

Retention-Aware Placement in DRAM (RAPID):
Software Methods for Quasi-Non-Volatile DRAM

Ravi K. Venkatesan, Stephen Herr, Eric Rotenberg

ECE Department, Center for Embedded Systems Research, North Carolina State University
{rkvenkat, sdherr, ericro}@ece.ncsu.edu

Abstract

Measurements of an off-the-shelf DRAM chip confirm
that different cells retain information for different
amounts of time. This result extends to DRAM rows, or
pages (retention time of a page is defined as the shortest
retention time among its constituent cells). Currently, a
single worst-case refresh period is selected based on the
page with the shortest retention time. Even with refresh
optimized for room temperature, the worst page limits the
safe refresh period to no longer than 500 ms. Yet, 99%
and 85% of pages have retention times above 3 seconds
and 10 seconds, respectively.

We propose Retention-Aware Placement in DRAM
(RAPID), novel software approaches that can exploit off-
the-shelf DRAMs to reduce refresh power to vanishingly
small levels approaching non-volatile memory. The key
idea is to favor longer-retention pages over shorter-
retention pages when allocating DRAM pages. This
allows selecting a single refresh period that depends on
the shortest-retention page among populated pages,
instead of the shortest-retention page overall. We explore
three versions of RAPID and observe refresh energy
savings of 83%, 93%, and 95%, relative to the best
temperature-compensated refresh. RAPID with off-the-
shelf DRAM also approaches the energy levels of
idealized techniques that require custom DRAM support.

1. Introduction
Dynamic Random Access Memory (DRAM) is

predicted to displace Static Random Access Memory
(SRAM) as the primary volatile memory in next-
generation mobile devices, as future applications increase
memory requirements [22]. For example, Micron recently
introduced DRAMs targeting mobile devices, called
CellularRAM™ [3]. Nodes in sensor networks with
unpredictable recharging capability, e.g., environmental
energy harvesting [8,14], could also benefit from deep
storage capacity, enabling uninterrupted data gathering
while waiting for favorable recharging circumstances for
wireless transmission.

However, DRAM refresh (needed to preserve stored
information) continuously drains battery energy even in
standby operation. Detailed power analysis of the
prototype ITSY computer [20] shows that, in the deepest
standby mode that still preserves the DRAM contents
(“sleep”), DRAM consumes a third of total power and
this fraction will increase with more DRAM and even
lower power conservation modes.

DRAM refresh power can be reduced by exploiting
variations in retention times among different memory
cells, rows (pages), or arbitrary blocks of cells within a
single DRAM chip. Process variations cause leakage to
differ from one cell to another. Therefore, different cells
retain information for longer or shorter periods of time
[7]. Currently, a single worst-case refresh period
(typically 64 milliseconds) is selected based on the cell
with the shortest retention time. The worst-case refresh
period also accounts for worst-case temperature (leakage
increases with temperature). Limited support for
temperature-compensated refresh (TCR) is now being
deployed in some DRAMs [3]. However, TCR does not
exploit retention-time variations among different cells,
i.e., all cells are still treated uniformly with a single
temperature-dependent refresh period, determined by the
worst cell. Several researchers have recognized the
opportunity presented by retention-time variations,
proposing custom DRAM support for refreshing different
cells or blocks of cells at different refresh rates
[21,9,10,15]. However, to our knowledge, this approach
has not been implemented in commodity DRAMs.

Instead of custom DRAM support, we propose
Retention-Aware Placement in DRAM (RAPID), software
methods for exploiting retention-time variations among
different pages to minimize refresh power in off-the-shelf
DRAMs. The key idea is to allocate longer-retention
pages to application programs before allocating shorter-
retention pages. This allows selecting a single refresh
period that depends on the shortest-retention page among
pages that are actually populated, rather than the shortest-
retention page overall. Note that all pages are refreshed,
as usual, but the extended refresh period (lower refresh
rate) selected by RAPID is only safe for populated pages,
which is sufficient for overall correctness.

1570-7803-9368-6/06/$20.00/©2006 IEEE
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

Three versions of RAPID are explored in this paper,
described below in order of increasing complexity.

• RAPID-1: Our retention-time measurements of a real
DRAM chip reveal a handful of outlier pages with
atypically short retention times, consistent with
previous retention time characterizations [7]. For
example, if the worst 1% of pages are not populated,
then a refresh period of 3 seconds (s) is sufficient for
the remaining 99% of pages at room temperature
(25°C). Likewise, a 1 s refresh period is sufficient at
the industry-standard worst-case temperature of
70°C. In contrast, the worst outlier page requires a
500 millisecond (ms) refresh period at room
temperature and 150 ms at 70°C. RAPID-1 is a static
approach in which the handful of outlier pages are
discarded, i.e., never populated, yielding a very
reasonable refresh period (e.g., 3 s at room
temperature and 1 s at 70°C) with only a negligible
reduction in DRAM capacity (e.g., 1%). Since the
approach is static, the refresh period is independent
of actual DRAM utilization.

• RAPID-2: Pages are placed into bins according to
their retention times. Longer-retaining pages are
allocated before shorter-retaining pages. Thus, the
refresh period starts out at the highest setting
corresponding to the best bin. The refresh period is
decreased when no more free pages are available in
the best bin because we begin populating pages in the
second-best bin, and so on. The refresh period may
only be increased back again if all pages in the
lowest populated bin become free. Thus, once the
refresh period has been decreased, increasing it again
is a matter of “chance” since it depends on which
pages happen to be freed by application programs.
Note that outlier pages are discarded so that RAPID-
2 refresh power is at least as good as RAPID-1
refresh power.

