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Abstract—

A commercial flagship superscalar core is a highly tuned
machine. Designers spend significant effort to tune the register-
transfer-level (RTL) model, circuits, and layout to optimize
performance and power. Nonetheless, the one-size-fits-all microar-
chitecture still suffers from suboptimal performance and power
on individual applications. A single-ISA heterogeneous multi-core,
with its multiple diverse core designs, has potential to exploit
application diversity. However, tuning multiple core types will
incur insurmountable design effort. This paper proposes a new
class of single-ISA heterogeneous multi-core processor, called
design-effort alloy (DEA). Only one of the core types, called the
high-effort core (HEC), is tuned using a high-effort design flow.
Much less effort is spent on tuning other core types, called low-
effort cores (LECs).

We begin with synthesizable RTL designs of a palette of out-
of-order superscalar core types. A LEC and HEC is designed
for each core type: the LEC is based on design automation and
the HEC is derived from its LEC counterpart, using frequency
and energy scaling factors that account for RTL, circuit, and
layout optimizations. The resulting HECs have more than a
2x frequency advantage with only a 1.3x increase in energy
consumption compared to their corresponding LECs. From the
palette of core types, we find the best 4-core-type DEA processor
for 179 SPEC SimPoints (program phases). Our study yielded
the following key results:

1) The DEA processor’s HEC is the same core type in the
best high-effort homogeneous multi-core, owing to most
program phases demonstrating “average” instruction-
level behavior and favoring this balanced core.

2) The DEA processor yields a speedup in BIPS3/W of 1%-
87%, and a geometric-mean speedup of 25%, on 20 out
of 179 SimPoints over the best high-effort homogeneous
multi-core. Thus, untuned LECs operating at less than
half the frequency of the HEC nonetheless accelerate
program phases with “outlier” instruction-level behav-
ior.

I. INTRODUCTION

A commercial flagship superscalar core is a highly tuned
machine. Both its microarchitecture and physical design are
carefully crafted, by hundreds of engineers over a period of
three to five years, to achieve high single-thread performance
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on a wide range of applications. Nonetheless, a single microar-
chitecture leaves some performance on the table. Its design
is tugged in different directions by diverse program charac-
teristics. Opposing forces cause numerous compromises, for
example, compromises between exploiting more instruction-
level parallelism (ILP), more memory level-parallelism, and
high frequency. As a result, the core is suboptimal in some
program phases, especially those phases with outlier behaviors.

A single-ISA heterogeneous multi-core, with its multiple
diverse core designs, can satisfy several of these competing
forces [12] [17] [19]. They achieve this by better matching
processor resources to different programs or phases within pro-
grams. For example, some phases may be able to take advan-
tage of a wider pipeline, increasing performance and efficiency
despite a potential decrease in frequency that width imposes.
While it is conceptually easy to increase the pipeline width,
the major problem with single-ISA heterogeneous multi-core
processors is that crafting many different highly tuned core
designs is prohibitively expensive. Recent work suggests au-
tomating the generation of register-transfer-level (RTL) designs
of microarchitecturally diverse superscalar cores [7], but this
strategy does not address the significant effort that goes into
producing a high quality physical design, including tuning of
the RTL, circuits, and layout.

In this paper, we propose a new class of single-ISA
heterogeneous multi-core processor which we call Design-
Effort Alloy, or DEA. In a DEA processor, only one of the
core types is a high-effort core (HEC) and all other core types
are low-effort cores (LECs). The design team spends most of
its time tuning the RTL, circuits, and layout of the HEC. On the
other hand, the LECs are not tuned: their RTL is unoptimized,
yielding unbalanced pipeline stages; they are fully synthesized
using standard cells, with the possible exception of some
compiled SRAM memories; and their layouts are generated
exclusively by automated place-and-route.

