
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Delinquent Loop Pre-execution Using Predicated
Helper Threads

Anirudh Seshadri and Eric Rotenberg
Department of Electrical and Computer Engineering, North Carolina State University

{aseshad2,ericro}@ncsu.edu

Abstract—Branch pre-execution targets delinquent branches
that are not predictable by conventional branch predictors.
Helper threads attempt to resolve branches ahead of the main
thread. Pre-executed branch outcomes are communicated to the
main thread’s fetch unit via a global branch queue or local
branch queues (one per branch PC). Two key challenges are
discussed in this paper.

1) Handling a delinquent branch b2 that is control-dependent
on another delinquent branch b1. Prior works that include
both branches resort to branch prediction of b1 in the
helper thread to determine whether or not to pre-execute
b2. But b1 is hard-to-predict and the misprediction bot-
tleneck merely shifts from the main thread to the helper
thread.

2) Handling a store instruction that both influences a delinquent
branch and is control-dependent on it.

We propose predicated helper threads (Phelps) to address these
challenges. Phelps constructs a helper thread for each inner loop
containing delinquent branches. All delinquent branches, even
control-dependent ones (b2), are unconditionally pre-executed in
each loop iteration. Per-branch queues are managed in lock-
step based on loop iterations, allowing the helper thread to
deposit outcomes for both b1 and b2 each iteration and the
main thread to consume or ignore b2 outcomes in the correct
sequence dictated by b1. The helper thread also retains influential
stores for dynamic disambiguation and store-load forwarding.
Any such store that is control-dependent on a delinquent branch
is predicated on the branch’s outcome, which is necessary because
the helper thread no longer has control-flow (except for the loop
branch). Phelps also features dual decoupled helper threads for
outer-inner loop pairs, for effective branch pre-execution when
the inner loop has a short and unpredictable trip count.

I. INTRODUCTION

Delinquent branches are branches that execute frequently
and are also frequently mispredicted by state-of-art branch
predictors. A typical example is a branch that tests arbitrary
data from a very large data structure such as a graph. A
high-performance deep and wide superscalar processor spends
tens to hundreds of cycles fetching and executing instructions
down the incorrect path of each mispredicted branch. Thus,
delinquent branches severely degrade performance and waste
significant energy.

If a delinquent branch has a simple control-dependent (CD)
region, such as a single or a few arithmetic-logic-unit (ALU)
instructions, static or dynamic predicated execution (e.g., [3],
[8], [18], [25]) is a good solution. On the other hand, if its CD
region is large and/or complex (nested conditional branches,
function calls, loads, and stores), predication is either not
expressible or not profitable.

One major technique to target delinquent branches with non-
trivial CD regions is branch pre-execution [6], [7], [13], [19],
[33]–[35], [38], [45], [46], [48]. Branch pre-execution involves
learning the backward slice of a delinquent branch, executing
dynamic instances of the slice via one or more microarchi-
tectural helper threads ahead of the architectural main thread,
and streaming predictions from the helper thread(s) to the main
thread’s fetch unit via queue(s).

The aim of this work is to highlight two technical challenges
that limit the efficacy of branch pre-execution, and propose
a new automated, hardware-only, helper thread microarchi-
tecture to address them: (1) delinquent branches that are
control-dependent on other delinquent branches, and (2) store
instructions that both influence delinquent branches and are
control-dependent on them.

Figure 1 shows an example of two delinquent branches b1
and b2. Branch b2 is control-dependent on branch b1. We say
that b1 guards b2, and that b1 is the guarding branch and b2
is the guarded branch. Pointers x and y vary arbitrarily each
loop iteration. Thus, some (but not all) instances of store s1
conflict with future instances of the load in the backward slice
of b1 (the load *y), and the number of iterations separating
the conflicting store and load varies. We will use this example
to discuss how dependent delinquent branches and stores pose
problems for previous branch pre-execution works and how
we approach the problems.

Fig. 1: Example of dependent delinquent branches and stores.

Dependent delinquent branches: Prior works, that include
both branches [13], [34], [46], predict b1 in the helper thread
in order to make a timely decision of whether or not to pre-
execute b2. But b1 is hard-to-predict. When the prediction
is incorrect, the helper thread must squash and roll back.
Prediction in the helper thread merely shifts the misprediction
bottleneck from the main thread to the helper thread. Our
solution is to always pre-execute b2. Thus, our helper thread
generates pre-executed outcomes for both b1 and b2 for each

44

2025 IEEE International Symposium on High Performance Computer Architecture (HPCA)

979-8-3315-0647-6/25/$31.00 ©2025 IEEE
DOI 10.1109/HPCA61900.2025.00015

20
25

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

79
-8

-3
31

5-
06

47
-6

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
61

90
0.

20
25

.0
00

15

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

iteration of the loop. The queues for b1 and b2 are managed
in lock-step based on loop iterations. Loop-iteration-driven
queues is the key mechanism that: (1) allows the helper thread
to deposit b1 and b2 outcomes for each iteration of the loop,
and (2) allows the main thread to consume some b2 outcomes
and ignore others in the correct manner. Although our helper
thread pre-executes more instances of b2 than are ultimately
needed, it is free from branch prediction and rollback-free,
hence faster than if it relied on branch prediction of b1.

Dependent stores: Some prior works [7], [38], [48] exclude
stores from their helper threads. Slipstream [46] and Decou-
pled Lookahead [13] feature a continuous leading thread – a
pruned version of the main thread – with stores. Including
s1 in the leading thread is moot, however: the leading thread
is slowed by all branch mispredictions of b1 and b2 [45].
Slipstream 2.0 [45] also includes stores, but not s1: its leading
thread skips b1’s control-dependent region altogether. Thus,
not only does the main thread not benefit from pre-execution
of b2, but instances of b1 that depend on prior instances
of s1 may have incorrect outcomes. Branch Runahead [34],
upon observing the first occurrence of a memory dependence
between s1 and the load in b1’s slice, assumes the dependence
is fixed. It removes the store and load, and directly links the
store’s producer to the load’s consumer. Assuming a fixed
memory dependency, rather than keeping the store and load
and dynamically disambiguating them in the helper thread,
may lead to many incorrect b1 outcomes. Our solution is to
include s1 in the helper thread and explicitly predicate it on
b1’s and b2’s outcomes, which is necessary given that our
helper thread no longer has control-flow (except for the loop
branch).

We call our approach predicated helper threads (Phelps).
Phelps constructs a helper thread for each inner loop con-
taining delinquent branches. By targeting loops, we can
apply loop-iteration-driven queues, which enable prediction-
free/rollback-free pre-execution of nested delinquent branches
(b1 and b2). A helper thread also retains influential stores for
dynamic disambiguation and store-load forwarding (without
affecting architectural state of the main thread), and any such
store that is control-dependent on a delinquent branch is
predicated.

Figure 2 shows an idiom that occurs in some graph work-
loads: an inner loop with a short and unpredictable trip-
count nested inside a long-running outer loop. Both the outer
and inner loops contain delinquent branches. At a minimum,
the outer loop contains the inner loop’s unpredictable header
branch (brA) that determines whether the inner loop will be
visited in a given iteration of the outer loop. The inner loop’s
backward branch (brC) is unpredictable and the inner loop
body often contains one or more unpredictable branches (brB).

Targeting just the inner loop would be ineffective because
the overhead of starting and stopping a helper thread for each
visit to the inner loop is not amortized as it is for a long-
running loop. The overhead could be addressed by applying a
single helper thread that encompasses both the outer and inner
loops, but mispredictions of the inner loop’s delinquent loop

Fig. 2: Nested loop idiom in graph workloads.

branch, brC, become a bottleneck in the single helper thread.
Phelps targets nested loops with dual decoupled helper

threads to: (1) incur helper thread start/stop overhead only
once for the nested loop as a whole, and (2) tolerate mis-
predictions of brC. An outer helper thread runs the outer
loop and queues multiple visits to the inner loop for an inner
helper thread to process. The inner helper thread executes only
one inner loop visit at a time and in program order. While
mispredictions of brC are serialized within the inner thread,
the outer thread’s progress is unaffected by the inner thread.
The dual decoupled helper threads achieve high instruction-
level parallelism (ILP) and memory-level parallelism (MLP)
despite brC, yielding effective branch pre-execution for the
main thread.

II. RELATED WORK

Branch pre-execution: Zilles and Sohi characterized back-
ward slices of delinquent branches and loads [49]. They
then explored performance potential by manually constructing
speculative slices and selecting fork points [48]. Slices have
no control-flow or stores. They omit non-delinquent branches
that guard the targeted delinquent branch, which causes extra
outcomes to be generated for it. All branch queues must look
for specific kill PCs in the main thread (a CAM searched
by fetch bundle PCs), to infer when an outcome must be
discarded. As with slices and fork points, the kill PCs were
manually identified. The issue of nested delinquent branches
is not discussed. It seems possible to have two concurrent
slices (in two thread contexts), and apply the above kill
principle to the guarded slice. Our solution is automated and
hardware-only, features a novel method (iteration-driven lock-
step queues) that avoids kill PC complexity, works with one
thread for all nested branches, and handles store s1.