• RAPID-3: RAPID-3 builds on RAPID-2. When a free
page becomes available in a higher bin, the contents
of a populated page in a lower bin can be migrated to
the newly freed page in the higher bin. Thus, RAPID-
3 continuously reconsolidates data into the longest-
retention pages possible. As a result, the refresh
period selected by RAPID-3 more closely reflects
actual DRAM utilization than RAPID-2. Migration
can be naturally implemented as part of our proposed
allocation/deallocation routines. A downside is extra
power consumption due to migration, which must be
weighed against extra refresh power savings. This
hints at a deep design space, in terms of designing
good criteria and timing for migrating pages.

The contributions of this paper include (1) three
versions of RAPID, the first software-only techniques for

exploiting retention-time variations in off-the-shelf
DRAMs, (2) an interrupt-driven technique for coupling
RAPID with arbitrary DRAMs in the context of
commonly available refresh options, and (3) a test
algorithm for determining page retention times and
insights regarding its run-time and other costs.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 presents our
test algorithm, discusses on-line/off-line testing trade-
offs, and presents measured page retention times for a real
DRAM chip. Section 4 presents the RAPID techniques
and discusses how RAPID can be coupled with off-the-
shelf DRAMs. Section 5 and Section 6 present our
evaluation methodology and results, respectively. Section
7 summarizes the paper.

2. Related Work
Yanagisawa [21], Kim and Papaefthymiou [9,10], and

Ohsawa et al. [15] propose custom hardware support in
the DRAM chip itself, to refresh different cells at
different refresh rates and thereby exploit retention-time
variations among memory cells. Yanagisawa [21]
classifies DRAM cells into two types – cells with long
retention times and cells with short retention times. He
proposes modifications to conventional counter-based
refresh circuitry to refresh cells with long retention times
less frequently than cells with short retention times. Kim
and Papaefthymiou [9,10] propose a block-based
multiperiod refresh approach, where a custom refresh
period is selected for each block, i.e., group of cells. They
also provide an algorithm to compute the optimal number
of blocks. Ohsawa et al. [15] propose a hardware
technique to exploit retention-time variations among
DRAM pages, where each DRAM page is refreshed at a
tailored refresh period that is a multiple of the shortest
refresh period among all pages.

Our approach is unique, in that it does not require
custom hardware modifications to the DRAM. The
underlying reason is that a single refresh period is used at
any given time. RAPID software populates longer-
retention pages before shorter-retention pages, enabling a
single refresh period at any given moment that correlates
with the shortest-retention page among only populated
pages rather than the shortest-retention page overall. A
single refresh period, selected and possibly adjusted by
RAPID as DRAM utilization changes, can be used to
refresh contemporary off-the-shelf DRAMs for practical
exploitation of retention-time variations. We also
contribute a software testing method for characterizing
page retention times, and discuss the factors that
determine the run time, power activity, and precision of
the test algorithm.

Hamamoto et al. [7] characterize retention-time
variations among individual cells and provide insight into
contributing factors, although no techniques to exploit

158
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

retention-time variations are proposed. Our retention time
measurements corroborate those of Hamamoto et al. and
extend their results by showing significant variations even
at the page granularity, an important result for practical
exploitation of retention time variations at the level of
pages instead individual cells, since pages are the natural
refresh granularity.

Murotani [13] and Pelley et al. [16] propose
modifications to DRAM refresh circuitry, to
automatically tune a single refresh period with
temperature. Burgan [2] proposes monitoring the leakage
of test cells, representative of the entire memory, for
automatically detecting a suitable refresh period for the
DRAM as a whole. Test cells monitor leakage of both
logic “1” and logic “0”. These inventions do not appear to
exploit retention-time variations across cells, so the
shortest-retention cell among all DRAM cells still limits
the refresh period.

Hsu et al. [4] and Cho et al. [5] propose monitoring the
leakage of four test cells, one for each bank, thus
automatically selecting a refresh period for each bank of
the DRAM. The shortest-retention cell in a bank still
limits the refresh period of the bank as a whole. That is,
the granularity is only slightly finer than that of the whole
DRAM, and it is not clear if there will be much
separation among per-bank refresh periods.

Lebeck et al. [12] exploit low-level support for
transitioning DRAM chips among four power modes.
Their power-aware page allocation polices attempt to
maximize use of lower power modes while minimizing
performance overhead of transitioning back to higher
power modes. None of the modes appear to disable a chip
entirely, i.e., refresh is always present and RAPID
techniques can be applied to reduce refresh power.

RAPID can be classified among techniques that
exploit the principle of better-than-worst-case design
[1,6,18]. Due to future variation-limited technology,
better-than-worst-case design has recently received
significant attention in the context of microprocessors
[1,6,18], for example. Variation-oriented low-power
memory techniques such as RAPID complement these
variation-oriented low-power microprocessor techniques.

The ITSY prototype is a source of information
regarding power consumption in next-generation mobile
devices [20]. On-line technology news sources forecast
the displacement of SRAM in mobile devices with
DRAM [22]. Micron’s CellularRAM™ and Samsung’s
UtRAM™, which are specially tailored DRAMs for
mobile devices and marketed as pseudo-SRAMs, seem to
corroborate these forecasts [3][19].

