
A Large, Fast Instruction Window for Tolerating Cache Misses

Alvin R. Lebecky Jinson Koppanalilz Tong Liy Jaidev Patwardhany Eric Rotenbergz

y Department of Computer Science
Duke University

Durham, NC 27708-90129 USA
falvy,tongli,jaidevg@cs.duke.edu

z Department of Electrical and Computer
Engineering

North Carolina State University
Raleigh, NC 27695-7914 USA

fjjkoppan,ericrog@ece.ncsu.edu

Abstract

Instruction window size is an important design parame-
ter for many modern processors. Large instruction windows
offer the potential advantage of exposing large amounts of
instruction level parallelism. Unfortunately, naively scal-
ing conventional window designs can significantly degrade
clock cycle time, undermining the benefits of increased par-
allelism.

This paper presents a new instruction window design tar-
geted at achieving the latency tolerance of large windows
with the clock cycle time of small windows. The key obser-
vation is that instructions dependent on a long latency op-
eration (e.g., cache miss) cannot execute until that source
operation completes. These instructions are moved out of
the conventional, small, issue queue to a much larger wait-
ing instruction buffer (WIB). When the long latency opera-
tion completes, the instructions are reinserted into the issue
queue. In this paper, we focus specifically on load cache
misses and their dependent instructions. Simulations reveal
that, for an 8-way processor, a 2K-entry WIB with a 32-
entry issue queue can achieve speedups of 20%, 84%, and
50% over a conventional 32-entry issue queue for a subset
of the SPEC CINT2000, SPECCFP2000, and Olden bench-
marks, respectively.

1 Introduction

Many of today’s microprocessors achieve high perfor-
mance by combining high clock rates with the ability to dy-
namically process multiple instructions per cycle. Unfortu-
nately, these two important components of performance are
often at odds with one another. For example, small hard-
ware structures are usually required to achieve short clock
cycle times, while larger structures are often necessary to
identify and exploit instruction level parallelism (ILP).

A particularly important structure is the issue window,

which is examined each cycle to choose ready instructions
for execution. A larger window can often expose a larger
number of independent instructions that can execute out-of-
order. Unfortunately, the size of the issue window is limited
due to strict cycle time constraints. This conflict between
cycle time and dynamically exploiting parallelism is exacer-
bated by long latency operations such as data cache misses
or even cross-chip communication [1, 22]. The challenge is
to develop microarchitectures that permit both short cycle
times and large instruction windows.

This paper introduces a new microarchitecture that rec-
onciles the competing goals of short cycle times and large
instruction windows. We observe that instructions depen-
dent on long latency operations cannot execute until the
long latency operation completes. This allows us to sepa-
rate instructions into those that will execute in the near fu-
ture and those that will execute in the distant future. The key
to our design is that the entire chain of instructions depen-
dent on a long latency operation is removed from the issue
window, placed in a waiting instruction buffer (WIB), and
reinserted after the long latency operation completes. Fur-
thermore, since all instructions in the dependence chain are
candidates for reinsertion into the issue window, we only
need to implement select logic rather than the full wakeup-
select required by a conventional issue window. Tracking
true dependencies (as done by the wakeup logic) is handled
by the issue window when the instructions are reinserted.

In this paper we focus on tolerating data cache misses,
however we believe our technique could be extended to
other operations where latency is difficult to determine at
compile time. Specifically, our goal is to explore the design
of a microarchitecture with a large enough “effective” win-
dow to tolerate DRAM accesses. We leverage existing tech-
niques to provide a large register file [13, 34] and assume
that a large active list1 is possible since it is not on the crit-
ical path [4] and techniques exist for keeping the active list

1By active list, we refer to the hardware unit that maintains the state of
in-flight instructions, often called the reorder buffer.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

large while using relatively small hardware structures [31].
We explore several aspects of WIB design, including:

detecting instructions dependent on long latency operations,
inserting instructions into the WIB, banked vs. non-banked
organization, policies for selecting among eligible instruc-
tions to reinsert into the issue window, and total capacity.
For an 8-way processor, we compare the committed in-
structions per cycle (IPC) of a WIB-based design that has
a 32-entry issue window, a 2048-entry banked WIB, and
two-level register files (128 L1/2048 L2) to a conventional
32-entry issue window with single-level register files (128
registers). These simulations show WIB speedups over the
conventional design of 20% for SPEC CINT2000, 84% for
SPEC CFP2000, and 50% for Olden. These speedups are
a significant fraction of those achieved with a 2048-entry
conventional issue window (35%, 140%, and 103%), even
ignoring clock cycle time effects.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background and motivation for this work.
Our design is presented in Section 3 and we evalute its per-
formance in Section 4. Section 5 discusses related work and
Section 6 summarizes this work and presents future direc-
tions.

2 Background and Motivation

2.1 Background

Superscalar processors maximize serial program perfor-
mance by issuing multiple instructions per cycle. One of
the most important aspects of these systems is identifying
independent instructions that can execute in parallel. To
identify and exploit instruction level parallelism (ILP), most
of today’s processors employ dynamic scheduling, branch
prediction, and speculative execution. Dynamic schedul-
ing is an all hardware technique for identifying and issu-
ing multiple independent instructions in a single cycle [32].
The hardware looks ahead by fetching instructions into a
buffer—called a window—from which it selects instruc-
tions to issue to the functional units. Instructions are issued
only when all their operands are available, and independent
instructions can execute out-of-order. Results of instruc-
tions executed out-of-order are committed to the architec-
tural state in program order. In other words, although in-
structions within the window execute out-of-order, the win-
dow entries are managed as a FIFO where instructions enter
and depart in program order.

The above simplified design assumes that all instructions
in the window can be examined and selected for execution.
We note that it is possible to separate the FIFO management
(active list or reorder buffer) from the independent instruc-
tion identification (issue queue) as described below. Re-
gardless, there is a conflict between increasing the window

(issue queue) size to expose more ILP and keeping clock
cycle time low by using small structures [1, 22]. Histor-
ically, smaller windows have dominated designs resulting
in higher clock rates. Unfortunately, a small window can
quickly fill up when there is a long latency operation.

