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Abstract 
Redundant threading architectures duplicate all instructions to 
detect and possibly recover from transient faults. Several lighter 
weight Partial Redundant Threading (PRT) architectures have 
been proposed recently. (i) Opportunistic Fault Tolerance 
duplicates instructions only during periods of poor single-thread 
performance. (ii) ReStore does not explicitly duplicate 
instructions and instead exploits mispredictions among highly 
confident branch predictions as symptoms of faults. (iii) 
Slipstream creates a reduced alternate thread by replacing many 
instructions with highly confident predictions. We explore PRT as 
a possible direction for achieving the fault tolerance of full 
duplication with the performance of single-thread execution. 
Opportunistic and ReStore yield partial coverage since they are 
restricted to using only partial duplication or only confident 
predictions, respectively. Previous analysis of Slipstream fault 
tolerance was cursory and concluded that only duplicated 
instructions are covered. In this paper, we attempt to better 
understand Slipstream’s fault tolerance, conjecturing that the 
mixture of partial duplication and confident predictions actually 
closely approximates the coverage of full duplication. A thorough 
dissection of prediction scenarios confirms that faults in nearly 
100% of instructions are detectable. Fewer than 0.1% of faulty 
instructions are not detectable due to coincident faults and 
mispredictions. Next we show that the current recovery 
implementation fails to leverage excellent detection capability, 
since recovery sometimes initiates belatedly, after already retiring 
a detected faulty instruction. We propose and evaluate a suite of 
simple microarchitectural alterations to recovery and checking. 
Using the best alterations, Slipstream can recover from faults in 
99% of instructions, compared to only 78% of instructions 
without alterations. Both results are much higher than predicted 
by past research, which claims coverage for only duplicated 
instructions, or 65% of instructions. On an 8-issue SMT 
processor, Slipstream performs within 1.3% of single-thread 
execution whereas full duplication slows performance by 14%. 
A key byproduct of this paper is a novel analysis framework in 
which every dynamic instruction is considered to be 
hypothetically faulty, thus not requiring explicit fault injection. 
Fault coverage is measured in terms of the fraction of candidate 
faulty instructions that are directly or indirectly detectable before 
retirement. This framework provides a reliable means to compare 

coverage of different PRT approaches, avoiding pitfalls of 
incomplete fault injection experiments. Moreover, one simulation 
does the work of very many fault injection experiments.  

Categories and Subject Descriptors  B.8.1 [Performance and 
Reliability]: Reliability, Testing, and Fault-Tolerance. C.1.0 
[Processor Architectures]: General. C.4 [Performance of 
Systems] – fault tolerance. 
General Terms  Design, Performance, Reliability. 
Keywords  Simultaneous multithreading (SMT), chip 
multiprocessor (CMP), slipstream processor, transient faults, time 
redundancy, redundant multithreading, branch prediction, value 
prediction. 

1. Introduction 
Redundant multithreading architectures [15][16][19][25] fetch 
and execute all dynamic instructions in a program twice, via two 
redundant threads on a simultaneous multithreading (SMT) 
pipeline, to detect and possibly recover from single transient 
faults that affect the pipeline. The first and second results of each 
duplicated instruction are compared. A difference indicates a 
transient fault occurred in the pipeline. Recovery may be possible, 
by preventing retirement of the first faulty instruction in one [19] 
or both threads [25] and restarting both threads from this 
instruction. 
The performance overhead of dual redundant threads on an SMT 
pipeline can be significant due to resource contention (fetch, 
issue, and retire bandwidth, physical registers, etc.) and checking 
bandwidth. Various techniques have been proposed for reducing 
resource pressure, involving staggering the two threads and 
exploiting the leading thread’s outcomes to reduce the trailing 
thread’s resource utilization [6][16][19]. Checking bandwidth can 
be relieved by reducing the number of result comparisons 
[16][25]. 
While the techniques above improve the performance of 
redundant threads, they still duplicate all dynamic instructions. 
Lighter weight approaches have been proposed [4][23][26], that 
duplicate only a subset of the dynamic instruction stream. We 
refer to these approaches as Partial Redundant Threading (PRT) 
and discuss them in the context of the PRT spectrum shown in 
Figure 1. 

• Partial duplication. Opportunistic Fault Tolerance [4] 
duplicates instructions only during periods of poor single-
thread performance (e.g., during L2 cache misses or low 
instruction-level parallelism). 

• Confident predictions. ReStore [26] does not explicitly 
duplicate instructions. Instead, highly confident branch 
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predictions are used to indirectly detect faults. Since a highly 
confident branch prediction is very likely correct, a 
“misprediction” may indicate, not that the prediction is 
wrong, but rather that a fault afflicted the branch or an 
instruction in the backward slice of the branch. Whether due 
to a fault or a misprediction, the processor rolls back to a prior 
register/memory checkpoint. If there was a fault, rolling back 
masks the fault if the original faulty instruction is logically 
after the checkpoint (i.e., not yet retired) and therefore the 
checkpoint is not corrupted. 