Roth and Sohi used off-line program trace analysis to
construct small slices without control-flow or stores that target
delinquent loads, branches, or both [38]. In the rename stage,
a method called integration allows the main thread to reuse
values produced by the helper thread and resolve mispredicted
branches early, thus not entirely hiding the misprediction
penalty. There is no mention of whether or not nested delin-
quent branches can be included in Phelps-like fashion. Even
if possible, the topic of how to deal with excess outcomes of
the guarded branch at the fetch unit was not broached.

Chappell et al. [7] used hardware to characterize all paths
leading to a branch, where a path is comprised of multiple
basic blocks, and construct specialized slices for those paths
for which the targeted branch is hard-to-predict. Per-path

45

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

specialization can lead to an explosion in the number of slices
for a given delinquent branch, especially if it is delinquent no
matter the path leading to it. A slice is terminated at a store
that conflicted with a load in the slice, to delay forking until
after the store.

In Slipstream [35], [46], Decoupled Lookahead (DLA) [13],
[19], [33], and Slipstream 2.0 [45], the helper thread (leader)
is a pruned version of the main thread (follower) and may
include stores. Slipstream prunes the leader by removing
highly predictable branches, predictably ineffectual instruc-
tions, and their backward slices. DLA uses similar pruning
criteria, but by using off-line analysis, may be able to prune
more. For predominantly delinquent regions, however, there is
little to prune [45]. To address this, Slipstream 2.0 removes
the control-dependent regions of delinquent branches, but
this causes the pruning of nested delinquent branches and
influential stores in these regions.

Branch Runahead [34] constructs one or more chains for
a delinquent branch. During backward slicing, a chain is
terminated at either a guarding branch, an affector branch (a
branch that doesn’t guard the delinquent branch, but affects
values used by it), or the prior instance of the delinquent
branch. If terminated at a guarding or affector branch, chains
are constructed for them as well, and so on. Thus, a chain
contains no branches besides its terminal branch. Each child
chain is tagged with its parent chain (its guard, affector,
or self) and parent direction that will trigger it. A bimodal
branch predictor is used to predict the parent chain’s direction
to speculatively trigger its child chains. If incorrect, Branch
Runahead must squash all child chains (and their child chains)
of the mispredicted parent, and the parent triggers the correct
child chains late. A store that conflicts with a load is included
in the backward slicing process, but a dependency is assumed
to always exist: the store and load are removed, and the
store’s producer is linked directly to the load’s consumer. The
assumption may lead to incorrect branch outcomes.

PFM [20] promotes designing RTL for custom branch
predictors, data prefetchers, etc., and synthesizing them to
a reconfigurable fabric coupled to key pipeline stages of the
superscalar processor. The demonstrated custom astar branch
predictor is, in essence, pre-execution via a “helper thread”
implemented as fixed hardware. Impressively, its performance
equaled that of perfect branch prediction. The costs are manual
per-benchmark design and synthesis of custom branch pre-
execution and dedicated hardware of the reconfigurable fabric.

Opportunistic Early Pipeline Re-steering [15] focuses on
branches that depend on a single load and simple computation.
When the load executes in the backend, it triggers pre-
execution of the branch’s slice in a dedicated engine in the
frontend. Because load-branch pairs are often close in the
fetch stream, however, this approach is only timely enough
to override the branch predictor for 7% of such dynamic
branches. Thus, if pre-execution is too late to override the
branch predictor, fetch re-steering is attempted when the
branch reaches the last stage of the frontend, reducing but not
eliminating the misprediction penalty. To improve prospects,

the load’s address is predicted in the frontend and its value
prefetched from the data cache (if the address prediction
is confident). This optimization is shown to predominantly
increase late re-steers, not predictor overrides. Triggering pre-
execution at the load for each proximal load-branch pair yields
a modest average MPKI reduction of 12.7%, which appears to
count both predictor overrides and late re-steers. The approach
also requires a dedicated execution engine in the frontend.

Load pre-execution: Load pre-execution can be in the form
of runahead mode when a cache-missed load reaches the ROB
head [28], [29] or helper threads [10], [16], [17], [26], [30],
[38], [47], [48]. Note that Phelps does not explicitly identify
delinquent loads for load pre-execution. As explained in Sec-
tion I, the motivation for dual decoupled helper threads for
nested loops is amortizing helper thread start/stop latency and
tolerating the inner loop’s delinquent loop branch. That said,
decoupling increases the scope for memory-level parallelism
beyond the core’s window size. Allowing the outer loop to
run independently can increase the concentration of cache
misses within the core’s window, that are otherwise distant in
the dynamic instruction stream, increasing utilization of miss
status holding registers (MSHRs).

Load and/or branch scheduling: The Load Slice Core
(LSC) [5] endows an in-order core with Decoupled Ac-
cess/Execute [43] capability. Loads and address generating
instructions (AGIs) are steered to the B queue, stores to the B
and A queues, and other instructions to the A queue. Steering
AGIs requires learning and caching PCs of instructions in
backward slices of loads/stores. Iterative Backward Depen-
dency Analysis (IBDA) learns slices iteratively exploiting
loops. We borrow IBDA for growing our helper threads.
Freeway [21] improves upon LSC by steering load slices that
depend on other load slices to a third Y queue. This increases
MLP further by unblocking independent load slices in the B
queue. Forward Slice Core [22] diverts forward slices of cache-
missed loads to a holding queue instead of steering backward
slices. All three works attempt to approach MLP of an OOO
core with an in-order core.

With ISA support, CRISP [24] uses software to mark the
backward slices of critical loads and branches, and the pro-
cessor’s scheduler prioritizes these instructions. This reduces
branch misprediction penalties but does not eliminate them.

Value-based branch prediction: Dynamic Data Depen-
dence Tracking [9] propagates dependence bit vectors as
instructions are renamed, such that an instruction has a list
(in bit vector form) of instructions currently in the pipeline
that are in its backward slice. The authors suggest multiple
applications and specifically explore a value-based overriding
branch predictor. A branch’s outcomes are recorded for past
combinations of input register values to its backward slice.
When a particular combination of input register values is
observed again, the corresponding outcome is reused. Thus,
DDDT-based branch slicing drives a form of computation
reuse [11], [14], [44] rather than pre-execution. Reuse may
suffer capacity and compulsory misses if there is an explosion
in the number of input value combinations. The predictor is

46

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

elaborate, assuming renaming/DDDT at the instruction fetch
stage, a series of circuits, and a redundant register file for
obtaining slice input values (if ready) to search the predic-
tion table, necessitating its use as a long-latency overriding
predictor of a conventional single-cycle predictor. Accuracy is
another concern: input values of the backward slice may not
be available due to close proximity of the branch and its slice.

III. EXAMPLE: astar
Figure 3 shows an example of dependent delinquent

branches and stores from the SPEC benchmark, astar. We refer
to this example throughout the paper.

One iteration of the for-loop (line 2) tests attributes of the
8 cells surrounding the cell at index (gotten from the input
worklist at line 4) in a grid. The figure only shows complete
code for the first neighbor, at lines 6–21. The code at lines 6–
21 is repeated 7 more times for different index1 values (other
neighbors), shown in abbreviated form at lines 24–30.

This loop features prominently in our highest-weighted
astar SimPoint [40]. This SimPoint suffers 29 mispredictions-
per-kilo-instructions (MPKI) using a 64KB TAGE-SC-L [39]
branch predictor, mostly caused by 16 delinquent branches in
Figure 3: the pair of branches, b1 (line 7) and b2 (line 8),
and the seven other identical branch pairs (b3+b4, b5+b6, ...
b15+b16) operating on different values for index1.

Fig. 3: Code fragment from astar’s makebound2() function.

The first challenge is that b2 is control-dependent on b1
(likewise for the other branch pairs). It would not be a
challenge if only one or the other were delinquent, but both
are. The second challenge stems from the stores s1 (line 13)
through s8. These stores to waymap[index1].fillnum occasion-
ally influence future load instructions that feed odd-numbered
branches b1, b3, ... b15. Namely, there is a loop-carried store-
load dependence whenever a load of waymap[index1].fillnum

uses an index1 that was visited for the first time in some
past loop iteration. Further complicating matters is that s1 is
control-dependent on b1 and b2, and likewise for the seven
other stores.

IV. OVERVIEW OF PHELPS

In Section I, we discussed limitations of prior work with
respect to (1) nested delinquent branches and (2) stores that
both influence them and are control-dependent on them. In this
section, we give an overview of how Phelps addresses these
challenges.

