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Abstract—In today’s digital landscape, software applications
are susceptible to various threats arising from vulnerabilities
in unsafe programming languages (C, C++) and speculative
out-of-order cores in high-performance computers. Researchers
recommended enhancements in both software and hardware for
protection against such attacks.

In-process isolation is a promising way to mitigate memory-
related attacks. It compartmentalizes critical data and pointers
in a separate memory region and enforces access control to
this memory region. Any operation to such memory locations
may require a permission adjustment before and after the
operation, depending on the required access control. Memory
Protection Keys, a recent architecture support, has been adopted
by multiple processor vendors to allow access control changes in
the user space, leading to lower performance overhead than the
conventional system calls (e.g., mprotect). Still, this technology
incurs significant performance overhead since the permission
update instruction is serialized.

Our research demonstrates significant performance improve-
ment by allowing speculative permission updates. However,
speculative execution of the permission update instruction may
upgrade access permission transiently, leading to potential spec-
ulative execution attacks. To prevent such attacks, we propose
Speculative Memory Protection Keys (SpecMPK), a lightweight
microarchitecture enhancement to examine permission change
and block transiently upgraded memory instructions until they
become non-squashable.

SpecMPK significantly improves performance compared to a
serialized domain switch instruction. This work shows an average
12.21% performance improvement for selected SPEC workloads
requiring frequent domain switches for various memory safety
schemes using memory protection keys.

I. INTRODUCTION

With an ever-increasing connectivity of computing systems,
cybersecurity has become a top priority for both users and ven-
dors. However, a challenging trade-off between time to market
of software, efficiency, and rigorous security testing is usually
taken by vendors. Thus, software bugs and vulnerabilities due
to improper, even unintentional, programming practices usu-
ally open a wide range of exploitation opportunities for remote
attacks. A recent study by Microsoft revealed that 70% of
the patches for common vulnerabilities and exposures (CVEs)
are due to memory safety issues [6], [7]. Memory safety
vulnerabilities refer to those that result from mishandling
of memory management operations, e.g., memory allocation,
deletion, and accesses. However, due to efficiency and legacy
reasons, a large percentage of the software stack, starting from

kernel code and up to web browsers, is written using memory-
unsafe languages.

Unlike memory-safe languages, such as Java, languages
such as C and C++ rely on the program itself to check
the bounds of memory accesses within its address space,
thus allowing programs to freely create pointers and directly
access any structures decoupled from the semantics of the
access itself. Thus, daily-encountered code bugs as simple as
missing array bound checking could facilitate a wide range
of attacks [13], [18], [25]. With the increasing complexity of
applications, the code size is bound to constantly increase as
well, and thus the attack surface could be uncovered by any
vulnerability within the same address space is increasingly
large. Accordingly, intra-process isolation is an imperative
approach for mitigating such an expanding attack surface [14],
[21], [26], [29], [31], [33], [51]. Following the least-privilege
principle, in-process isolation restricts the memory space a
particular portion of the program could access and the type of
access allowed (if at all).

A conventional approach for in-process isolation would be
to explicitly change page(s) access permissions upon leav-
ing/entering a new domain (i.e., code portion) within the same
address space [14], [21], [26], [29], [31], [33], [51]. Intuitively,
the smaller the domain is, the smaller the attack surface it is.
Such type of isolation is referred to as domain-based. On the
contrary, in an addressed-based isolation, each memory access
from an untrusted code is preceded by bound check instruction
to ensure it does not access the isolated memory region.

Over the years, many techniques using both hardware and
software have been made available for intra-process isolation
in modern systems: Address Space Layout Randomization
(ASLR), MPX, Memory Protection Keys (MPK), mprotect.
We identify three properties crucial for isolation techniques:
fast interleaved access [20], secure isolation, and enabling
least privilege principle. These properties define the capability
to access protected and unprotected pages alternately with a
low-performance overhead, prevent accesses to the isolated
region using untrusted access instructions both speculatively
and non-speculatively, and facilitate multiple protected regions
isolated from one another, respectively. However, out of all
these schemes, only MPK supports all three properties. This
technology was introduced by Intel, and it is currently adopted
by both ARM [4] and AMD [5]. For this work, we use the
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terminology used by Intel for the ease of discussion.
The MPK processor feature offers lightweight mechanisms

that allow associating memory pages with a particular color
(also called protection key or pKey). The access permissions
of a color, hence the group of pages associated with it, can be
changed by simply writing to a register dedicated to holding
permissions of colors. Most prominently, MPK follows the
aforementioned approach through a per-CPU user-accessible
register called PKRU. A special, despite unprivileged, in-
struction (WRPKRU) can update PKRU directly without any
privileged operation. PKRU holds the permissions for the
maximum number of colors supported in the system (e.g.,
16 colors in MPK). Each page’s color is indicated as in the
page table entry (PTE) and hence will be known upon address
translation.

Although MPK is increasingly positioned for deployment
in safeguarding against a wide range of attacks [14], [27],
[29], [33], [40], [41], [51], and has better performance than
conventional system calls (e.g., mprotect), we identify it can
incur significant performance overheads compared to non-
secure applications when used as frequently as sought in
many use cases. Accordingly, in this paper, we investigate and
demystify the root cause of the performance overhead when
MPK is used for cases that require frequent domain changes.
Interestingly, we find that the serializing effect of updating
PKRU (i.e., WRPKRU instruction) leads to significant stalls
in the pipeline, contributing to the majority of the overheads.
Compared to a hypothetical implementation that allows non-
serializing execution of WRPKRU instructions, the current
implementation can lead to an average performance overhead
of 11.17% (up to 32.63%). Unfortunately, allowing non-
serializing or speculative execution of WRPKRU is challeng-
ing for the following reasons. First, the current WRPKRU
instruction has an implicit destination register (PKRU), which
must be read at execution time for each memory instruction,
needing extra ports (hence more power and area) to the
register file. Second, allowing speculative execution of PKRU
updates could enable otherwise circumvented speculative exe-
cution side channel attacks. Therefore, our goal is to allow
performance-efficient usage of MPK while preserving the
security guarantees to prevent any leakage due to speculative
execution.

To address the aforementioned challenges, we propose
Speculative Memory Protection Keys (SpecMPK), a novel
microarchitectural support that allows speculative execution of
permission updates in MPK. SpecMPK builds upon the follow-
ing observation. A WRPKRU update that disables access to a
certain pKey(s) would not be followed by memory accesses to
the affected regions. Otherwise, exceptions would be thrown.
Therefore, we expect that the memory instructions after the
WRPKRU disable update are safe to execute speculatively
as long as we have an appropriate mechanism to detect any
possible side channels. Since most memory instructions do not
access protected regions, SpecMPK benefits from executing
such instructions speculatively.

Contribution We make the following contributions to en-

able speculative execution of MPK.
• We propose a lightweight microarchitecture enhance-

ment, SpecMPK, to enable speculative updates of the
PKRU register.

• We identify vulnerabilities related to speculative permis-
sion updates, and SpecMPK not only detects these vul-
nerabilities but also prevents memory access to mitigate
potential microarchitectural side channels.

• We thoroughly analyze the performance and security
aspects of SpecMPK. We evaluate SpecMPK using
SPEC2017 workloads with return address protection
and SPEC2006 workloads for the code pointer integrity
protection using software instrumentation. SpecMPK
achieves 12.21% speed up over serialized WRPKRU for
these workloads.

