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Abstract—A slipstream processor accelerates a program by speculatively removing repeatedly ineffectual instructions. Detecting the

roots of ineffectual computation—unreferenced writes, nonmodifying writes, and correctly predicted branches—is straightforward. On

the other hand, detecting ineffectual instructions in the backward slices of these root instructions currently requires complex back-

propagation circuitry. We observe that, by logically monitoring the speculative program (instead of the original program), back-

propagation can be reduced to detecting unreferenced writes. That is, once root instructions are actually removed, instructions at the

next higher level in the backward slice become newly exposed unreferenced writes in the speculative program. This new algorithm,

called implicit back-propagation, eliminates complex hardware and achieves an average performance improvement of 11.8 percent,

only marginally lower than the 12.3 percent improvement achieved with explicit back-propagation. We further simplify the hardware

component by electing not to detect ineffectual memory writes, focusing only on ineffectual register writes. A minimal implementation

consisting of only a register-indexed table (similar to an architectural register file) achieves a good balance between complexity and

performance (11.2 percent average performance improvement with implicit back-propagation and without detection of ineffectual

memory writes).

Index Terms—Microarchitecture, multithreading, chip multiprocessor, slipstream, preexecution.

�

1 INTRODUCTION

WITH multiple processor cores on a single chip, a chip
multiprocessor (CMP) [5], [10] delivers high through-

put for multiprogrammed workloads and multithreaded/
parallel programs. Each constituent processor core also
delivers high single-program performance with a balanced
design that emphasizes both instruction-level parallelism
(ILP) and a fast clock.However, a single program cannot take
advantage of more than one core, even if other cores are idle,
which is often the case in the desktop environment [21].

The slipstream paradigm enables a second core in a CMP to

be used for enhancing single-program performance. A

slipstream processor [11], [16] runs two redundant copies of

aprogramonaCMPsubstrate, one slightlyaheadof theother.

A significant number of ineffectual instructions are specula-

tively removed from the leading program, called the advanced

stream (A-stream). Ineffectual instructions are instructions

that are not essential for correct forward progress. The

A-stream is sped up because it fetches and executes fewer

instructions than the original program. The trailing program,

called the redundant stream (R-stream), checks the control-

flow and data-flow outcomes of the A-stream and redirects it

when it fails to make correct forward progress (a rare event).

TheR-streamalso exploits the outcomes from theA-streamas

accurate branch and value predictions. Thus, although the

R-stream retires the same number of instructions as the

original program, it fetches and executes much more
efficiently. As a result, both program copies finish sooner
than the original program.

Many general-purpose programs contain a significant
number of ineffectual instructions [13]. Some dynamic
instructions produce results that are not referenced by
subsequent instructions. Other dynamic instructions do not
modify the value of a location. Finally, there are instructions
whose outcomes are highly predictable, for example,
branch instructions. These ineffectual instructions—unre-
ferenced writes, nonmodifying writes, and correctly pre-
dicted branches, respectively—can be removed without
affecting the correct forward progress of the program. Once
they are removed, the dependence chains that lead up to
them can also be removed.

A slipstream component called the instruction-removal
detector (IR-detector) detects past-ineffectual instructions in
the R-stream and selects them for possible removal from the
A-stream in the future. The IR-detector uses a two-step
selection process. First, it selects key trigger instructions—
unreferenced writes, nonmodifying writes, and correctly
predicted branches. A table similar to a conventional
register rename table can easily detect unreferenced and
nonmodifying writes. The second step, called back-propa-
gation, selects computation chains feeding the trigger
instructions. In an explicit implementation of back-propa-
gation, retired R-stream instructions are buffered and
consumer instructions are physically connected to their
producer instructions. Consumers that are selected because
they are ineffectual use these connections to propagate their
ineffectual status to their producers so that they get
selected, too. Explicit back-propagation is impractical.

This paper describes a practical implementation of back-
propagation, called implicit back-propagation. The key idea is
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to logically monitor the A-stream instead of the R-stream.
Now, the IR-detector only performs the first step, i.e., it
selects unreferenced writes, nonmodifying writes, and
correctly predicted branches. After building up confidence,
these trigger instructions are removed from the A-stream.
Once removed, their producers become unreferenced writes
in the A-stream (because they no longer have consumers).
The freshly exposed unreferenced writes are selected by the
IR-detector and, after building up confidence, are removed
themselves. Removing them, in turn, exposes more un-
referenced writes and the process continues iteratively
until, eventually, entire dependence chains are removed.

By logically monitoring the A-stream, back-propagation
is reduced to detecting unreferenced writes. Implicit back-
propagation eliminates complex hardware and achieves an
average performance improvement close to that of explicit
back-propagation (11.8 percent for implicit versus 12.3 per-
cent for explicit).

The modified IR-detector is simplified further by not
supporting removal of store instructions. Ineffectual stores
[13] include silent stores [6], unreferenced stores, and stores
in the backward slices of loads which are removed.
Removal of stores requires a cache-like structure to track
load and store references to memory locations. On average,
performance improvement of slipstream without store
removal is close to performance improvement with store
removal (11.2 percent versus 11.8 percent, respectively),
although the impact on individual benchmarks varies. For
two of the benchmarks, the decrease in performance
improvement is more substantial due to a significant drop
in overall instruction removal. However, slipstream still
yields large performance improvements in these bench-
marks. In two other benchmarks, the performance improve-
ment of slipstream actually increases without store removal,
due to more A-stream-supplied value predictions and fewer
A-stream deviations. Overall, the results support a minimal
IR-detector design based on implicit back-propagation and
without store-removal capability.

This paper also characterizes circuit complexity of the
IR-detector based on implicit back-propagation. A minimal

IR-detector design consists primarily of a table similar to a

register rename table, indexed by logical registers. Read and

write ports for accessing various fields are analyzed in

detail. The table is shown to be no more complex than the

register rename table.
Finally, this paper explores the design space for the

IR-detector, which includes the confidence counter thresh-

old (the number of consecutive times that an instruction

must be removable before actually removing it in the

A-stream) and instruction buffer size (the size of a FIFO that

contains the ineffectual/effectual status of retired R-stream

instructions). Simulations with the SPEC95 and SPEC2K

benchmarks indicate that the best instruction buffer size is

128 and the best confidence counter threshold is 64 for both

the explicit and implicit IR-detectors.
Section 2 briefly reviews the slipstream microarchitec-

ture. Section 3 describes the IR-detector employing implicit

back-propagation. The training time of IR-detectors based

on implicit and explicit back-propagation is discussed in

Section 4 to provide a context for explaining experimental

results. Section 5 discusses hardware requirements for store

removal, if supported. Section 6 assesses circuit complexity

of the IR-detector based on implicit back-propagation.