A. Preliminary Information

Before delving into the overview, we need to explain a few
things that are referenced in this section. In this paper, when
a helper thread is running, the superscalar core’s frontend
stages and FIFO structures (Reorder Buffer (ROB), Physical
Register File (PRF) free list, Load Queue (LQ), and Store
Queue (SQ)) are partitioned for a complexity-effective design
and isolated processing of the main thread and helper thread.
The Scheduler/Issue Queue (IQ) and execution lanes are
flexibly shared. Helper thread stores are committed from its SQ
partition to a small private cache (32 doublewords organized
in 16 sets, 2-way set-associative). Data evicted from this cache
is simply lost. If a helper thread load re-references the same
address, it may get stale or up-to-date data, depending on if the
main thread’s counterpart store already reproduced the data in
its L1 cache [36].

B. Key Ideas Behind Phelps

Each inner loop with delinquent branches is identified and a
single helper thread is constructed for it. The first instructions
(seeds) to be included in the helper thread are all of the
loop’s delinquent branches and the loop branch. Over multiple
iterations of the loop, the seeds’ producers are added, their
producers are added, and so forth, thereby iteratively building
up the seeds’ backward slices through register dependencies
(IBDA [5]). If a load is added to the helper thread, and a store
in the loop is detected to conflict with the load, then the store
and its backward slice are also added.

The only control-flow in the helper thread is the loop
branch, useful for knowing when to terminate the helper
thread. The delinquent branches are converted to predicate-
generating instructions, i.e., predicate producers, for pushing
their pre-executed outcomes to per-branch prediction queues.
A key point is that all of the delinquent branches are un-
conditionally pre-executed, even if they are nested, because
their prediction queues operate in lockstep based on loop
iterations. That is, each delinquent branch is allocated an
entry for each loop iteration so that it may unconditionally
deposit pre-executed outcomes for all loop iterations, even
if the delinquent branch is supposed to be skipped-over in
some loop iterations. The main thread’s instruction fetch stage,
guided by branch predictions (from the prediction queues for
delinquent branches and the core’s default branch predictor

47

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

for non-delinquent branches), dictates which pre-executed out-
comes are ultimately consumed, thereby respecting guarding
relationships among all branches (whether delinquent or non-
delinquent).

Figure 4 shows an example of iteration-based management
of the per-branch prediction queues. Each row is a prediction
queue for a given delinquent branch in the astar example of
Figure 3. Only the first four of astar’s sixteen delinquent
branches are shown for brevity. Each column corresponds
to a loop iteration. The helper thread deposits outcomes (0:
not-taken, 1: taken) of predicate producers as they retire, in
the column pointed to by tail. Tail is incremented when the
helper thread retires an instance of the loop branch, which
only occurs after retiring all predicate producers in the current
tail iteration. Spec head (speculative head pointer) points to
the column from which the main thread consumes predictions.
Thus, spec head is incremented when the main thread fetches
an instance of the loop branch, which only occurs after it has
consumed predictions it requires from the current spec head
iteration. Notice that some predictions for b2 and b4 are shown
in parentheses. This is just to highlight the fact that these
predictions are not consumed by the main thread (at least
not initially: more on this below), because the predictions
consumed for their guarding branches b1 and b3 are 1 (taken)
causing the main thread to not even fetch the corresponding
instances of b2 and b4. For example, the main thread is
currently consuming predictions from iteration spec head,
with the path highlighted by the red arrows. It doesn’t consume
b2’s prediction owing to b1 being predicted taken. Conversely,
it consumes b4’s prediction owing to b3 being predicted not-
taken.

Head is incremented, and the corresponding column freed,
when the main thread retires an instance of the loop branch.
When the main thread recovers from a branch misprediction
or load violation (load issued before a conflicting store),
spec head is simply rolled back to the mispredicted branch’s
checkpointed spec head pointer (in the case of immediate
recovery using branch checkpoints) or to head (in the case
of recovery from the head of the ROB). Importantly, mis-
prediction recoveries in the main thread do not impact the
helper thread, and rolling back spec head enables replaying
the pre-executed outcomes instead of generating them all over
again. This is even true for a branch misprediction in the
main thread that stemmed from a helper thread outcome. In
fact, this underscores another subtle but important benefit.
Though rare, it is possible for the helper thread to generate
an incorrect outcome for an instance of b1 (e.g., due to
losing a store’s update in the helper thread’s tiny data cache
before the main thread retires its corresponding store). If that
instance’s incorrect outcome was “taken”, then the main thread
initially didn’t consume the corresponding b2’s prediction. But
because all predicate producers are unconditionally executed,
fortunately, the prediction for b2 exists nonetheless and can be
revisited by the main thread. After rolling back to the not-taken
target of b1, the main thread will consume b2’s prediction the
second time around.

Fig. 4: Prediction queues example.

To support two helper threads (nested loop), there are two
sets of {head, spec head, tail} pointers. Each pointer set
pertains to the partition of prediction queues allocated to a
given helper thread.

From what has been described thus far, when considering
only nested delinquent branches, predication is implicit in
how the main thread skips consuming some pre-executed
outcomes. Explicit predication – linking a predicate producer
to a predicate consumer – only comes into play for stores.
A store needs to be executed or suppressed depending on the
outcomes of the delinquent branches (predicate producers) that
guard it. To minimize changes to the core’s scheduler, a store
may have one predicate source operand, which gets linked
to its immediate guarding predicate producer. If the store
is nested inside more than one delinquent branch, however,
one predicate is insufficient. To compensate, each predicate
producer also has one predicate source operand each, which
gets linked to its immediate guarding predicate producer. Thus,
if a store is nested inside multiple delinquent branches, it
becomes transitively dependent on all of their predicates. It is
important to note that the backward slices of all delinquent
branches and included stores are concurrently executed in
the helper thread. Only the final instruction of each slice –
predicate producer or store – is serialized by its predicate
source operand, and only if it is actually guarded. This is
illustrated in Figure 5 for astar’s b1, b2, and s1.

Fig. 5: RISCV assembly and DAG for the backward slices
of astar’s b1 (7), b2 (12), and s1 (13). The helper thread
concurrently executes backward slices of predicate producers
(7,12) and stores (13). Only the final instruction of each slice
is serialized by its predicate source operand, if guarded by one
(12,13).

48

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

V. PHELPS IMPLEMENTATION

A. Epochs

Phelps operates on the basis of fixed instruction inter-
vals called epochs. In this paper, an epoch is 4 million
retired instructions of the main thread. The information about
delinquent branches and loops gathered in epoch N is used
to construct new helper threads in epoch N+1, which are
then available for deployment in subsequent epochs N+2 and
greater.

B. Identifying Loops Containing Delinquent Branches

To identify the most delinquent branches in the current
epoch, we use the Delinquent Branch Table (DBT) and Delin-
quent Branch Table - Max (DBT-Max), shown in Figure 6.
The DBT maintains information about conditional branches
that mispredicted during the epoch. The DBT is searched by
the PC of the branch instruction and each entry consists of
a misprediction counter and PC bounds of the inner loop
and outer loop that enclose the branch, if applicable. When a
conditional branch retires, if it was mispredicted by the core’s
branch predictor (whether the branch was actually predicted
by the core’s predictor or a prediction queue), it increments
its misprediction counter. To train the inner and outer loop PC
bounds, the retirement unit keeps track of the PC and target
PC of the most recently retired backward branch. When a
conditional branch is retired, if its PC is between the backward
branch’s PC and target PC, the backward branch may replace
the inner or outer loop fields of the branch’s entry. Which
is replaced, if any, depends on comparisons among loops’ PC
bounds. The two loops whose bounds are closest to the branch
are kept, and sorted as inner (tightest loop bounds) and outer
(next tightest loop bounds).

Fig. 6: From top to bottom: DBT, DBT-Max, and LT.

DBT-Max ranks the most delinquent branches observed so
far. Each entry contains the DBT index of the corresponding
delinquent branch, along with its misprediction count for main-
taining delinquency ranking. Incrementally updating rankings
in the DBT-Max, as mispredicted conditional branches retire
and update their counts in the DBT, avoids having to scan the
DBT at the end of the epoch to determine the top delinquent
branches.

The Loop Table (LT), also shown in Fig. 6, consolidates
information about outermost loops and the delinquent branches
contained within them. It is populated at the end of the
epoch, as follows. A pass is made through DBT-Max. During
the pass, each delinquent branch in DBT-Max that clears
a threshold of 0.5 MPKI (2,000 mispredictions for the 4
million instruction epoch) creates or updates a LT entry for its
outermost loop branch (gotten from the DBT). The delinquent
branch augments the loop’s aggregate misprediction count with
its misprediction count and adds itself to the loop’s delinquent
branches list (actually a bit vector representing DBT-Max
entries); if the delinquent branch has both an outer and inner
loop in its DBT entry, then it adds the nested inner loop
information to its outermost loop’s LT entry. At the end of
this pass, the LT contains information about the outermost
loops (either outer+inner for nested loops or inner only) that
contain the most delinquent branches. The DBT and DBT-Max
counters are then reset in preparation for the next epoch.