3. Testing Methods
This section discusses strategies for testing page

retention times and presents test results for a real DRAM
chip. We use the DRAM of an embedded systems

development board donated by Ubicom [17]. Ubicom
develops embedded microprocessors for wireless
applications, including some of the first multithreaded
embedded microprocessors, such as the IP3023 with 8
hardware threads. Among other components, the board
has an IP3023 microprocessor (which has on-chip 64KB
instruction and 256KB data scratchpad SRAM, an on-
chip SDRAM memory controller, and numerous other on-
chip peripheral devices and interfaces), 16MB of
synchronous DRAM (IS42S16800A SDRAM
manufactured by ISSI), and Flash memory.

The ISSI DRAM supports both auto-refresh and self-
refresh. When auto-refresh is enabled, the external
memory controller issues auto-refresh commands at
regular intervals to the DRAM. The DRAM refreshes the
next row in sequence (as kept track of, by the DRAM)
when it receives an auto-refresh command. The external
memory controller’s auto-refresh period is
programmable. When self-refresh is enabled, the DRAM
refreshes rows autonomously, always at the fixed self-
refresh period of 64 ms. Self-refresh can only be used
when the DRAM is in standby operation. Both auto-
refresh and self-refresh can be disabled, a useful feature
for testing page retention times.

Figure 1. Experimental setup for testing page
retention times.

The experimental setup for testing page retention times
is pictured in Figure 1. The four parts are labeled 1-4 in
the picture: (1) the Ubicom board with DRAM under test,
(2) a PC workstation with Ubicom software development
environment for compiling and downloading programs to
the Flash memory via an ethernet connection to the board,
(3) a multimeter with attached thermistor for temperature
readout, and (4) a heat gun for varying ambient
temperature.

3.1. Testing Algorithm
To characterize retention times of DRAM pages, auto-

refresh and self-refresh are disabled in the memory
controller and DRAM, respectively, so that pages are not
refreshed. Testing a single page consists of writing all 1’s
or all 0’s to the page, waiting a specified amount of time,

159
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

and reading the pattern back to see if it remains intact. If
the pattern is retained for a wait time of T, the test is
repeated for a wait time of T + ∆t. If this next attempt
fails (one or more bit errors), the retention time for the
page is recorded as T (since it worked for a wait time of T
but not T + ∆t).

Some DRAM technologies may leak to all 0’s, all 1’s,
or a mixture of 0’s and 1’s. For the ISSI DRAM, we
observed that half the cells in a row decay to 1’s and half
the cells decay to 0’s. We have not yet explored the
underlying reason. Whatever the reason, we must test a
page’s retention of all 1’s and all 0’s. Ten trials of all 1’s
and ten trials of all 0’s are performed. The minimum
among the twenty trials is recorded as the retention time
of the page.

We measured retention times of some pages
approaching a minute at room temperature. Assuming an
initial wait time T of 1 second and proceeding in
increments ∆t of 1 second, it takes 22 minutes (1 + 2 + …
+ 51 seconds) for just one trial of a page that retains
information for 50 seconds. Testing pages one at a time
would take far too long. Fortunately, all pages can be
tested in parallel. The test program writes the entire
DRAM with 1’s (or 0’s), waits for the next wait interval
T + ∆t, checks the contents of every page, and records a
retention time of T for any page that retained for T but
not for T + ∆t. One trial is completed for all pages
collectively before attempting other trials.

The time to write and check the entire ISSI DRAM is
about 74 ms and 250 ms, respectively. A recorded
retention time reflects only the wait time after writing and
before checking, therefore, the overheads can only mean
that the actual retention time for a page is slightly longer
than recorded, a safe margin of error as it will ensure that
the page is refreshed slightly more often than required.

It is interesting to note that the test time for a trial is
insensitive to the number of pages tested in parallel. We
stop testing pages whose retention times become known
midway through the trial, only as a matter of power
efficiency for on-line testing (more on this in the next
section). Rather, test time is dominated by the long wait
times.

Specifically, the test time for one trial depends directly
on the wait time increment ∆t, the initial wait time, and
the final wait time (either the longest measured retention
time or an imposed maximum wait time). The granularity
∆t has a dramatic effect on test time, moreover, it is the
more flexible parameter of the three. Therefore, we used a
non-uniform approach. We used a granularity of 1 second
for tests above 3 seconds, 100 ms for tests between 1 and
3 seconds, and 10 ms for tests below 1 second. Moreover,
we first test above 3 seconds, so that only pages that do
not retain above 3 seconds are considered in the finer
tests (the overhead of writing and checking the entire
DRAM would skew the finer tests). Likewise, we test

between 1 and 3 seconds before testing below 1 second so
that only residual outlier pages are tested at the finest
granularity. This testing strategy allows for precise
measurements of the shortest-retention pages while
keeping the test time reasonable. However, these
parameters can be adjusted in the interest of test time or
precision, as desired. At room temperature, we found it
necessary to set the maximum wait time to 50 seconds.

Table 1 summarizes the test time and the number of
page writes/checks for one complete trial of the DRAM.
Retention times from the first trial can be exploited to
reduce the number of page writes/checks in subsequent
trials. Subsequent trials can begin at the median of the
distribution and spiral outward from the median,
eliminating the greatest number of pages earliest in the
trial. Thus, the number of page writes/checks in Table 1 is
a worst-case number for the first trial. The test time is not
reduced for subsequent trials because we still cycle
through all the same wait times.

Table 1. One complete trial of the DRAM.
test time 22.3 minutes

page writes/reads (worst-case – first trial) 274,000

3.2. Off-line vs. On-line Testing
Page retention times can be tested off-line by the

DRAM manufacturer, off-line by the system designer, or
on-line during actual use of the system.