II. BACKGROUND

A. MPK

Memory Protection Keys (MPK) extension allows changing
access permissions for a group of pages without expensive
TLB shootdown, unlike mprotect. By associating each page
with a key (aka color) through specific bits in the page table
entry (PTE), changes to permissions for the corresponding
color will be reflected immediately on such associated page(s).
Currently, MPK supports 16 keys, hence 4 bits need to be
reserved in each PTE to indicate the key a page is associated
with [3]. Such 4-bit field is denoted pKey hereinafter. Ad-
ditionally, the permissions of all pKeys are maintained in a
per-CPU user-accessible register called PKRU. As we have 16
pKeys in total, and each pKey has one bit for Access Disabled
(AD) and one for Write Disabled (WD), a total of 32 bits are
required as the size of PKRU. As the name indicates, AD
determines if access to the page is allowed or not, while WD
determines if a write is allowed or not. If access is allowed,
then read access is allowed irrespective of the WD value.
Figure 1 depicts an example demonstrating access permission
checking in the presence of MPK.

Fig. 1: Permission check for a page with MPK enabled
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1) Working principle: The working principle of MPK can
be broken down into three steps: key assignment, protection
check, and permission update.

• pKey Assignment: To associate a page (or set of pages)
with a pKey, Linux provides pkey_mprotect syscall
that takes in address range and pKey as arguments. It
updates the PTE(s) of the page(s) within the provided
address range to reflect the assigned key (i.e., pkey) as
shown in Figure 1.

• Protection Check: On each memory instruction access,
the TLB additionally returns the pKey of the accessed
page per the PTE entry’s pKey field. As shown in Figure
1, the returned pKey value will be used as a selection
input to choose the corresponding 2-bit permission bits
{AD,WD} from the 16 pairs in PKRU. The normal
access permissions (i.e., RWX) in PTE will be checked
against the access, in addition to those indicated in the
{AD,WD} pair obtained from PKRU; the most strict will
be enforced, and hence allowing run-time user-controlled
permission change without the security risks of direct
control of page table.

• Permission Update: Permission updates occur through
the use of the WRPKRU instruction, which involves
writing to the PKRU register. Notably, WRPKRU does
not explicitly use any source register but rather copies
the contents of the EAX register to the PKRU register.

2) Implicit PKRU operand: The PKRU register is never
explicitly used by any instruction, neither as a source nor as a
destination. In the case of a RDPKRU/WRPKRU instruction,
PKRU is used as an implicit source/destination operand, while
all memory access instructions employ PKRU as an implicit
source operand to validate the legitimacy of the access.

3) Execution of WRPKRU: The WRPKRU instruction is
executed non-speculatively, and memory accesses are stalled
until all prior WRPKRUs retire [40]. As a result, frequent
use of WRPKRU instruction leads to significant performance
degradation.

B. Memory Corruption and Overread Vulnerability

Unsafe languages such as C and C++ allow out-of-bound
accesses due to insufficient bound checking at run-time,
causing memory corruption, and buffer overread vulnerability.
Such memory accesses potentially enable attackers to corrupt
memory locations storing control-specific data; it also allows
stealing confidential data.

1) Memory Corruption: in memory corruption attacks, the
attacker overwrites the content of locations in the stack or heap
to execute arbitrary operations. Three prominent memory cor-
ruption attacks are Jump-Oriented Programming (JOP) [13],
Return-Oriented Programming (ROP) [42], and Data-Oriented
Programming (DOP) [25]. These attacks primarily follow three
steps as follows.

• The attacker corrupts memory locations that dictate con-
trol and data flow for the application. These include
function pointers, return addresses, and data pointers.

• The attacker creates gadgets that are a sequence of
machine instructions from the application’s code region.

• These gadgets are stitched together to execute an opera-
tion.

It is proven that these attacks are Turing complete, meaning
by stitching together multiple gadgets, the attacker can exe-
cute any algorithm. Protection against these attacks includes
instrumenting the application to enable control flow integrity.

2) Buffer Overread: Buffer overread vulnerabilities have
the potential to allow attackers to read data from locations
that may contain sensitive or confidential information. Such
vulnerabilities often occur due to inadequate bound checking
in the code. An example of this is the Heartbleed attack [18],
which exploits a buffer overread vulnerability to access session
keys in the OpenSSL library.

To mitigate buffer overread vulnerabilities, one approach is
to store confidential data in a secure memory region. Enabling
access to such secure memory region is done explicitly through
granting access permissions only when necessary while re-
maining disabled for the rest of the execution.

C. Speculative Attacks
Speculative attacks occur as a result of vulnerabilities in

out-of-order processors. Out-of-order processors improve per-
formance by executing instructions speculatively to achieve
instruction- and memory-level parallelism. To do so, hard-
ware components such as branch/memory-dependence/value
predictors allow speculatively proceeding when otherwise the
pipeline would have been stalled. While the execution of
instructions could proceed speculatively, committing changes
(i.e., instructions retiring) occurs in order and only in the
absence of any exceptions and/or the speculation has been
resolved successfully. Reorder Buffer (ROB) is responsible for
retiring instructions in the correct order. Misprediction by any
of the predictors causes dependent/following instructions to
be squashed. Although squashed (also called transient) instruc-
tions are prevented from committing changes, they could leave
microarchitectural effects that enable attackers to infer the
value of a speculatively accessed location, for instance. Most
commonly, cache side channel attacks allow an adversary to
infer the value of a speculatively accessed location by leaving
a microarchitectural effect that depends on such value; for
instance, speculatively using the secret value as an address of a
subsequent load/store and hence leave an effect on a particular
cache set of which knowing the set itself could reveal the secret
value – the secret was used as address and hence part of the
indexing function to decide the set number. Different types of
instructions that potentially consume a speculative value could
leave a value-dependent microarchitectural effect; this effect
lasts beyond the speculation resolution and is hence referred to
as transmitting instructions [63]. Figure 2 demonstrates how
speculative execution works and the terminology.

Two recent attacks are prominent examples of the extent
such speculative execution vulnerabilities can compromise
the system: Spectre [30] and Meltdown [35]. The Spectre
vulnerability exploits speculative execution of the transmitting
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Fig. 2: Side channel due to speculative updating of the
microarchitectural state.

instruction due to branch misprediction. On the other hand,
meltdown vulnerability arises due to rogue data cache load,
which exploits the delayed handling of memory protection
faults by the CPU. Researchers have explored various Specter
and Meltdown variants in today’s CPUs from different manu-
facturers [16], [28], [30], [32], [33], [36], [45], [52], [57].

Since the Spectre attack is a result of branch misprediction,
NDA [56] had identified this attack as control-steering attack.
Conversely, attacks similar to meltdown, allowing speculative
execution of instructions past a faulty instruction triggered by
faulting load [35], transaction abort [50], interrupt delivery,
exception [59], memory dependence violation [28], [50], [59]
etc, is termed as chosen-code attack. We use similar terminol-
ogy to discuss this work.

III. MOTIVATION

Isolating sensitive data within different stack and heap
regions of a process’s memory is a common technique to
prevent memory corruption and buffer overread vulnerabilities
[14], [26], [27], [29], [33], [40], [41], [51], [61]. Compilers or
application developers may distinguish sensitive data elements
through either static analysis (e.g., code pointers) or prior
knowledge (e.g., session key in the OpenSSL library).

Ideally, in-process isolation needs to provide memory
safety protection at low-performance overhead. We motivate
SpecMPK based on:

1) the advantage of MPK among the existing in-process
isolation techniques and

2) our performance and security analysis of MPK.

A. Existing In-process Isolation Techniques
In this section, we discuss various in-process isolation

techniques, both domain-based and address-based, that either
exist in current systems or have recently been proposed by
the academic community. MPK, mprotect, IMIX [20], SEIMI
[54] are examples of the domain-based in-process isolation.
On the other hand, MPX supports address-based isolation.
These isolation techniques require dedicated hardware support.
On the contrary, ASLR and Software-based Fault Isolation
(SFI) [38], [46], [53] are examples of software-based isolation
techniques. We have summarized various properties of the
existing in-process isolation schemes in Table I.