C. Helper Thread Construction

If multiple delinquent loops were identified in the previous
epoch, we pick the most delinquent loop among them that
doesn’t already have a helper thread in the Helper Thread
Cache (HTC) (covered in Section V-E). If the chosen loop
is a nested loop, two helper threads are constructed at the
same time: an outer thread and an inner thread. If the chosen
loop is not a nested loop, just an inner thread is constructed.
Hereafter, we refer to three helper thread types: outer-thread,
inner-thread, and inner-thread-only.

Extracting backward slices requires having both source and
destination register specifiers of instructions post-retirement.
The ROB has destinations but not sources. Although it is
possible to augment the ROB, we opted for a different ap-
proach. In any case, the full instructions will eventually be
needed, to write the helper threads into the HTC. Therefore,
as a preliminary step, all instructions in the loop are collected
in the Helper Thread Construction Buffer (HTCB) as they are
fetched by the main thread1. Only a subset of them will be
selected for inclusion in the helper thread as explained next.

Helper thread construction begins with “seed” instructions.
For inner-thread-only and inner-thread, the seeds are the inner
loop’s delinquent branches and backward branch. For outer-
thread, the seeds are the outer loop’s delinquent branches,
its backward branch, and the inner loop’s header branch that
guards the visit to the inner loop. The inner loop’s header
branch is included in outer-thread to conditionally queue inner
loop visits for inner-thread to process (covered in Section V-F).
If a given instance of the header branch is not-taken, outer-
thread will queue a corresponding inner loop visit for inner-
thread. If taken (branching around the inner loop), outer-thread
will not queue an inner loop visit for inner-thread.

1Whether fetch is on the right or wrong path, we need to collect all (or as
many possible) paths through the loop in any case. This is also why epochs
are sufficiently long. The finalized helper thread will be a subset of the loop
based on slicing.

49

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

Once the seeds are planted in a helper thread, instructions
in their backward slices are added iteratively over multiple
loop iterations as in IBDA [5], using the Last Producer Table
(LPT). The LPT has as many entries as there are logical
integer registers in the ISA. Each entry contains the PC of
the most recently retired instruction that is a producer of
the corresponding logical register. When an instruction that
is already included in the helper thread retires, it reads out
the PCs of its producers using its logical source registers as
indices into the LPT. Any producers not already included in
the helper thread and within the loop’s PC bounds are added
to the helper thread.

If an instruction references a producer whose PC is outside
the loop’s PC bounds, the instruction’s logical source register
is added to the helper thread’s live-in register set. A helper
thread may have one or two live-in register sets, depending
on the helper thread type:

• Inner-thread-only or outer-thread: One live-in register set,
for live-ins coming from the main thread.

• Inner-thread: Two live-in register sets, for live-ins coming
from the main thread and outer-thread.

To capture store-load dependencies, a 16-entry queue of
retired stores is maintained, including the stores’ addresses and
PCs. Only stores whose PCs are within the loop’s PC bounds
are captured in this store queue. When a load instruction that
is included in the helper thread retires, it looks for a match
on its address in this store queue. Upon a match, the matched
store is included in the helper thread.

D. Learning Immediate Predicate Producers

As discussed in Section IV-B and depicted in Figure 5,
a store is predicated by its immediate predicate producer, if
one exists. To handle nesting within multiple branches, each
predicate producer must also be predicated by its immediate
predicate producer.

We use a novel method to learn immediate predicate pro-
ducers. It uses the Control-Dependency Finite State Machine
(CDFSM) matrix depicted in Figure 7. Each element of the
CDFSM matrix is a 2-bit FSM. A row is allocated for each
delinquent branch and included store in the loop. A column
is allocated for each delinquent branch in the loop.

Fig. 7: CDFSM matrix and state transitions of each CDFSM.

The goal is to learn the immediate guarding branch (column)
of each branch or store (row). We will use the example in
Figure 8a, which shows an abbreviated control-flow graph

(a) CFG

(b) iteration 1

(c) iteration 2

(d) iteration 3

(e) iteration 4

(f) iteration 5

Fig. 8: Example of learning immediate guarding branches. (a)
CFG showing three branches and a store inside an example
loop (loop branch not shown). (b)-(f) CDFSM training during
loop iterations 1 through 5.

50

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

(CFG) for three delinquent branches and a store inside of a
loop of interest. Training occurs as instructions in the loop
retire and is facilitated by a branch list. The branch list is a
list of delinquent branches and their directions that have been
retired in the current loop iteration. It is cleared for each new
iteration, when the loop branch retires. Figures 8b–8f show
training over five consecutive iterations of the loop, with the
“path followed” indicated on the left for each iteration. In
general, more iterations may be needed to observe most or all
possible paths, and there are no guarantees.

• Iteration 1 (Figure 8b): When br1 retires, there are no
branches prior to it in the branch list (empty branch
list); thus, it doesn’t train any FSM in its row. When br2
retires, it observes {br1,nt} just prior to it in the branch
list; thus, it updates the br1 FSM in its row to CD NT
(highlighted with gray shading for the FSM at row:br2,
col:br1), signifying that, based on information so far, br2
appears to be immediately control-dependent on br1 in its
not-taken direction. When br3 retires, it observes {br2,t}
just prior to it in the branch list; thus, it updates the br2
FSM in its row to CD T because, based on information
so far, br3 appears to be immediately control-dependent
on br2 in its taken direction; this is not actually the case,
but will be corrected once the alternate path of br2 is
observed, below. When st retires, it observes {br3,nt}
just prior to it in the branch list; thus, it updates the
br3 FSM in its row to CD NT, i.e., thus far, st deems
itself immediately control-dependent on br3 in its not-
taken direction.

• Iteration 2 (Figure 8c): This iteration is much the same
as the previous one, except that br2 is not-taken. Thus,
the only difference is that when br3 retires, it observes
{br2,nt} just prior to it in the branch list. Accordingly, it
updates the br2 FSM in its row from CD T to CI. In other
words, so far, br3 has always observed br2 just prior to it,
and in both directions of br2, so br3 deems itself control-
independent (CI) with respect to br2. As we shall see
below, in future iterations, br3 must subsequently ignore
br2 and train a different FSM, that of a branch prior to
br2 in the branch list.

• Iteration 3 (Figure 8d): The path followed in this iteration
is the same as iteration 1 and training for br1, br2, and st
is the same (no changes in their rows). When br3 retires,
it looks past br2 in the branch list because it deems itself
control-independent of br2 (CI state). It observes {br1,nt}
prior to it and consequently updates the br1 FSM in its
row to CD NT.

• Iterations 4 and 5 (Figures 8e and 8f): These fill out the
alternate paths of br3 and br1, respectively, to show that
no further changes to the FSMs are possible. In iteration
4, br3 is taken, so st is not retired in this iteration and
its row is not trained. In iteration 5, br1 is taken, so br2,
br3, and st are not retired in this iteration and their rows
are not trained.

The final state of the CDFSM matrix shows that: (1) br1

has no immediate predicate producer (br1 is not guarded by
any delinquent branch in the loop); (2) br1 is the immediate
predicate producer of both br2 and br3, in the not-taken
direction (br1 immediately guards both br2 and br3 and they
are on br1’s not-taken path); (3) br3 is the immediate predicate
producer of st, in the not-taken direction (br3 immediately
guards st and it is on br3’s not-taken path).

E. Helper Thread Cache

After constructing a helper thread (Section V-C) and learn-
ing immediate predicate producers (Section V-D):

1) The instructions selected for inclusion in the helper
thread are retrieved from the HTCB.

2) Delinquent branches are converted to predicate produc-
ers. Each predicate producer is assigned a unique logical
destination predicate register, starting at pred1 and in-
cremented for successive predicate producers (pred0 is
reserved as explained below). RISCV [1] note: It can be
encoded in bits 11:7, where rd resides for other formats,
because the branch’s immediate is not needed.

3) Each store and predicate producer is given an extra
source operand, for its logical source predicate register.
One additional bit encodes the direction of the control
dependence (taken/not-taken). The CDFSM matrix in-
dicates which immediate predicate producer the store
or predicate producer depends on, and the direction. If
there is no immediate predicate producer (not guarded:
all FSMs in the row are idle and/or CI), pred0 is assigned
to signify unconditional execution. RISCV note: To
preserve fixed-length instructions in the HTC and fetch
pipeline stages, the new source requires an extra 6 bits
due to no available space in the store format. This does
not affect the instruction cache or memory hierarchy,
however.