Currently, the DRAM manufacturer only tests chips at
the worst-case refresh period (e.g., 64 ms) to confirm
correct operation of the chip. This basic test is much
faster than our generalized test algorithm due to its single
short wait time. Applying our test algorithm would
increase DRAM tester time, causing an unwanted
increase in price. Furthermore, conveying chip-specific
page retention times to DRAM customers poses unusual
logistics problems – a small Flash table coupled with the
DRAM in a multi-chip package or a web-accessible
database are improbable.

Alternatively, system designers (e.g., cell phone
designers, sensor network researchers) could run the tests
off-line for their particular applications. Since extreme
energy efficiency is needed for these applications, this
form of off-line testing is potentially justifiable from a
business standpoint.

In the case of on-line testing, trials are performed
gradually, opportunistically, and overall as non-
intrusively as possible, e.g., while recharging the batteries
of a mobile device or during extensive idle periods. (Or,
for mobile devices, a Windows-style installation wizard
could give users the option of testing the device upon first
use or at some later time.) Multiple trials are collected
over days, weeks, or even months. Testing time and
power overheads recede over time as the DRAM is
mapped. RAPID is only employed when the trials are

160
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

complete. Correct operation is assured because the system
safely reverts to the default refresh policy when trials are
incomplete.

3.3. Testing and Temperature
Conventional DRAMs use a single worst-case refresh

period (typically 64 ms), safe for the highest rated
temperature and all lower temperatures. CellularRAM™
temperature-compensated refresh (TCR) provides four
refresh settings, corresponding to four temperature
ranges. A given refresh setting is safe for the highest
temperature in its range and all lower temperatures.
Exploiting TCR requires an external temperature sensor
or a priori knowledge of the peak operating temperature,
to guide selection of the lowest safe refresh setting.

Temperature can be accommodated in RAPID
similarly, using either a single or multiple temperature
ranges. The only difference is the use of page-dependent
information instead of page-independent information.

However, the testing method – off-line vs. on-line –
affects temperature options. A key advantage of off-line
testing is that temperature can be explicitly controlled.
Thus, testing can be done for the highest rated
temperature and possibly several lower temperatures. If a
temperature sensor is available, we can select page
retention times corresponding to the current temperature.
If a temperature sensor is not available, we can at least
select page retention times corresponding to the highest
rated temperature.

On-line testing is less flexible in two ways. First, a
temperature sensor is mandatory, to tag each trial with the
maximum temperature for which the trial is safe. The
sensor is likewise needed to select safe page retention
times corresponding to the current temperature. Second,
temperature cannot be controlled during testing. It is
possible for the current temperature to exceed the
maximum recorded temperature among trials, in which
case a RAPID refresh period cannot be determined and
we must downgrade to either of the two conventional
refresh policies (worst-case refresh period or lowest safe
refresh setting of TCR).

3.4. Page Retention Times
This section presents page retention times using the

testing algorithm described in Section 3.1. Note that the
DRAM under test implements a “close page” policy,
meaning the page is not held open in the row buffer.
Therefore, the row buffer is not used as a cache,
guaranteeing reads and writes always truly access the
memory cells.

The graph in Figure 2 shows retention times of the
16,384 pages in the chip. These measurements were taken
at the particular room temperature (24°C). The y-axis
shows retention time in milliseconds (ms) and the x-axis
shows all 16,384 pages, labeled by “page #”.

0

10000

20000

30000

40000

50000

0 5000 10000 15000
page #

re
te

nt
io

n
tim

e
(m

s)

Figure 2. Measured retention times of different
pages (rows) of DRAM at 24°C.

The first observation is that retention time varies
noticeably among different pages, from 500 ms to slightly
over 50 seconds.

The second observation is that most pages have longer
retention times than the default 64 ms refresh period or
even the longest temperature-compensated refresh period
(TCR), which is at most 500 ms according to our results
in Figure 2. For example, a refresh period of 1,400 ms
covers 99.9% of all pages and a refresh period of 3,100
ms covers 99% of all pages. For a 99% DRAM bank
utilization, RAPID-1 can consolidate data into the
longest-retention 99% of the DRAM bank, permitting a
refresh period as long as 3,100 ms without losing
information.

As mentioned earlier, we observed some cells in the
ISSI DRAM leaked to 0 and others to 1. However,
leaking to 1 seems to be a much slower process, as the
average page retention time for 1’s is only 17 seconds
compared to an average page retention time of 50 seconds
for 0’s (at room temperature for pages in the first bank).

The distribution of page retention times follows a bell
curve, as shown on the left-hand side of Figure 3. The
corresponding cumulative distribution on the right-hand
side of Figure 3 shows the percent usable DRAM for a
given target refresh period. For example, a 10 second
refresh period covers about 85% of the DRAM pages.

Temperature is known to have a significant effect on
leakage and, therefore, retention time in DRAM. We
measured the page retention times of only the first bank at
two higher temperatures, 45°C and 70°C (the latter is the
maximum operating temperature for the chip). The
temperature was raised using the heat gun pictured in
Figure 1 (labeled 4). The temperature was monitored
during testing, using a multi-meter with temperature-
sensing thermistor (labeled 3) placed in contact with the
DRAM package, and was kept within two degrees of the
desired temperature. The results are shown in Figure 4
and Figure 5. Retention times decrease with increasing
temperature as expected.