• Partial duplication and confident predictions. Slipstream 
[13][23] combines partial duplication and confident 
predictions. A second reduced thread is created by (i) 
removing predictable branches and their backward slices, 
replacing them with highly confident branch predictions, (ii) 
removing predictable dynamically-dead instructions and their 
backward slices, and (iii) removing predictable silent writes 
(they do not change the value in a location) and their 
backward slices, implicitly replacing them with highly 
confident value predictions. 

PARTIAL REDUNDANT THREADING (PRT) SPECTRUM

Confident
Predictions

Partial
Duplication

Partial
Duplication 

&
Confident 

Predictions
EX:

Opportunistic
EX:

Slipstream
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ReStore  
Figure 1. Partial Redundant Threading (PRT) spectrum. 

The goal of this paper is to determine whether or not PRT can 
achieve the coverage of full duplication with the performance of 
single-thread execution, or determine how close PRT can get to 
this ideal. From a performance standpoint, PRT approaches are 
more efficient than full duplication and may provide a path 
towards achieving single-thread performance. From a fault 
tolerance standpoint, Opportunistic and ReStore provide only 
partial coverage. The only previous work on Slipstream fault 
tolerance is cursory and concluded “the system transparently 
recovers from transient faults affecting redundantly-executed 
instructions” [23][13], i.e., only duplicated instructions are 
covered. In this paper, we attempt to better understand 
Slipstream’s fault tolerance, conjecturing for the first time that the 
mixture of partial duplication and confident predictions actually 
closely approximates the coverage of full duplication. In 
particular, the contributions of this paper are as follows. 

• We provide a thorough dissection of the four prediction 
scenarios in slipstream, illuminating cases in which faulty 
instructions are detectable vs. undetectable. This analysis 
shows, for the first time, that slipstream is able to detect faults 
in nearly 100% of dynamic instructions. Fewer than 0.1% of 
faulty instructions are undetectable due to the coincidence of 
a fault and an incorrect confident prediction, two flawed 
counterparts which reinforce each other. 

• We identify weaknesses in slipstream’s current recovery 
implementation that cause it to fall far short of 100% 
instruction coverage despite excellent detection capability, 

and propose and evaluate three simple microarchitectural 
alterations to recovery. The problem is that recovery may 
initiate too late, after already retiring the faulty instruction 
which it is supposed to prevent from retiring. With the best 
alterations, slipstream can recover from faults in 99% of 
instructions, compared to only 78% of instructions without 
alterations. Both results are higher than predicted by past 
work, which claims coverage for only duplicated instructions, 
or 65% of instructions. 

• We identify opportunities for earlier checks of silent writes, 
further increasing chances that recovery occurs prior to 
retiring a faulty instruction. 

• We develop a novel analysis framework in which every 
dynamic instruction is considered to be hypothetically faulty, 
i.e., all instructions are “candidate faulty instructions”. This 
approach is equivalent to separate fault injection experiments 
for each and every instruction, all in the same experiment, 
avoiding pitfalls of incomplete random fault injection 
experiments and doing the work of many experiments with 
one simulation. Fault tolerance is measured in terms of the 
fraction of candidate faulty instructions that are directly or 
indirectly detectable before retirement. This is the key 
criterion for successful recovery: the first faulty instruction 
must be detected before it retires, so that the architectural 
state is a safe checkpoint for recovery. Our analysis 
framework and instruction coverage metric enable a fair 
comparison of different PRT approaches. 

• We provide in-depth quantitative analysis of slipstream fault 
tolerance and performance for the suite of new check and 
recovery alterations mentioned above. The best 
implementation yields 99% instruction coverage within 1.3% 
of single-thread performance, compared to 100% instruction 
coverage and 14% performance loss with full duplication, on 
average. 

• To demonstrate the wider applicability of principles 
articulated in this paper, we provide in-depth analysis of 
performance/coverage trade-offs of a ReStore-like 
architecture that uses only branch predictions for detection. 

Corresponding to the first contribution above, Section 2 analyzes 
the fault detection capabilities of the three PRT approaches. This 
includes detailed analysis of slipstream’s four prediction 
scenarios. Corresponding to the second and third contributions 
above, Section 3 discusses problems with slipstream’s recovery 
implementation and proposes recovery alterations and early check 
optimizations to better capitalize on slipstream’s fault detection 
capability. In Section 4, we explain our novel analysis framework 
for measuring fault tolerance in terms of instruction coverage. 
Simulation environment is described in Section 5. Results are 
presented in Section 6. Related work is discussed in Section 7. 
Finally, we summarize the paper in Section 8. 