In particular, consider a long latency cache miss serviced
from main memory. This latency can be so large, that by
the time the load reaches the head of the window, the data
still has not arrived from memory. Unfortunately, this sig-
nificantly degrades performance since the window does not
contain any executing instructions: instructions in the load’s
dependence chain are stalled, and instructions independent
of the load are finished, waiting to commit in program order.
The only way to make progress is to bring new instructions
into the window. This can be accomplished by using a larger
window.

2.2 Limit Study

The remainder of this section evaluates the effect of win-
dow size on program performance, ignoring clock cycle
time effects. The goal is to determine the potential perfor-
mance improvement that could be achieved by large instruc-
tion windows. We begin with a description of our processor
model. This is followed by a short discussion of its perfor-
mance for various instruction window sizes.

2.2.1 Methodology

For this study, we use a modified version of SimpleScalar
(version 3.0b) [8] with the SPEC CPU2000 [17] and
Olden [11] benchmark suites. Our SPEC CPU2000 bench-
marks are pre-compiled binaries obtained from the Sim-
pleScalar developers [33] that were generated with compiler
flags as suggested at www.spec.org and the Olden binaries
were generated with the Alpha compiler (cc) using opti-
mization flag -O2. The SPEC benchmarks operate on their
reference data sets and for the subset of the Olden bench-
marks we use, the inputs are: em3d 20,000 nodes, arity 10;
mst 1024 nodes; perimeter 4Kx4K image; treeadd
20 levels. We omit several benchmarks either because the
L1 data cache miss ratios are below 1% or their IPCs are
unreasonably low (health and ammp are both less than
0.1) for our base configuration.

Our processor design is loosely based on the Alpha
21264 microarchitecture [12, 14, 19]. We use the same
seven stage pipeline, including speculative load execution
and load-store wait prediction. We do not model the clus-
tered design of the 21264. Instead, we assume a single inte-
ger issue queue that can issue up to 8 instructions per cycle
and a single floating point issue queue that can issue up to 4
instructions per cycle. Table 1 lists the various parameters
for our base machine. Note that both integer and floating

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

Active List 128, 128 Int Regs, 128 FP Regs
Load/Store Queue 64 Load, 64 Store
Issue Queue 32 Integer, 32 Floating Point
Issue Width 12 (8 Integer, 4 Floating Point)
Decode Width 8
Commit Width 8
Instruction Fetch Queue 8
Functional Units 8 integer ALUs (1-cycle),

2 integer multipliers (7-cycle),
4 FP adders (4-cycle),
2 FP multipliers (4-cycle),
2 FP dividers (nonpipelined, 12-
cycle), 2 FP square root units
(nonpipelined, 24-cycle)

Branch Prediction Bimodal & two-level adaptive
combined, with speculative up-
date, 2-cycle penalty for direct
jumps missed in BTB, 9-cycle for
others

Store-Wait Table 2048 entries, bits cleared every
32768 cycles

L1 Data Cache 32 KB, 4 Way
L1 Inst Cache 32 KB, 4 Way
L1 Latency 2 Cycles
L2 Unified Cache 256 KB, 4 Way
L2 Latency 10 Cycles
Memory Latency 250 Cycles
TLB 128-entry, 4-way associative,

4 KB page size, 30-cycle penalty

Table 1. Base Configuration

point register files are as large as the active list. For the re-
mainder of this paper we state a single value for the active
list/register file size, this value applies to both the integer
and floating point register files.

The simulator was modified to support speculative up-
date of branch history with history-based fixup and return-
address-stack repair with the pointer-and-data fixup mecha-
nism [26, 27]. We also modified the simulator to warm up
the instruction and data caches during an initial fast forward
phase. For the SPEC benchmarks we skip the first four hun-
dred million instructions, and then execute the next one hun-
dred million instructions with the detailed performance sim-
ulator. The Olden benchmarks execute for 400M instruc-
tions or until completion. This approach is used throughout
this paper. We note that our results are qualitatively similar
when using a different instruction execution window [24].

2.2.2 Varying Window Size

We performed simulations varying the issue queue size,
from 32 (the base) in powers of 2, up to 4096. For issue
queue sizes of 32, 64, and 128 we keep the active list fixed
at 128 entries. For the remaining configurations, the ac-

tive list, register files and issue queue are all equal size.
The load and store queues are always set to one half the
active list size, and are the only limit on the number of out-
standing requests unless otherwise stated. Figure 1 shows
the committed instructions per cycle (IPC) of various win-
dow sizes normalized to the base 32-entry configuration
(Speedup = IPCnew=IPCold) for the SPEC integer, float-
ing point, and Olden benchmarks. Absolute IPC values for
the base machine are provided in Section 4, the goal here
is to examine the relative effects of larger instruction win-
dows.

These simulations show there is an initial boost in the
IPC as window size increases, up to 2K, for all three sets of
benchmarks. With the exception of mst, the effect plateaus
beyond 2K entries, with IPC increasing only slightly. This
matches our intuition since during a 250 cycle memory la-
tency 2000 instructions can be fetched in our 8-way proces-
sor. Larger instruction windows beyond 2K provide only
minimal benefits. Many floating point benchmarks achieve
speedups over 2, with art achieving a speedup over 5 for
the 2K window. This speedup is because the larger win-
dow can unroll loops many times, allowing overlap of many
cache misses. A similar phenomenon occurs for mst.

The above results motivate the desire to create large in-
struction windows. The challenge for architects is to ac-
complish this without significant impact on clock cycle
time. The next section presents our proposed solution.

3 A Large Window Design

This section presents our technique for providing a large
instruction window while maintaining the advantages of
small structures on the critical path. We begin with an
overview to convey the intuition behind the design. This
is followed by a detailed description of our particular de-
sign. We conclude this section with a discussion of various
design issues and alternative implementations.

3.1 Overview

In our base microarchitecture, only those instructions in
the issue queue are examined for potential execution. The
active list has a larger number of entries than the issue queue
(128 vs. 32), allowing completed but not yet committed
instructions to release their issue queue entries. Since the
active list is not on the critical path [4], we assume that
we can increase its size without affecting clock cycle time.
Nonetheless, in the face of long latency operations, the issue
queue could fill with instructions waiting for their operands
and stall further execution.