Simulation methodology and benchmarks are described in

Section 7. Section 8 presents experimental results. Related

work is presented in Section 9, focusing on hardware

techniques for program data-flow analysis. Section 10

summarizes the paper.

2 REVIEW OF SLIPSTREAM MICROARCHITECTURE

This section briefly reviews slipstream processors [11], [12],

[13], [16]. A high-level block diagram of a slipstream

processor implemented on a dual-processor chip-multi-

processor (CMP) is shown in Fig. 1. The A-stream is shown

on the left and the R-stream is shown on the right. The

shaded blocks show the two processor cores and the shared

L2 cache, which constitute the original CMP. Each processor

core is a conventional superscalar processor with a branch
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Fig. 1. Slipstream processor using a dual-processor CMP [11], [12], [16].
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predictor, instruction and data caches, and execution
engine, including register file and reorder buffer.

The slipstream microarchitecture requires new compo-
nents for facilitating instruction removal in the A-stream
(IR-detector and IR-predictor) and for communicating
A-stream outcomes to the R-stream (delay buffer). In
addition, separate architectural contexts must be managed
for the A-stream and R-stream and a recovery mechanism is
needed to repair the A-stream state when it deviates. These
aspects are described in the following subsections.

2.1 Creating a Reduced A-Stream

The instruction-removal detector (IR-detector) and instruction-
removal predictor (IR-predictor) cooperate to create a reduced
A-stream. The IR-detector identifies retired R-stream
instructions that, in hindsight, were not needed for correct
forward progress. The IR-detector then conveys to the
IR-predictor that these instructions can potentially be
skipped in the A-stream, in the future. The IR-predictor
removes the corresponding instructions from the A-stream
after repeated indications by the IR-detector, i.e., after a
certain confidence threshold has been reached.

The IR-predictor is a branch predictor augmented for
instruction removal. It generates the program counter (PC)
for the next block of instructions to be fetched in the
A-stream, like a conventional branch predictor. The only
difference is that the generated PC may reflect skipping
entire, predicted-ineffectual basic blocks. For basic blocks
that are not entirely ineffectual, the IR-predictor also
specifies a bit vector. The bit vector indicates which
instructions within the fetched block are ineffectual. These
instructions are removed from the fetched block before the
decode stage.

The IR-predictor is indexed the same way as the gshare
branch predictor [8] (XOR the PC and the global branch
history register). Each entry in the IR-predictor corresponds
to a single dynamic basic block. An entry contains resetting
confidence counters [4] for each instruction in the basic
block. These counters are the interface between the
IR-detector and the IR-predictor. The counter for a dynamic
instruction is incremented when the IR-detector detects that
it is ineffectual. The counter is reset to zero when the
IR-detector detects that it is effectual. If the counter is
saturated, the IR-predictor is authorized to remove the
instruction from the A-stream when it is next encountered.

2.2 Communicating A-Stream Outcomes to the
R-Stream

The delay buffer is a FIFO queue used to communicate
control-flow and data-flow outcomes from the A-stream to
the R-stream. Control-flow history is complete because the
IR-predictor predicts all branches, even though it may
direct the A-stream fetch unit to skip instructions. This
implies that only a portion of the control-flow conveyed via
the delay buffer is verified by the A-stream (in particular,
the unconfident portion of control-flow is verified by
A-stream computation since it cannot be confidently
removed [11]). Data-flow history is incomplete since the
A-stream executes only a subset of the program.

The R-stream uses the control-flow and data-flow out-
comes from the delay buffer as predictions. Control-flow

outcomes are used to direct instruction fetching from the
instruction cache. Data-flow outcomes are used as value
predictions in the execution core. To bind values to
corresponding R-stream instructions, the delay buffer also
contains one bit per dynamic instruction that indicates
whether or not the corresponding instruction was skipped
in the A-stream.

2.3 Memory Management

The A-stream and R-stream are architecturally independent.
A-stream loads and stores should not interferewith R-stream
loadsandstores. The simplestway to take careof this aspect is
to have the operating system (O/S) allocate separate physical
memory pages for each program. However, software-based
memory duplication doubles memory usage.

Therefore, more recently, hardware-based memory duplica-
tion is used in slipstream processors [12]. It provides three
key advantages. First, slipstream memory usage is bounded
by the usage of a single copy of the program. Second,
separating the A-stream state and R-stream state is as
simple as before, while being transparent to the O/S. Third,
recovery of A-stream memory state is greatly simplified,
involving simple cache invalidation.

The approach exploits the typical memory hierarchy
found in commercial dual-processor CMPs [5]. The memory
hierarchy consists of private L1 caches for each of the
processing elements and a shared L2 cache, as shown in
Fig. 1. The approach works as follows:

. Both the A-stream and R-stream read and write their
respective L1 caches normally.

. The R-stream L1 cache is write-through, i.e., if the
R-stream performs a store in its L1 cache, it also
performs the store in the shared L2 cache.

. The A-stream L1 cache is neither write-through nor
write-back, i.e., A-stream stores are not propagated
to the shared L2 cache. If a dirty line (a line modified
by the A-stream) needs to be evicted from the
A-stream L1 cache, it is not written back to the
shared L2 cache. The dirty line is simply thrown out
and the updated data it contains is lost. Notice, in
Fig. 1, the R-stream reads and writes the L2 cache,
but the A-stream only reads from it.

The temporary loss of A-stream updates is not a major
issue. The R-stream is usually close behind the A-stream
and the lost A-stream data is regenerated by the R-stream
and propagated to the L2 cache before it is rereferenced by
the A-stream. Occasionally, the A-stream rereferences an
evicted line in the L2 cache before the R-stream has
performed the corresponding redundant store. In this case,
the A-stream gets stale data and diverges from the
R-stream. All deviations are detectable as branch or value
mispredictions in the R-stream (see Section 2.4 below),
whether caused by incorrect instruction removal or refer-
ences to stale data (i.e., there is no need to diagnose the
cause of the divergence).