From a design space of eighteen superscalar core types in
RTL form, we identify the best 4-core-type DEA processor for
a workload of 179 SPEC SimPoints. Frequencies and energies
of LECs are derived from automated synthesis. Frequencies
and energies of HECs are derived from their LEC counterparts,
using experimentally derived delay and energy scaling factors
for tuning strategies that include pipeline stage balancing,
custom transistor sizing, high speed flip-flop designs, and
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manual layout. The first key result is that the DEA processor’s
HEC ends up being the same as the core type in the best
high-effort homogeneous multi-core. Thus, the role of the
HEC is as workhorse for the majority of program phases
that exhibit “average” instruction-level behavior. The HEC
maintains robust leading-edge performance that can only be
reliably achieved with a highly hand-optimized core. The
second key result is that the DEA processor yields a speedup
in BIPS3/W of 1%-87%, and a geometric-mean speedup of
25%, on 20 out of 179 SimPoints over the best high-effort
homogeneous multi-core (hence, over the HEC). Thus, the
LECs are able to accelerate “outlier” program phases despite
their substantial frequency handicap.

An overall low-effort design flow for the LECs must also
consider logic design and verification effort. Fortunately, there
are several promising strategies for reducing logic design and
verification effort of the LECs:

• IP reuse [10]: Leverage RTL of previous-generation
core designs.

• Automatic core generation [2] [7] [9]: Leverage tools
that generate RTL of whole core designs.

• Beta cores [25]: Consciously shorten the verification
cycle and employ dynamic checkers in the field to
correct residual bugs.

• ISA subsetting [15]: Implement a simple, high cover-
age subset of the full ISA in the LECs and fault to
the HEC for unimplemented instructions.

The intent of this work is not to show the potential benefits
of heterogeneity in general – that has been well explored in
prior work [10] [12] [13] [14] [17] [19] [26]. Rather, we focus
on the following new contributions:

• The idea of coupling a core designed using a tradi-
tional high-effort approach with cores designed using
a fully-automated (low-effort) approach, to deliver a
lower NRE cost heterogeneous multi-core. Our low-
effort approach includes automated RTL generation of
superscalar cores enabled by the FabScalar toolset and
automated synthesis, placement, and routing (SPR)
enabled by EDA tools.

• A detailed demonstration and evaluation of high and
low-effort design methodology.

• An analysis of performance and efficiency gains
achieved on application phases by a Design-Effort
Alloy processor.

The big impact of these contributions is to answer the question
of whether or not cores designed using a low-effort flow can
have performance (BIPS) or efficiency (BIPS3/W) that is better
than a core designed using a high-effort flow. The answer
is “yes” for both performance and efficiency even though
the LEC sacrifices over half of the frequency possible with
physical design tuning. Our results show that 20 out of 179
phases achieve an efficiency improvement of up to 87% over
a high-effort homogeneous multi-core. Also, we find that 9 of
the phases benefit in performance, up to about 33%, over a
high-effort homogeneous multi-core.

TABLE I. EDA TOOLS USED IN THIS WORK.

Name and Version
Cadence NC-Verilog, vers. 06.20-s006
Synopsys Design Compiler, vers. E-2010.12-SP2
Synopsys PrimeTime, vers. E-2010.12-SP3-1
Cadence SoC Encounter, vers. 9.1
HSPICE, vers. C-2009.03-SP1
FreePDK BSIM4 45nm process technology library [24]

II. CORE MODELS

In order to evaluate Design-Effort Alloy CMPs, we need
performance and power models for a wide range of core
configurations. Both our low-effort cores (LECs) and high-
effort cores (HECs) are based on the FabScalar toolset [7].
FabScalar enables generating synthesizable RTL designs of
diverse superscalar cores, that differ in their superscalar widths,
pipeline depths, and structure sizes.

Section II-A describes how we derive frequencies and
energy consumption for LECs using FabScalar.

Frequencies and energy consumption of HECs are scaled
from their corresponding LECs. Per-configuration scaling fac-
tors are derived through a series of techniques that include
balancing pipeline stage delays, modeling key circuits in
SPICE, and extrapolating placement and routing trends from
standard cell estimates. HEC scaling factors are described in
Section II-B.

A. Modeling Low-Effort Cores (LECs)

For generating RTL designs of whole cores, FabScalar is
comprised of a Canonical Superscalar Template, a Canonical
Pipeline Stage Library (CPSL), and a Core Generator [6]. The
Template specifies composable interfaces of canonical pipeline
stages. The CPSL provides many different RTL designs of each
canonical pipeline stage that differ in their superscalar width
and depth of sub-pipelining. Structure sizes are parameterized.
The designer specifies a configuration to the Core Generator,
which references the CPSL and Template to assemble a core
of that configuration.