TABLE I: Properties of Various Isolation Techniques

Isolation Method Fast Interleaved Access Secure Least-Privilege Capability
MPK ✓ ✓ ✓
Mprotect X ✓ ✓
MPX ✓ X ✓
ASLR ✓ X ✓
IMIX [20] ✓ ✓ X
SEIMI [54] ✓ ✓ X
SFI [46] ✓ X ✓

Isolation through mprotect makes use of the protection bit in
the page table entry to prevent unauthorized access. Accessing
these protected pages requires modifying permissions in the
page table when switching domains, resulting in an incoherent
TLB state with the page table, requiring TLB shootdowns.
While it offers secure isolation, it imposes a substantial
performance overhead. Furthermore, updating protection for
sparsely distributed pages requires multiple mprotect syscalls.

Conversely, MPK-based isolation mitigates the performance
impact by enabling permission updates in user space. By
never writing to the page table, it eliminates the need for
TLB shootdowns. Additionally, a single WRPKRU instruction
can update permissions for all protection keys and all pages
associated with each updated pKey, making it efficient for
sparsely distributed pages. With the use of multiple pKeys,
MPK permits isolation with the least-privilege principle. How-
ever, MPK’s performance overhead is majorly influenced by
the domain switching frequency, as the WRPKRU instruction
is a serializing instruction.

IMIX [20] marks a group of pages as protected in the page
table and proposes a special instruction smov to access those
pages. Access to the protected pages with any other instruc-
tions would raise an exception. This method’s performance
overhead is minimal as there is no requirement for permission
change in the page table for accessing the isolated pages.
However, since this method fails to distinguish among isolated
pages, it is incapable of least-privilege isolation.

MPX introduces special bound check instructions to prevent
buffer overflow vulnerability. Memory access to an unpro-
tected region must be preceded by the bound instructions to
prevent unauthorized access to the protected region. However,
the bound-check can be bypassed speculatively [16], [37],
making this isolation scheme non-secure. Another drawback
of this technique is that code sections that can not be in-
strumented, such as third-party library code, can access the
protected region [20].

ASLR is a software-assisted isolation technique that enables
memory safety by hiding the memory layout through ran-
domization. Nonetheless, multiple prior works were successful
in revealing the layout through side channel [15], [19], [22],
[24], [65]. Data-layout and finer-grained code randomization
improve the resiliency of the ASLR. However, speculative
probing [22] successfully uses speculative execution vulner-
ability to find locations of the function and data of interest
for the attacker. In addition, SEIMI [54], a recently proposed
software-assisted isolation, utilizes Supervisor Mode Access
Prevention for the purpose of in-process isolation. However,
it relies on hardware virtualization support. SFI [38], [46],
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[53] masks the addresses of the memory access instruction to
ensure access happens only to designated memory segments.
However, due to masking, it fails to detect invalid memory
accesses [20], [31]. Similar to MPX, SFI also fails to isolate
protected regions within an un-instrumented code such as
third-party libraries.

Use-cases of MPK: As MPK is able to provide secure
and least privilege capable in-process isolation while incurring
much lower performance overhead compared to mprotect, it is
gaining popularity and the research community recently pro-
posed multiple MPK-assisted software protections for isolating
safe memory regions. These applications include isolating the
safe region for the code pointer integrity [33], shadow stack
to protect return address [14], heaps of the libraries written in
memory-unsafe language within a memory safe software [29],
[41], untrusted libraries [21] used from unknown sources, con-
fidential data [27] to prevent data leakage due to speculative
execution attacks, as well as the session keys in OpenSSL
software [40], [51].

Note that although in-process isolation is a popular way to
achieve memory safety, there are other alternatives, including
the recently proposed hardware schemes [1], [47], [49], [55],
[67], [68] for bound-check or pointer integrity. Compared to
them, MPK offers high flexibility to support various use cases
as mentioned above.
B. Performance analysis of MPK

Although MPK provides significant speed-up over mpro-
tect, it experiences substantial slowdown compared to non-
secure applications, specifically for the use cases with frequent
domain switching. For example, safeguarding code pointers
incurs a 12.4% overhead [20], while shadow stack protection
introduces a 61.3% overhead on average [14]. PKRU-Safe [29]
reports an average slowdown of 11.55% for a certain class of
workloads and this slowdown is primarily attributed to the
serialization of the WRPKRU instructions.

Fig. 3: Speedups due to speculative execution of WRPKRU
instructions and the percent stall cycles at rename stage due
to WRPKRU serialization. Workloads labeled as SS and CPI
indicate shadow stack and code pointer integrity protection,
respectively.

Additionally, having a limited number of pKeys also
introduces performance overhead for the applications needing
more than 16 pKeys. Safeguarding confidential session keys

through isolation in the OpenSSL crypto library generally
needs more than 16 pKeys, requiring frequent unmapping
and remapping of the pKeys, resulting in a performance
overhead of 4.2% [51]. Consequently, there have been multiple
proposals to address this limitation [17], [40], [44], [64].
In contrast, researchers have yet to propose techniques to
reduce the performance impact of the serializing WRPKRU
instructions.

In this paper, we study the security and performance as-
pects of speculatively executing WRPKRU instruction. To our
knowledge, this is the first work to investigate and propose
speculative execution of the WRPKRU instruction. To assess
WRPKRU serialization overhead, we compiled SPEC2017 and
SPEC2006 workloads with shadow stack [14] and CPI [33],
[51] and evaluated the performance overhead of serialization
using our simulation infrastructure with gem5 (see VI-A).
Figure 3 shows the speed up upon allowing WRPKRU
instructions to execute speculatively. Additionally, it shows
that a significant stall is introduced in the rename stage as
a result of serialization, which in turn leads to the pipeline
frontend stalls.

As shown in Figure 3, up to 48.43% (12.58% on average)
performance improvement can be achieved by relaxing WRP-
KRU’s serialization requirement. Consequently, our goal is to
enable out-of-order execution around WRPKRU instructions,
however, without compromising security.

Fig. 4: Performance overhead breakdown.

Furthermore, we executed these applications on an Intel
Cascade Lake processor. Figure 4 shows the overhead break-
down from compiler transformation and WRPKRU serializa-
tion, isolating compiler transformation by replacing WRPKRU
with NOP. WRPKRU serialization adds a substantial 69.76%
overhead on average, compared to 10.28% from compiler
transformation. The difference in performance overhead be-
tween the native hardware and gem5 can be attributed to
gem5’s inaccuracies [9] and using simpoints that represent
only the first 100 billion instructions.

C. Security Requirements for MPK
To better understand the challenges of optimizing MPK

implementation, let’s first discuss the security aspects that
must be considered, specifically when WRPKRU is executed
speculatively.
1 if (condition) { --- mispeculated
2 WRPKRU (enable access for array1)
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3 Y = array2[array1[X]*4096]
4 WRPKRU (disable access for array1)
5 }

Listing 1: Example of a vulnerability when WRPKRU is
executed speculatively

Speculative WRPKRU Vulnerability: Both control-
steering and chosen-code attacks can potentially lead to a
side channel when the WRPKRU instruction is executed
speculatively. Side channel induced by the control-steering
attack leverages branch misprediction in a manner similar
to the Spectre vulnerability. As demonstrated in Listing 1,
the enabling and disabling of access for the array array1
occurs within the if block. When the branch is mistakenly
predicted as taken, the WRPKRU instruction in line 2 specu-
latively grants access to array1, thereby enabling the transient
execution of line 3, which subsequently establishes a side
channel. Similarly, Spectre-BTI [30] can perform a similar
attack by training the indirect target buffer to jump to a code
section containing a WRPKRU instruction with access-enable
permission for the pKeys that would otherwise have access-
disable permission in the correct control path. In the event of
a chosen-code attack, a transient WRPKRU instruction past
a faulty instruction causing a squash leads to a side channel
when it relaxes access permission.