2.4 IR-Mispredictions and A-Stream Recovery

An instruction-removal misprediction, or IR-misprediction,
occurs when A-stream instructions were removed that
should not have been. IR-mispredictions cause the A-stream
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to not make correct forward progress and this is ultimately
detected as branch or value mispredictions in the R-stream.
When an IR-misprediction is detected, the A-stream needs to
be resynchronizedwith the R-stream. This involves restoring
A-stream register and memory state from R-stream registers
and memory. R-stream register values may be transferred to
the A-stream register file via the delay buffer or via shared-
memory loads and stores initiated by light-weight exception
handlers executed on both cores. A-stream memory is
resynchronized with R-stream memory simply by invalidat-
ing the contents of the A-stream L1 cache. Several optimiza-
tions have been developed for reducing the impact of
A-stream compulsory misses following recovery. These
include invalidating only dirty lines (trading thoroughness
for efficiency) and using invalidated data as highly reliable
value predictions in the A-stream. Details can be found in a
related technical report [12].

3 IR-DETECTOR IMPLEMENTATION

The original slipstream IR-detector based on explicit back-
propagation [11] is shown in Fig. 2. Retired R-stream
instructions are initially processed by the operand rename
table (ORT) to detect unreferenced writes and nonmodifying
writes. The instructions are then held in a FIFO buffer. The
oldest instructions in the buffer are evicted as new instruc-
tions are added. The final status (ineffectual/effectual) of
exiting instructions is used to update the IR-predictor.

The ORT is similar to a conventional register rename
table. It has as many entries as the number of logical
registers. An entry contains information about the most
recent write to the corresponding logical register. The
producer field contains the FIFO entry number of the
instruction that most recently wrote the register. The value
field contains the value written by the producer. The ref bit
indicates whether or not any later instruction has referenced
the register. The valid bit indicates whether or not the
producer is still in the FIFO. The ORT is managed as follows
to detect unreferenced and nonmodifying writes. Below,
source and destination registers refer to operands of the
incoming instruction.

Step 1: The ref bits of source registers are set, indicating that
these registers have been referenced.

Step 2: The value field of the destination register is
compared with the value produced by the incoming

instruction. If they match, the incoming instruction is a
nonmodifying write and it is selected for removal as it is
entered into the FIFO. If the values do not match, then
the ref bit of the destination register is examined. If the ref
bit is not set, then the previous producer is an
unreferenced write. The previous producer is selected
for removal within the FIFO, but only if it is still in the
FIFO as indicated by the valid bit. Its location in the FIFO
is indicated by the producer field.

Step 3: The various fields of the destination register are
updated. The producer field is updatedwith the FIFO entry
number of the incoming instruction. The value field is
updatedwith the value of the incoming instruction. The ref
bit is reset, indicating that there are no references yet.
Finally, the validbit is set, indicating that the newproducer
is in the FIFO. However, the various fields of the
destination register are not updated if the incoming
instruction is a nonmodifying write, as determined in
Step 2 above. The nonmodifying write is selected for
removal,whichmeans thepreviousproducer is still “live.”

ORT entries whose producers exit the FIFO must be
invalidated. A rotating pointer points to the oldest instruc-
tion in the FIFO. The oldest instruction is evicted to make
room for the next incoming instruction. The rotating pointer
is broadcast to all entries in the ORT. Each ORT entry has a
comparator to compare the pointer to its producer field. If
they match, then the valid bit is reset.

Correctly predicted branches are selected for removal as
they are entered into the FIFO. Correctly predicted branches
are flagged in the R-streamwith the B-bit, as shown in Fig. 2.

So far, we have explained how trigger instructions are
selected for removal by the ORT. The shaded component in
Fig. 2 facilitates automatic selection of instructions in the
backward slices of trigger instructions, via explicit back-
propagation. This component consists of wires and logic
connecting every instruction with every other instruction.
The producer information available in the ORT is used to
configure the logic in such a way as to link consumer
instructions with their producer instructions as they are
merged into the FIFO. Thus, this network of wires and logic
is a hardware implementation of a reverse data-flow graph
(RDFG). Initially, all consumers of a producer assert their
links to the producer. One by one, consumers may deassert
their links as they are selected for removal. When the links
of all consumers are deasserted, the producer selects itself
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Fig. 2. Original IR-detector based on explicit back-propagation [11].
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for removal as well (assuming it has been killed, as signaled
by the ORT). The producer, in turn, deasserts links to its
producers and so on.

We defer presenting a detailed implementation of the
RDFG, which is available in the master’s thesis on which
this paper is based [19]. Instead, we shift focus to the new
IR-detector. It uses implicit back-propagation, which makes
the RDFG obsolete.

The new IR-detector is shown in Fig. 3. The RDFG
component has been eliminated. As before, there is a FIFO
buffer, but its contents are trivial. The buffer consists of only
a single bit per instruction indicating whether the instruc-
tion has been selected for removal by the ORT.

Earlier, we implied that the new IR-detector monitors
retired A-stream instructions instead of R-stream instruc-
tions, thereby reducing back-propagation to the detection of
unreferenced writes. In fact, retired R-stream instructions
are monitored as before. However, a flag associated with
each incoming instruction, called the R-bit, is used to
“extract” the A-stream from the R-stream. The R-bit of the
incoming instruction indicates whether or not it was
actually removed from the A-stream by the IR-predictor
this time around. The three steps described above are still
used to manage the ORT, with one crucial modification to
Step 1: An instruction whose R-bit is set does not set the ref
bits of its source operands in the ORT. The instruction is not
part of the A-stream and should be hidden from its
producers in the ORT. This may cause its producers to be
selected for removal as unreferenced writes, according to
Step 2. Eventually, after reaching the confidence threshold,
the producer instruction itself will be removed from the
A-stream by the IR-predictor. The next instance of the
producer instruction, when it is brought into the
IR-detector, will make itself invisible to its producer
because its R-bit is set and implicit back-propagation
continues. Implicit back-propagation effectively converts
the detection of an ineffectual computation chain into the
detection of a sequence of unreferenced writes.

An example of implicit back-propagation is shown in
Fig. 4. Instructions A, B, and C form a dependence chain
and they write to registers RA, RB, and RC, respectively.
Instruction C is an unreferenced write and the only
consumer of B. Instruction B is the only consumer of A.
The sequence of events is as follows. First, C is selected for
removal by the ORT since it is an unreferenced write. It is
eventually removed from the A-stream after its confidence

counter saturates (counter reaches a value of 31). The next
time, when the IR-detector analyzes the sequence A, B, and
C, it finds that the R-bit associated with instruction C is set
(which says that the IR-predictor skipped C in the
A-stream). During the processing of instruction C by the
ORT, the ref bit corresponding to register RB is not set, i.e.,
instruction C is not added as a consumer of instruction B,
speculatively. This assumes that instruction C will be
selected for removal by the IR-detector even this time.
When register RB is killed by some later instruction, the
ORT finds that the register is not referenced by any other
instruction and it selects instruction B for removal as an
unreferenced write. Eventually, instruction B is also
removed from the A-stream after its counter saturates.
The next time the sequence A, B, and C is analyzed by the
IR-detector, it finds that the R-bits of instructions B and C
are set. Instruction C is not added as a consumer of B and
instruction B is not added as a consumer of A. This assumes
that B (and C) will be selected for removal by the
IR-detector even this time. Now, instruction A is selected
for removal as an unreferenced write when RA is killed by a
later instruction. Eventually, instruction A is also removed
from the A-stream after its counter saturates.