In addition to the pipeline RTL, the FabScalar toolset
includes two means for supporting memories [7]. The first
is FabMem, a memory compiler for generating full layouts
of highly-ported RAMs and CAMs for the FreePDK 45nm
technology. The other is a modified CACTI [22] technology
file, adjusted for FreePDK 45nm, for modeling large memories
such as caches and predictors.

To facilitate our analysis, we developed the FabScalar
Performance-Power-Area (FabScalar-PPA) framework, shown
in Figure 1. At the heart of FabScalar-PPA is a database that
has cycle time, power, and area for every pipeline stage design
in the CPSL. The EDA tools used to generate this database, and
used for other purposes in this paper, are shown in Table I. The
data are based on synthesis and, in some cases, post-synthesis
place-and-route (e.g., bypass network). Synthesis used cells
(.lib files) from FabMem for highly-ported RAMs and CAMs.
For each stage design in the database, synthesis was performed
multiple times with successively tighter cycle time targets until
the tightest cycle time was achieved.
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Fig. 1. Models for estimating low and high-effort design.

B. Modeling High-Effort Cores (HECs)

It is beyond the scope of this paper to carry out a high-
effort design flow for each of the core configurations. Using
corroborative sources [4] [5], we identify four key techniques
that are used in the design of flagship cores. In the follow-
ing sections, we address each of these techniques and then
combine their effects into a model that is used to scale the
frequency and energy of LECs to characterize HECs.

1) Balancing Pipeline Stages: One main area for improve-
ment is balancing the delays of all pipeline stages. Pipeline
stages in the CPSL begin and end at canonical pipeline stage
boundaries. While this makes it possible to compose arbitrary
cores within the canonical template, it comes at the expense of
some stages having longer delays than others. The delay of the
longest stage dictates the clock period of the entire pipeline.
In a high-effort design, a team of designers would move logic
from stages with longer delays to stages with shorter delays,
reducing the overall clock period.

To model this effect in our hypothetical HECs, we take
a very simple approach: we sum all of the delays of the
individual pipeline stages and divide that total delay by the
number of pipeline stages. This models a perfectly balanced
pipeline. The factor of improvement in frequency is between
1.4x and 1.7x, which is in line with the 1.3x to 1.8x factor
estimated by Chinnery and Keutzer [4].

Estimating the energy impact of pipeline balancing is
difficult, however. Without balancing, pipeline registers hold
final values of the previous stage. If the stages are evenly
balanced, then pipeline registers may instead hold intermediate
values, and it is highly likely that more flip-flops are needed.
From this rationale, we posit that energy will increase, but the
magnitude of this increase is still unknown without actually
balancing the pipeline. Thus, we do not apply this energy tax
to the HEC, which gives the BIPS3/W advantage to the HEC
and, in turn, reduces the estimated benefit of DEA (since the
key idea of DEA is that LECs can outperform the HEC for
certain outlier program phases).

2) Transistor Sizing: Standard cell libraries are limited to
only a handful of drive strengths. Custom circuit designers
can reduce the delays of critical paths by increasing transistor
sizes. Increasing transistor sizes reduces delay, but comes at
the cost of increased capacitance, which increases energy. To
find the frequency and energy impact that can be expected,
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Fig. 2. Frequency and energy trend for transistor sizing.

we extracted timing-critical paths from the SPICE netlist of
example 4-wide Issue and Register Read stages.

These paths were then manually optimized, by adjusting
transistor sizes, to operate at a higher frequency. The results are
plotted in Figure 2 (energy includes both dynamic and static
energy). The “failure point” refers to the point at which we
were no longer able to increase frequency without a substantial
increase in energy. For the frequencies that we did meet, we
find that energy increases linearly, evident in the solid part of
the line. We can see that transistor sizing alone can increase
frequency by about 37%, but that comes with a 31% increase
in energy. Again, this is within the estimate made by Chinnery
and Keutzer [4], which was in the range of 1.1x to 1.45x.

Another approach for shortening the critical path is to
reduce the threshold voltages of transistors on the critical path,
at the price of higher leakage. This alternative is not explored
in this paper.