Speculative Permission Upgrade for Write-Disable
Pages: Preventing memory corruption involves restricting
write access to the secure memory region in untrusted do-
mains. Elevating permissions speculatively from write disable
to write enable is not susceptible to memory corruption, as
store updates due to mispeculation are eventually squashed
and never retire. Additionally, this speculative elevation does
not result in a side channel, as the store is committed to
memory only after retirement. Despite this, due to speculative
store-to-load forwarding optimization, a store may forward
a corrupted value to a load while both instructions are yet
to retire, causing a speculative buffer overflow attack. This
scenario could potentially allow an attacker to enable control-
flow hijacking speculatively. It has been demonstrated that
speculative memory corruption may enable attackers to bypass
Spectre defenses that use either lfence or WRPKRU to protect
the Spectre gadget [28].

D. Putting It All Together
Due to the distinct advantage of MPK-assisted in-process

isolation, the software research community recently proposed
myriads of protection schemes using this method. However, to
reduce the performance gap between the secure and insecure
applications, MPK’s requirement of WRPKRU serialization
must be relaxed. To avoid side channels as a result of the spec-
ulative WRPKRU instruction, such a microarchitecture must
ensure speculative execution of only the safe memory access
instructions (i.e., not impacted by speculative permission up-
grade) and non-speculative execution of the unsafe access in-
structions. As we target special classes of workload, our design
must ensure the area overhead is insignificant for a general-
purpose design. In contrast, the recent developments in the

microarchitecture, aiming at preventing speculative execution
attacks [10], [34], [43], [59], [62], [63], suffer from significant
performance and area overhead. On the other hand, the early
resolution of the speculativeness of the WRPKRU is complex
as it requires delaying interrupt handling as well as adding
new ports to the highly ported reorder buffer to update the
pointer to the latest instruction with the potential of a pipeline
squash [59]. In this work, by identifying potential unsafe load
instructions by aggregating all inflight permission updates with
minimal hardware overhead and executing them at retirement,
we achieve significant performance improvement for MPK,
near-identical performance compared to a microarchitecture
that allows speculative execution of WRPKRU instruction
without the protection against side channel vulnerabilities
related to speculative permission upgrade.

IV. THREAT MODEL

In this study, we assume that the adversary possesses
the capability to exploit a memory corruption vulnerability
to divert control and data flow. Furthermore, the adversary
can leverage buffer overread and speculative attacks to steal
confidential data. The speculative attack is potentially capable
of utilizing contentions within shared resources, such as the
cache and TLB.

Our assumption is that the software incorporates MPK
as a preventive measure against such attacks. We also pre-
sume that the application developer appropriately employs
safe memory regions to store data and associated metadata,
thereby protecting against these types of attacks. Following the
principle of least privilege and in accordance with the required
access control, the software correctly defines permissions
within trusted and untrusted domains. We assume that this
architecture executes WRPKRU speculatively. Therefore, we
must address the vulnerability associated with the speculative
execution of the WRPKRU instruction.

V. SPECMPK
Our design of SpecMPK is built upon a baseline superscalar

microarchitecture that follows the MIPS R10K style [60]. It
has a Physical Register File (PRF) containing both committed
and speculative register state, a Free List (FL) indicating
which physical registers are free, a Rename Map Table (RMT)
facilitating renaming logical source registers to physical source
registers, and an Active List (AL) containing pertinent infor-
mation for all in-flight instructions between the rename and
retire stages. Unlike the MIPS R10K, the AL has current
mappings instead of previous mappings of logical destination
registers, for updating an Architectural Map Table (AMT);
the effect is the same in that the AL and AMT manage the
committing and freeing of physical registers, and facilitate
misprediction and exception recovery.
A. SpecMPK Design Overview

Our proposed SpecMPK design builds on the following
observations. Firstly, we note that after MPK permission
updates, most memory instructions involve different pKeys
and they are unaffected by the update. For example, when
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MPK is used for stack protection, permission updates affect
the shadow stack holding return addresses, while subsequent
accesses typically target other regions. Secondly, memory
instruction execution is safe if both the committed PKRU and
all the outstanding PKRU updates have enabling permission
for the associated pKey.

SpecMPK enables speculative execution of the WRPKRU
instruction with the following design principles:

1) WRPKRU instructions execute in-order in relation to
each other.

2) Memory access instructions must be executed after all
the prior WRPKRU instructions are executed.

3) A load instruction is stalled if at least one of the WRP-
KRU instructions within the WRPKRU-window, which
means the window between the committed WRPKRU
instruction and the load we currently execute, sets the
permission to Access-Disable for its pKey. Figure 5
demonstrates an example of the WRPKRU-window.

4) A store instruction executes speculatively even if
WRPKRU-window has Write-Disable updates for its
pKey; however, such a store instruction is prohibited
from store-to-load forwarding.

We accomplish the first two objectives by renaming the
PKRU register. However, the latter two objectives require in-
specting PKRU updates within the WPKRU-window, which is
accomplished using the committed PKRU register along with
two Disabling Counters that count the numbers of speculative
WRPKRU instructions with Access-Disable and Write-Disable
updates.

Fig. 5: Example of a WRPKRU-window depicting a dynamic
instruction window containing a series of committed instruc-
tions followed by speculative instructions within the Active
List.

B. SpecMPK Design Details
1) PKRU Rename: The PKRU register needs to be used as

a source register for memory instructions and the RDPKRU
instruction. Memory instructions require the latest PKRU
update to validate the most recent permissions associated with
each pKey. The WRPKRU instruction employs the PKRU
as the destination register. RDPKRU instruction enables the
reading of the PKRU register by copying the PKRU register
to the EAX register. All of these instructions incorporate the
PKRU register as implicit operands.

To rename the PKRU register, SpecMPK uses a reorder
buffer that holds the speculative PKRU values and an architec-

ture PKRU register storing the committed value. At the time
of retirement of a WRPKRU instruction, the oldest value in
the reorder buffer is copied to the architecture PKRU register.
We manage dedicated register files for PKRU for the following
reasons (1) During execution, memory access instructions need
to read the committed PKRU (see Section V-C) to identify
unsafe loads and stores. Renaming similar to MIPS R10k
requires access instructions to store the committed PKRU
mapping in its payload. However, in case of a new PKRU
commit before the issue of an access instruction would free
the previously committed register. In this case, instruction at
the time of register-read will read from a freed PKRU physical
register, resulting in a security vulnerability. But, with the
use of dedicated register files, architecture PKRU stores the
committed value, which the access instructions can read at
the time of execution. (2) Additionally, with the addition of a
dedicated PRF, we avoid additional ports in the highly ported
PRF, avoiding area/power cost for the general-purpose design.

The subsequent list enumerates all the new components in
the microarchitecture that facilitate the renaming of the PKRU
register.

• ROBpkru: A reorder buffer for the PKRU register that
holds all in-flight PKRU updates (PKRU values) in order.

• ROBHeadpkru: The head pointer for the ROBpkru.
• ROBTailpkru: The tail pointer for the ROBpkru.
• ARFpkru: The architectural PKRU register that holds the

committed PKRU value.
• RMTpkru: Contains a valid bit and a ROBpkru tag to

enable renaming.
2) Handling of the WRPKRU instruction: The WRPKRU

instruction requires specific modifications in both the rename
and retire stages, as it utilizes PKRU as the destination register.
When a new WRPKRU instruction is encountered, the rename
stage performs the following actions: it renames the PKRU to
ROBTailpkru if an available entry exists in the ROBpkru, sets
the valid bit and updates the tag to ROBTailpkru in RMTpkru,
and increments ROBTailpkru to point to the next entry in
ROBpkru.