4) The final helper thread instructions are written into the
HTC.

In this paper, the HTC can hold the helper threads for up to
four loops. The HTC is organized as four rows. Each row is
dedicated to a loop and holds up to 128 instructions. The loop
is tagged with its start PC (the target of the outermost loop
branch). A flag indicates whether the loop is a nested loop or
non-nested loop. If nested, the row is divided into two halves,
and the outer-thread’s instructions are packed into the first half
and the inner-thread’s instructions are packed into the second
half. Helper thread instruction fetching is purely sequential
until the last instruction (loop branch) is reached, which resets
sequencing back to the first instruction. Additional metadata
include (1) the locations (instruction offsets in the row) of up to
two loop branches (one for inner-thread-only or outer-thread,
one for inner-thread), (2) the location of the inner loop’s header
branch within outer-thread, and (3) up to three live-in register
sets (one for inner-thread-only or outer-thread, two for inner-
thread).

51

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

F. Triggering Helper Threads
As the main thread retires instructions, their PCs are com-

pared against the start PCs of the four loops in the HTC. If
there is a hit:

1) The pipeline is squashed (no in-flight instructions).
2) Frontend pipeline stages, the LQ/SQ, the ROB, and

the PRF free list are partitioned for the main thread
and either one helper thread (inner-thread-only) or two
helper threads (outer-thread and inner-thread). Table I
shows the fractional allocation for the threads’ parti-
tions, applied to both frontend pipeline stage width and
resources.

3) The fetch stage partition of each helper thread injects
annotated move instructions, one per logical register in
its live-in register set with respect to the main thread.
If the helper thread is inner-thread-only or outer-thread,
it immediately starts fetching instructions from its HTC
entry after injecting the moves (if inner-thread, it waits).
When an annotated move instruction reaches the helper
thread’s rename stage partition, its source is renamed to
the corresponding mapping in the main thread’s Rename
Map Table (RMT). Its destination is renamed as any
destination in the helper thread would be: pop a free
register from the helper thread’s free list partition and
update the helper thread’s RMT with the new mapping.
Thus, when the move executes, it copies a live-in value
from the main thread to the helper thread.

4) Instruction fetching in the main thread only resumes
when the last of the annotated moves retires. Though
not optimal, this is a simple way to ensure that each
helper thread obtained its live-in values before the main
thread frees the physical registers from which the values
were obtained.

active threads MT’s partition OT’s partition IT’s partition
MT + ITO 1

2
n/a 1

2

MT + OT + IT 1
2

1
8

3
8

TABLE I: Fractional allocation of frontend width and re-
sources, among main thread (MT), inner-thread-only (ITO),
outer-thread (OT), and inner-thread (IT).

For the case of two helper threads, inner-thread is idle until
outer-thread queues a visit to the inner loop. Visits are queued
in the Visit Queue depicted in Figure 9. When outer-thread
retires a not-taken instance of the inner loop’s header branch,
it allocates a new Visit Queue entry at the tail and writes
live-in values (for the inner-thread’s second live-in register set
supplied by outer-thread) for that visit at slots in the tail entry.
When inner-thread determines that its current inner loop visit
has fully iterated – i.e., when its loop branch resolves as not-
taken – it dequeues the next visit from the head entry. Inner-
thread injects move instructions to copy live-in values from
the Visit Queue. Each move’s source is renamed to the correct
slot in the head entry of the Visit Queue, and its destination
is renamed to a free physical register obtained from inner-
thread’s free list partition. Since outer-thread places values in

the Visit Queue, it need not wait for inner-thread’s moves to
read the values.

Fig. 9: Visit Queue for outer-thread to queue inner loop visits
and their live-in values for processing by inner-thread.

G. Terminating Helper Threads
Pre-execution is terminated when the inner-thread-only or

outer-thread loop branch resolves as not-taken, exiting the
region of interest. Because non-delinquent loop side-exit
branches are not included in the helper threads, the main thread
terminates pre-execution when it retires an instruction whose
PC is outside the PC bounds of the loop being pre-executed.
An exception recovery in the main thread also terminates the
helper thread. After terminating the helper threads, the pipeline
is squashed and all resources are returned to the main thread.

H. Core Modifications
Modifications to the core include:
• Two extra RMTs to support up to two active helper

threads.
• Logical predicate source/destination operands are re-

named to physical predicate registers. Thus, we add
a predicate physical register file (pred-PRF), predicate
physical register free list (pred-FL), and two predicate
rename map tables (pred-RMT); when two helper threads
are running, pred-FL is partitioned 1/2 for outer-thread
and 1/2 for inner-thread. Each predicate register is only 2
bits wide: the most-significant bit (msb) indicates whether
the predicate producer was predicated-true (enabled) or
predicated-false (suppressed) by its predicate producer,
and the least-significant bit (lsb) indicates the taken/not-
taken outcome of the predicate producer. The consumer
of a predicate register is predicated-true if: ((msb == 1)
&& (lsb == enabling direction of consumer)). Recall,
the enabling direction of the consumer is encoded as an
extra bit in its predicate source operand (Section V-E).

• The scheduler accommodates an extra source tag in its
wakeup CAM, for the extra source operand for stores
and predicate producers. (Whether or not this requires
more logic, depends on the scheduler style: matrix vs.
tag CAM.)

• The core supports horizontal partitioning of frontend
pipeline stages and resource partitions. We contend that
this should be the case, or else a dedicated frontend and
resources, for any pre-execution microarchitecture.

52

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

Component Section Parameters Cost
Components for Helper Thread Construction

Delinq. Branch Table (DBT) V-B 256 entries, fully-assoc. 5,280 B
DBT-Max V-B 32 entries, fully-assoc. 84 B
Loop Table (LT) V-B 8 entries, fully-assoc. 170 B
Helper Thread Construction V-C 256 inst., 4B/inst. 1,024 B
Buffer (HTCB) metadata 62 B
Last Producer Table (LPT) V-C 32 entries, 30 bits/entry 120 B
queue to detect needed stores V-C 16 entries, 94 bits/entry 188 B
CDFSM matrix, V-D 32 rows x 16 col. x 2 bits 128 B
branch list, V-D 16 entries, 5 bits/entry 10 B
PC-to-row conversion table implied 32 entries, 35 bits/entry 140 B

Components for Helper Thread Execution
Helper Thread Cache (HTC) V-E 4 x 128 inst x 38 bits/inst 2,432 B

4 x 180 bits metadata 90 B
Visit Queue V-F 16 visits, 4 live-ins/visit, 560 B

70 bits/live-in
Prediction Queues IV-B 16 queues, 32 iterations 64 B

16 PC tags 60 B
speculative D$ for HT stores IV-A 16 sets, 2 ways, 8B block 256 B

metadata 236 B
pred-PRF, V-H 128 reg., 2 bits/reg. 32 B
pred-FL, V-H 97 entries, 7 bits/entry 85 B
2 pred-RMTs V-H 2x 31 entries, 7 bits/entry 54 B

Total Cost 10.82 KB

TABLE II: New components.

I. Summary of New Components

Table II summarizes the new components for Phelps, their
parameters used in this paper, and costs.

J. Conditions that Render Loops Ineligible

Three conditions render a delinquent loop ineligible for
Phelps. First, if the number of instructions in the helper thread
is more than 75% of the number of instructions in the loop, the
loop is ineligible for pre-execution. It may not be profitable
and may even be detrimental, especially considering half the
pipeline’s resources are taken away from the main thread.
Second, due to high overheads for starting and stopping helper
threads (pipeline squashes to reconfigure before and after,
main thread stalling until moves retire), a loop is ineligible
if it does not iterate enough per visit. Third, a nested loop
is ineligible if outer-thread is data-dependent on inner-thread.
This scenario is detected when an instruction added to outer-
thread references a PC in the LPT that is within the PC bounds
of the inner loop.

A loop that is otherwise eligible but exceeds parameter
limits (e.g., more live-in registers than can be encoded in the
HTCB/HTC metadata) becomes ineligible.

K. Omitting More Complex Scenarios

In our research, we explored and devised methods to support
more complex scenarios in Phelps. We omitted these features
in this paper because they add significant complexity with no
more profitable results. We note, however, that these features
are possible.

• We explored including non-delinquent unbiased branches
in the helper thread if they guard other instructions added
to the helper thread. To implement this, the CDFSM
matrix includes rows for all instructions in the loop, and
after growing the helper thread for awhile, more branches

are added as seeds: those that were not among the original
seeds, are unbiased, and guard any instruction in the
helper thread thus far. These branches are left as control-
flow in the helper thread if predictable with a bimodal
predictor, or converted to predicate producers otherwise.
Either way, they must be predicate consumers.