3) Pulse Latches: Both Intel [11] and IBM [27] [28] used
pulse latches instead of flip-flops in their flagship designs.
Pulse latches rely on a very short clock pulse to minimize
the window during which values flow through the latch trans-
parently. Due to the narrow window of time, the pulse latch
behaves similar to a flip-flop and comes with the benefit of a
negative setup time (i.e., the D input can change for a slight
time after the rising clock edge). This property of pulse latches
reduces the total delay of the pulse latch, determined by the
setup delay plus the clock-to-Q delay. The lower delay comes
at the cost of higher power consumption, however.

We implemented SPICE models of a pulse latch and a flip-
flop to characterize the frequency and power increases afforded
by pulse latches. We used the HLFF pulse latch [20], which has
been used in several flagship designs. The NanGate standard
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TABLE II. PULSE LATCH AND FLIP-FLOP CHARACTERIZATION.

Characteristic Flip-Flop Pulse Latch
Tsetup 15ps -4ps
Tclk−to−q 37.2ps 31.2ps
Total delay 52.2ps 27.2ps
Power 56.7µW 94.5µW

cell library [1] uses transmission gate-based flip-flops, which
we designed using the techniques from Rabaey, et al. [21]. The
delay and power results of the SPICE simulations are shown
in Table II. The pulse latch is faster than the flip-flop by a
factor of 1.9x, at a cost of 1.7x higher power consumption.

4) Layout: Finally, we consider the effect of careful layout
of the chip, encompassing all three facets of layout: floorplan-
ning, place-and-route, and custom layout of critical units. Our
low-effort model is based on basic floorplanning, automatic
place-and-route, and standard cells except for RAMs/CAMs.
Automation reduces the time it takes to generate a layout,
but the layout is of lower quality than a manual layout. A
manual layout can achieve higher transistor density, hence,
shorter wires, which reduces both delay and energy.

To explore this aspect, we manually placed-and-routed a
simple module (synthesized to standard cells) numerous times
at different densities, and plotted normalized frequency and
energy as a function of transistor density, in Figures 3a and 3b,
respectively. The measured data and corresponding trend lines
are shown with solid lines. As this experiment is based on
standard cells, it only accounts for the effect of floorplanning
and place-and-route on layout quality. To also account for
custom layout of critical units, we extrapolated the trend lines
using transistor densities inferred from published die photos
and transistor counts for the Intel Nehalem [11] and IBM
POWER7 [27] [28] processors, both 45nm designs. (Caches
were excluded, i.e., we inferred transistor density of logic
only.) The extrapolated points are shown with dashed lines.

The impact of layout quality on frequency is small, only a
0.5% increase from the lowest to the highest density. On the
other hand, energy decreases by about 5%.

The linear extrapolations in Figure 3 assume a linear
relationship between wire capacitance and wire length. Wire
capacitance is proportional to area and fan-out [4]. If we
assume a simple wire model, wherein capacitance is due only
to parallel-plate capacitance, then capacitance is linear with
wire length [21].

5) High-Effort Scaling Model: To derive full-pipeline es-
timates, we must combine the high-effort techniques into a
single model for energy and frequency. We use the following
equations:

THEC = αlayout[αtrans.size(Tbalance − TDFF ) + TPL] (1)

EHEC = βlayout[βtrans.size(rlogicELEC)+βPL(rFFELEC)]
(2)

The α coefficients, differentiated by subscripts, denote
delay scaling factors given in previous sections. Similarly, the
β coefficients denote corresponding energy scaling factors.
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Fig. 3. Estimated impact of layout on high-effort designs.

Equation (1) gives the clock period of the HEC, THEC .
Tbalance is the clock period after balancing pipeline stages of
the corresponding LEC (Section II-B1). TDFF is the D flip-
flop delay (Section II-B3). TDFF is subtracted from Tbalance to
get just the combinational logic delay, which is then scaled by
the transistor sizing scaling factor, αtrans.size (Section II-B2).
The pulse latch delay, TPL, is added back to the scaled
combinational logic. Finally, the layout scaling factor, αlayout

(Section II-B4), is applied to the total delay.