In the retire stage, the PKRU value from the entry pointed
to by ROBHeadpkru is copied to ARFpkru. If the head pointer
matches the tag in RMTpkru, the valid bit is reset. The
sequence of operations for rename and retire for a WRPKRU
instruction is illustrated in Figure 6.

Although WRPKRU doesn’t need to use PKRU as a source
register operand, the rename stage introduces the PKRU reg-
ister as a source operand to this instruction to prevent out-
of-order execution of WRPKRU with respect to each other.
This measure is crucial for preventing speculative permission
augmentation, as elaborated in Section V-C. The renaming of
PKRU as a source operand is explained in the next subsection.

3) Handling of the RDPKRU and memory instructions:
Both RDPKRU and memory instructions require PKRU as a
source register operand. The renaming of the PKRU source
operand is contingent upon the valid bit in RMTpkru. When
the valid bit is set, the PKRU operand is renamed to the most
recent entry in ROBpkru, with the RMTpkru storing the tag,
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Fig. 6: The illustration of PRKU renaming. The leftmost figure
portrays the initial state, the middle figure showcases the
alterations resulting from renaming a WRPKRU instruction,
and the last figure represents the state after committing a
WRPKRU instruction.

which serves as the index to the most recent entry. A valid bit
of zero indicates the absence of in-flight WRPKU instruction
prior to the current instruction. In this scenario, PKRU is
renamed to ARFpkru to signify that the most recent PKRU
is the committed one.

Furthermore, memory instructions also utilize ARFpkru,
AccessDisableCounter, and WriteDisableCounter as source
operands to mitigate potential side channels, as described in
Section V-C. Table II provides an overview of all the new
source operands introduced in SpecMPK.

TABLE II: Additional Source Operands in SpecMPK

Instruction Type New Source Operands
Load ROBpkru, ARFpkru, AccessDisableCounter
Store ROBpkru, ARFpkru, AccessDisableCounter

WriteDisableCounter
WRPKRU ROBpkru

Note that, neither memory instructions nor WRPKRU in-
structions read the PKRU data from the ROBpkru. The primary
objective of employing the ROBpkru dependence is to guaran-
tee the serialized issue of memory instructions and WRPKRU
instructions in relation to preceding WRPKRU instructions.

C. Speculative Attack Prevention
Preventing speculative permission upgrades through WRP-

KRU necessitates knowledge of PKRU update within the
WRPKRU-window. In Figure 7, we illustrate three possible
scenarios of speculative permission updates using WRPKRU
regarding a single pKey. These scenarios are as follows.

• The latest PKRU update disables the access permission.
• Committed PKRU specifies Access-Disable while the

recent PKRU reflects Access-Enable permission.
• Both the committed and the most recent PKRU contains

Access-Enable permission. However, one of the older in-
flight WRPKRU disables the access.

In all three scenarios, memory accesses mapped to this
specific pKey must be stalled to prevent potential speculative
attacks. To identify speculative permission upgrade, we utilize
a pair of Disabling Counters for each pKey; AccessDisable-
Counter, and WriteDisableCounter. These counters monitor
the total number of WRPKRU instructions in the speculative

instruction window with Access-Disable and Write-Disable
permission, respectively.

Fig. 7: Possible scenarios where load instruction could po-
tentially create a side channel. These load instructions access
pages which are mapped to pKey 1.

1) Disabling Counters: The process of Disabling Counters
involves two counters that count the number of instructions
within the speculative window with either Access-Disable or
Write-Disable permission for each pKey (shown in Figure8).
These counters are incremented in the execution stage through
WRPKRU instructions. Following the execution of WRPKRU
instructions in this stage, the counters are updated as the
PKRU value becomes available. Specifically, when the Access-
Disable bit is set for a pKey, the AccessDisableCounter is
incremented for the corresponding pKey. Furthermore, if the
Write-Disable bit is set, the WriteDisableCounter is incre-
mented. Importantly, these counters are never incremented out-
of-order, as the microarchitecture enforces this by creating
dependencies among WRPKRU instructions, using PKRU as
a source operand.

At the time of retirement or squash, the same WRPKRU
instruction that increments any of the counters also decre-
ments it. For this purpose, pKey bitmaps for the Disabling
Counters are stored in ROBpkru. The size of the counter
for each pKey depends on the size of the ROBpkru. The
bit-width required for each pKey for each counter must be
⌊log2(ROBpkru size)⌋+1 to prevent any stalls resulting from
the counters.

Fig. 8: Additional microarchitectural components of SpecMPK
and their interaction with backend pipeline stages.
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2) Stall conditions for memory instructions: In the pres-
ence of speculative permission upgrades, memory instructions
face stalls. To assess the permission for these memory instruc-
tions, the retrieval of the pKey from the TLB is necessary.
Therefore, these instructions need to be issued before stalling
them selectively.

The load execution stage, with the obtained pKey, inspects
the AccessDisableCounter and ARFpkru to evaluate the stall
condition. The counter specifies any WRPKRU within the
window with Access-Disable permission, while the ARFpkru
provides the committed permission. Scenario-2, depicted in
Figure 7, requires knowledge of the committed permission.
Loads are stalled if either the AccessDisableCounter is greater
than zero or the committed permission is Access-Disable.
Stalled loads are replayed at the time of retirement.

On the contrary, store instructions examine both the counters
and the ARFpkru. Unlike load instructions, store instructions
are not stalled since these instructions commit to memory after
retirement, but rather prevented from store-to-load forwarding.
This approach also facilitates address generation, enabling
younger load instructions to learn the physical address of
older store instructions and thereby reducing squash resulting
from memory dependence speculation. The condition for dis-
abling store-to-load forwarding is met if any of the Disabling
Counters is greater than zero or if the committed PKRU
indicates either Write-Disable or Access-Disable permission.
If a younger load instruction matches the address with such
a store instruction, it only executes after reaching the head of
the Active List.

We denote the checks for stalling the load and disabling
store-to-load forwarding as PKRU Load Check and PKRU
Store Check, respectively. None of the memory instructions
can raise an exception when issued for the first time, as
these instructions do not read the renamed PKRU due to
the potential staleness of the renamed register (discussed in
Section V-C6).

3) WAR hazard for the Disabling Counters: This mi-
croarchitecture does not employ renaming for the Disabling
Counters, potentially leading to a write-after-read hazard in
specific scenarios involving the counters and consumer instruc-
tions, which are loads and stores. In this situation, an older
memory instruction might wait in the issue queue if any of its
source operands are not yet available. Meanwhile, a younger
WRPKRU instruction updates the counters. If PKRU Load
Check returns success for the load instruction before a younger
WRPKRU increments the counters for the associated pKey,
the instruction must needlessly wait until it becomes non-
squashable. Such a stall could incur performance overhead. In
the case of a store, store-to-load forwarding would be disabled
conservatively. We adopt this conservative approach because it
cautiously stalls only the memory instructions that access the
safe region while allowing access to regular memory regions
without any stall.

4) Protection Fault Exception: A load instruction must
raise a protection fault if the most recent PKRU update
disables access to the associated pKey. For store instructions,

triggering a protection fault occurs when either Access-Disable
or Write-Disable permission is applied. If PKRU Load Check
and PKRU Store Check do not fail for load and store instruc-
tions respectively, such memory accesses should not violate
a protection fault since the Disabling Counters takes into
account the most recent updates.

Conversely, stalled loads are re-issued upon reaching the
head of the Active List, with the load execution lane reading
the ARFpkru, which is also the most recent PKRU. Such a load
instruction raise a protection fault if the ARFpkru specifies
Access-Disable permission for the associated pKey.