We make the observation that instructions dependent on
long latency operations cannot execute until the long la-
tency operation completes and thus do not need to be exam-

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

bzip2 gcc gzip parser perlbmk vortex vpr Average

S
p
ee

d
u
p

32

64

128

256

512

1K

2K

4K

a) SPEC 2000 Integer

0.00

1.00

2.00

3.00

4.00

5.00

6.00

applu art facerec galgel mgrid swim wupwise Average

S
p
ee

d
u
p

32

64

128

256

512

1K

2K

4K

b) SPEC 2000 Floating Point

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

em3d mst perimeter treeadd Average

S
p
ee

d
u
p

32

64

128

256

512

1K

2K

4K

c) Olden

Figure 1. Large Window Performance

ined by the wakeup-select logic on the critical path. We note
this same observation is exploited by Palacharla, et. al [22]
and their technique of examining only the head of the issue
queues. However, the goal of our design is to remove these
waiting instructions from the issue queue and place them in
a waiting instruction buffer (WIB). When the long latency
operation completes, the instructions are moved back into
the issue queue for execution. In this design, instructions
remain in the issue queue for a very short time. They either
execute properly or they are removed due to dependence on
a long latency operation.

For this paper we focus specifically on instructions in
the dependence chain of load cache misses. However, we
believe our technique could be extended to other types of

long latency operations. Figure 2 shows the pipeline for
a WIB-based microarchitecture, based on the 21264 with
two-level register files (described later).

The fetch stage includes the I-cache, branch prediction
and the instruction fetch queue. The slot stage directs in-
structions to the integer or floating point pipeline based on
their type. The instructions then go through register rename
before entering the issue queue. Instructions are selected
from the issue queue either to proceed with the register read,
execution and memory/writeback stages or to move into the
WIB during the register read stage. Once in the WIB, in-
structions wait for the specific cache miss they depend on to
complete. When this occurs, the instructions are reinserted
into the issue queue and repeat the wakeup-select process,
possibly moving back into the WIB if they are dependent on
another cache miss. The remainder of this section provides
details on WIB operation and organization.

3.2 Detecting Dependent Instructions

An important component of our design is the ability to
identify all instructions in the dependence chain of a load
cache miss. To achieve this we leverage the existing issue
queue wakeup-select logic. Under normal execution, the
wakeup-select logic determines if an instruction is ready for
execution (i.e., has all its operands available) and selects a
subset of the ready instructions according to the issue con-
straints (e.g., structural hazards or age of instructions).

To leverage this logic we add an additional signal—
called the wait bit—that indicates the particular source
operand (i.e., input register value) is “pretend ready”. This
signal is very similar to the ready bit used to synchronize
true dependencies. It differs only in that it is used to indicate
the particular source operand will not be available for an ex-
tended period of time. An instruction is considered pretend
ready if one or more of its operands are pretend ready and
all the other operands are truly ready. Pretend ready instruc-
tions participate in the normal issue request as if they were
truly ready. When it is issued, instead of being sent to the
functional unit, the pretend ready instruction is placed in
the WIB and its issue queue entry is subsequently freed by
the issue logic as though it actually executed. We note that
a potential optimization to our scheme would consider an
instruction pretend ready as soon as one of its operands is
pretend ready. This would allow instructions to be moved to
the WIB earlier, thus further reducing pressure on the issue
queue resources.

In our implementation, the wait bit of a physical register
is initially set by a load cache miss. Dependent instructions
observe this wait bit, are removed from the issue queue, and
set the wait bit of their destination registers. This causes
their dependent instructions to be removed from the issue
queue and set the corresponding wait bits of their result

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

(32)
Queue
Issue
Point

(32)
Queue
Issue

Integer

Exec
Integer

Exec
 FP

(32Kb 4Way)
Cache
Data

Slot Memory

Reg File

Reg File

FP L2

Integer
Register
Rename

Instruction

Waiting Instruction Buffer

Fetch Rename Issue Register Read Execute

Floating

Int L2

Cache
(32kb 4Way)

Floating

Rename
Register
Point

Reg File
Int L1

FP L1
Reg File

Figure 2. WIB-based Microarchitecture

registers. Therefore, all instructions directly or indirectly
dependent on the load are identified and removed from the
issue queue. The load miss signal is already generated in
the Alpha 21264 since load instructions are speculatively
assumed to hit in the cache allowing the load and dependent
instructions to execute in consecutive cycles. In the case of
a cache miss in the Alpha, the dependent instructions are
retained in the issue queue until the load completes. In our
case, these instructions move to the WIB.

An instruction might enter the issue queue after the
instructions producing its operands have exited the issue
queue. The producer instructions could have either exe-
cuted properly and the source operand is available or they
could be in the WIB and this instruction should eventually
be moved to the WIB. Therefore, wait bits must be avail-
able wherever conventional ready bits are available. In this
case, during register rename. Note that it may be possible
to steer instructions to the WIB after the rename stage and
before the issue stage, we plan to investigate this as future
work. Our current design does not implement this, instead
each instruction enters the issue queue and then is moved to
the WIB if necessary.

3.3 The Waiting Instruction Buffer

The WIB contains all instructions directly or indirectly
dependent on a load cache miss. The WIB must be designed
to satisfy several important criteria. First, it must contain
and differentiate between the dependent instructions of in-
dividual outstanding loads. Second, it must allow individual
instructions to be dependent on multiple outstanding loads.
Finally, it must permit fast “squashing” when a branch mis-
predict or exception occurs.

To satisfy these requirements, we designed the WIB to
operate in conjunction with the active list. Every instruc-
tion in the active list is allocated an entry in the WIB. Al-
though this may allocate entries in the WIB that are never
dependent on a load miss, it simplifies squashing on mispre-
dicts. Whenever active list entries are added or removed, the
corresponding operations are performed on the WIB. This
means WIB entries are allocated in program order.