4 TRAINING TIME FOR BUILDING AND DISMANTLING

CHAINS

This section compares explicit and implicit back-propaga-
tion, in termsof training time for buildingupanddismantling
chains of predicted-ineffectual instructions. This analysis is
useful for understanding similarities and differences in the
amount of dynamic instruction removal and rate of
IR-mispredictions in the experimental results section.

An example of building up and dismantling a chain of
predicted-ineffectual instructions is shown in Fig. 5, for
implicit back-propagation. The IR-predictor uses a con-
fidence counter threshold of 31 (corresponding to a 5-bit
resetting counter). Instruction C is repeatedly ineffectual. It
takes 32 passes through the IR-detector for its counter to
saturate, at which time it is finally removed from the
A-stream. When it is removed from the A-stream, instruc-
tion C’s R-bit is set, which causes it to be transparent to
instruction B, its producer. Instruction B is repeatedly
ineffectual as a result. It takes another 32 passes through the
IR-detector for instruction B’s counter to saturate, at which
time it is finally removed from the A-stream. At this point,
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instruction B becomes transparent to instruction A, making

instruction A repeatedly ineffectual. It takes another

32 passes through the IR-detector for instruction A’s

counter to saturate, at which time it is finally removed

from the A-stream.
To summarize, counters are built up one at a time in the

case of implicit back-propagation. However, explicit back-

propagation also incurs a lengthy training time, although

we did not dwell upon this aspect in Section 3. As described

at length in earlier slipstream papers [11], [19], a consumer

deasserts the link to its producer if it is ineffectual and if it

was removed by the IR-predictor this time around—as

indicated by the R-bit. The latter back-propagation criterion

prevents recurring IR-mispredictions, caused by producer

and consumer counters getting “out-of-sync.” An example

of this condition is shown in Fig. 6. Producer A has two
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Fig. 4. ORT during the stages of implicit back-propagation. An instruction whose R-bit is set (R) was removed from the A-stream by the IR-predictor.

Fig. 5. Training time for implicit back-propagation. Counters are built up one at a time. Counters are reset sequentially, which causes extra

IR-mispredictions for a single dismantling event.
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consumers, B1 and B2, on alternate control-flow paths. B1
and B2 are always ineffectual. The branch between
producer A and its two consumers is a toggling branch
(taken, not-taken, taken, not-taken, etc.). If B1 and B2
deassert their links to A solely on the basis of their
ineffectualness, then A’s counter will saturate before either
of B1’s and B2’s counters saturate. This causes A to be
incorrectly removed before its consumers are removed,
causing an IR-misprediction. In fact, it causes recurring
IR-mispredictions until B1’s and B2’s counters finally
saturate. The key observation is that instruction A is
removable if its consumers are actually removed, not just
if they are hypothetically removable. This means even
explicit back-propagation must use R-bit information,
which in turn results in a lengthy training time for building
up chains of predicted-ineffectual instructions. This is
confirmed by experimentation in Section 8: Explicit and
implicit back-propagation remove almost exactly the same
number of dynamic instructions from the A-stream.

Chains of predicted-ineffectual instructions are dis-
mantled when the trigger instruction becomes effectual or
when its counter or the counter of another instruction in the
chain is evicted from the IR-predictor, forcing another
training sequence. Dismantling a chain requires multiple
passes through the IR-detector in the case of implicit back-
propagation, as shown in the latter portion of Fig. 5. We
begin with the IR-detector pass that discovers instruction C
is effectual. When C is brought into the IR-detector, its R-bit
is set because the IR-predictor incorrectly removed it even
though it is effectual this time around. The IR-detector
prematurely makes instruction C transparent to
instruction B in the ORT before finding out that
instruction C is effectual. Thus, although instruction C’s
counter gets reset during this pass, the counter of instruc-
tion B remains saturated. This leads to an extra
IR-misprediction next time because the IR-predictor will
remove instructions A and B without also removing
instruction C. The next time the IR-detector sees instruc-
tions A, B, and C, the R-bit of instruction C is not set (not
removed by IR-predictor) and the R-bit of instruction B is
set (still removed by IR-predictor). Instruction C is made
visible to instruction B, so instruction B’s counter gets reset
during this pass. However, instruction B is not made visible
to instruction A during this pass, so its counter remains
saturated. This leads to yet another IR-misprediction
because the IR-predictor will remove instruction A without
also removing instructions B and C. A final pass resets

instruction A’s counter because instruction B’s R-bit is not
set, finally making it visible to instruction A. In general, the
number of extra IR-mispredictions introduced by a single
dismantling event is equal to the length of the dependence
chain, less one (for the instruction that started the
dismantling process).

On the other hand, explicit back-propagation does not
incur these extra IR-mispredictions because the RDFG
dismantles an entire dependence chain in a single pass
through the IR-detector. This is confirmed by experimenta-
tion in Section 8: The rate of IR-mispredictions is higher for
the IR-detector based on implicit back-propagation than the
one based on explicit back-propagation.

5 STORE REMOVAL

Section 3 only described the operand rename table (ORT)
for tracking register references. There is also a separate ORT
for tracking memory references, which is needed to detect
ineffectual stores. Entries in the memory ORT are the same
as entries in the register ORT. The same algorithm is used to
detect unreferenced and nonmodifying writes (stores),
except loads from memory addresses are substituted for
register reads and stores to memory addresses are
substituted for register writes.

The address space for memory references is large, so the
memory ORT must be managed like a set-associative cache
instead of like a register file. In this paper, we use an
unbounded memory ORT and then provide evidence that
removal of ineffectual stores and their computation chains
is not needed to achieve most of the performance. In the
final analysis, we recommend a minimal IR-detector design
that uses implicit back-propagation and does not support
store removal (no memory ORT).