• We explored the problem of alternate producers. An in-
struction in the helper thread, that is control-independent
of a prior branch, may depend on different producers
of its source register depending on the direction of the
branch. We detected this by recording the last producer
PC alongside each source of each instruction added to
the helper thread, and then noting a different PC in the
LPT in a future iteration. Both alternate producers are
added to the helper thread. If their guarding branches
were converted from control-flow to predicate producers,
the alternate producers are made predicate consumers;
whenever predicated-false, they convert to a move of the
previous version of their logical destination register.

• We explored more complex guarding scenarios, such
as those created by if statements with OR expressions.
This requires multiple predicate source operands, the
evaluations of which are ORed together. The scenario is
detectable as multiple CD states in a row of the CDFSM
matrix.

VI. METHODOLOGY

For our experiments, we use an in-house, RISC-V,
execution-driven, cycle-level, execute-at-execute simulator to
model the superscalar core and the additional components re-
quired for modeling Phelps. The superscalar core and memory
hierarchy are shown in Table III. Of note is that state-of-
the-art high-performance cores have scaled to large windows
and superscalar widths. For example, reverse engineering by
AnandTech [12] of Apple’s A14 chip inferred a ROB size of
around 630 instructions and LQ size of 148 loads. Accord-
ingly, the principal superscalar core used in our experiments
has a ROB size of 632 and LQ size of 144 (to be divisible by
8 for partitioning among the main thread and helper thread(s)).

branch predictor 64KB TAGE-SC-L
pipeline depth 11 stages (fetch to retire)
fetch/retire width 8 instr./cycle
issue/execute width 8 instr./cycle
execution lanes 4 simple ALU, 2 load/store,

2 FP/complex ALU
ROB/PRF/LQ/SQ/IQ 632/696/144/144/128
L1I cache 32KB, 8-way
L1D cache 48KB, 12-way, 3 cycles (1 agen, 2 hit)
L1D prefetcher IPCP (16.7 KB) [31], [32]
L2 cache 1.25 MB, 20-way, 15 cycles
L3 cache 3 MB, 12-way, 40 cycles
L2/L3 prefetcher VLDP (5.5 KB) [41], [42]
DRAM 100 cycles

TABLE III: Superscalar core and memory hierarchy conf.

We perform our experiments on the SPEC 2006 integer
benchmark 473.astar with reference input rivers (473.as-

53

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

tar rivers), the GAP graph benchmark suite [4], and the SPEC
2017 integer benchmarks. For all GAP benchmarks, we use
the roadNet-CA [23] graph as the input dataset. We use the
SimPoints methodology [40] to obtain up to 5 representative
regions of 100 million instructions each and compute the
weighted harmonic mean of IPCs over a benchmark’s Sim-
Points to obtain the overall IPC of the benchmark.

Branch Runahead: We also implemented the core-only
version of Branch Runahead [34]. As with Phelps’ MT+ITO
configuration (Table I), the core’s frontend pipeline stages,
PRF free list, and LQ are partitioned 50/50 with the main
thread executing in one partition and all chains executing in
the other (the main thread has the whole ROB and SQ to
itself; more below). While Branch Runahead respects program
order between parent chains that trigger child chains based
on branch dependencies (guard-guarded and affector-affectee
relantionships), it loses program order among independent
chain groups. Referring back to Figure 3, if stores are ig-
nored (hence, only guard-guarded relationships), astar’s make-
bound2() function has 8 independent chain groups: {b1,b2}
is a chain group, {b3,b4} is another chain group, and so
on. Figure 10a shows example dynamic sequences of these
chain groups. Order is respected within a chain group but not
among chain groups. This can be beneficial (exploit control
independence, when there is chain group level parallelism)
but is a major source of implementation complexity:

• The core’s existing physical register management mech-
anism cannot be used by chains, because committing
and freeing of physical registers is driven by the ROB
which lists instructions in total program order. Instead,
it is necessary to implement a second physical register
management mechanism in the chain partition: usage
counters [2], [27]. Not only does this mean implementing
two register management schemes, but reference counting
is challenging [37].

• Independence among chain groups is exploited by selec-
tively rolling back only the affected chain group, which is
complex to implement in our experience. Selective roll-
backs occur in two cases: (1) the main thread consumed
an incorrect prediction from a chain, or (2) a parent
chain speculatively triggered an incorrect child chain. The
complexity is two-fold: first, selective rollback of only
the affected chain group; second, the need to rollback
to the top-level (self-dependent) chain in a chain group
(instance A′ in Fig. 10b) even if the flaw stemmed from a
descendant of the top-level branch (instance B′) – please
see Figure 10b.

Figure 11 compares the performance of Branch Runahead
(BR) with non-speculative (BR-non-spec) and speculative
(BR-spec) triggering, full-featured Phelps, and Phelps with
various features omitted, on just the top-weighted astar Sim-
Point (in which makebound2() is prominent). We excluded
stores from BR to help it: its approach of replacing def-
store-load-use with a fixed def-use would introduce affector-
affectee relationships between chain groups {b1,b2}, {b3,b4},

(a) (b)

Fig. 10: Branch Runahead: (a) First two of eight chain groups
in astar. (b) Rollback within an example chain group. B′

speculatively and incorrectly triggered C′. To repair Branch
Runahead’s branch queue of C, we must rollback to top-level
branch A′, to retrigger A′′, A′′′, and their descendants.

etc.; this would merge them into one chain group, serialize
their triggering, and rely even more on inaccurate speculative
triggering; worse, fixed def-use would also lead to incorrect
predictions. BR-spec’s inaccurate triggering of nested chains
b2, b4, etc., and resulting rollbacks of their chain groups,
is tolerated to some extent by having chain group level
parallelism of 8, yielding a good speedup of 29%. Full-
featured Phelps (Phelps:b1→b2→s1) achieves higher speedup
(47%) with a simpler pre-execution paradigm: a single, self-
contained, rollback-free (except for load violations) helper
thread that is wholly free of branch prediction’s limitations.

-20%

-10%

0%

10%

20%

30%

40%

50%

BR
-n
on
-sp
ec

BR
-sp
ec

Ph
el
ps
:b
1-
>b
2-
>s
1

Ph
el
ps
:b
1-
>b
2

Ph
el
ps
:b
1

Ph
el
ps
:b
1-
>s
1

Fig. 11: Phelps and Branch Runahead for astar’s top SimPoint.

The last three bars isolate the impact of (1) nested delin-
quent branches and (2) stores that both affect delinquent
branches and are guarded by them. Phelps:b1→b2 signifies
that the helper thread pre-executes both b1 and guarded branch
b2, but it does not include guarded store s1 (same applies for
the seven other groups). Whereas full-featured Phelps reduces
MPKI of this SimPoint from 29.5 to 2.68, Phelps:b1→b2
reduces MPKI to only 13.4. Phelps:b1 signifies that the helper
thread pre-executes b1, does not pre-execute guarded branch

54

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

b2, and does not include guarded store s1. It only reduces
MPKI to 22.9, which is not enough to offset taking away
half the core’s resources from the main thread. Phelps:b1→s1
signifies that the helper thread pre-executes b1 but not guarded
branch b2, and includes guarded store s1. It reduces MPKI to
24.5; s1 is supposed to be additionally guarded by b2, and
b2’s omission causes unsuppressed s1 instances that worsen
b1’s accuracy.

VII. RESULTS

Figure 12a shows the speedups of perfect branch predic-
tion (perfBP), Phelps, and Branch Runahead with speculative
triggering (BR). A fourth configuration, BR-12w, features
a 12-wide core, in which the main thread gets the same
frontend width and resources as the baseline (8-wide frontend,
ROB/PRF/LQ/SQ = 632/696/144/144) and BR chains get the
same frontend width and resources as the BR configuration (4-
wide frontend, PRF/LQ = 316/72); the IQ and 12 execution
lanes are still flexibly shared, although there are 4 more lanes.

Phelps yields good speedups on bc (63%), bfs (64%), and
astar (15%). Astar’s speedup considering all SimPoints is
much less than that of the top-weighted SimPoint alone, for
two reasons. First, the other SimPoints are not nearly as
delinquent. Second, their delinquent loops are not sufficiently
long-running per visit to amortize helper thread start/stop
overheads, hence they are ineligible (Sec. V-J).

Figure 12b examines the importance of stores. Predicated
stores are critical for Phelps to achieve its potential on bc and
astar. They feature stores that both influence and are control-
dependent on delinquent branches. Bfs does as well, but the
store-load distance in the inner-thread is long enough in most
cases that the main thread retires its corresponding store before
the inner-thread references the data. This isn’t always the case:
Figure 13a shows that bfs accuracy degrades a bit without
helper thread stores. The lower accuracy is outweighed by
more timeliness owing to fewer helper thread instructions.