However, store instructions that fail the PKRU Store Check
are not re-issued; instead, such store instructions explicitly
verify permission by accessing the TLB to retrieve the pKey
and associated access rights from the ARFpkru register after
reaching the Active List head.

5) TLB state update: Side channel due to microarchi-
tectural state changes in TLB is similar to the cache side
channels. Gras et al. [23] demonstrates the potential for
stealing cryptographic keys through a side channel, created by
the TLB. To mitigate such attacks arising from mispeculation,
we adopt a strategy analogous to the one outlined in Section
V-C2. The TLB state for a load instruction undergoes an
update only if PKRU Load Check succeeds. Similarly, for the
store instructions, the TLB state is updated only if the PKRU
Store Check holds true. TLB state is updated when stalled
load instructions are re-issued upon reaching the Active List
head. Conversely, stores with disabled store-to-load forwarding
update the TLB state during the re-evaluation of protection.

The permission of pKey in ARFpkru and in the Disabling
Counters determines whether to stall memory instructions that
cause a TLB miss, preventing any updates to the TLB state.
Since the pKey of a page not residing in the TLB is unknown
beforehand, we conservatively stall memory accesses causing
a TLB miss. Once these instructions reach the active-list head,
they are re-executed, and the TLB miss is addressed at that
point.

6) Revisiting RDPKRU Instruction: The RDPKRU in-
struction may be susceptible to the potential staleness of the
PKRU tag when the ROBpkru located at the ROBHeadpkru
commits to the ARFpkru. To address this issue, we propose
serializing the RDPKRU instruction. With serialization, PKRU
register is renamed to ARFpkru for this particular instruction.

RDPKRU serves the purpose of selectively changing per-
missions for a set of pKeys. For example, the Pkey_set
function in the GNU library takes a pKey and the associated
new permission as arguments and updates PKRU accordingly.
The function initially reads the old permissions from the
PKRU and then modifies the permission corresponding to the
pKey specified in the argument. However, this reliance on
RDPKRU could be mitigated by the compiler using a data
structure to store permissions, thereby reducing the need for
frequent RDPKRU instructions.
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VI. EVALUATION METHODOLOGY

A. Experimental Setup

We use gem5 [12] O3 CPU model and system emulation
mode to evaluate SpecMPK. We configure the gem5’s CPU
model based on recent high-performance processors as shown
in the table III.

TABLE III: Simulation configurations

CPU
ISA x86-64
Issue/decode/Commit width 8 instructions
AL/LQ/SQ/IQ/PRF Size 352/128/72/160/280
ROBpkru size 8
Branch Predictor
BTB 4096 entries
RAS 32 entries
Direction Predictor LTAGE
Memory
L1 Inst Cache 32kB, 8-way, 5-cycle roundtrip latency
L1 Data Cache 48kB, 12-way, 5-cycle roundtrip latency
L2 Cache 512kB, 8-way, 15-cycle roundtrip latency
L3 Cache 2MB, 16-way, 40-cycle roundtrip latency
DRAM Device DDR4 2400 16x4

B. Workloads

We perform two case studies using SPEC2017 and
SPEC2006 workloads involving two different memory pro-
tection schemes: shadow stack (SS) and code pointer integrity
(CPI). The SS scheme provides protection against control flow
hijacking, a well-established attack that utilizes return-oriented
programming to divert from the correct execution path. This
protection scheme copies return addresses in the shadow stack.
The CPI method identifies all code pointers and stores them
in a safe region [33]. The shadow stack in the first scheme
and the safe region in the second one are protected using
MPK to disable malicious updates. We used an open-source
compiler developed by [14] and [51] for the compilation of
shadow stack and code pointer integrity, respectively. Readers
are encouraged to go through the original works to learn the
details of these protection schemes.

1) Shadow Stack: Shadow Stack protection [14] stores
return addresses in a protected shadow stack. This scheme adds
a function prologue and epilogue: in the prologue, the return
address is saved to the shadow stack with write permission
temporarily enabled, then immediately reverted to read-only.
The R15 register points to the latest shadow stack location,
which is popped in the epilogue and checked against the return
address in the regular stack. If they don’t match, the function
crashes, effectively blocking the ROP attack.

2) Code Pointer Integrity: Code Pointer Integrity [33]
identifies sensitive code pointers through static analysis. It then
isolates these sensitive pointers in a safe region and modifies
the code so that instructions access this safe region instead
of the regular region when accessing these objects. Accesses
to the safe region are sandwiched by enabling and disabling
permission updates specific to that region. We use the relaxed
variant of CPI, which is code pointer separation.

VII. EVALUATION

For evaluation, we first find simulation points using the
simpoint profiling tool [48] for the first 100 billion instructions
with an instruction interval of 100 million instructions. The
top five simpoint intervals are simulated in detail with the
gem5’s O3 CPU model, and the final IPC is computed based
on the weight of the corresponding interval. In addition to
SpecMPK, we also simulate two distinct microarchitectures
for WRPKRU: serialized and NonSecure speculative. In the
serialized version, the execution of WRPKRU instruction is
serialized. In the NonSecure speculative case, the PKRU
register is renamed through the PRF. Therefore, this version

Fig. 9: Normalized IPC over serialized WRPKRU microar-
chitecture. Workloads labeled as SS and CPI indicate shadow
stack and code pointer integrity protection, respectively.

avoids stalls caused by frequent WRPKRU occurrences in the
dynamic instruction stream. We denote this microarchitecture
as NonSecure SpecMPK. On the contrary, SpecMPK may lead
to a stall in the pipeline when the ROBpkru becomes full.
In the NonSecure SpecMPK microarchitecture, memory in-
structions only check the most recent PKRU update, therefore
potentially exposing side channels.

Fig. 10: Frequency of WRPKRU instructions in the dynamic
instruction stream.

Figure 9 illustrates the normalized IPC by both SpecMPK
and NonSecure SpecMPK. Since SpecMPK does not observe
frontend serialization stalls, it achieves an increased instruction
issue rate over serialized WRPKRU microarchitecture. The
stall in the retirement stage due to the protection check for
the store instructions failing PKRU Store Check and execution
of load instructions failing PKRU Load Check is insignificant.
Therefore, the speedup achieved by SpecMPK is similar to
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that of NonSecure SpecMPK across the simulated workloads.
This performance enhancement aligns with the frequency of
WRPKRU instructions, as depicted in Figure 10. On average,
SpecMPK achieves a 12.21% speedup over the baseline se-
rialized model (maximally 48.42%). Workloads characterized
by high WRPKRU per kilo instructions experience substantial
speedups.

1) Sensitivity Analysis: The SpecMPK microarchitecture
stalls the pipeline frontend if ROBpkru is full. Therefore, the
performance benefit of SpecMPK is sensitive to the size of
the ROBpkru. The ideal size of the ROBpkru depends on the
instruction window length of the CPU, which is equal to the
number of entries in the Active List.

To evaluate the performance of SpecMPK we vary the size
of ROBpkru while keeping the size of the Active List constant.
Additionally, we compare the performance against NonSecure
SpecMPK to evaluate the smallest ROBpkru that achieves
performance close to NonSecure architecture.

Fig. 11: Normalized IPC for various sizes of ROBpkru

.In this experiment, we explore three distinct ratios between
the number of entries for ROBpkru and the Active List: 1/96,
1/48, and 1/24. As we reduce the ratio, the probability of
stall becomes higher since it reduces the minimum number of
WRPKRU instructions required to stall the pipeline. Figure 11
demonstrates the performance for these configurations with
ratios 1/96, 1/48, and 1/24 corresponding to 2,4 and 8 entry
ROBpkru respectively. Workloads with higher WRPKRU per
kilo instructions display lesser performance improvements at
lower ratios. While 502.gcc r (SS), 500.perlbench r (SS),
531.deepsjeng r (SS), 541.leela r (SS), 526.blender r (SS),
453.povray r (CPI) benchmarks achieve performance similar
to the NonSecure SpecMPK at the 1/48 ratio, 520.omnetpp r
(SS) and 471.omnetpp r (CPI) require the ratio to be 1/24
to match the performance of NonSecure-SpecMPK. The re-
maining workloads primarily contain very few WRPKRU
instructions in the dynamic instruction stream, resulting in
minimal performance changes across various configurations.