6 CHARACTERIZING CIRCUIT COMPLEXITY

For a minimal IR-detector design that employs implicit
back-propagation and does not support store removal, there
are three hardware components: 1) the register ORT, 2) the
FIFO buffer, and 3) a module that implements the 3-step
algorithm, which consists of combinational logic and a
pipeline of a few stages for reading and updating the ORT.
In this paper, we only characterize the register ORT and the
FIFO buffer. We characterize complexity in the context of a
4-issue superscalar processor core. The IR-detector must
accept up to four new instructions per cycle, i.e., eight
source operands and four destination operands per cycle.

The ORT is subdivided into two tables to optimize access
to various fields. The first table contains only the ref bits.
This table consists of 64 1-bit entries (assuming 32 integer
and 32 floating-point registers). Up to 8 different bits can be
set (for source operands) and 4 different bits reset (for
destination operands) each cycle. Also, up to 4 different ref
bits must be read each cycle (for destination operands) to
detect potential unreferenced writes. Conceptually, this
table has 12 write ports and four read ports, although the
12 write ports are misleading because an array of SR-latches
specialized for set/reset operations is more efficient than an
SRAM with arbitrary write ports.
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Fig. 6. Example of a producer counter saturating before its consumer

counters if explicit back-propagation is based only on ineffectualness.

This is prevented by also considering actual removal of consumers by

the IR-predictor.
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The second table contains the valid bits and producer and
value fields. In Section 8.1, we determine that a FIFO of
128 instructions gives the best performance, so the producer
is encoded with 7 bits. Values are 32 bits. Thus, this table
consists of 64 40-bit entries. The table has four read ports
(for destination operands) and four write ports (also for
destination operands). The read ports are needed for
1) comparing previous values to new values, for detecting
nonmodifying writes, and 2) locating previous producers in
the FIFO if they are unreferenced writes. The write ports are
needed for updating producer information.

The second table also has a single CAM port to
implement the invalidation mechanism described earlier
in Section 3. The CAM port facilitates comparing the
rotating FIFO pointer with the producer field of each entry.
A match causes the corresponding valid bit to be reset.

In terms of number of bits of storage, the ORT has a total
of 64 � (7-bit producer + 32-bit value + 1 ref bit + 1 valid bit) =
2,624 bits. The read and write ports to each of the two
subtables are shown in Fig. 7a. In addition to read and write
ports, the figure also shows the single CAM port used to
broadcast the FIFO pointer. For comparison, Fig. 7b shows
read and write ports to a conventional rename map table
found in contemporary superscalar processors. The rename
map table has 16 ports total: eight read ports to rename
logical source registers, an additional four read ports to
obtain the previous mappings of logical destination
registers, and four write ports to update the mappings of
logical destination registers. Neither ORT subtable has more
than 16 ports and only the ref bit table has 16 ports.
Moreover, the single CAM port is far less complex than the
in-cell copy functionality embedded within the rename map
table, needed for checkpointing and restoring shadow map
tables. Finally, the total number of bits in the ORT and
rename map table are comparable: 41 bits � 64 entries for
the ORT versus 63 bits � 64 entries for the rename map
table, assuming eight shadow maps and 128 physical
registers. The actual area of the rename map table is
significantly affected by the in-cell copy functionality. In
conclusion, the complexity of the ORT is comparable to the
complexity of the rename map table, if not less.

The FIFO consists of 128 1-bit entries. The bits indicate
whether or not the corresponding instructions have been

selected for removal. Up to 4 bits in adjacent entries can be
reset for incoming instructions. Up to 4 arbitrary bits can be
set for unreferenced writes, nonmodifying writes, and/or
correctly predicted branches.

7 SIMULATION METHODOLOGY

A detailed cycle-accurate simulator is used to study the
slipstream processor [11], [12]. The simulator models the
microarchitecture given in Fig. 1. Ineffectual instructions are
speculatively skipped in the A-stream, the correct forward
progress of the A-stream is checked by the R-stream, and
the streams are resynchronized whenever there is an
IR-misprediction. The cycle-accurate simulator is validated
by a functional simulator run independently and in parallel
with it [20]. The functional simulator asserts the correctness
of retired R-stream control-flow and data-flow outcomes.

7.1 Microarchitecture Configuration

The slipstream microarchitecture parameters are listed in
Table 1. The top-left portion describes individual processors
within the CMP. The bottom-left portion describes the
slipstream components. The right portion describes the
slipstream memory hierarchy.

The CMP is composed of two processors. Each one is a
4-issue superscalar processor with a 64-instruction reorder
buffer. Each processor has its own L1 instruction and data
caches. The processors share a unified L2 cache.

A large IR-predictor is used for accurate instruction
removal. IR-detectors based on both explicit and implicit
back-propagation are simulated. The delay buffer stores
values for up to 256 instructions and stores up to 4K branch
predictions. Hardware-based memory duplication is used
and A-stream memory state is recovered by invalidating
dirty lines and using the invalidated data as value
predictions [12]. Recovery of registers takes 21 cycles (the
table gives a breakdown).

The IR-predictor is virtually unbounded in size, hence, it
is infeasible. The IR-predictor is the one remaining slip-
stream component to be engineered and this research is
underway. Until a practical implementation is produced,
we do not want IR-predictor artifacts to obscure the
performance evaluations in this paper. Thus, the large
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IR-predictor is used to highlight, as much as possible, the
effectiveness of various IR-detector implementations.

Nonetheless, we can report our initial experiences with
efficient IR-predictors, which are encouraging. Preliminary
experiments indicate that a single confidence counter per
entry, time-shared among instructions in the fetch block, is
sufficient. Preliminary experiments also indicate that only a
small fraction of all dynamic fetch blocks contribute most of
the instruction removal in a program. A table of 2-bit or
3-bit confidence counters can filter out fetch blocks that are
likely to make large contributions and only these fetch
blocks are assigned semipermanent entries in a small cache
of tagged removal-confidence counters. The filter-and-cache
design yields removal rates approaching those of the
unbounded IR-predictor, e.g., 35-45 percent removal, with
56 KB of storage. Preliminary experiments with the simplest
design of all—associating a confidence counter with each
instruction in the instruction cache—yield instruction
removal rates of 30 percent or higher on benchmarks that
normally achieve 40 percent removal with unbounded
predictors, with only 12 KB of storage. These latter
experiments suggest that deep global branch history is not
so much needed for the confidence counters themselves (as
previously thought) as for maximizing the prediction
accuracy and, hence, removability of branches.