161
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

4. Retention-Aware Placement in DRAM
(RAPID)

RAPID is a software-only solution for exploiting
retention-time variations among different pages to
minimize the refresh power in contemporary off-the-shelf
DRAMs, a major component of power consumption in

standby operation. The key idea is that longer-retention
pages are preferred for allocation over shorter-retention
pages. This enables selecting a global refresh period that
is the longest possible, based on the shortest retention
time among occupied pages instead of the shortest
retention time among all DRAM pages.

0

200

400

600

800

0 10000 20000 30000 40000 50000
Retention time (ms)

N
um

be
r o

f p
ag

es

0

20

40

60

80

100

0 10000 20000 30000 40000 50000
Refresh period (ms)

%
 U

sa
bl

e
D

R
A

M

Figure 3. Distribution (left) and cumulative distribution (right) of page retention times for entire
DRAM at room temperature (24°C).

0

100

200

300

400

500

0 5000 10000 15000 20000
Retention time (ms)

N
um

be
r o

f p
ag

es

0

20

40

60

80

100

0 5000 10000 15000 20000
Refresh period (ms)

%
 U

sa
bl

e
D

R
A

M

Figure 4. Distribution (left) and cumulative distribution (right) of page retention times for first DRAM
bank at 45°C.

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000
Retention time (ms)

N
um

be
r o

f p
ag

es

0

20

40

60

80

100

0 2000 4000 6000
Refresh period (ms)

%
 U

sa
bl

e
D

R
A

M

Figure 5. Distribution (left) and cumulative distribution (right) of page retention times for first DRAM
bank at maximum operating temperature (70°C).

162
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

The primary software support is modifications to
routines which allocate and deallocate physical pages in
memory. For example, the Linux kernel’s virtual memory
manager maintains a free-list of inactive physical pages –
pages not touched for extended periods of time and
deemed inactive – called the Inactive List. The Inactive
List contains pages marked as “Inactive Dirty” or
“Inactive Clean” (inactive dirty pages have yet to be
flushed to their corresponding pages in the backing non-
volatile storage). The RAPID-1 allocation/deallocation
routines merely exclude outlier pages from the initial
Inactive List. The RAPID-2 and RAPID-3
allocation/deallocation routines transform the single
Inactive List into multiple Inactive Lists, one for each
retention time bin. For systems with a virtual memory
manager, existing Inactive List management routines
would be adapted for RAPID as just described. Many
embedded systems do not implement virtual memory, in
which case equivalent user routines would be adapted or
substituted with the RAPID allocation/deallocation
routines.

The three RAPID versions are described in Sections
4.1 through 4.3. Some of the software implementation
costs, in terms of software tables, are summarized in
Section 4.4. Section 4.5 gives background on common
refresh options available in off-the-shelf DRAMs, and
explains how the single refresh period selected by RAPID
can be applied to these DRAMs without custom hardware
support.

4.1. RAPID-1
RAPID-1 is a static approach in which shortest-

retention pages, constituting a small fraction of the
overall DRAM, are made unavailable for use by
application programs. They are made unavailable by
excluding these pages from the Inactive List when it is
initialized.

In this paper, for room temperature, we excluded all
pages with retention times below 3,118 ms, a total of 168
pages (out of 16,384 pages). This yields a static refresh
period of 3.2 s with 99% DRAM availability.

4.2. RAPID-2
Pages are placed into bins according to their retention

times. Initial studies show 10 bins provide most of the
benefit so 10 bins are used in this paper. The 10 bins are
equally spaced between 3.2 s and 49 s. The shortest
retention time is 3.2 s because the 168 pages below 3.2 s
are excluded, like in RAPID-1. In the future, we plan to
explore bins that are balanced in terms of page count.
Also, note that using only 10 bins can be exploited a
priori to reduce the run time of the testing algorithm
described in Section 3.1.

The original Inactive List is split into 10 Inactive Lists,
one per bin. Pages within each Inactive List are

unordered, as usual, so allocating and deallocating pages
from a given list remains an O(1) operation.

The bins are ordered from longest to shortest retention
time. When none of the DRAM pages are populated, i.e.,
all Inactive Lists are full, the RAPID refresh period
corresponds to the retention time of the highest bin.

A page allocation request is satisfied from the highest
bin that has a non-empty Inactive List. If no more free
pages are available in any of the bins that have populated
pages, a page is allocated from the next lower bin.
However, before the page is given over to the application
program, the RAPID refresh period is decreased to
accommodate the shorter retention time of the fresh bin.

When a page is deallocated, the page is returned to the
Inactive List corresponding to its retention time. The
page’s entry in the page bin table (see Section 4.4)
indicates the RAPID-2 bin to which the page belongs, to
facilitate returning it to the correct Inactive List. Each bin
knows how many pages (active plus inactive) belong to it.
Thus, if an Inactive List becomes full when a page is
returned to it, and the corresponding bin was previously
the lowest bin with populated pages, then the RAPID
refresh period is increased to the next higher bin that still
has populated pages.

4.3. RAPID-3
RAPID-3 builds on RAPID-2. It uses the same

allocation/deallocation routines described in Section 4.2,
enhanced with page migration to reconsolidate data from
lower to higher bins when higher bins become
fragmented, i.e., underutilized. This causes the RAPID
refresh period to respond faster to decreases in DRAM
utilization, compared to RAPID-2.

Many migration policies are possible, from migrating
immediately when a page in a higher bin becomes free, to
periodically reconsolidating pages en masse. For our
experiments, we migrate immediately when an
opportunity presents itself.

4.4. RAPID Software Storage Costs
There are three major software data structures. The

first is unique to RAPID. The last two have counterparts
in existing page-managed systems.
• Page bin table. This table indicates which RAPID-2

bin each page belongs too. For 16K DRAM pages,
there are 16K 4-bit entries (to encode up to 16 bins)
for a storage cost of 8KB.