To link WIB entries to load misses we use a bit-vector
to indicate which WIB locations are dependent on a spe-
cific load. When an instruction is moved to the WIB, the
appropriate bit is set. The bit-vectors are arranged in a two
dimensional array. Each column is the bit-vector for a load
cache miss. Bit-vectors are allocated when a load miss is
detected, therefore for each outstanding load miss we store a
pointer to its corresponding bit-vector. Note that the number
of bit-vectors is bounded by the number of outstanding load
misses. However, it is possible to have fewer bit-vectors
than outstanding misses.

To link instructions with a specific load, we augment the
operand wait bits with an index into the bit-vector table cor-
responding to the load cache miss this instruction is depen-
dent on. In the case where an instruction is dependent on
multiple outstanding loads, we use a simple fixed ordering
policy to examine the source operand wait bits and store
the instruction in the WIB with the first outstanding load
encountered. This requires propagating the bit-vector in-
dex with the wait bits as described above. It is possible
to store the bit-vector index in the physical register, since
that space is available. However, this requires instructions
that are moved into the WIB to consume register ports. To
reduce register pressure we assume the bit-vector index is
stored in a separate structure with the wait bits.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

Instructions in the WIB are reinserted in the issue queue
when the corresponding load miss is resolved. Reinser-
tion shares the same bandwidth (in our case, 8 instructions
per cycle) with those newly arrived instructions that are de-
coded and dispatched to the issue queue. The dispatch logic
is modified to give priority to the instructions reinserted
from the WIB to ensure forward progress.

Note that some of the instructions reinserted in the is-
sue queue by the completion of one load may be dependent
on another outstanding load. The issue queue logic detects
that one of the instruction’s remaining operands is unavail-
able, due to a load miss, in the same way it detected the
first load dependence. The instruction then sets the appro-
priate bit in the new load’s bit-vector, and is removed from
the issue queue. This is a fundamental difference between
the WIB and simply scaling the issue queue to larger en-
tries. The larger queue issues instructions only once, when
all their operands are available. In contrast, our technique
could move an instruction between the issue queue and WIB
many times. In the worst case, all active instructions are de-
pendent on a single outstanding load. This requires each
bit-vector to cover the entire active list.

The number of entries in the WIB is determined by the
size of the active list. The analysis in Section 2 indicates
that 2048 entries is a good window size to achieve signif-
icant speedups. Therefore, initially we assume a 2K-entry
active list and 1K-entry load and store queues. Assuming
each WIB entry is 8 bytes then the total WIB capacity is
16KB. The bit-vectors can also consume a great deal of
storage, but it is limited by the number of outstanding re-
quests supported. Section 4 explores the impact of limiting
the number of bit-vectors below the load queue size.

3.3.1 WIB Organization

We assume a banked WIB organization and that one in-
struction can be extracted from each bank every two cy-
cles. These two cycles include determining the appropriate
instruction and reading the appropriate WIB entry. There
is a fixed instruction width between the WIB and the is-
sue queue. We set the number of banks equal to twice this
width. Therefore, we can sustain reinsertion at full band-
width by reading instructions from the WIB’s even banks in
one cycle and from odd banks in the next cycle, if enough
instructions are eligible in each set of banks.

Recall, WIB entries are allocated in program order in
conjunction with active list entries. We perform this allo-
cation using round-robin across the banks, interleaving at
the individual instruction granularity. Therefore, entries in
each bank are also allocated and released in program or-
der, and we can partition each load’s bit-vector according
to which bank the bits map to. In our case, a 2K entry
WIB with a dispatch width to the issue queue of 8 would

have 16 banks with 128 entries each. Each bank also stores
its local head and tail pointers to reflect program order of
instructions within the bank. Figure 3 shows the internal
organization of the WIB.

During a read access each bank in a set (even or odd)
operates independently to select an instruction to reinsert
to the issue queue by examining the appropriate 128 bits
from each completed load. For each bank we create a sin-
gle bit-vector that is the logical OR of the bit-vectors for
all completed loads. The resulting bit-vector is examined to
select the oldest active instruction in program order. There
are many possible policies for selecting instructions. We
examine a few simple policies later in this paper, but leave
investigation of more sophisticated policies (e.g., data flow
graph order or critical path [15]) as future work. Regard-
less of selection policy, the result is that one bit out of the
128 is set, which can then directly enable the output of the
corresponding WIB entry without the need to encode then
decode the WIB index. The process is repeated with an up-
dated bit-vector that clears the WIB entry for the access just
completed and may include new eligible instructions if an-
other load miss completed during the access.

The above policies are similar to the select policies im-
plemented by the issue queue logic. This highlights an im-
portant difference between the WIB and a conventional is-
sue queue. A conventional issue queue requires wakeup
logic that broadcasts a register specifier to each entry.
The WIB eliminates this broadcast by using the completed
loads’ bit-vectors to establish the candidate instructions for
selection. The issue queue requires the register specifier
broadcast to maintain true dependencies. In contrast, the
WIB-based architecture leverages the much smaller issue
queue for this task and the WIB can select instructions for
reinsertion in any order.

It is possible that there are not enough issue queue en-
tries available to consume all instructions extracted from
the WIB. In this case, one or more banks will stall for this
access and wait for the next access (two cycles later) to at-
tempt reinserting its instruction. To avoid potential livelock,
on each access we change the starting bank for allocating
the available issue queue slots. Furthermore, a bank remains
at the highest priority if it has an instruction to reinsert but
was not able to. A bank is assigned the lowest priority if it
inserts an instruction or does not have an instruction to rein-
sert. Livelock could occur in a fixed priority scheme since
the instructions in the highest priority bank could be depen-
dent on the instructions in the lower priority bank. This
could produce a continuous stream of instructions moving
from the WIB to the issue queue then back to the WIB since
their producing instructions are not yet complete. The pro-
ducing instructions will never complete since they are in the
lower priority bank. Although this scenario seems unlikely
it did occur in some of our benchmarks and thus we use

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

Bit Vectors WIB Bank

To Issue Queue

Priority

Even Banks

Head

Tail

Bit Vectors WIB Bank

To Issue Queue

Priority

Odd Banks

Head

Tail

Figure 3. WIB Organization

round-robin priority.