Equation (2) gives the energy of the HEC, EHEC . ELEC

is energy of the LEC. ELEC is divided into two parts: energy
contributed by logic cells and energy contributed by flip-
flop cells. This breakout is necessary to separately apply the
transistor sizing scaling factor, βtrans.size, to logic, and the
pulse latch scaling factor, βPL, to flip-flops. rlogic is the ratio
of logic cells to total cells. rFF is the ratio of flip-flop cells to
total cells. Thus, rlogic + rFF = 1. These ratios are obtained
from the standard cell netlist of the LEC.1 These ratios depend
on the core configuration, but rFF is in the range of 12% to
17%. Finally, the layout scaling factor, βlayout, is applied.

After applying these equations, the total frequency scaling
factor is in the range of 2.1x to 2.5x and the total energy
scaling factor is between 1.29x and 1.31x.

III. METHODOLOGY

This section describes our methodology for designing and
comparing optimal homogeneous, heterogeneous, and design-
effort-heterogeneous multi-core processors: core design space
( III-A), metrics ( III-B), workload ( III-C), cycle-accurate pro-
cessor simulator ( III-D), and CMP design space exploration
(DSE) tool ( III-E). Figure 4 depicts the overall methodology.

1Since energy is proportional to capacitance, a more accurate model would
base rFF and rlogic on the total capacitances contributed by flip-flops and
logic, respectively. This information is much harder to derive from the netlist
and standard cell library, so cell counts are used as a simple proxy.
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TABLE III. THE PALETTE OF 18 CORES CONSIDERED FOR
EVALUATION.

Core Period (ns) Depth IQ, AL, LSQ L1 Size(KB), Assoc
Name LE HE Inst Data
1W-S 0.4 0.167 15 8, 64, 16 8,1 8,1
1W-M 0.5 0.198 15 24, 128, 32 16,2 16,2
1W-L 0.6 0.246 14 64, 384, 128 32,4 32,4
2W-S 0.5 0.220 16 32, 96, 64 16,4 16,4
2W-M 0.6 0.273 14 48, 192, 128 32,4 32,4
2W-L 0.7 0.285 13 64, 384, 128 64,4 64,4
3W-S 0.5 0.201 18 16, 64, 32 16,4 16,4
3W-M 0.6 0.287 14 48, 128, 64 32,4 32,4
3W-L 0.7 0.308 15 64, 384, 128 64,4 64,4
4W-S 0.6 0.266 16 32, 128, 32 32,4 32,4
4W-M 0.7 0.306 15 48, 256, 128 64,4 64,4
4W-L 0.8 0.329 15 64, 384, 128 64,4 64,4
5W-S 0.6 0.258 16 24, 64, 32 32,4 32,4
5W-M 0.7 0.298 16 48, 192, 128 64,4 64,4
5W-L 0.8 0.318 16 64, 256, 128 64,4 32,4
6W-S 0.7 0.327 15 32, 128, 64 16,4 32,4
6W-M 0.8 0.325 16 48, 256, 128 32,4 64,4
6W-L 0.9 0.379 15 64, 384, 128 64,4 64,4
Common core parameters
Shared L2, 2MB, 8-way assoc
L2 stream prefetcher, 32 entry

Pipeline Parameters 
and Structure Sizes

CMP Configs, BIPS, 
BIPS3/W

HE vs. LE, 
Het. vs. Hom.

LE Model

HE Model
Per-structure 
Delay, Energy

Core  BIPS, BIPS
3/W

Core Palette

C++ Sim
ulator

Core Config

DSE ScriptCMP Config

Fig. 4. Methodology for evaluating Design Effort Alloy.

A. Core Palette

The number of valid core configurations that can be
modeled by FabScalar-PPA is about 38,000. It was previously
observed that the diversity in this large design space can be
reasonably captured by far fewer core types. We follow the
same strategy as Choudhary et al. [7]. They considered three
cycle time targets for each of superscalar widths 2 through
8, yielding 21 core types. As width increases, the three cycle
time targets also shift to accommodate more logic complexity.
The three cycle time targets for a given width accommodate
small, medium, and large structure sizes for that width.

In this paper, we consider superscalar widths of 1 (scalar)
through 6 and three cycle time targets for each, yielding the
18 core types listed in Table III. These 18 core types form the
core palette for our evaluation. A core type is named by its
width (e.g., 4W) and relative size – small (S), medium (M), or
large (L) structures, corresponding to three cycle time targets.