7.2 Benchmarks

A combination of SPEC2000 and SPEC95 integer bench-
marks are used for the simulations. Our selection of
benchmarks achieves nearly complete coverage of both
the SPEC95 and SPEC2000 integer benchmarks within a
total budget of a dozen benchmarks, our aim. Three of the

12 SPEC2000 benchmarks were already unusable. We could
not get eon or crafty to compile with the Simplescalar
compiler. Mcf causes the simulator to exhaust virtual
memory on our machines because of its large footprint,
coupled with the fact that we maintain two full memory
images (one for the cycle-accurate simulator and one for the

functional simulator). Although only four of the eight
SPEC95 integer benchmarks are included, three additional
ones are implicitly included due to overlap with SPEC2000
(gcc, perl, vortex). Thus, effectively, only two benchmarks are
arbitrarily omitted to achieve the dozen-benchmark goal,
bzip from SPEC2000 and go from SPEC95.

The benchmarks are compiled with –O3 optimization
using the Simplescalar compiler [2]. For the SPEC2000
benchmarks, the first billion instructions are skipped and
then 100 million instructions are simulated. The SPEC95
benchmarks are run to completion. The benchmarks and
their inputs are given in Table 2.

8 EXPERIMENTAL RESULTS

This section begins with a study of the IR-detector design
space. For our set of benchmarks, the best confidence
counter threshold and instruction buffer size are identified
for both the explicit and implicit IR-detectors. Next, we
compare the performance of the explicit and implicit
IR-detectors, using their best-performing configurations.

Finally, the impact of the removal of ineffectual stores on
the performance of the implicit IR-detector is measured.

The performance metric is %IPC improvement of
slipstream execution on two processor cores relative to
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single-program execution on one of the processor cores.
For slipstream, IPC is computed by dividing the number
of retired R-stream instructions (i.e., the original program)
by the number of cycles for the A-stream and R-stream
combination to complete.

8.1 IR-Detector Design Space Study

Choosing the best confidence counter threshold involves
balancing two competing goals—maximizing the number of
removed instructions (favoring a low threshold) while
minimizing the number of IR-mispredictions (favoring a
high threshold). In the first part of the study, the counter
threshold is increased while keeping the IR-detector
instruction buffer size fixed at 128 instructions. We identify
the best counter threshold for our benchmarks. After
finding the best counter threshold, the threshold is held
constant and the instruction buffer size is varied to find its
best value.

8.1.1 Explicit Back-Propagation

The performance of the slipstream processor with explicit
back-propagation is shown in Fig. 8. The confidence counter

threshold is varied from 32 to 72. The instruction buffer size
is 128 instructions. The notation Qx indicates the instruction
buffer size and Ty indicates the counter threshold. On
average, a slipstream processor with the explicit IR-detector
improves IPC from 11.4 percent to 12.3 percent as the
counter threshold increases from 32 to 72, with peak
improvement occurring at 64. The trend is very distinct in
the case of m88ksim, where the %IPC improvement
increases from 18 percent to 21.3 percent, with the peak
improvement occurring at a counter threshold of 64. The
change is due to the fact that the percentage of instruction
removal in the A-stream decreases negligibly as the counter
threshold increases from 32 to 64 (from 66.6 percent to
65.6 percent instruction removal), while there is a 58.5 per-
cent decrease in the number of IR-mispredictions.

Next, the instruction buffer size is varied from 32 to
256 instructions while keeping the counter threshold fixed
at 64. The results are shown in Fig. 9. On average, %IPC
improvement does not vary much with instruction buffer
size. The peak IPC improvement of 12.3 percent occurs at a
buffer size of 128 instructions. We conclude that the best
configuration, on average, is a counter threshold of 64 and
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TABLE 2
Benchmarks

Fig. 8. Performance of the slipstream processor with explicit back-propagation, for an instruction buffer size of 128 and counter threshold varying

from 32 to 72.
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an instruction buffer size of 128 instructions, for the explicit
IR-detector. This configuration is used for the remainder of
the study.

8.1.2 Implicit Back-Propagation

The performance of the slipstream processor with implicit
back-propagation is shown in Fig. 10. As before, the
confidence counter threshold is varied from 32 to 72. The
instruction buffer size is 128 instructions. On average, a
slipstream processor with the implicit IR-detector improves
IPC from 10.1 percent to 11.8 percent as the counter
threshold increases from 32 to 72, with peak improvement
occurring at 64. Again m88ksim shows a distinct trend,
where the %IPC improvement increases from 16.1 percent
to 20.2 percent, with the peak improvement occurring at a
counter threshold of 64. The increase in %IPC improvement
is due to the fact that the percentage of instruction removal
in the A-stream decreases negligibly as the counter thresh-
old increases from 32 to 64 (from 66.5 percent to 65.6 percent
instruction removal), while there is a 55.4 percent decrease
in the number of IR-mispredictions.

Next, the instruction buffer size is varied from 32 to
256 instructions while keeping the counter threshold fixed

at 64. The results are shown in Fig. 11. On average, the
%IPC improvement varies from 11.3 percent to 11.8 percent.
The peak %IPC improvement of 11.8 percent occurs at an
instruction buffer size of 128. Therefore, on average, the best
counter threshold (64) and instruction buffer size (128) are
the same for the implicit and explicit IR-detectors.

8.2 Comparison of Explicit and Implicit IR-Detectors

The performance comparison of slipstream processors with
the best explicit (explicit_Q128_T64) and implicit (impli-
cit_Q128_T64) IR-detectors is given in Fig. 12. The avg bar
represents the average %IPC improvement for all 12 bench-
marks. The avg_1/3 bar is the average %IPC improvement
for the six benchmarks which have more than 1/3
instruction removal in the A-stream: gcc, parser, perl, vortex,
li, and m88ksim. (We provide a second average for bench-
marks with more than 1/3 removal because benchmarks
with little removal otherwise mask sensitivity to IR-detector
configuration.) The comparison is done at a counter
threshold of 64 and an instruction buffer size of 128 instruc-
tions, the best configuration for both the explicit and
implicit IR-detectors.

The slipstream processor with the explicit IR-detector
gives an average performance improvement of 12.3 percent,
while the one with the implicit IR-detector gives an average
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Fig. 9. Performance of the slipstream processor with explicit back-

propagation, for a counter threshold of 64 and instruction buffer size

varying from 32 to 256.

Fig. 10. Performance of the slipstream processor with implicit back-

propagation, for an instruction buffer size of 128 and counter threshold

varying from 32 to 72.

Fig. 11. Performance of the slipstream processor with implicit back-

propagation, for a counter threshold of 64 and instruction buffer size

varying from 32 to 256.