3.3.2 Squashing WIB Entries

Squashing instructions requires clearing the appropriate
bits in each bit-vector and reseting each banks’ local tail
pointer. The two-dimensional bit-vector organization sim-
plifies the bit-vector clear operation since it is applied to the
same bits for every bit-vector. Recall, each column corre-
sponds to an outstanding load miss, thus we can clear the
bits in the rows associated with the squashed instructions.

3.4 Register File Considerations

To support many in-flight instructions, the number of re-
name registers must scale proportionally. There are several
alternative designs for large register files, including multi-
cycle access, multi-level [13, 34], multiple banks [5, 13], or
queue-based designs [6]. In this paper, we use a two-level
register file [13, 34] that operates on principles similar to
the cache hierarchy. Simulations of a multi-banked register
file show similar results. Further details on the register file
designs and performance are available elsewhere [20].

3.5 Alternative WIB Designs

The above WIB organization is one of several alterna-
tives. One alternative we considered is a large non-banked
multicycle WIB. Although it may be possible to pipeline the
WIB access, it would not produce a fully pipelined access
and our simulations (see Section 4) indicate pipelining may
not be necessary.

Another alternative we considered is a pool-of-blocks
structure for implementing the WIB. In this organziation,
when a load misses in the cache it obtains a free block to
buffer dependent instructions. A pointer to this block is
stored with the load in the load queue (LQ) and is used to

deposit dependent instructions in the WIB. When the load
completes, all the instructions in the block are reinserted
into the issue queue. Each block contains a fixed number of
instruction slots and each slot holds information equivalent
to issue queue entries.

An important difference in this approach compared to
the technique we use is that instructions are stored in de-
pendence chain order, and blocks may need to be linked
together to handle loads with long dependence chains. This
complicates squashing since there is no program order as-
sociated with the WIB entries. Although we could maintain
information on program order, the list management of each
load’s dependence chain becomes too complex and time
consuming during a squash. Although the bit-vector ap-
proach requires more space, it simplifies this management.
The pool-of-blocks approach has the potential of deadlock
if there are not enough WIB entries. We are continuing to
investigate techniques to reduce the list management over-
head and handle deadlock.

3.6 Summary

The WIB architecture effectively enlarges the instruction
window by removing instructions dependent on load cache
misses from the issue queue, and retaining them in the WIB
while the misses are serviced. In achieving this, we leverage
the existing processor issue logic without affecting the pro-
cessor cycle time and circuit complexity. In the WIB archi-
tecture, instructions stay in the issue queue only for a short
period of time, therefore new instructions can be brought
into the instruction window much more rapidly than in the
conventional architectures. The fundamental difference be-
tween a WIB design and a design that simply scales up the
issue queue is that scaling up the issue queue significantly
complicates the wakeup logic, which in turn affects the pro-
cessor cycle time [1, 22]. However, a WIB requires a very
simple form of wakeup logic as all the instructions in the

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

dependence chain of a load miss are awakened when the
miss is resolved. There is no need to broadcast and have all
the instructions monitor the result buses.

4 Evaluation

In this section we evaluate the WIB architecture. We
begin by presenting the overall performance of our WIB
design compared to a conventional architecture. Next, we
explore the impact of various design choices on WIB per-
formance. This includes limiting the number of available
bit-vectors, limited WIB capacity, policies for selecting in-
structions for reinsertion into the issue queue, and multicy-
cle non-banked WIB.

These simulations reveal that WIB-based architectures
can increase performance, in terms of IPC, for our set of
benchmarks by an average of 20%, 84%, and 50% for SPEC
INT, SPEC FP, and Olden, respectively. We also find that
limiting the number of outstanding loads to 64 produces
similar improvements for the SPEC INT and Olden bench-
marks, but reduces the average improvement for the SPEC
FP to 45%. A WIB capacity as low as 256 entries with
a maximum of 64 outstanding loads still produces average
speedups of 9%, 26%, and 14% for the respective bench-
mark sets.

4.1 Overall Performance

We begin by presenting the overall performance im-
provement in IPC relative to a processor with a 32-entry
issue queue and single cycle access to 128 registers, hence
a 128-entry active list (32-IQ/128). Figure 4 shows the
speedups (IPCnew=IPCold) for various microarchitec-
tures. Although we present results for an 8-issue processor,
the overall results are qualitatively similar for a 4-issue pro-
cessor. The WIB bar corresponds to a 32-entry issue queue
with our banked WIB organization, a 2K-entry active list,
and 2K registers, using a two-level register file with 128
registers in the first level, 4 read ports and 4 write ports to
the pipelined second level that has a 4-cycle latency. As-
suming the 32-entry issue queue and 128 level one regis-
ters set the clock cycle time, the WIB-based design is ap-
proximately clock cycle equivalent to the base architecture.
For these experiments the number of outstanding loads (thus
bit-vectors) is not limited, we explore this parameter below.
Table 2 shows the absolute IPC values for the base config-
uration and our banked WIB design, along with the branch
direction prediction rates, L1 data cache miss rates, and L2
unified cache local miss rates for the base configuration.

For comparison we also include two scaled versions of
a conventional microarchitecture. Both configurations use
a 2K-entry active list and single cycle access to 2K regis-
ters. One retains the 32-entry issue queue (32-IQ/2K) while

Benchmark Base Branch DL1 UL2 Local WIB
IPC Dir Miss Miss IPC

Pred Ratio Ratio

bzip2 1.19 0.94 0.03 0.47 1.59
gcc 1.34 0.94 0.01 0.09 1.38
gzip 2.25 0.91 0.02 0.04 2.25
parser 0.83 0.95 0.04 0.22 0.95
perlbmk 0.96 0.99 0.01 0.28 0.95
vortex 1.52 0.99 0.01 0.06 1.68
vpr 0.49 0.90 0.04 0.41 0.86
HM 1.00 - - - 1.24

applu 4.17 0.98 0.10 0.26 4.28
art 0.42 0.96 0.35 0.73 1.64
facrec 1.47 0.99 0.05 0.48 3.02
galgel 1.92 0.98 0.07 0.26 3.97
mgrid 2.58 0.97 0.06 0.42 2.57
swim 2.41 1.00 0.21 0.27 3.98
wupwise 3.38 1.00 0.03 0.25 3.99
HM 1.42 - - - 3.02

em3d 2.28 0.99 0.02 0.16 2.27
mst 0.96 1.00 0.07 0.49 2.51
perimeter 1.00 0.93 0.04 0.38 1.16
treeadd 1.05 0.95 0.03 0.33 1.28
HM 1.17 - - - 1.61

Table 2. Benchmark Performance Statistics

the other scales the issue queue to 2K entries (2K-IQ/2K).
These configurations help isolate the issue queue from the
active list and to provide an approximate upper bound on
our expected performance.