VIII. HARDWARE OVERHEAD

SpecMPK requires the addition of the following microar-
chitecture components: ARFpkru, ROBpkru, AccessDisable-
Counter, and WriteDisableCounter. Additionally, the Store-
Queue requires additional bits to specify whether store-to-
load forwarding is disabled for each entry. SpecMPK stores
two bitmaps in ROBpkru to specify the pKeys that need to

decrement the counters in the event of either a commit or a
squash. For the configuration in Table III, our design requires
93B of sequential logic, which is approximately 0.19% of the
L1 data cache. We have also synthesized the RTL module that
includes the counters, ROBpkru and ARFpkru with associated
combinational logics for updating them. The synthesis was
done using a 45nm node, and it reported an area overhead
of 5887.91µm2 with 3103 logic cells. Additionally, CACTI
reports 2.02% dynamic and 0.39% leakage power overhead
due to the new components when compared to access to the
48kB L1 data cache.

IX. SECURITY ANALYSIS AND DISCUSSION

In this section, we begin by articulating the three properties
ensuring SpecMPK’s security guarantees. We then analyze
how SpecMPK protects against the memory vulnerabilities
like MPK. Next, we explain how the same properties ensure
SpecMPK does not introduce new speculative execution vul-
nerabilities. We additionally demonstrate proof-of-concept at-
tacks on NonSecure SpecMPK that result in side channels due
to transient permission upgrades and explain how SpecMPK
mitigates them. At last, we discuss the non-security use cases
of MPK and explain why SpecMPK would not affect the
functionality of such use cases.

A. Security Properties of SpecMPK
SpecMPK has the following three properties that ensure that

it mitigates memory vulnerabilities the same way as MPK and
prevents potential side channels due to speculative permission
upgrades.

1) Ordering: SpecMPK issues each memory instruction in
order in relation to all WRPKRU instructions within the
WRPKRU-window (see Section V-A for the definition).
Therefore, it ensures all memory operations are under
the control of the corresponding WRPKRU instruction.

2) Conservative transient access control: SpecMPK stalls
transient memory instructions with potential protection
violations by capturing all WRPKRU updates within
the WRPKRU-window. With this conservative access
control, SpecMPK ensures that no transient memory
accesses can violate its access capability.

3) Precise non-speculative access control: SpecMPK en-
sures precise protection for stalled memory instructions
with potential protection violation by using ARFpkru for
protection check at the commit stage.

B. Security Comparison: MPK and SpecMPK
MPK has been used for improving memory safety by

mitigating memory corruption, buffer overread, and control-
steering attacks. These protections remain effective with our
proposed SpecMPK, as showcased in Figure 12. Additionally,
we demonstrate that SpecMPK prevents speculative permis-
sion upgrades.

For this analysis, we assume that WRPKRU instructions
have their values to be written to PKRU independent of the
control flow, i.e., the value is independent of speculation. This
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is achieved through compiler support by using load-immediate
for the EAX register, which is the implicit source operand
of the WRPKRU instruction, and eliminating branch instruc-
tions between load-immediate and the subsequent WRPKRU
instruction.

Fig. 12: Examples of various vulnerability mitigations utilizing
MPK. Pagesecure stores array1 in example (c) and (d).

1) Vulnerability mitigations similar to MPK: We demon-
strate SpecMPK’s mitigation capability to prevent memory
corruption and overread using examples shown in Figure 12(a)
and 12(b), respectively.

Protection against unauthorized Stores: Figure 12(a)
demonstrates the use of MPK to mitigate memory corrup-
tion vulnerability. In this example, Pagesecure is protected
with Write-Disable permission within unsafe code sections
to prevent corruption. WRPKRU serialization ensures that
WRPKRU commits before the execution of a younger store
instruction in gets, as shown in Figure 12(a), causing the
vulnerable store to Pagesecure to raise a protection fault,
effectively mitigating the memory corruption vulnerability.

SpecMPK successfully mitigates this attack. SpecMPK’s or-
dering property ensures that it captures all WRPKRU updates
within the WRPKRU-window before the vulnerable store is
issued. Since WRPKRU-window includes at least one update
with Write-Disable permission for Pagesecure, either ARFpkru

or WriteDisableCounter indicates a potential protection fault
for the corresponding pKey. Using conservative transient ac-
cess control property, SpecMPK identifies potential protection
violation as PKRU Store Check fails if a store instruction at-
tempts to speculatively write to Pagesecure. Finally, the precise
non-speculative access control property enforces protection
fault check at commit to effectively mitigate this memory
corruption attack, as it correctly raises a protection fault since
the most recent WRPKRU with Write-Disable permission
must have been committed to ARFpkru.

Protection against unauthorized loads: MPK mitigates
buffer overread attack, as shown in Figure 12(b), where
Pagesecure has Access-Disable permission within unsafe code
sections. WRPKRU serialization mitigates overread by raising
a protection fault for the vulnerable load instruction accessing

Pagesecure, as this load can only execute after the most recent
WRPKRU has been committed.

SpecMPK successfully mitigates this vulnerability. Using
the same principle as discussed for the memory corruption
mitigation but applied to loads, SpecMPK ensures that PKRU
Load Check would fail for the vulnerable load instruction in
Figure 12(b) if it speculatively accesses Pagesecure. Therefore,
the load instruction is stalled and marked to be issued at
retirement. Precise non-speculative access control property
ensures that re-issue of such a vulnerable load at retirement
leads to a protection violation since the ARFpkru has the most
recent update, which includes the Access-Disable permission
for Pagesecure — effectively mitigating the overread attack.

2) Transient permission upgrade vulnerability mitigation:
Figure 12(c) and 12(d) present two scenarios of transient
permission upgrades which are similar to Spectre-V1 and
Spectre-BTI (branch target injection) vulnerabilities, respec-
tively. The former control-steering attack example exploits
branch misprediction as taken, while the latter exploits indirect
branch target misprediction to divert control flow to a code
section that upgrades permission. WRPKRU serialization pre-
vents speculative permission upgrades, blocking both attacks.
Conversely, NonSecure SpecMPK architecture allows transient
permission upgrades in both scenarios, subsequently enabling
younger vulnerable loads to establish a side channel.

SpecMPK successfully mitigates these vulnerabilities. The
ordering property ensures that the WRPKRU with the Access-
Disable permission within the WRPKRU-window is correctly
captured in either ARFpkru or AccessDisableCounter when
the vulnerable load issues. Subsequently, SpecMPK’s con-
servative transient access control property ensures that the
vulnerable load stalls until retirement since PKRU Load Check
fails. Since SpecMPK ensures such access instructions update
the microarchitectural state non-speculatively, i.e., there is no
protection fault, it effectively mitigates the control-steering at-
tacks presented in Figure 12(c) and 12(d). Enforcing execution
at retirement for load instructions with a potential protection
fault mitigates all variants of control-steering and chosen-
code attacks on a disabled page. Precise non-speculative
access control property remains unused in mitigating these
vulnerabilities as the vulnerable load instruction never reaches
the head of the Active List.

3) Other mitigations: SpecMPK blocks store-to-load for-
warding to prevent speculative buffer overflow (see Section
III-C for the attack description), which exploits a transient
Write-Enable permission upgrade. It also eliminates the spec-
ulative side channel through TLB by conservatively differing
the TLB update until retirement time.

