructions from the RXB, the choices are:
reinject only, insert (i.e., recirculate) only, reinject and insert, or
discard. An instruction is inserted into the RXB if poisoning
indicates that it is CIDD with respect to any unresolved branches.
An instruction is reinjected into the pipeline if poisoning indicates
that it is CIDD with respect to the mispredicted branch being
serviced.

4.2.3 Reinjecting CIDD Instructions
Only CIDD instructions from the RXB that are CIDD with respect
to the branch being serviced are reinjected into the pipeline. These
are re-renamed to bind physical registers and thereby facilitate re-
execution.
CIDI instructions are absent from re-renaming, just as they were
absent from poisoning. Now, additionally, CIDD instructions from
the RXB that are not reinjected are also absent from re-renaming.
The latter instructions are CIDD with respect to other branches but
not with respect to the branch being serviced. They are tantamount
to CIDI instructions with respect to the branch being serviced
(“implicit” CIDI instructions), and need not be re-executed. As
such, they are not re-allocated storage and do not participate in re-
renaming.
When re-renaming a source register of a reinjected CIDD
instruction, we need to determine if it depends on an explicit or
implicit CIDI instruction (the two cases outlined above) versus a CD Figure 8 . RXB reconstruction example.

455

or reinjected CIDD instruction. If it depends on an explicit or
implicit CIDI instruction, then the source value (if available) or
source mapping from the RXB is used in lieu of re-renaming,
because the repair rename map has a stale name. Otherwise, the
correct mapping is obtained from the repair rename map.
The source register depends on an explicit CIDI instruction if its
CIDI_supplied bit in the RXB is set. The source register depends on
an implicit CIDI instruction if its poison vector in the repair rename
map does not have the current branch’s bit set. Note, it is safe to
reference the poison vector because all CIDD instructions in the
RXB undergo poisoning. It is only unsafe to reference the poison
vector in the case of explicit CIDI instructions, which is why the
CIDI_supplied bit is checked first.
The reinjected CIDD instruction is allocated a new physical
destination register and updates the repair rename map accordingly.
If a CIDD instruction is both inserted (i.e., recirculated) into the
RXB and reinjected into the pipeline, its source registers may be
updated in the RXB, analogous to what was described in Section
4.1.4. Specifically, when it redispatches, a re-renamed source
register updates the corresponding source mapping in the RXB.
When it reissues, it reads values from the physical register file for
source registers that did not reuse values from the RXB. These new
values replace corresponding source mappings in the RXB.

4.2.4 Merging Repair/Speculative Rename Maps
When RXB reconstruction is completed, the repair rename map is
logically at the same point in the dynamic instruction stream as the
speculative rename map. Some mappings in the speculative rename
map have to be repaired using the repair rename map. Specifically,
any speculative mapping whose poison vector has the branch’s bit
set may be incorrect (it may have changed due to the control-flow
adjustment). We simply copy the corresponding mapping from the
repair rename map to the speculative rename map. All poison
vectors in the repair rename map are copied.
Checkpoint maps are repaired the same way, as the repair rename
map resequences through the RXB and reaches checkpoints along
the way.

4.3 Conventional Recovery
If a branch misprediction is detected before the fetch unit has
reached the branch’s reconvergent point, then there is no need to
transfer control to the repair rename map and RXB, as there are no
CI instructions with respect to the branch yet. This scenario is easily
detected by checking if the mispredicted branch has not yet popped
the CFS (not reconverged). In this case, the speculative rename map
is simply restored to the checkpoint corresponding to the
mispredicted branch as in conventional recovery.

4.4 Servicing Multiple Branch Mispredictions
TCI supports servicing new mispredictions concurrently with the
one being serviced, if the new mispredictions are logically after the
repair rename map. A new misprediction will begin servicing when
the repair rename map logically reaches it, in a natural continuation
of RXB reconstruction. After fetching the correct CD instructions of
the new misprediction, CIDD instructions of both the initial and
new mispredictions are reinjected concurrently. If a new
misprediction is logically before the repair rename map, we wait
until the initial RXB reconstruction completes before servicing the

new misprediction; however, an earlier misprediction that has not
reconverged is serviced immediately via conventional recovery.