B. Metrics

Performance is measured in billions-of-instructions-per-
second (BIPS) to factor-in both instructions-per-cycle (IPC)
and frequency. The goodness metric used by the DSE to rank
cores, however, is BIPS3/W. This metric captures both perfor-
mance (BIPS) and power (W) which is our aim. Moreover,

BIPS3/W is a voltage-independent metric, hence, BIPS3/W is
considered a better metric than energy-delay-product [16]. In
this paper, we refer to BIPS3/W simply as efficiency because
it emphasizes both time-efficiency and power-efficiency.

C. Workload

The workload for both the DSE and experiments consist
of 179 program phases taken from the SPEC CPU2000 and
CPU2006 suites. The benchmarks were compiled with gcc
version 4.5.2 with the -O3 optimization level for the MIPS64r2
instruction set. Our toolchain does not include a Fortran
compiler. The fortran-to-C converter, f2c, allows us to include
Fortran-77 programs but not Fortran-90/95 programs, which
were the only SPEC benchmarks omitted as a result. The 179
program phases were obtained using SimPoint [23], configured
to select a maximum of ten 10-million-instruction SimPoints
from each benchmark. The benchmark regions returned by
SimPoint are hereafter referred to as phases and named by
the combination of benchmark name and SimPoint interval
number.

D. Cycle-Accurate Simulator

We developed a cycle-accurate (with respect to FabScalar)
processor simulator that we interface with FabScalar-PPA to
evaluate core configurations. As the simulator executes, it
maintains activity counters. When the simulation completes,
the simulator queries the FabScalar-PPA database for per-
component energy costs and combines these costs with cor-
responding activity counters to estimate overall energy. The
simulator also measures IPC which is multiplied by frequency
to get BIPS.

E. CMP Design Space Exploration

The inputs to the CMP design space exploration (DSE)
tool are 1) performance or efficiency of every phase on every
core in the core design space, 2) whether the CMP should
be homogeneous or heterogeneous, and 3) whether the CMP
should be all high-effort, all low-effort, or mixed-effort (a DEA
configuration).

For the homogeneous CMP, the DSE tool finds the one core
type that gives the highest average performance or efficiency
over all phases.

For heterogeneous CMPs, it is important to determine
the number of core types, N. Figure 5 shows the percent-
improvement in efficiency of the best N-core-type combination
over the best single core type for increasing N. The knee in the
curve for both high and low-effort heterogeneous configura-
tions is at four core types. Additional core types yield marginal
efficiency gains. Therefore, N is chosen to be four.

When evaluating a given combination of four core types,
the DSE assumes each phase will execute on its best core
among the four. The DSE explores all possible 4-core-type
combinations and selects the one with the highest average
performance or efficiency over all phases. For DEA, the search
space quadruples relative to all low-effort core types, because
one of the four core types is high-effort.
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TABLE IV. CORE CONFIGURATIONS FOR EACH CMP TYPE.

CMP Core Configs
Low-Effort Homogeneous 2W-S
Low-Effort Heterogeneous 1W-S, 2W-S, 3W-M, 4W-S
High-Effort Homogeneous 2W-S
High-Effort Heterogeneous 1W-S, 2W-S, 2W-L, 4W-S
Design-Effort Alloy HE-2W-S, LE-1W-S, LE-1W-L, LE-2W-S

IV. RESULTS

In Section IV-A, we analyze the results of the design space
exploration of five different CMP types, including DEA. We
then compare efficiency and performance of DEA with the
other four CMP types in Sections IV-B and IV-C, respectively.

A. DSE Results

The core configurations selected by the DSE tool are listed
in Table IV for the five CMP types. Note that the DEA cores
are labeled with HE- or LE- to denote which core is high-effort
and which are low-effort, respectively.

The interesting aspect of these results is that the 2W-S core
appears in all types of CMP. It is the well-balanced core that
most phases prefer, owing to their “average” instruction-level
behavior.

The 2W-S is the high-effort homogeneous CMP as well as
the HEC in the DEA CMP. Because of this, it is not possible
for phases to have an efficiency or performance that is worse
on DEA than either the low or high-effort homogeneous CMPs.