BR exhibits mostly slowdowns, except for astar. This is
due to (1) the main thread getting only half frontend width,
LQ, and PRF for the full run, and (2) inaccurate speculative
triggering combined with not enough chain group level par-
allelism, yielding many untimely predictions. BR-12w turns
things around with mostly speedups.

As shown in Figure 13a, Phelps achieves significant re-
ductions in MPKI of 72%-91% on four of six benchmarks
shown. Similar to other branch pre-execution techniques,
Phelps achieves speedups at the cost of partially redundant
execution. The overhead, in terms of the number of helper
thread instructions retired, is shown in Figure 13b. Phelps
incurs a mean overhead of 34.7 million helper thread instruc-
tions for 100 million instructions retired in the main thread.
Fig. 13c shows IPCs for GAP and astar without Phelps (main
thread only) when the core is partitioned and not partitioned.
Taking away half the resources from the main thread yields
a slowdown of 4.1% (pr) to 12.8% (bc). For SPEC 2017
benchmarks, slowdowns range from 2% (perlbench) to 31%
(exchange2).

The SPEC benchmarks are sorted in Figure 12a from
highest to lowest speedup with perfBP. Phelps rarely or never
activates helper threads in SPEC 2017. To understand why,
Fig. 14 breaks down mispredictions (MPKI) into those that
are eliminated by Phelps (“eliminated misp.”/white segment)
vs. not eliminated (color segments), and isolates the reasons
for the latter. This data is for the top-weighted SimPoint of
each benchmark.

Phelps eliminates most mispredictions in bc, bfs, pr, cc,
and astar. Residual mispredictions are due to the first and
second training stages: measuring delinquency (“gathering
delinquency”/blue) and constructing a helper thread (“del.
but ht being const.”/light blue). Bfs, pr, and cc also have a
sliver of mispredictions from non-delinquent branches (“not
delinquent”/orange).

The purple sliver in cc sv indicates that more than one
delinquent loop is detected in the same epoch. Only one
is chosen for helper thread construction in the next epoch.
Mispredictions from non-chosen loops are classed as “del.
but ht not const.”/purple until they are selected for helper
thread construction. Regardless, the helper threads end up
being ineligible for pre-execution because they are too big
(“del. but ht too big”/red).

Except for mcf, SPEC2017 benchmarks are simply not
as delinquent as GAP and astar. While mcf ’s branches are
delinquent, most mispredictions are from branches deemed
to not be within a loop (“del. but not in loop”/dark green).
This may happen when the loop contains a function call and
the delinquent branch is within the non-inlined function. In
this scenario, the branch’s PC is not within the loop’s con-
tiguous bounds. For leela, deepsjeng, exchange2, and xalanc,
the “not delinquent”/orange segment is significant, indicating
that much of the MPKI contribution is from branches that
are not individually delinquent. The few branches that clear
the delinquency threshold in leela, deepsjeng, and omnetpp,
end up constructing a helper thread that is too big. Half of
mispredictions in xz come from non-delinquent branches. The
other half come from delinquent branches whose loops don’t
iterate enough to be eligible for pre-execution (“del. but ot/ito
not iterating enough”/light green). A useful helper thread is
constructed for x264 but it is not limited by branch prediction.
Gcc has too many static branches, causing frequent evictions
in the DBT. Thus, most mispredictions come from branches
that are still gathering delinquency information (dark blue) and
the rest come from non-delinquent branches (orange).

Fig. 15a varies the core’s ROB size (with commensurate
sizing of PRF/LQ/SQ/IQ). Bc and bfs show even higher
speedups for ROB size 1024, which the baseline is unable to
utilize due to frequent squashes. As pipeline depth increases
(11, 15, 19), speedups increase for astar (15%, 22%, 27%),
bfs (64%, 70%, 74%), and bc (63%, 71%, 79%). Fig. 15b
shows speedups for bfs with different inputs. SimPoints for
web-google capture more of the reinitialization phase between
bfs passes. While this phase is delinquent, its helper thread is
too big to be eligible.

55

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

-40%

-20%

0%

20%

40%

60%

80%

100%

b
c

b
fs p
r

cc
_s

v cc

as
ta

r

le
el

a

m
cf xz

d
ee

p
sj

en
g

o
m

n
et

p
p

ex
ch

an
ge

2

x2
6

4

p
er

lb
en

ch gc
c

xa
la

n
cb

m
k

GAP SPEC

%
 IP

C
 im

p
ro

ve
m

en
t perfBP Phelps BR BR-12w

(a) Speedup of perfect branch prediction, Phelps, and Branch Runahead.

0%

20%

40%

60%

80%

100%

bc bfs pr cc_sv cc astar

GAP SPEC

perfBP phelps phelps-no-stores

(b) Speedup of Phelps with/without stores.

Fig. 12

0%

20%

40%

60%

80%

100%

b
c

b
fs p
r

cc
_s

v cc
as

ta
r

re
d

u
c�

o
n

 in
 m

p
ki

phelps-no-stores phelps

(a)

0

10

20

30

40

50

60

b
c

b
fs p
r

cc
_s

v cc
as

ta
r

n
o

. o
f

h
t

in
st

.(
m

ill
io

n
s)

(b)

0

1

2

3

b
c

b
fs p
r

cc
_s
v cc

as
ta
r

IP
C

par��oned
baseline

(c)

Fig. 13: (a) MPKI reduction. (b) Retired helper thread instruc-
tions. (c) Isolating the impact of partitioning on main thread.

0

5

10

15

20

25

30

b
c

b
fs p
r

cc
_
sv cc

as
ta

r

le
el

a

m
cf xz

d
ee

p
sj

en
g

om
n
et

p
p

ex
ch

an
g
e2

x2
6
4

p
er

lb
en

ch g
cc

xa
la

n
cb

m
k

m
p
ki

gathering delinquency
not delinquent
del. but not in loop
del. but ht being const.
del. but ht not const.
del. but ot/ito not iterating enough
del. but ht too big
del but it->ot comm.
pre-executed but misp.
eliminated misp.

Fig. 14: Characterizing mispredictions (top SimPoints).

0%

20%

40%

60%

80%

b
c

b
fs p
r

cc
_s
v

cc

as
ta
r

sp
ee
d
u
p

rob352_lsq128

rob512_lsq128

rob632_lsq144

rob1024_lsq256

rob2048_lsq512

(a)

0%

20%

40%

60%

80%

100%

we
b-
go
og
le

ro
ad
Ne
t-C
A

ro
ad
Ne
t-T
X

sp
ee
d
u
p

bfs

(b)

Fig. 15: (a) Sensitivity to window size. (b) Speedups on
different inputs for bfs.

VIII. SUMMARY

Branch pre-execution is a well-explored technique to handle
delinquent branches. However, prior works in branch pre-
execution have not adequately addressed the problems of (1)
a delinquent branch b2 that is control-dependent on another
delinquent branch b1, and (2) a store that both influences a
delinquent branch and is control-dependent on it. With respect
to (1), prior works either do not discuss dependent branches,
pre-execute only the guarding branch b1, or predict the guard-
ing branch b1 which shifts the misprediction botteneck to
the helper thread. Phelps’ loop-based helper thread uncon-
ditionally pre-executes both b1 and b2 each loop iteration,
and the main thread consumes or ignores b2 outcomes in the
correct sequence based on b1 outcomes. Influential stores are
included in the helper thread; if a store is control-dependent on
a delinquent branch, it is predicated on that branch’s outcome
since control-flow has been removed.

A third problem is an inner loop with a short and un-
predictable trip count. Helper thread start/stop overhead for
each visit to the short loop is not amortized as it is for
long-running loops. If the inner loop is nested inside of
a control/data independent long-running outer-loop (as in
some graph workloads), Phelps applies dual decoupled helper
threads for the nested loop. This approach incurs helper thread
start/stop overhead only once for the nested loop as a whole
and achieves effective branch pre-execution despite the inner
loop’s delinquent loop branch.

ACKNOWLEDGMENTS

This project was funded by the NSF/Intel Partnership
on Foundational Microarchitecture Research (FoMR) (NSF
grant no. CCF-1823517 and matching Intel grant). Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the National Science Foundation or Intel Corpo-
ration.

The authors thank the anonymous reviewers for their feed-
back.

REFERENCES

[1] The riscv instruction set manual volume i: Unprivileged architecture.
[Online]. Available: https://github.com/riscv/riscv-isa-manual/releases/
tag/20240411

56

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

[2] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint processing
and recovery: towards scalable large instruction window processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003, pp. 423–434.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’83. New York, NY, USA: Association
for Computing Machinery, 1983, p. 177–189. [Online]. Available:
https://doi.org/10.1145/567067.567085

[4] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark suite,”
2015.

[5] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The
load slice core microarchitecture,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), 2015, pp.
272–284.