4.5 Store/Load Queues and CIDD Loads
Loads issue speculatively and dependence violations are detected by
comparing completed stores against the load queue. Also, stores
commit in order. A key issue is that loads and stores may need to be
inserted and removed from the middle of the load/store queues as
mispredicted branches alternate CD paths, so that loads and stores
remain ordered. Rather than do this literally, we apply the same
technique that we used to adjust the RXB. Tail pointers are moved
back, and control independent loads/stores are pre-read and
recirculated into shifted positions. Note that this is equivalent to
what a conventional superscalar does, only it refetches the control
independent loads and stores from the instruction cache instead of
recirculating them from the load/store queues themselves.
Exploiting control independence increases load violations, due to
mispredicted branches that fetch incorrect CD stores (false memory
dependences) or delay correct CD stores (true memory
dependences). We define CIDD loads – these are CI loads
influenced by stores within prior branches’ CD regions. CIDD loads
are predicted at dispatch by accessing the store-set predictor
(indexed by load PC). Predicted CIDD loads are then copied into
the RXB like normal CIDD instructions. Accordingly, a CIDD load
and its poisoned CIDD descendants will be re-injected from the
RXB when a branch misprediction is detected (if the CIDD load
depends on it), eliminating an exception if the branch misprediction
removes or inserts an influencing store.
A conventional store-set predictor works for stores currently in the
window, but stores fetched late have no way to convey their
influence to the CIDD loads. To improve the accuracy of the store-
set predictor, we augment it with branch proxies for potential stores
(called branch-sets). Hence, the modified store-set predictor will
predict if the window contains any potentially violating stores, both
current stores and potential late stores.

4.6 Reconvergence Predictor Misinformation
The reconvergence predictor may provide a flawed reconvergent
PC, incomplete IRS, or misleading CD path length for a branch.
Inaccuracies are detected when fetching CD instructions of the
branch. If inaccurate information is detected during the first pass
through the CD region, it can be amended. If detected during the
second pass (repairing mispredicted branch), it is handled by
forgoing control independence. We call the latter “downgrades”
(downgrade to conventional recovery). The frequency of
downgrades is reported in results.

5. SIMULATION METHODOLOGY
We implemented the TCI microarchitecture on a detailed cycle-
level simulator. Table 2 shows microarchitecture parameters. A
functional simulator is run concurrently with and independently of
the timing simulator, to confirm correctness. For comparison, the
baseline is TCI with the dynamic reconvergence predictor disabled,
which ensures conventional (full) recovery for all branch
mispredictions. Thus, the baseline is a checkpoint-based superscalar
processor with aggressive register reclamation [3].
We use 11 SPEC2K integer benchmarks and 4 SPEC95 integer
benchmarks compiled with the Simplescalar gcc compiler [4] for the
PISA ISA with -O3 optimization. Reference inputs are used.

456

64KB, 4-way, 64B line,
LRU, L1hit = 1 cycle

2MB, 8-way, 64B line,
LRU, L2hit = 10 cycles,

L2miss = 200 cycles
Branch predictor perceptron (128KB)

Memory dependence
prediction

Physical registers 256
Checkpoints 16

CFS 16 entries
Issue width 4 or 8

pipeline stages 20
Issue queue 32 or 64

Load/store queue
(LSQ)

Re-execution buffer
(RXB)