• Logical-to-physical address translation table. This is
the page table in traditional virtual memory systems.
The RAPID allocation routine does not change the
structure or management of the traditional page table,
it only affects which DRAM pages are otherwise
sequentially or randomly allocated. For 16K DRAM
pages, a one-to-one mapping of logical to physical

163
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

pages requires 16K 14-bit entries for a storage cost of
28KB.

• Inactive list. Although the single Inactive List is
divided into multiple Inactive Lists for RAPID-2 and
RAPID-3, the total storage cost remains the same as
in traditional page-managed systems. For 16K
DRAM pages, 16K list nodes are needed when no
pages are populated. Assuming 8-byte nodes, the
storage cost is 128KB.

4.5. Using RAPID Refresh Period with Off-the-
shelf DRAMs

Off-the-shelf DRAMs typically provide one or both of
the following conventional refresh options.
• Self-refresh. Self-refresh is implemented solely

within the DRAM chip itself.
• Auto-refresh. The external memory controller issues

regularly timed auto-refresh commands and the
DRAM chip refreshes the next row in sequence. The
memory controller does not send an address since the
DRAM keeps track of the next row to be refreshed in
sequence.

Self-refresh is significantly more power-efficient than
auto-refresh, both in terms of DRAM power and external
memory controller power. However, our search of
DRAM datasheets reveals no DRAMs with a
programmable self-refresh period. It is either 64 ms or
temperature compensated, neither of which approaches
the quasi-non-volatile RAPID refresh periods. If there
exists a DRAM with a programmable self-refresh period,
RAPID can exploit self-refresh directly by setting the
self-refresh period to the RAPID refresh period.

An external memory controller typically supports a
single programmable auto-refresh period. While directly
compatible with the RAPID refresh period, this is not a
good general solution because auto-refresh is too
inefficient during long standby periods, i.e., it is better to
power down the memory controller and DRAM leaving
only self-refresh on. Auto-refresh may make sense during
active periods. In fact, some DRAMs (like our ISSI
DRAM) only support auto-refresh during active periods
and self-refresh during standby periods, to explicitly
avoid conflicts between internal self-refresh and external
requests.

The CellularRAM™ [3] for ultra-low-power systems
only supports the efficient self-refresh option. Self-refresh
is used during both active and standby periods. However,
the self-refresh period is not programmable except for
limited temperature compensation support. As is typical,
self-refresh can be enabled/disabled via a configuration
register. Thus, we propose the following approach for
coupling RAPID with CellularRAM™:
• When RAPID is in use, self-refresh is disabled by

default.

• RAPID sets up a periodic timer interrupt, its period
equal to the RAPID refresh period.

• When the interrupt occurs, a lightweight handler
enables the DRAM’s self-refresh and sets up a near-
term interrupt for 64 ms in the future. During the 64
ms interval, self-refresh transparently refreshes the
entire DRAM. The near-term interrupt invokes a
second lightweight handler that disables the DRAM’s
self-refresh.

• In this way, the entire DRAM is refreshed only once
– in a burst fashion – every RAPID refresh period.

While we discussed the above approach in the context
of DRAMs with only self-refresh, the approach can be
adapted to exploit programmable auto-refresh during
active periods and self-refresh during standby periods, for
the ISSI DRAM and others with a similar refresh
dichotomy.

5. Evaluation Methodology
Mobile devices often exhibit short bursts of activity

(active mode) followed by long idle periods (standby
mode) [23][9]. During active mode, DRAM refresh may
be a small component of overall system power, whereas,
during standby mode, DRAM refresh may be the largest
power component.

Obtaining activity traces of a real mobile device or
sensor node is beyond the scope of this paper. We use the
above bimodal active/standby characterization to guide a
simplified evaluation technique for comparing refresh
optimizations. This evaluation technique focuses on
DRAM utilization over long tracts of time. We divide the
long timeline into consecutive 100-second intervals and
randomly inject 100-second active periods in place of
otherwise standby periods, with a random probability that
yields a typical active utilization, e.g., 5%. During active
periods, we inject a random number of page requests. A
request is equally probable to be an allocation vs. a
deallocation so that DRAM utilization remains on
average what the initial utilization was, making it possible
to target a particular average DRAM utilization while still
having significant utilization fluctuations during the
timeline. Different refresh techniques may or may not
exploit fluctuations in DRAM utilization, yielding a
means for comparing techniques in a generic way. We
compare the following refresh techniques:
• TCR (TCR): Optimal temperature-compensated

refresh (TCR), i.e., the self-refresh period is based on
the shortest retention time among all pages for the
current temperature, as measured in Section 3.4. We
use this as the baseline since the default 64 ms self-
refresh is overly pessimistic and TCR is available in
some current DRAMs.

• RAPID-1 (R-1), RAPID-2 (R-2), RAPID-3 (R-3):
These are the new RAPID methods.

164
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

• HW-Multiperiod (HW-M): A custom hardware
solution, in which each page is refreshed at a tailored
refresh period that is a multiple of the shortest refresh
period among all pages in the DRAM.

• HW-Multiperiod-Occupied (HW-M-O): Same as
HW-Multiperiod, but only pages that are currently
occupied are refreshed.

• HW-Ideal (HW-I): An ideal custom hardware
solution, in which each page is refreshed at its own
tailored refresh period.