Furthermore, the 2W-S configuration is selected as the
high-effort core and one of the low-effort cores in the DEA
CMP. It is possible to have both the high and low-effort
versions of the same core configuration when exploring DEA.
This is because the frequency and energy relationship changes
when scaling from low-effort to high-effort.

B. Efficiency Results

Figure 6 shows the average improvement in efficiency
of the DEA CMP over the baseline CMPs. The average is
measured as the geometric mean speedup of BIPS3/W. DEA
outperforms the low-effort homogeneous and heterogeneous
CMPs by 107% and 96%, respectively. This shows that the
HEC of the DEA CMP buys a substantial increase in efficiency
over simply relying on low-effort cores. We additionally show
the upper-bound for high-effort heterogeneity in the right-most
bar of Figure 6. The all high-effort heterogeneous CMP has
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Fig. 6. Average efficiency increase of DEA CMP, relative to reference CMPs.

better efficiency, but it is the thesis of this paper that the design
effort of such a configuration prohibits its implementation.

Thus, the key objective is for DEA to improve upon the
efficiency of the high-effort homogeneous CMP. Indeed, the
average improvement in efficiency of the DEA CMP over
the high-effort homogeneous CMP is about 2.5%. While the
average improvement seems modest, it belies the significant
efficiency improvements enjoyed by individual phases and
applications. We delve into this perspective, below.

We find that most phases – 159 out of 179 – are most
efficiently executed by the HEC. Since the HEC in the DEA
CMP is the same as the high-effort homogeneous core, these
phases exhibit zero efficiency gains and consequently pull-
down the average. Thus, the average improvement should nec-
essarily be modest. This finding also underscores the continued
importance of the flagship core – it is very efficient for a
majority of phases.

The remaining 20 phases execute more efficiently on one
of the LECs than on the HEC. Figure 7 plots the percent
improvement in efficiency for these phases, rank-ordered by
the magnitude of the percent improvement. (The phases that
execute most efficiently on the HEC are not shown but would
appear at 0% increase.) The point style indicates on which
LEC each phase was most efficient. Several phases enjoy
a significant improvement in efficiency, as high as 80%. A
detailed analysis of an example phase that executes more
efficiently on a LEC appears in Section V.

C. Performance Results

While efficiency is the primary metric and basis of our key
findings, we find that some phases also run faster (higher BIPS)
on their LEC than on the HEC. Figure 8 plots the percent
performance increase for individual phases in a similar manner
as was plotted for efficiency. While there are fewer phases
that perform better on a LEC than on the HEC (9 out of 179)
compared to efficiency improvement, there are enough phases
that performance warrants consideration.

All phases in Figure 8 achieved their speedup on LE-1W-
L. Although LE-1W-L has a clock period (0.6ns) that is nearly
3 times longer than that of HE-2W-S (the HEC) (0.22ns),
and half the fetch width (1W vs. 2W), the microarchitecture
of LE-1W-L is superior in its instruction window size (see
Table III). This enables it to better tolerate long-latency cache
misses, in addition to exposing and exploiting more memory-
level parallelism (MLP). The phases in Figure 8 benefit more
from these sources of performance (latency tolerance, MLP)

413
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 03,2025 at 22:30:28 UTC from IEEE Xplore.  Restrictions apply. 



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Pe

rc
en

t B
IP
S3
/W

 In
cr
ea
se

Benchmark Phase

LE‐1W‐S
LE‐1W‐L
LE‐2W‐S

Fig. 7. Percent efficiency improvement of DEA over homogeneous CMP.
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Fig. 8. Percent performance improvement of DEA over homogeneous CMP.

than from the other sources of performance exploited by the
HEC (frequency, nearby ILP).

D. Sensitivity to Unseen Program Phases

While any processor design is susceptible to being over-
designed for benchmarks used by the designers, heteroge-
neous multi-core processors, including DEA, are perhaps more
susceptible. On the other hand, their diversity may actually
make them more robust than homogeneous processors for
unseen workloads. To evaluate this aspect, we used 70% of
our program phases in a “training” group to design the DEA
processor and 30% in a “test” group to evaluate the DEA
processor, selected randomly. The resulting DEA processor
is the same as before (same HEC and same three LECs).
Because the test group is smaller, fewer program phases
yield improvement in efficiency (BIPS3/W) and performance
(BIPS); but the percentage of program phases that are sped-up
(efficiency or performance) increases as a percentage of the
test group. Program phases that are sped-up in efficiency and
performance are shown in Figures 9a and 9b, respectively.
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(a) Efficiency.
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Fig. 9. Percent improvement of DEA over homogeneous CMP, using different
training and test groups.