Temp buffer (TB) 128

512

256

L1 I & D caches

L2 unified cache

store/branch sets

SimPoint
3.2

(100m) Base TCI Base TCI IQ32 IQ64 IQ32 IQ64 IQ32 IQ64 IQ32 IQ64
bzip2-program-ref 406 2.73 2.74 12.74 12.17 1.57 1.60 1.83 1.91 115% 124% 168% 208%
compress95-bigtest-ref 374 0.31 0.31 10.01 9.92 1.60 1.62 1.80 1.89 98% 120% 119% 171%
crafty-ref 1466 0.06 0.06 5.67 6.17 2.41 2.43 3.11 3.33 55% 61% 81% 108%
gap-ref 1619 0.99 1.04 2.18 2.27 2.86 2.95 3.62 3.96 20% 24% 26% 33%
gcc-expr-ref 89 0.11 0.12 4.99 5.60 2.36 2.38 3.02 3.13 46% 50% 66% 81%
go95-5stone21-ref 138 0.02 0.02 20.65 21.21 1.21 1.21 1.32 1.33 186% 205% 254% 342%
gzip-graphic-ref 774 0.73 0.73 10.42 10.56 1.63 1.64 1.89 1.94 102% 113% 128% 178%
ijpeg95-specmun-ref 84 0.63 0.63 4.67 4.83 2.51 2.54 3.37 3.59 42% 44% 66% 76%
li95-ref 329 0.00 0.00 5.24 6.42 2.42 2.45 3.05 3.22 52% 59% 79% 96%
mcf-ref 441 128.13 128.87 5.02 4.75 0.10 0.10 0.10 0.11 1% 2% 1% 1%
parser-ref 2803 0.04 0.04 7.69 7.66 1.75 1.85 1.99 2.19 53% 71% 61% 90%
perlbmk-diffmail-ref 117 0.04 0.04 2.34 2.40 2.97 3.00 4.21 4.45 25% 28% 38% 46%
twolf-ref 1075 0.02 0.03 13.43 16.59 1.36 1.41 1.49 1.58 86% 116% 101% 149%
vortex-two-ref 407 0.97 0.99 0.29 0.30 3.54 3.63 5.18 5.66 3% 3% 4% 5%
vpr-route-ref 528 5.48 6.91 9.98 9.62 1.18 1.24 1.32 1.44 73% 95% 73% 97%

Base IPC
4-issue 8-issue

Perfect %IPC improvement
4-issue 8-issueBenchmarks

L2 load Branch misp.
miss/1k inst /1k inst

-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

bzip compress crafty gap gcc go gzip ijpeg li mcf parser perl twolf vortex vpr

%
 IP

C
 im

pr
ov

em
en

t o
ve

r b
as

e

Drain IQ32
Drain IQ64

-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

Pr
ox

y
Se

q
C

I
TC

I

bzip compress crafty gap gcc go gzip ijpeg li mcf parser perl twolf vortex vpr

%
 IP

C
 im

pr
ov

em
en

t o
ve

r b
as

e

Drain IQ32
Drain IQ64

For all benchmarks, a single simulation point of 100 million
instructions was selected using the SimPoint 3.2 [27] toolkit. In
addition, predictors and caches are warmed up for 10 million
instructions prior to starting the simulation point. Table 3 shows
benchmarks, inputs, and selected simulation points.

6. RESULTS
We present performance results for five models: Base (the
baseline described in Section 5), Proxy, Seq CI, TCI, and Perfect
(the baseline with perfect branch prediction). Proxy, Seq CI, and
TCI leverage the Drain IQ re-execution substrate (see Section 3).
Table 3 shows the IPCs for Base for 4-issue and 8-issue pipelines
with 32-entry and 64-entry issue queues. IPC improvement of
Perfect over Base is also shown in Table 3.

6.1 Performance and Analysis
Figure 9 shows the performance improvement of the various
models over Base, for 4-issue pipelines with 32-entry and 64-
entry issue queues. The 64-entry issue queue results are shown as
error bars with respect to the 32-entry bars. TCI improves IPC by
up to 61% (64%) over Base with a 32-entry (64-entry) issue
queue. The average IPC improvement of TCI over Base, across all
benchmarks, is 16% for both issue queue sizes.
Figure 10 shows corresponding IPC improvements over Base for
8-issue pipelines. The maximum improvement of TCI over Base
increases to 78% (88%) for a 32-entry (64-entry) issue queue, as
the opportunity cost of mispredictions is higher for the wider
pipeline. On average, TCI achieves 20% (22%) IPC improvement
over Base for a 32-entry (64-entry) issue queue.

Table 2. Microarchitecture. Table 3. Benchmarks.

Figure 9. Performance improvement for 4-issue pipeline.