• HW-Ideal-Occupied (HW-I-O): Same as HW-Ideal,
but only pages that are currently occupied are
refreshed.

The simulated timeline is 24 hours. All simulations are
configured for 5% activity and 95% standby operation.
Average DRAM utilizations of 25%, 50%, and 75% are
targeted. Three operating temperatures are simulated,
25°C (room temperature), 45°C, and 70°C.

The Micron CellularRAM™ [3] is the basis for refresh
power. Given the CellularRAM™ refresh power at its
default self-refresh period, refresh power can be
calculated for an arbitrary refresh period via simple
scaling.

6. Results
Figure 6 shows the refresh energy consumption (in

mW·hours) for an average DRAM utilization of 75% at
three different temperatures. TCR uses the worst-case
refresh period at a given temperature (500 ms at 25°C,
323 ms at 45°C, and 151 ms at 70°C). By simply
discarding 1% of outlier pages, RAPID-1 yields 83%
(25°C), 80% (45°C), and 70% (70°C) energy savings with
respect to TCR. RAPID-2 yields 93% (25°C and 45°C)
and 92% (70°C) energy savings with respect to TCR.
RAPID-3 yields 95% (25°C and 45°C) and 93% (70°C)
energy savings with respect to TCR. Another positive
result is that RAPID-2 and RAPID-3 are nearly as
effective as the custom hardware approaches.

Energy savings of RAPID-1 decreases only
moderately as temperature increases, from 83% to 70%
over the full temperature range. One factor contributing
to this decline is that, some pages that lie above the
RAPID-1 retention-time threshold at 25°C, lie below this
threshold at 70°C. These pages become “outliers” with
respect to the 25°C RAPID-1 standard, yet they are not
excluded.

In contrast, energy savings of RAPID-2 and RAPID-3
hardly decline with increasing temperature. At 75%
average DRAM utilization, typical RAPID-2 and RAPID-
3 refresh periods are substantially long even at 70°C.

Energy consumption of RAPID-1 at 70°C (worst-case
RAPID-1) is comparable to energy consumption of TCR
at 25°C (best-case TCR). This implies that a worst-case,
non-temperature-adjusted RAPID-1 implementation

yields the same or better energy than TCR, suggesting a
potentially simpler alternative to temperature-aware
DRAM design. The same case can be made in even
stronger terms, for non-temperature-adjusted RAPID-2
and RAPID-3 implementations.

Figure 7 shows refresh energy at 25°C for average
DRAM utilizations of 75%, 50%, and 25%. A key
observation is that, as the DRAM utilization decreases,
both RAPID-2 and RAPID-3 yield more energy savings
than the two hardware techniques HW-M and HW-I. At
75% average utilization, the energy consumption of
RAPID-2 and RAPID-3 are slightly higher than HW-M
and HW-I. Yet, at 50% and 25% average utilizations,
both RAPID-2 and RAPID-3 consume less energy than
HW-M and even HW-I. At lower DRAM utilizations,
many lines are unoccupied and RAPID’s refresh period
exceeds the “average” period of the hardware techniques.

The ideal hardware technique, HW-I-O, provides a
more reliable lower bound on energy because it does not
refresh unoccupied pages. For 25% average utilization,
RAPID-3 (and even RAPID-2) approaches this lower
bound.

However, even HW-I-O does not necessarily provide a
lower bound on refresh energy. For non-RAPID
implementations, pages are allocated without regard to
page retention times. Thus, HW-I-O energy can differ for
the same DRAM utilization, depending on which pages
are allocated. For example, for 25% utilization, the
energy of HW-I-O can vary from 0.01 mW·hours to 0.023
mW·hours, depending on whether the best or worst 25%
of the DRAM pages are occupied. Energy of RAPID-3 at
25% utilization is 0.018 mW·hours. Therefore, it is
possible for RAPID-3 to outperform HW-I-O.

7. Summary and Future Work
DRAM is predicted to displace SRAM in future

embedded systems as functionality evolves. This future
can be better met by dealing with the DRAM refresh
problem and thereby reap the capacity benefits of DRAM
without impacting battery life.

The key lies with exploiting dramatic variations in
retention times among different DRAM pages. We
proposed Retention-Aware Placement in DRAM
(RAPID), novel software approaches that can exploit off-
the-shelf DRAMs to reduce refresh power to vanishingly
small levels approaching non-volatile memory. The key
idea is to favor longer-retention pages over shorter-
retention pages when allocating DRAM pages. This
allows selecting a single refresh period that depends on
the shortest-retention page among populated pages,
instead of the shortest-retention page overall. We explore
three versions of RAPID and observe refresh energy
savings of 83%, 93%, and 95%, relative to conventional
temperature-compensated refresh. RAPID with off-the-
shelf DRAM also approaches the energy levels of

165
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

idealized techniques that require custom DRAM support.
This ultimately yields a software implementation of
quasi-non-volatile DRAM.

Much future work remains. In the area of testing, we
plan to extend retention-time measurements to multiple
chips from different vendors, develop rigorous testing
methods with a statistical basis, apply arbitrary test
patterns to identify potential cross-cell retention-time
degradation or other interactions, and explore formulas
for automatically scaling retention times with
temperature. In the area of RAPID software, we plan to
explore modifications for handling differing O/S and
DRAM page sizes, sub-page retention-aware placement

(e.g., padding data structures to skip over sub-par cells),
and binning strategies in RAPID-2/RAPID-3. We may
also explore novel interactions between RAPID and ECC,
for example, defining a page's retention time according to
its second-worst bit and leveraging ECC to repair the
worst bit. Finally, we plan to develop a prototype
embedded system with RAPID, to demonstrate extended
battery life, conveniences of instant-on/instant-off
computing, enhanced resilience to power outages, and
other benefits traditionally afforded by non-volatile
memory.