Fig. 12. Performance comparison of the explicit and implicit

IR-detectors.
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performance improvement of 11.8 percent. The average
performance improvement for the six benchmarks with
more than 1/3 instruction removal is 20.3 percent with
explicit back-propagation and 19.3 percent with implicit
back-propagation. The results show that the performance
improvement of the slipstream processor with the implicit
IR-detector is comparable to the performance improvement
of the slipstream processor with the explicit IR-detector—
within one percentage point or less, on average.

There are several possible explanations for the slight
performance difference between implicit and explicit back-
propagation. Either implicit back-propagation removes
fewer A-stream instructions, causes more IR-mispredic-
tions, or both. Fig. 13 shows that the percentage of dynamic
instruction removal is almost the same for both
IR-detectors, as we anticipated in Section 4. But, there is a
noticeable increase in the number of IR-mispredictions per
1,000 instructions for implicit back-propagation, as shown
in Fig. 14, except for compress and jpeg. And, for these two
benchmarks, the implicit IR-detector outperforms the
explicit IR-detector. The typically lower performance of
the implicit IR-detector can be attributed to the increase in
the number of IR-mispredictions, confirming the analysis in
Section 4. When the last instruction in a chain causes an
IR-misprediction, there is a cascade of N-1 additional
IR-mispredictions for a chain N instructions long. On the

other hand, the explicit IR-detector does not incur addi-
tional IR-mispredictions after the initial one.

It is purely by chance that jpeg has fewer IR-mispredic-
tions with implicit back-propagation than with explicit
back-propagation. The anomaly occurs inside a tight loop in
the gen_huffman_coding function. An instruction A that was
previously ineffectual becomes effectual again. Unfortu-
nately, many new instances of A continue to be removed in
the tight loop because it takes a trip through the FIFO before
the IR-predictor is updated to reset A’s counter. This
usually causes repeated IR-mispredictions until the
IR-predictor is updated. However, due to delayed disman-
tling of an unrelated ineffectual strand in the case of the
implicit IR-detector, another instruction B is also declared
ineffectual when it is not. Serendipitously, this convergence
of “two wrongs” make a “right.” While the two instructions
do not meet our ineffectual criteria, removing both A and B
did not actually affect correct forward progress, whereas
removing A and not removing B does affect correct forward
progress.

Two conclusions can be drawn from the jpeg anomaly.
First, delayed IR-predictor updates are potentially patholo-
gical in tight loops and this aspect should be addressed in
future work. Implicit back-propagation serendipitously
masked the pathological behavior in the specific scenario
discussed above, but masking is not guaranteed in general.
Second, observing the masking effect made us realize that
there are more general ineffectual criteria yet to be
exploited. Our three ineffectual criteria are easy to detect,
but they do not capture all ineffectual behavior.

8.3 Breakdown of Dynamic Instructions in the
A-Stream

The breakdown of dynamic instructions in the A-stream is
given in Fig. 15. The breakdown was measured for a
slipstream processor with the implicit IR-detector. Results
are almost the same for the explicit IR-detector. The effectual
component is the fraction of instructions in the A-stream
that were not removed. The branch component is the
fraction of instructions that were removed due to correctly
predicted branches. The WSV component is the fraction of
instructions that were removed due to nonmodifying writes
(“write-same-value”). The WW component is the fraction of
instructions that were removed due to original unrefer-
enced writes (“write-write”). The propagation component is
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Fig. 13. Percentage of dynamic instructions removed in the A-stream

using explicit and implicit back-propagation.

Fig. 14. IR-mispredictions per 1,000 instructions using explicit and

implicit back-propagation.

Fig. 15. Breakdown of dynamic instructions in the A-stream.
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the fraction of instructions removed due to back-propaga-
tion; note, these are exposed as unreferenced writes by the

implicit IR-detector, but we separate this component from
the WW component. As shown in Fig. 15, branches,
nonmodifying writes, and back-propagation are the major
sources of instruction removal. Original unreferenced
writes are not as significant as the other three components.

8.4 Removal of Stores

A memory operand rename table tracks references to
memory locations. It is needed to detect unreferenced
stores, nonmodifying stores, and stores that are referenced
by ineffectual loads (back-propagation). The IR-detector can

be simplified further if we choose not to remove store
instructions. In this case, only a register operand rename
table is used and it is similar to the rename table in
conventional superscalar processors. The %IPC improve-
ment of a slipstream processor with the implicit IR-detector,

both with (implicit_Q128_T64) and without (impli-

cit_Q128_T64_NS) store removal, is shown in Fig. 16. The
breakdown of instructions in the A-stream with and
without store removal is shown in Fig. 17. (The suffix _ns

indicates no store removal.)
The average slipstream performance improvement de-

creases from 11.8 percent to 11.2 percent, without store
removal. The average slipstream performance improvement
decreases from 19.3 percent to 18.7 percent for the six

benchmarks with more than 1/3 instruction removal. This
is primarily due to a decrease in the number of instructions
removed from the A-stream. Fig. 17 shows a noticeable
decrease in the number of instructions removed, the

categories of nonmodifying writes (WSV) and propagation
(Prop.) being impacted the most. But, m88ksim and vortex

actually perform better without the removal of ineffectual
stores. Although the percentage of instructions removed
from the A-stream decreases by 9 percent in m88ksim and

15 percent in vortex, overall performance improves as a
result of an increase in the number of value predictions
communicated from the A-stream to the R-stream.

Note that the trade off between the extra complexity and
performance benefits of store removal may shift for

different assumptions about the number of L1 cache ports,
MHSRs, etc.

9 RELATED WORK

Sundaramoorthy et al. [11], [13], [16] proposed the first
IR-detector for slipstream processors. Key ineffectual
instructions (unreferenced writes, nonmodifying writes,
and correctly predicted branches) are selected for removal
first, using an operand rename table (ORT). Instructions
feeding the trigger instructions are selected using a reverse
data-flow graph (RDFG). The RDFG consists of physical
connections from consumer instructions to their producers.
For N instructions in the RDFG, there are N2 wires and
N complex logic blocks [19]. Implicit back-propagation
eliminates the RDFG component.

This paper is a condensed version of Koppanalil’s MS
thesis [19], which contains more details, including a gate-
level implementation of the RDFG and a full description of
the old IR-detector based on explicit back-propagation.

Roth and Sohi [14], [15] proposed Speculative Data-
Driven Multithreading, an architecture for preexecuting
threads to resolve likely mispredicted branches early and
prefetch possible cache misses. They do not propose a
hardware mechanism for constructing preexecution
threads. Instead, they use an offline profile-driven approach
for identifying the backward slices of unpredictable
branches and loads that tend to miss frequently. Zilles
and Sohi [17], [18] also studied the use of preexecution to
reduce the impact of performance-degrading instructions.
They used profiling and manual analysis to construct the
preexecution threads.