From the results shown in Figure 4, we make the follow-
ing observations. First, the WIB design produces speedups
over 10% for 12 of the 18 benchmarks. The average
speedup is 20%, 84%, and 50% for SPEC INT, SPEC
FP, and Olden, respectively. The harmonic mean of IPCs
(shown in Table 2) increases from 1.0 to 1.24 for SPEC INT,
from 1.42 to 3.02 for SPEC FP, and from 1.17 to 1.61 for
Olden.

For most programs with large speedups from the large
2K issue queue, the WIB design is able to capture a signif-
icant fraction of the available speedup. However, for a few
programs the 2K issue queue produces large speedups when
the WIB does not. mgrid is the most striking example
where the WIB does not produce any speedup while the 2K
issue queue yields a speedup of over two. This phenomenon
is a result of the WIB recycling instructions through the is-
sue queue. This consumes issue bandwidth that the 2K issue
queue uses only for instructions ready to execute. As evi-
dence of this we track the number of times an instruction
is inserted into the WIB. In the banked implementation the
average number of times an instruction is inserted into the

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Bz
ip2 Gc

c
Gz
ip

Pa
rs
er

Pe
rlb
m
k

Vo
rte
x

Vp
r

Av
er
ag
e

S
p
ee

d
u
p 32-IQ/128

32-IQ/2K

2K-IQ/2K

WIB

a) SPEC 2000 Integer
5.22 3.9

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

Ap
plu Ar

t

Fa
ce
re
c

Ga
lge
l

M
gr
id

Sw
im

W
up
wi
se

Av
er
ag
e

S
p
ee

d
u
p 32-IQ/128

32-IQ/2K

2K-IQ/2K

WIB

b) SPEC 2000 Floating Point
4.38 2.61

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

Em
3d M

st

Pe
rim
ete
r

Tr
ee
ad
d

Av
er
ag
e

S
p
ee

d
u
p 32-IQ/128

32-IQ/2K

2K-IQ/2K

WIB

c) Olden

Figure 4. WIB Performance

WIB is four with a maximum of 280. Investigations of other
insertion policies (see below) reduces these values to an av-
erage insertion count of one and a maximum of 9, producing
a speedup of 17%.

We also note that for several benchmarks just increasing
the active list produces noticable speedups, in some cases
even outperforming the WIB. This indicates the issue queue
is not the bottleneck for these benchmarks. However, over-
all the WIB significantly outperforms an increased active
list.

Due to the size of the WIB and larger register file, we
also evaluated an alternative use of that space by doubling
the data cache size in the base configuration to 64KB. Sim-
ulation results reveal less than 2% improvements in per-
formance for all benchmarks, except vortex that shows
a 9% improvement, over the 32KB data cache, indicating

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Integer FP Olden

S
p
ee

d
u
p

32-IQ/128

16

32

64

1024

Figure 5. Performance of Limited Bit-Vectors

the WIB may be a better use of this space. We explore this
tradeoff more later in this section.

We also performed two sensitivity studies by reducing
the memory latency from 250 cycles to 100 cycles and
by increasing the unified L2 cache to 1MB. The results
match our expectations. The shorter memory latency re-
duces WIB speedups to averages of 5%, 30%, and 17% for
the SPEC INT, SPEC FP, and Olden benchmarks, respec-
tively. The larger L2 cache has a smaller impact on the
speedups achieved with a WIB. The average speedups were
5%, 61%, and 38% for the SPEC INT, SPEC FP, and Olden
benchmarks, respectively. The larger cache has the most
impact on the integer benchmarks, which show a dramati-
cally reduced local L2 miss ratio (from an average of 22%
to 6%). Caches exploit locality in the program’s reference
stream and can sometimes be sufficiently large to capture
the program’s entire working set. In contrast, the WIB can
expose parallelism for tolerating latency in programs with
very large working sets or that lack locality.

For the remainder of this paper we present only the av-
erage results for each benchmark suite. Detailed results for
each benchmark are available elsewhere [20].

4.2 Limited Bit-Vectors

The number of bit-vectors is important since each bit-
vector must map the entire WIB and the area required can
become excessive. To explore the effect of limited bit-
vectors (outstanding loads), we simulated a 2K-entry WIB
with 16, 32, and 64 bit-vectors. Figure 5 shows the average
speedups over the base machine, including the 1024 bit-
vector configuration from above. These results show that
even with only 16 bit-vectors the WIB can achieve average
speedups of 16% for SPEC INT, 26% for SPEC FP, and
38% for the Olden benchmarks. The SPEC FP programs
(particularly art) are affected the most by the limited bit-
vectors since they benefit from memory level parallelism.
With 64 bit-vectors (16KB) the WIB can achieve speedups
of 19%, 45%, and 50% for the three sets of benchmarks,
respectively.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Integer FP Olden

S
p
ee

d
u
p

32-IQ/128
128
256
512
1024
2048

Figure 6. WIB Capacity Effects

4.3 Limited WIB Capacity

Reducing WIB area by limiting the number of bit-vectors
is certainly a useful optimization. However, further de-
creases in required area can be achieved by using a smaller
capacity WIB. This section explores the performance im-
pact of reducing the capacity of the WIB, active list and
register file.