V. PROGRAM PHASE ANALYSIS

In this section, we dissect the source code of a phase
from our benchmark suite. We seek to understand how it is
possible that a phase can execute with higher efficiency and/or
performance when executing on a LEC rather than the HEC.

Listing 1 shows a loop from the mcf benchmark. In
this loop, there is a data structure traversal based on the
variable named arcin. The lines of code that participate in
the traversal are highlighted in red (lines 2, 4 and 17). The
code blocks guarded by the if-statements at lines 3 and 9,
highlighted in blue, are executed rarely (15% and 2.2% of the
time, respectively). Therefore, essentially only lines 2, 7, and
17 are important for this loop. Performance is dominated by
the pointer-chasing of lines 2 and 17 which is highly serial.

Thus, a core must simply execute the serial dependence
chain as rapidly as possible. HE-2W-S has the highest fre-
quency of all our modeled cores and is, indeed, the highest
performing on this phase, as noted by the absence of mcf.187
in the performance curve in Figure 8. For efficiency, however,
the best core for this phase is LE-1W-S. Since the phase
is mostly serial, there is little opportunity for ILP. So core
configurations with additional instruction width cannot take
advantage of that width, and the energy spent on this unused
width is wasted. Similarly, cores with larger structure sizes do
not benefit because they also come with a higher clock period.

1 whi le ( a r c i n ) {
2 tail = arcin–>tail;
3 if( tail–>time + arcin–>org cost > latest ) {
4 arcin = (arc t *)tail–>mark;
5 c o n t in u e ;
6 }
7 r e d c o s t = a r c c o s t − t a i l −>p o t e n t i a l
8 + h e a d p o t e n t i a l ;
9 if( red cost > 0 ) {

10 i f ( new arcs < MAX NEW ARCS ) {
11 i n s e r t n e w a r c ( . . . ) ;
12 new arcs ++;
13 }
14 e l s e i f ( ( c o s t t ) arcnew [ 0 ] . f low > r e d c o s t )
15 r e p l a c e w e a k e r a r c ( . . . ) ;
16 }
17 arcin = (arc t *)tail–>mark;
18 }

Listing 1. Code example taken from mcf.187

VI. RELATED WORK

Kumar et al. proposed single-ISA heterogeneous multi-
core architectures for reducing energy of a single thread [10].
They extended the concept to increasing throughput of multi-
programmed workloads within a constrained power and area
budget [12] [13]. Suleman et al. [26] extended the concept to
accelerating multithreaded applications by executing critical
sections on a latency-optimized core and parallel tasks on
throughput-optimized cores. ARM commercialized a hetero-
geneous design with two core types, “big” and “little” [8].

None of these works, nor the large body of inspired works,
consider physical design effort as a parameter when doing core
selection. Homogeneous physical design effort is assumed.
Past work on superscalar design space exploration [14] [18]
also assumes the same physical design effort for all cores.
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Bazeghi et al. [3] proposed a methodology using regression
models to quantify the design effort in the RTL implemen-
tation and verification phase in the processor development
process. Using their methodology, the design effort of different
components of a processor can be estimated, allowing design
teams to allocate commensurate resources to the more effort-
intensive components. However, their study does not account
for physical design effort.

VII. CONCLUSION

This paper proposed a new class of heterogeneous multi-
core processor comprised of a primary core type and multiple
alternate core types, wherein only the primary core type is
quality-crafted in terms of its physical design. The approach is
referred to as Design-Effort Alloy (DEA). DEA balances a key
tradeoff in the design of single-ISA heterogeneous multi-core
processors, which is how to reap the benefits of having multiple
microarchitecturally diverse core types without incurring the
high NRE cost of crafting high quality physical designs for all
of these core types. A key finding is that a significant number
of “outlier” program phases execute more efficiently, and even
faster in some cases, on an alternate core despite its severe
frequency handicap relative to the primary core.
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