Figure 10. Performance improvement for 8-issue pipeline.

457

TCI consistently and significantly outperforms Seq CI, making
clear that resequencing all CI instructions after a misprediction
does not fully capitalize on control independence opportunity.
Furthermore, as a consequence of limiting the window to the size
of the RXB, Seq CI degrades performance on some benchmarks
with respect to the ROB-free Base.
Proxy is not resource efficient. As seen in Figure 9 and Figure 10,
for the 32-entry issue queue, TCI outperforms Proxy in all
benchmarks. In some benchmarks (e.g., li, vpr), Proxy degrades
with respect to Base as a result of issue queue pressure caused by
proxy and CIDD instructions. The average gain for Proxy drops
from 11% to 6% on a 4-issue pipeline when the issue queue size
is reduced from 64 to 32. In contrast, TCI and Seq CI are less
sensitive to the issue queue size.
To understand the performance improvements of TCI, we refer to
measurements in Table 3 (L2 load misses per 1000 instructions,
branch mispredictions per 1000 instructions) and Figure 11. The
latter provides a breakdown of branch mispredictions. Some
mispredictions are not covered because they have a maximum CD
path length that exceeds our chosen threshold of 256 (Non-CI Br)
or they resolve before reconverging. For some mispredictions,
control independence is attempted (CI Br) but it fails due to
downgrade scenarios, two of which are (i) incomplete IRS (IRS
downgrade) and (ii) exceed temp buffer (TB downgrade) thereby
preventing RXB expansion. Control independence cannot be
exploited in these cases. Due to this, in some benchmarks where
branch misprediction rates are fairly high, Perfect shows great
promise but TCI cannot exploit enough control independence
resulting in more modest performance gains (e.g.,bzip,compress).

0%

20%

40%

60%

80%

100%

bz
ip

co
m

pr
es

s

cr
af

ty

ga
p

gc
c go

gz
ip

ijp
eg

li

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r%
 o

f b
r m

is
pr

ed
ic

tio
ns CI Br successful

CI Br + TB downgrade
CI Br + IRS downgrade
Non-CI Br

To not artificially favor misprediction-tolerance, we chose the high
quality perceptron predictor [13]. Notice in Table 3 branch
misprediction rates for TCI are typically higher than for Base. This
is mainly due to gaps in global history (branches in mispredicted
CD regions are omitted from global history used by future
branches). We found the perceptron predictor to be relatively more
resilient to history gaps than gshare. Further, TCI can tolerate some
extra mispredictions.
We analyze the 64-entry issue queue results by grouping
benchmarks based on branch misprediction rates (Table 3) and
control independence coverage (CI coverage) (Figure 11):
■ Group A (bzip, compress, go, gzip, twolf, and vpr): High

misprediction frequency (9 to 21/1K inst.). Gzip and twolf post
significant speedups due to high CI coverage (92% and 83%): 64%
and 52% on 4-issue, and 88% and 64% on 8-issue. Go posts a
medium speedup: 30% for 4-issue and 35% for 8-issue. Though it
has the highest branch misprediction frequency, benefits are
limited by medium CI coverage (64%), leaving about 7.6

mispredictions uncovered per 1000 instructions. For bzip,
compress, and vpr, CI coverage is moderate (54%, 54% and 40%)
leading to moderate speedups: 7%, 11%, and 14% for 4-issue, and
7%, 14%, and 19% for 8-issue.
■ Group B (crafty, gcc, ijpeg, li, and parser): Moderate
misprediction frequency (4 to 8/1K inst.). For crafty, gcc, ijpeg,
and parser, CI coverage is medium to high (55%-88%), yielding
modest speedups: 11%, 10%, 28%, and 11% on 4-issue, and 17%,
12%, 45% and 12% on 8-issue. Li shows low speedups (1-3%) due
to its low CI coverage (37%). In li, most branch mispredictions
resolve before fetching their reconvergent points.
■ Group C (gap, perl, and vortex): Low misprediction frequency
(less than 3/1K inst.). Group C does not benefit from TCI due to
excellent accuracy in the simulated regions, yielding performance
close to Perfect.
■ Group D (mcf): Moderate misprediction frequency, but very
high L2 miss rate. For mcf, the simulated region is dominated by a
high frequency of serialized L2 misses, as shown in the third
column of Table 3. Despite high CI coverage (81%), the penalty of
branch mispredictions is masked since they occur in the shadow of
L2 misses. This is confirmed by the negligible gains for Perfect.