Figure 6 shows the average speedups for WIB sizes rang-
ing from 128 to 2048 with bit-vectors limited to 64. These
results show that the 1024-entry WIB can achieve average
speedups of 20% for the SPEC INT, 44% for SPEC FP, and
44% for Olden. This configuration requires only 32KB ex-
tra space (8KB for WIB entries, 8KB for bit-vectors, and
8KB for each 1024-entry register file). This is roughly area
equivalent to doubling the cache size to 64KB. As stated
above, the 64KB L1 data cache did not produce noticable
speedups for our benchmarks, and the WIB is a better use
of the area.

4.4 WIB to Issue Queue Instruction Selection

Our WIB design implements a specific policy for se-
lecting from eligible instructions to reinsert into the issue
queue. The current policy chooses instructions from each
bank in program order. Since the banks operate indepen-
dently and on alternate cycles, they do not extract instruc-
tions in true program order. To evaluate the impact of in-
struction selection policy we use an idealized WIB that has
single cycle access time to the entire structure. Within this
design we evaluate the following instruction selection poli-
cies: (1) the current banked scheme, (2) full program or-
der from among eligible instructions, (3) round robin across
completed loads with each load’s instructions in program
order, and (4) all instructions from the oldest completed
load.

Most programs show very little change in performance
across selection policies. mgrid is the only one to show
significant improvements. As mentioned above, mgrid
shows speedups over the banked WIB of 17%, 17%, and

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Integer FP Olden

S
p
ee

d
u
p 32-IQ/128

Banked
4-Cycle
6-Cycle

Figure 7. Non-Banked WIB Performance

13% for each of the three new policies, respectively. These
speedups are due to better scheduling of the actual depen-
dence graph. However, in some cases the schedule can be
worse. Three programs show slowdowns compared to the
banked WIB for the oldest load policy (4): bzip 11%,
parser 15%, and facerec 5%.

4.5 Non-Banked Multicycle WIB Access

We now explore the benefits of the banked organization
versus a multicycle non-banked WIB organization. Figure 7
shows the average speedups for the banked and non-banked
organizations over the base architecture. Except the dif-
ferent WIB access latencies, the 4-cycle and 6-cycle bars
both assume a non-banked WIB with instruction extraction
in full program order. These results show that the longer
WIB access delay produces only slight reductions in perfor-
mance compared to the banked scheme. This indicates that
we may be able to implement more sophisticated selection
policies and that pipelining WIB access is not necessary.

5 Related Work

Our limit study is similar to that performed by Skadron
et al. [28]. Their results show that branch mispredictions
limit the benefits of larger instruction windows, that better
branch prediction and better instruction cache behavior have
synergistic effects, and that the benefits of larger instruction
windows and larger data caches trade off and have overlap-
ping effects. Their simulation assumes a very large 8MB L2
cache and models a register update unit (RUU) [29], which
is a unified active list, issue queue, and rename register file.
In their study, only instruction window sizes up to 256 are
examined.

There has been extensive research on architecture de-
signs for supporting large instruction windows. In the mul-
tiscalar [30] and trace processors [23], one large central-
ized instruction window is distributed into smaller windows
among multiple parallel processing elements. Dynamic
multithreading processors [2] deal with the complexity of a

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

large window by employing a hierarchy of instruction win-
dows. Clustering provides another approach, where a col-
lection of small windows with associated functional units
is used to approximate a wider and deeper instruction win-
dow [22].

Recent research [7, 18] investigates issue logic designs
that attemp to support large instruction windows with-
out impeding improvements on clock rates. Michaud and
Seznec [21] exploit the observation that instructions depen-
dent on long latency operations unnecessarily occupy is-
sue queue space for a long time, and address this problem
by prescheduling instructions based on data dependencies.
Other dependence-based issue queue designs are studied in
[9, 10, 22]. Zilles et al. [35] and Balasubramonian et al. [4]
attack the problem caused by long latency operations by uti-
lizing a future thread that can use a portion of the issue
queue slots and physical registers to conduct precomputa-
tion. As power consumption has become an important con-
sideration in processor design, researchers have also studied
low power instruction window design [3, 16].

6 Conclusion

Two important components of overall execution time are
the clock cycle time and the number of instructions com-
mitted per cycle (IPC). High clock rates can be achieved
by using a small instruction window, but this can limit IPC
by reducing the ability to identify independent instructions.
This tension between large instruction windows and short
clock cycle times is an important aspect in modern proces-
sor design.

This paper presents a new technique for achieving the
latency tolerance of large windows while maintaining the
high clock rates of small window designs. We accomplish
this by removing instructions from the conventional issue
queue if they are directly or indirectly dependent on a long
latency operation. These instructions are placed into a wait-
ing instruction buffer (WIB) and reinserted into the issue
queue for execution when the long latency operation com-
pletes. By moving these instructions out of the critical path,
their previously occupied issue queue entries can be further
utilized by the processor to look deep into the program for
more ILP. An important difference between the WIB and
scaled-up conventional issue queues is that the WIB imple-
ments a simplified form of wakeup-select. This is achieved
by allowing all instructions in the dependence chain to be
considered for reinsertion into the issue window. Compared
to the full wakeup-select in conventional issue queues, the
WIB only requires select logic for instruction reinsertion.

Simulations of an 8-way processor with a 32-entry is-
sue queue reveal that adding a 2K-entry WIB can produce
speedups of 20%, 84%, and 50% for a subset of the SPEC
CINT2000, SPEC CFP2000, and Olden benchmarks, re-

spectively. We also explore several WIB design parameters
and show that allocating chip area for the WIB produces
signifcantly higher speedups than using the same area to
increase the level one data cache capacity from 32KB to
64KB.

Our future work includes investigating the potential for
executing the instructions from the WIB on a separate ex-
ecution core, either a conventional core or perhaps a grid
processor [25]. The policy space for selecting instructions
is an area of current research. Finally, register file de-
sign and management (e.g., virtual-physical, multi-banked,
multi-cycle, prefetching in a two-level organization) require
further investigation.