0

0.2

0.4

0.6

0.8

1

1.2

TC
R

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

25°C

0

0.04

0.08

0.12

0.16

0.2

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

75% utilization (average)

0

0.2

0.4

0.6

0.8

1

1.2

TC
R

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

45°C

 1.617

0

0.04

0.08

0.12

0.16

0.2

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

50% utilization (average)

0

0.2

0.4

0.6

0.8

1

1.2

TC
R

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

70°C
3.459

0

0.04

0.08

0.12

0.16

0.2

R
-1

R
-2

R
-3

H
W

-M

H
W

-I

H
W

-M
-O

H
W

-I-
O

En
er

gy
 C

on
su

m
pt

io
n

(m
W

 h
ou

rs
)

25% utilization (average)

Figure 6. Refresh energy for 75% average Figure 7. Refresh energy at 25°C for average
DRAM utilization, at 25°C, 45°C, and 70°C. DRAM utilizations of 75%, 50%, and 25%.

166
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

8. Acknowledgments
We would like to thank the anonymous reviewers for

their valuable comments. This research was supported in
part by NSF grants CCR-0207785, CCR-0208581, and
CCR-0310860, NSF CAREER grant CCR-0092832, and
funding and equipment donations from Intel and Ubicom.

9. References
[1] T. Austin, D. Blaauw, T. Mudge, K. Flautner. Making

Typical Silicon Matter with Razor. IEEE Computer,
Volume 37 Number 3, March 2004.

[2] J. Burgan. Variable Refresh Control for a Memory. US
Patent #6,778,457, Aug. 2004.

[3] CellularRAM™ – Micron website:
http://download.micron.com/pdf/flyers/cellularram_flyer.p
df.

[4] L.L. Chen Hsu, G. Frankowsky, O. Weinfurtner. Dynamic
DRAM Refresh Rate Adjustment Based on Cell Leakage
Monitoring. US Patent #6,483,764, Nov. 2002.

[5] H.Y. Cho, J.K. Oh. Self-Refresh Apparatus for a
Semiconductor Memory Device. US Patent #6,229,747,
May 2001.

[6] D. Ernst et al. Razor: A Low Power Pipeline Based on
Circuit-Level Timing Speculation. MICRO-36, IEEE CS
Press, 2003, pp.7-18.

[7] T. Hamamoto, S. Sugiura, S. Sawada. On the Retention
Time Distribution of Dynamic Random Access Memory
(DRAM). IEEE Transactions on Electron Devices, Volume
45 Issue 6, June 1998, pp.1300-1309.

[8] M. Hempstead, N. Tripathi, et al. An Ultra Low Power
System Architecture for Sensor Network Applications.
32nd Int’l Symp. on Computer Architecture, June 2005.

[9] J. Kim, M. Papaefthymiou. Block-Based Multiperiod
Dynamic Memory Design for Low Data-Retention Power.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 11, No. 6, Dec. 2003, pp.1006-1018.

[10] J. Kim, M. Papaefthymiou. Block-Based Multi-Period
Refresh for Energy Efficient Dynamic Memory. 14th
ASIC/SOC Conference, Sept. 2001, pp 193-197.

[11] T. Komatsu. Self-Refreshing of Dynamic Random Access
Memory Device and Operating Method Therefor. US
Patent #4,943,960, July 1990.

[12] A. Lebeck, X. Fan, H. Zeng, C. Ellis. Power Aware Page
Allocation. ASPLOS IX, Nov. 2000.

[13] T. Murotani. Temperature Responsive Refresh Control
Circuit. US Patent #4,393,477, June 1983.

[14] L. Nazahandali, B. Zhai, et al. Energy Optimization of
Subthreshold-Voltage Sensor Network Processors. 32nd
Int’l Symp. on Computer Architecture, June 2005.

[15] T. Ohsawa, K. Kai, K. Murakami. Optimizing the DRAM
Refresh Count for Merged DRAM/Logic LSIs. ISPLED98,
pp. 82-87, August 1998.

[16] P. Pelley, J. Burgan. Memory Having Variable Refresh
Control and Method Therefor. US Patent #6,781,908, Aug.
2004.

[17] Ubicom. http://www.ubicom.com
[18] A. Uht. Going Beyond Worst-Case Specs with TEAtime.

IEEE Computer, Volume 37 Number 3, March 2004.

[19] UtRAM™ - Samsung website
http://www.samsung.com/Products/Semiconductor/SRAM.

[20] M. Viredaz, D. Wallach. Power Evaluation of a Handheld
Computer: A Case Study. Compaq-WRL Research Report
2001/1, 2001.
http://www.hpl.hp.com/research/papers/2003/handheld.pdf

[21] K. Yanagisawa. Semiconductor Memory. US Patent
#4,736,344, April 1988.

[22] S. Fyffe. DRAMatic Cell Phone Showdown. Electronic
News, 2/12/2001.
M. Kanellos, B. Charny. Phone makers copy PCs. CNET
News.Com, 4/2/2002.
Dram Makers Prep Multichip Cell Phone Memories.
ElectroSpec, 1/3/2003.

[23] Infineon – Mobile-RAM, Specialty DRAMs. Application
Note, V 1.1, Feb. 2002.

167
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 07,2025 at 00:38:34 UTC from IEEE Xplore. Restrictions apply.