6.2 Instruction Breakdown
Figure 12 characterizes retired instructions in the context of branch
mispredictions. SBM (“shadow of branch misprediction”) refers to
control independent instructions that are logically in the window
when a prior misprediction is detected. (In TCI, these are preserved
whereas Base squashes and re-fetches them.) In contrast,
instructions before mispredictions or instructions fetched after a
misprediction has initiated servicing, are not considered to be in the
shadow of a branch misprediction (Non-SBM). SBM instructions
represent control independence opportunity, Non-SBM do not.

0%

20%

40%

60%

80%

100%

bz
ip

co
m

pr
es

s

cr
af

ty

ga
p

gc
c go

gz
ip

ijp
eg

li

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

%
 o

f i
ns

tru
ct

io
ns

SBM + CIDI
SBM + CIDD no-reinject
SBM + CIDD reinject
Non-SBM

SBM instructions are broken down further into those that were
inserted into the RXB (CIDD) and those that were not (CIDI).
Among those that were inserted into the RXB, we indicate if they
had to be reinjected (CIDD reinject) or not (CIDD no-reinject).
SBM+CIDD reinject occurs when the instruction is CIDD with
respect to the mispredicted branch (must re-execute). SBM+CIDD
no-reinject occurs when the instruction is not CIDD with respect to
the mispredicted branch, but rather a different correctly predicted
branch. Thus, SBM+CIDD no-reinject is tantamount to SBM+CIDI
with respect to the misprediction.
Summing up, the top two classes in Figure 12 (SBM+CIDD no-
reinject, SBM+CIDI) represent savings compared to conventional
(full) recovery. Benchmarks in Group A and Group B have the
largest percentages of these misprediction-independent instructions
(7%-33% for Group A and 4%-11% for Group B). Their speedups

Figure 11. Breakdown of branch mispredictions.

Figure 12 . Breakdown of all instructions.

458

in Figure 9 and Figure 10 correlate well with their percentages of
saved instructions.

7. ADDITIONAL RELATED WORK
We already compared and contrasted TCI with the following control
independence architectures in Section 3 and, in the interest of space,
that discussion is not repeated here: speculative multithreading
architectures such as Multiscalar [22] and DMT [2], trace processors
[20], and superscalar based implementations including instruction
reuse [21], dual ROBs [6], Skipper [5], exact convergence [10], and
a generic implementation [19].
ReSlice [24] uses slice re-execution to selectively recover from data
misspeculation. Correct repair is guaranteed by checking for
sufficient slice conditions. In general, ReSlice is designed for any
data misspeculation handling including control-flow influenced data
misspeculation, but it was studied only for thread-level speculation
(TLS). ReSlice aborts slice re-execution if there are branches
(whether in the slice or not) that change the slice’s instructions. As
we illustrated with the example in Section 4.2.1 of two co-mingled
CIDD slices, RXB reconstruction allows slices to change, moreover,
the co-mingled slices can resequence in any order, with correct
results.
The continual flow pipeline (CFP) [23] is related to our work in that
CFP takes an analogous approach for releasing resources of L2 miss
dependent instructions. However, CFP does not exploit control
independence.
Multipath execution [1][11][14][25][26] reduces misprediction
penalties, but also decreases performance and increases power
consumption when both paths of a correctly predicted branch are
fetched/executed. Predication (e.g., [15][17]) has the same
drawback of consuming excess resources by fetching/executing
multiple paths, and also delays forwarding of correct speculative
values outside of predicated blocks.