Acknowledgements

This work was supported in part by NSF CAREER
Awards MIP-97-02547 and CCR-0092832, NSF Grants
CDA-97-2637 and EIA-99-72879, Duke University, and
donations from Intel, IBM, Compaq, Microsoft, and Erics-
son. We thank the anonymous reviewers for comments and
suggestions on this work.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.
Clock Rate Versus IPC: The End of the Road for Conven-
tional Microarchitectures. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages
248–259, June 2000.

[2] H. Akkary and M. A. Driscoll. A Dynamic Multithreading
Processor. In Proceedings of the 31st Annual International
Symposium onMicroarchitecture, pages 226–236, December
1998.

[3] R. I. Bahar and S. Manne. Power and Energy Reduction
via Pipeline Balancing. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, pages
218–229, July 2001.

[4] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dy-
namically Allocating Processor Resources Between Nearby
and Distant ILP. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, pages 26–37,
July 2001.

[5] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Re-
ducing the Complexity of the Register File in Dynamic Su-
perscalar Processors. In Proceedings of the 34th Interna-
tional Symposium on Microarchitecture, December 2001. To
appear.

[6] B. Black and J. Shen. Scalable Register Renaming via
the Quack Register File. Technical Report CMuArt 00-1,
Carnegie Mellon University, April 2000.

[7] M. D. Brown, J. Stark, and Y. N. Patt. Select-Free Instruction
Scheduling Logic. In Proceedings of the 34th Annual Inter-
national Symposium on Microarchitecture, December 2001.
To appear.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

[8] D. C. Burger, T. M. Austin, and S. Bennett. Evaluating Fu-
ture Microprocessors-the SimpleScalar Tool Set. Technical
Report 1308, University of Wisconsin–Madison Computer
Sciences Department, July 1996.

[9] R. Canal and A. González. A Low-Complexity Issue Logic.
In Proceedings of the 2000 International Conference on Su-
percomputing, pages 327–335, May 2001.

[10] R. Canal and A. González. Reducing the Complexity of the
Issue Logic. In Proceedings of the 2001 International Con-
ference on Supercomputing, pages 312–320, June 2001.

[11] M. C. Carlisle, A. Rogers, J. H. Reppy, and L. J. Hendren.
Early Experiences with Olden. In Proceedings of the 6th In-
ternational Workship on Languages and Compilers for Par-
allel Computing, pages 1–20, August 1993.

[12] Compaq Computer Corporation. Alpha 21264 Microproces-
sor Hardware Reference Manual, July 1999.

[13] J.-L. Cruz, A. González, M. Valero, and N. P. Topham.
Multiple-Banked Register File Architectures. In Proceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, pages 316–325, June 2000.

[14] J. A. Farrell and T. C. Fischer. Issue Logic for a 600-MHz
Out-of-Order Execution Microprocessor. IEEE Journal of
Solid-State Circuits, 33(5):707–712, May 1998.

[15] B. A. Fields, S. Rubin, and R. Bodik. Focusing Processor
Policies via Critical-Path Prediction. In Proceedings of the
28th Annual International Symposium on Computer Archi-
tecture, pages 74–85, July 2001.

[16] D. Folegnani and A. González. Energy-Effective Issue
Logic. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 230–239, July
2001.

[17] J. L. Henning. SPEC CPU2000: Measuring CPU Perfor-
mance in the New Millennium. IEEE Computer, 33(7):28–
35, July 2000.

[18] D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami. Cir-
cuits for Wide-Window Superscalar Processors. In Proceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, pages 236–247, June 2000.

[19] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Mi-
cro, 19(2):24–36, March 1999.

[20] T. Li, J. Koppanalil, A. R. Lebeck, J. Patwardhan, and
E. Rotenberg. A Large, Fast Instruction Window for Toler-
ating Cache Misses. Technical Report CS-2002-03, Depart-
ment of Computer Science, Duke University, March 2002.

[21] P. Michaud and A. Seznec. Data-flow Prescheduling for
Large Instruction Windows in Out-of-Order Processors. In
Proceedings of the Seventh International Symposium on
High-Performance Computer Architecture, pages 27–36,
January 2001.

[22] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture,
pages 206–218, June 1997.

[23] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
Processors. In Proceedings of the 30th Annual International
Symposium onMicroarchitecture, pages 138–148, December
1997.

[24] S. Sair and M. Charney. Memory Behavior of the SPEC2000
Benchmark Suite. Technical Report RC-21852, IBM T.J.
Watson, October 2000.

[25] K. Sankaralingam, R. Nagarajan, D. Burger, and S. W. Keck-
ler. A Design Space Evaluation of Grid Processor Architec-
tures. In Proceedings of the 34th Annual International Sym-
posium on Microarchitecture, December 2001. To appear.

[26] K. Skadron. Characterizing and Removing Branch Mis-
predictions. PhD thesis, Department of Computer Science,
Princeton University, June 1999.

[27] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Improving Prediction for Procedure Returns with Return-
Address-Stack Repair Mechanisms. In Proceedings of the
31st Annual International Symposium on Microarchitecture,
pages 259–271, December 1998.

[28] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W.
Clark. Branch Prediction, Instruction-Window Size, and
Cache Size: Performance Tradeoffs and Simulation Tech-
niques. IEEE Transactions on Computers, 48(11):1260–
1281, November 1999.

[29] G. S. Sohi. Instruction Issue Logic for High-Performance,
Interruptable, Multiple Functional Unit, Pipelined Proces-
sors. IEEE Transactions on Computers, 39(3):349–359,
March 1990.

[30] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, June
1995.

[31] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. White Paper, IBM, Oc-
tober 2001.

[32] R. M. Tomasulo. An Efficient Algorithm for Exploiting Mul-
tiple Arithmetic Units. IBM Journal, pages 25–33, January
1967.

[33] C. T. Weaver. Pre-compiled SPEC2000 Alpha Binaries.
Available: http://www.simplescalar.org.

[34] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Two-
Level Hierarchical Register File Organization For VLIW
Processors. In Proceedings of the 33rd Annual International
Symposium onMicroarchitecture, pages 137–146, December
2000.

[35] C. B. Zilles and G. S. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In Proceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, pages 172–181, June 2000.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 16,2025 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