C. Proof-of-Concept Attack on NonSecure SpecMPK and
Mitigation by SpecMPK

In this subsection, We analyze NonSecure SpecMPK vul-
nerability with the example shown in Figure 12(c) and demon-
strate SpecMPK’s mitigation capability using gem5. This code
is part of a victim function in which the branch is trained to be
taken initially and later mispredicted during an attack that uses
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Flush+Reload side channel. The value of X differs between the
training and attack phases.

Fig. 13: Access latency for the array2 indices during the reload
phase of the flush+reload attack.

Figure 13 provides the access latency observed for array2
indices in the reload step for NonSecure SpecMPK and
SpecMPK microarchitectures. NonSecure SpecMPK shows
low access latency for two indices of array2 (in multiples of
512), indicating cache hits: 72, the value of array1[X] during
training, and 101, the value when the branch mispredicts. On
the contrary, with the SpecMPK microarchitecture, the cache
hit only occurs when array1[X] is 72, successfully preventing
speculative access to array1 when the branch is mispredicted.

D. Non-security Use Cases of MPK

It is essential that SpecMPK does not result in unintended
side effects due to speculation, so that it can replace MPK
across all scenarios. In this subsection, we utilize a use-case of
MPK, dynamic data race detection in multithreaded programs,
to show how SpecMPK avoids any side effects.

Besides providing in-process isolation to mitigate various
vulnerabilities, MPK is also efficient in identifying data race in
multi-threaded applications dynamically [8], [66]. A potential
data race occurs due to inconsistent lock usage [2]. One
example of inconsistent lock usage is when concurrent threads
write to a shared memory object using different locks. These
proposals assign a pKey to each shared object and map
access policies to the per-thread PKRU register. Additionally,
these proposals rely on protection faults to identify data races.
For instance, Kard [8] identifies shared objects accessed in
each critical section dynamically by assigning these objects a
pKey with Access-Disable permission. Therefore, access to
these objects would result in a protection fault, which Kard
traps, identifying the shared objects for the corresponding lock.
Additionally, Kard allows only one thread to acquire write
permission for a shared object. Accessing the same shared
object in another thread using a different lock would result in
a protection fault as the permission for the associated pKey
for this thread specifies Access-Disable permission. Kard traps
such faults and detects potential data races.

SpecMPK is capable of successfully replacing MPK in this
usage scenario. Since disabling and enabling permission must
occur before access to the shared object (e.g., Kard updates
PKRU when a thread enters a critical section), the WRPKRU-
window captures the most recent disabling permission update
either in ARFpkru or in the Disabling Counters. SpecMPK’s

ordering property ensures that memory instructions accessing
a shared object are always issued after all preceding WRPKRU
instructions. As a result, conservative transient access control
property identifies accesses with potential protection violation
if the preceding WRPKRU has disabling permission for the
associated pKey. Finally, the precise non-speculative access
control raises protection violation correctly, as the most recent
update in relation to the shared objects must have been
committed to the ARFpkru – correctly identifying potential
data races for the shared object.

X. RELATED WORKS

A. Memory Domains

Intel MPK permits a maximum of sixteen keys, which may
prove inadequate for certain applications. Servers handling
hundreds of clients simultaneously and requiring key isolation
for each client demand more than sixteen keys. To facilitate
the use of more than sixteen keys, both libmpk [40] and VDom
[64] suggest domain virtualization. This approach effectively
maps a large number of virtual domains to the limited number
of physical domains by either disabling pages or leveraging
Address Space ID, thus creating an extensive array of virtual
domains.

[58] proposes hardware-based domain virtualization for
Persistent Memory Objects (PMO) using Domain Translation
Table. On the contrary, [17], [44] propose architecture changes
to enable 1024 physical domains stored in the unused bits in
the Page Table Entry.

Other hardware-based in-process isolation proposes ISA
extension [11], [39] to avail scalable isolation. In both works,
the instruction that switches between domains are serialized.
However, the latter work allows the user to choose whether a
domain switch requires to be serialized.

XI. CONCLUSION

In this study, we analyze MPK to gain a deeper under-
standing of its performance and security implications across
various protection scenarios. Our focus lies in examining the
efficiency of MPK in safeguarding against different types of
threats. Specifically, as MPK is employed to defend against a
broad spectrum of attacks, we identify situations where this
protection strategy proves to be costly in terms of performance.

One notable instance is the application of MPK to block
memory corruption, a critical measure to counteract control
and data-flow hijack. Unfortunately, this approach introduces
significant performance overhead, primarily due to the serial-
ization of the WRPKRU instruction. This serialization strategy
is crucial for preventing speculative attacks.

In this work, we propose SpecMPK, a novel microarchitec-
ture enhancement that identifies and mitigates potential side
channels while allowing speculative execution of the WRP-
KRU instructions. We show that with this microarchitecture
solution, we achieve significant performance gains while safely
stalling instructions that are susceptible to speculative attacks,
and allowing other instructions to execute speculatively.
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derstanding selective delay as a method for efficient secure speculative
execution,” IEEE Transactions on Computers, vol. 69, no. 11, pp. 1584–
1595, 2020.

[44] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain keys–efficient {In-Process}
isolation for {RISC-V} and x86,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 1677–1694.

[45] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[46] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,
and B. Chen, “Adapting software fault isolation to contemporary {CPU}
architectures,” in 19th USENIX Security Symposium (USENIX Security
10), 2010.

[47] R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 762–775.

[48] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 45–57, 2002.

[49] K. Sinha and S. Sethumadhavan, “Practical memory safety with rest,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 600–611.

[50] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register state us-
ing microarchitectural side-channels,” arXiv preprint arXiv:1806.07480,
2018.

[51] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Dr-
uschel, and D. Garg, “{ERIM}: Secure, efficient in-process isolation
with protection keys ({{{{{MPK}}}}}),” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1221–1238.

[52] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient {Out-
of-Order} execution,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 991–1008.

[53] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the fourteenth ACM
symposium on Operating systems principles, 1993, pp. 203–216.

[54] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
and M. Yang, “Seimi: Efficient and secure smap-enabled intra-process
memory isolation,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 592–607.

[55] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[56] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 572–586.

[57] J. Wikner and K. Razavi, “{RETBLEED}: Arbitrary speculative code
execution with return instructions,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 3825–3842.

[58] Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Hardware-based domain
virtualization for intra-process isolation of persistent memory objects,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 680–692.

[59] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[60] K. C. Yeager, “The mips r10000 superscalar microprocessor,” IEEE
micro, vol. 16, no. 2, pp. 28–41, 1996.

[61] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended protection
against stack smashing attacks without performance loss,” in 2006 22nd

Annual Computer Security Applications Conference (ACSAC’06). IEEE,
2006, pp. 429–438.

[62] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher, “Spec-
ulative data-oblivious execution: Mobilizing safe prediction for safe
and efficient speculative execution,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 707–720.

[63] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

[64] Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren, “Vdom: Fast
and unlimited virtual domains on multiple architectures,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
905–919.

[65] Z. Zhang, M. Tao, S. O’Connell, C. Chuengsatiansup, D. Genkin, and
Y. Yarom, “{BunnyHop}: Exploiting the instruction prefetcher,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 7321–
7337.

[66] D. Zhou and Y. Tamir, “Push: Data race detection based on hardware-
supported prevention of unintended sharing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 886–898.

[67] M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and S. Sethu-
madhavan, “No-fat: Architectural support for low overhead memory
safety checks,” in 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2021, pp. 916–929.

[68] M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, and S. Sethumadhavan,
“Zerø: Zero-overhead resilient operation under pointer integrity attacks,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 999–1012.

408

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 02,2025 at 23:39:38 UTC from IEEE Xplore.  Restrictions apply. 