8. SUMMARY
For misprediction-inflicted workloads running on deep superscalar
pipelines, exploiting control independence is an effective means for
reducing the performance penalty of branch mispredictions.
The essential goal of exploiting control independence is to
completely decouple future misprediction-independent instructions
from deferred misprediction-dependent instructions. Previous
implementations fall short of complete decoupling because they still
explicitly maintain order among all instructions. TCI is successful
because it enforces order indirectly, by breaking dependences
between co-mingled misprediction-independent and misprediction-
dependent instructions. TCI facilitates truly selective recovery in
terms of burning a minimum amount of extra resources and
bandwidth on a condensed recovery stream, yielding higher
performance than all previous approaches and presenting a
qualitatively compelling streamlined design.

9. ACKNOWLEDGMENTS
This research was supported by NSF grant No. CCR-0429843, NSF
CAREER grant No. CCR-0092832, and generous funding and
equipment donations from Intel. Any opinions, findings, and
conclusions or recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the NSF.

10. REFERENCES
[1] P. Ahuja, K. Skadron, M. Martonosi, D. Clark. Multipath

Execution: Opportunities and Limits. ICS, 1998.
[2] H. Akkary and M. Driscoll. A Dynamic Multithreading

Processor. MICRO-31, 1998.
[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Processing

and Recovery: Towards Scalable Large Instruction Window
Processors. MICRO-36, 2003.

[4] D. Burger, T. Austin, S. Bennett. Evaluating Future
Microprocessors: The Simplescalar Toolset. July 1996.

[5] C-Y. Cher,T. Vijaykumar. Skipper: A Microarchitecture for
Exploiting Control-flow Independence. MICRO-34,2001.

[6] Y. Chou et al. Reducing Branch Misprediction Penalties via
Dynamic Control Independence Detection. ICS, 1999.

[7] G. Chrysos and J. Emer. Memory Dependence Prediction Using
Store Sets. ISCA-25, 1998.

[8] J. D. Collins et al. Control Flow Optimizations Via Dynamic
Reconvergence Prediction. MICRO-37, 2004.

[9] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order
Commit Processors. HPCA-10, 2004.

[10] A. Gandhi et al. Reducing Branch Misprediction Penalty via
Selective Branch Recovery. HPCA-10, 2004.

[11] T. Heil and J. Smith. Selective Dual Path Execution. Tech.
Report, ECE Department, UW-Madison, 1996.

[12] W.-M. Hwu and Y. N. Patt. Checkpoint repair for out-of-order
execution machines. IEEE Transactions on Computers,
36(12):1496-1514, Dec. 1987.

[13] D. A. Jimenez and C. Lin. Dynamic Branch Prediction with
Perceptrons. HPCA-7, 2001.

[14] A. Klauser, A. Paithankar, D. Grunwald. Selective Eager
Execution on the Polypath Architecture. ISCA-25, 1998.

[15] A. Klauser et al. Dynamic Hammock Predication for Non-
predicated Instruction Set Architectures. PACT, 1998.

[16] A. R. Lebeck et al. A Large, Fast Instruction Window for
Tolerating Cache Misses. ISCA-29, 2002.

[17] S. Mahlke et al. A Comparison of Full and Partial Predicated
Execution Support for ILP Processors. ISCA-22, 1995.

[18] M. Moudgill et al. Register Renaming and Dynamic Speculation:
an Alternative Approach. MICRO-26, 1993.

[19] E. Rotenberg, Q. Jacobson, J. Smith. A Study of Control
Independence in Superscalar Processors. HPCA-5, 1999.

[20] E. Rotenberg and J. Smith. Control Independence in Trace
Processors. MICRO-32, 1999.

[21] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. ISCA-24,
1997.

[22] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. ISCA-22, 1995.

[23] S. T. Srinivasan et al. Continual Flow Pipelines. ASPLOS-XI,
2004.

[24] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. Reslice:
Selective Re-execution of Long-Retired Misspeculated
Instructions Using Forward Slicing. MICRO-38, 2005.

[25] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Path
Execution. ISCA-25, 1998.

[26] S. Wallace, D. Tullsen, B. Calder. Instruction Recycling on a
Multiple-Path Processor. HPCA, 1999

[27] T. Sherwood et al. Automatically Characterizing Large Scale
Program Behavior. ASPLOS-X, 2002.

459

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