Collins et al. [3] proposed a hardware mechanism for
dynamically constructing precomputation slices (p-slices) of
delinquent loads (loads that tend to miss). A table records
the miss rates of loads and they are dynamically classified
as delinquent or not. A Retired Instruction Buffer (RIB)
buffers retired instructions between two instances of a
delinquent load. When the second instance is detected, the
RIB stops receiving new retired instructions and begins
analyzing buffered instructions. Instructions in the RIB are
scanned serially, starting from the second instance of the
delinquent load and moving steadily backward. Scanning
identifies instructions in the backward slice of the delin-
quent load. When the p-slice is constructed, it is optionally
optimized and then stored in a p-slice cache. Other
precomputation architectures [1], [9] use similar approaches

KOPPANALIL AND ROTENBERG: A SIMPLE MECHANISM FOR DETECTING INEFFECTUAL INSTRUCTIONS IN SLIPSTREAM PROCESSORS 411

Fig. 16. Effect of store removal on slipstream processor performance. Fig. 17. Breakdown of dynamic instructions in the A-stream, with and

without store removal. The implicit IR-detector is used.
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for dynamically constructing p-slices or use compiler
construction of p-slices [7].

Many retired instructions are “dropped” while the RIB is
busy analyzing a region of the dynamic instruction stream.
Passing over dynamic instructions is not a problem in the
context of precomputation. A region only has to be
analyzed once because its p-slice does not change. There-
fore, there is no urgency to construct p-slices. If a region
containing a new p-slice is passed over because the RIB is
busy constructing another p-slice, the new p-slice is simply
constructed the next time its containing region is seen again.

On the other hand, a slipstream processor must con-
tinuously monitor the ineffectualness of all dynamic
instructions in order to build up confidence. The IR-detector
based on implicit back-propagation is a practical means for
continuous monitoring. The key innovation is not dealing
explicitly with dependence chains. This yields an approach
that avoids buffering actual instructions in an RDFG or RIB
and enables forward analysis by means of a rename table.

The slice-processor developed by Moshovos et al. [9]
employs scout threads to preexecute problem loads and
branches. Scout threads are constructed using the slicer. The
slicer buffers retired instructions. When a candidate
instruction is retired, the buffer is sequentially scanned
backward to collect instructions in its backward slice. The
backward scan involves propagating a dependence vector
from one slicer entry to the next. The slicer is conceptually
similar to the RIB. However, a domino logic implementa-
tion of dependence vector propagation is proposed.
Furthermore, two slicers are used. A working slicer receives
committed instructions, while a shadow slicer performs
slice detection. The working slicer reduces the chance that a
candidate instruction is dropped while a slice is being
constructed.

10 SUMMARY AND FUTURE WORK

The single-chip multiprocessor is a promising framework
for future microprocessors. CMPs deliver high performance
for multiprogrammed and parallel/multithreaded work-
loads. Each constituent processor delivers high single-
program performance with a balanced design that com-
bines a fast clock and moderate ILP. Slipstream extends the
capability of CMPs by enabling a single program to exploit
a second idle core. Slipstream runs two redundant copies of
the program, one a speculatively reduced version
(A-stream) and the other a checker (R-stream). The
redundant programs collaborate to finish faster than
conventional nonredundant execution.

In this paper, we examined in depth the slipstream
component responsible for detecting past-ineffectual in-
structions, the IR-detector. The IR-detector first selects
unreferenced writes, nonmodifying writes, and correctly
predicted branches. It then selects instructions feeding these
trigger instructions. Unreferenced and nonmodifying writes
are easily selected using a table indexed by logical registers.
Selecting instructions in their backward slices previously
required an elaborate mechanism, called explicit back-
propagation, whereby consumer instructions signal ineffec-
tual status to their producers via direct links.

We proposed a new method, called implicit back-propaga-
tion, that reduces back-propagation to the detection of
unreferenced writes, eliminating a complex subcomponent
of the IR-detector. The key idea is to logically monitor the
reduced A-stream and only select unreferenced writes,
nonmodifying writes, and correctly predicted branches.
Once these trigger instructions are removed from the
A-stream, their producers are exposed as unreferenced
writes. The same method for selecting original unreferenced
writes works for freshly exposed unreferenced writes. Once
they are removed, additional unreferenced writes are
exposed and implicit back-propagation proceeds iteratively
until entire ineffectual dependence chains are removed.

The analysis in this paper reveals several major
conclusions.

. A slipstream processor with explicit back-propaga-
tion improves performance by an average of
12.3 percent (relative to conventional nonredundant
execution), while a slipstream processor with im-
plicit back-propagation improves performance by an
average of 11.8 percent. Performance improvements
are 20.3 percent and 19.3 percent, respectively, for
benchmarks with more than 1/3 instruction re-
moval. In other words, with implicit back-propaga-
tion, hardware complexity is significantly reduced
with only minor performance impact.

. Explicit and implicit back-propagation take the same
amount of time to build predicted-ineffectual chains,
but implicit back-propagation is less timely in
dismantling them. Measurements of the amount of
instruction removal and rate of IR-mispredictions
confirm this analysis. The two approaches achieve
about the same amount of instruction removal (same
training time for building chains), but implicit back-
propagation has significantly more IR-mispredic-
tions (dismantles chains slower). Thus, the slight
performance difference is due to IR-mispredictions.

. Removal of ineffectual stores requires a cache-like
structure to track references to memory locations.
Average performance improvement drops from
11.8 percent to 11.2 percent without store removal.
Average performance improvement drops from
19.3 percent to 18.7 percent, for benchmarks with
more than 1/3 instruction removal. Thus, a minimal
IR-detector that employs implicit back-propagation
and does not support store removal achieves a good
balance between complexity and performance.

. A minimal IR-detector design consists primarily of a
table indexed by logical register. Complexity analy-
sis reveals three out of four fields in the table require
four read and four write ports (assuming a 4-issue
superscalar core). The fourth 1-bit field requires four
read and 12 write ports, although the write ports can
be tailored for set/reset operations on the bit.

By diagnosing the jpeg anomaly, we uncovered the
potential for new ineffectual criteria. For example, the
nonmodifying write criterion can be expanded to include
writes that modify the value in a location if skipping them
does not change the course of the program. Developing new
ineffectual criteria is part of our ongoing work.
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Currently, we are working on dynamically enabling/

disabling slipstream mode by continuously gauging poten-

tial instruction removal, as measured by the IR-detector/

IR-predictor.
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