[6] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,
“Simultaneous subordinate microthreading (ssmt),” in Proceedings of
the 26th International Symposium on Computer Architecture, May 1999,
pp. 186–195.

[7] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Difficult-path branch
prediction using subordinate microthreads,” in Proceedings of the 29th
International Symposium on Computer Architecture, May 2002, pp. 307–
317.

[8] A. Chauhan, J. Gaur, Z. Sperber, F. Sala, L. Rappoport, A. Yoaz,
and S. Subramoney, “Auto-predication of critical branches,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 92–104.

[9] L. Chen, S. Dropsho, and D. Albonesi, “Dynamic data dependence track-
ing and its application to branch prediction,” in The Ninth International
Symposium on High-Performance Computer Architecture, 2003. HPCA-
9 2003. Proceedings., 2003, pp. 65–76.

[10] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. Shen, “Speculative precomputation: long-range prefetching of
delinquent loads,” in Proceedings 28th Annual International Symposium
on Computer Architecture, 2001, pp. 14–25.

[11] D. Conners and W. Hwu, “Compiler-directed dynamic computation
reuse: rationale and initial results,” in MICRO-32. Proceedings of the
32nd Annual ACM/IEEE International Symposium on Microarchitecture,
1999, pp. 158–169.

[12] A. Frumusanu, “Apple announces the apple silicon m1: Ditching x86 -
what to expect, based on a14,” https://www.anandtech.com/show/16226/
apple-silicon-m1-a14-deep-dive/2, Nov. 2020.

[13] A. Garg and M. C. Huang, “A performance-correctness explicitly-
decoupled architecture,” in Proceedings of the 41st International Sym-
posium on Microarchitecture, November 2008, pp. 306–317.

[14] A. Gonzalez, J. Tubella, and C. Molina, “Trace-level reuse,” in Proceed-
ings of the 1999 International Conference on Parallel Processing, 1999,
pp. 30–37.

[15] S. Gupta, N. Soundararajan, R. Natarajan, and S. Subramoney,
“Opportunistic early pipeline re-steering for data-dependent branches,”
in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 305–316.
[Online]. Available: https://doi.org/10.1145/3410463.3414628

[16] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[17] M. Hashemi and Y. N. Patt, “Filtered runahead execution with a runa-
head buffer,” in 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2015, pp. 358–369.

[18] A. Klauser, T. Austin, D. Grunwald, and B. Calder, “Dynamic ham-
mock predication for non-predicated instruction set architectures,” in
Proceedings. 1998 International Conference on Parallel Architectures
and Compilation Techniques (Cat. No.98EX192), 1998, pp. 278–285.

[19] S. Kondguli and M. Huang, “R3-dla (reduce, reuse, recycle): A more ef-
ficient approach to decoupled look-ahead architectures,” in Proceedings
of the 25th International Symposium on High-Performance Computer
Architecture, February 2019, pp. 533–544.

[20] C. Kumar, A. Seshadri, A. Chaudhary, S. Bhawalkar, R. Singh, and
E. Rotenberg, “Post-fabrication microarchitecture,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’21. New York, NY, USA: Association for Computing

Machinery, 2021, p. 1270–1281. [Online]. Available: https://doi.org/10.
1145/3466752.3480119

[21] R. Kumar, M. Alipour, and D. Black-Schaffer, “Freeway: Maximizing
mlp for slice-out-of-order execution,” in 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), 2019, pp.
558–569.

[22] K. Lakshminarasimhan, A. Naithani, J. Feliu, and L. Eeckhout, “The
forward slice core microarchitecture,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 361–372. [Online]. Available:
https://doi.org/10.1145/3410463.3414629

[23] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[24] H. Litz, G. Ayers, and P. Ranganathan, “Crisp: critical slice
prefetching,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 300–313. [Online]. Available:
https://doi.org/10.1145/3503222.3507745

[25] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August,
and W.-M. W. Hwu, “A comparison of full and partial predicated
execution support for ilp processors,” SIGARCH Comput. Archit.
News, vol. 23, no. 2, p. 138–150, may 1995. [Online]. Available:
https://doi.org/10.1145/225830.225965

[26] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi, “Slice-processors:
an implementation of operation-based prediction,” in Proceedings of
the 15th International Conference on Supercomputing, ser. ICS ’01.
New York, NY, USA: Association for Computing Machinery, 2001, p.
321–334. [Online]. Available: https://doi.org/10.1145/377792.377856

[27] M. Moudgill, K. Pingali, and S. Vassiliadis, “Register renaming and
dynamic speculation: an alternative approach,” in Proceedings of the
26th Annual International Symposium on Microarchitecture, ser. MICRO
26. Washington, DC, USA: IEEE Computer Society Press, 1993, p.
202–213.

[28] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution:
an alternative to very large instruction windows for out-of-order pro-
cessors,” in The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings., 2003, pp.
129–140.

[29] O. Mutlu, H. Kim, and Y. Patt, “Techniques for efficient processing
in runahead execution engines,” in 32nd International Symposium on
Computer Architecture (ISCA’05), 2005, pp. 370–381.

[30] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, “Precise runahead ex-
ecution,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 397–410.

[31] S. Pakalapati and B. Panda. Bouquet of instruction pointers: Instruction
pointer classifier-based hardware prefetching. [Online]. Available:
https://dpc3.compas.cs.stonybrook.edu/pdfs/Bouquet.pdf

[32] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: In-
struction pointer classifier-based spatial hardware prefetching,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 118–131.

[33] R. Parihar and M. C. Huang, “Accelerating decoupled look-ahead via
weak dependence removal: A metaheuristic approach,” in Proceedings
of the 20th International Symposium on High-Performance Computer
Architecture, February 2014, pp. 662–677.

[34] S. Pruett and Y. Patt, “Branch runahead: An alternative to branch
prediction for impossible to predict branches,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 804–815. [Online]. Available: https://doi.org/10.
1145/3466752.3480053

[35] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A study of slipstream
processors,” in Proceedings of the 33rd International Symposium on
Microarchitecture, December 2000, pp. 269–280.

[36] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “Slipstream memory
hierarchies,” North Carolina State University, Tech. Rep., 2002.

[37] A. Roth, “Physical register reference counting,” IEEE Comput.
Archit. Lett., vol. 7, no. 1, p. 9–12, jan 2008. [Online]. Available:
https://doi.org/10.1109/L-CA.2007.15

[38] A. Roth and G. S. Sohi, “Speculative data-driven multithreading,” in
Proceedings of the 7th Annual IEEE International Symposium on High-
Performance Computer Architecture, ser. HPCA ’01, 2001, pp. 37–48.

57

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

[39] A. Seznec, “Tage-sc-l branch predictors again,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), June 2016.

[40] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” SIGOPS Oper. Syst.
Rev., vol. 36, no. 5, p. 45–57, oct 2002. [Online]. Available:
https://doi.org/10.1145/635508.605403

[41] M. Shevgoor, S. Koladiya, R. Balasubramonian, and Z. Chishti.
Efficiently prefetching complex address patterns. [Online]. Available:
https://comparch-conf.gatech.edu/dpc2/resource/dpc2 shevgoor.pdf

[42] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 141–152.

[43] J. E. Smith, “Decoupled access/execute computer architectures,”
SIGARCH Comput. Archit. News, vol. 10, no. 3, p. 112–119, Apr.
1982. [Online]. Available: https://doi.org/10.1145/1067649.801719

[44] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” SIGARCH
Comput. Archit. News, vol. 25, no. 2, p. 194–205, May 1997. [Online].
Available: https://doi.org/10.1145/384286.264200

[45] V. Srinivasan, R. B. R. Chowdhury, and E. Rotenberg, “Slipstream
processors revisited: Exploiting branch sets,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 105–117.

[46] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
Improving both performance and fault tolerance,” in Proceedings of the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000, pp. 257–268.

[47] P. H. Wang, J. D. Collins, H. Wang, D. Kim, B. Greene, K.-M.
Chan, A. B. Yunus, T. Sych, S. F. Moore, and J. P. Shen, “Helper
threads via virtual multithreading on an experimental itanium® 2
processor-based platform,” in Proceedings of the 11th International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XI. New York, NY, USA:
Association for Computing Machinery, 2004, p. 144–155. [Online].
Available: https://doi.org/10.1145/1024393.1024411

[48] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in Proceedings of the 28th Annual International Symposium
on Computer Architecture, ser. ISCA ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 2–13. [Online].
Available: https://doi.org/10.1145/379240.379246

[49] C. B. Zilles and G. S. Sohi, “Understanding the backward slices
of performance degrading instructions,” SIGARCH Comput. Archit.
News, vol. 28, no. 2, p. 172–181, May 2000. [Online]. Available:
https://doi.org/10.1145/342001.339676

58

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2025 at 23:32:06 UTC from IEEE Xplore. Restrictions apply.