2. Fault Detection 
In order to recover from faults, they must first be detected. In this 
section we analyze the fault detection capabilities of each of the 
three PRT approaches. 

2.1 Opportunistic: Partial Duplication 
Partial duplication produces a full thread and a partial thread. For 
the example in Figure 2, instruction A is not duplicated and 
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instruction B is duplicated. Thus, the full thread consists of 
instructions A(f) and B(f) and the partial thread consists of only 
B(p). Throughout this paper, “(f)” denotes an instruction in the 
full thread and “(p)” denotes an instruction in the partial thread. 

full thread partial 
thread

A(f)

B(f) B(p)

Non-duplicated
Instruction

Duplicated
Instruction       

full thread partial 
thread

A(f)

B(f) B(p)

fault

==
undetected  

 
Figure 2. PRT using only partial duplication. 

The partial thread requires some results from the full thread, to 
compensate for its missing instructions, as shown in Figure 2(a). 
Thus, there are dependences between the full thread and the 
partial thread. As explained below, these dependences are the 
reasons for loss in coverage. 
A fault that affects a duplicated instruction is detectable. For 
example, a fault that affects either B(f) or B(p) is detectable 
because the two instances will differ. 
However, a fault that affects a non-duplicated instruction is not 
detectable because (1) there is no direct counterpart for 
comparison and (2) the fault cannot be detected indirectly by 
duplicated consumers. For example, a fault that affects A(f) is not 
detectable, because its faulty result is consumed by both B(f) and 
B(p), as shown in Figure 2(b). Thus, both instances of the 
consumer instruction B will be flawed in the same way, and their 
comparison will not detect a problem. 

2.2 ReStore: Confident Predictions 
As explained in Section 1, ReStore executes only one thread and 
some faults are detected as “mispredictions” among confident 
branch predictions. Figure 3 shows an example, where the thread 
consists of a branch instruction (br) and its producer instruction. 
The corresponding branch prediction is confident. If the confident 
prediction is correct (very likely), it can detect a fault in either the 
branch or its producer. This is because the faulty branch outcome 
will differ from the correct prediction, as shown in Figure 3(a). 
On the other hand, if the confident prediction is incorrect, it will 
not detect a fault in either instruction since the faulty branch 
outcome and the incorrect prediction match, as shown in Figure 
3(b). Generalizing, ReStore can detect faults among branches and 
their backward slices, that are confidently and correctly predicted. 
In ReStore, the confidence threshold controls coverage and 
performance. Coverage is maximized when the confidence 
threshold is zero, i.e., when all branch predictions are deemed 
confident. In this case, faults are detectable among all correctly 
predicted branches and their backward slices. This is the upper 
bound on coverage for ReStore using only branch symptoms, i.e., 
not counting exceptions and other symptoms [26]. Unfortunately, 
performance is significantly degraded in this case, because all 
mispredictions (not just mispredictions among confident 
predictions) cause rollbacks to a checkpoint. 

orfault
confident 
branch 

prediction 
(correct)

!=
detectedbr

  

orfault

==
undetectedbr

confident 
branch 

prediction 
(incorrect)  

                      (a)                                                  (b) 
Figure 3. PRT using only confident predictions. 

2.3 Slipstream: Partial Duplication & 
Confident Predictions 
In Section 2.1, we explained that partial duplication loses 
coverage due to dependences between the full thread and partial 
thread.  
To achieve full coverage with partial duplication, the partial 
thread must be independent of the full thread. The key idea is to 
only exclude those dynamic instructions from the partial thread, 
whose effects can be confidently emulated by predictions. In 
general, this implies replacing predictable instructions and their 
backward slices with confident branch and value predictions. 
Confident proxy predictions make it possible to fetch and execute 
the partial thread self-sufficiently, without relying on the full 
thread for unchecked results. The partial thread is speculative, yet 
the combination of highly confident prediction and execution 
yields control-flow and data-flow outcomes that are almost 
always equal to corresponding outcomes of the full thread, in the 
fault-free case. Because the partial thread is accurate and 
independent, it is nearly as good a redundant counterpart as a 
second full thread. 
This prediction-based PRT paradigm is depicted in Figure 4. The 
key difference from Section 2.1 and Figure 2 (partial duplication 
only) is that the partial thread is no longer influenced by 
unchecked outcomes from the full thread. Assuming the 
speculative partial thread is correct in the fault-free case, this 
separation makes it possible to detect a single transient fault in 
any one of the three instructions shown, even the singly executed 
producer instruction A(f) in the full thread. As shown, a fault in 
A(f) is inherited by the full thread’s instance of the redundantly 
executed consumer, B(f), but not by the partial thread’s instance, 
B(p). Thus, the two instances B(f) and B(p) will differ, indirectly 
detecting the original fault. 

full thread partial thread

A(f)

B(f) B(p)

fault

!=
detected

proxy for A(p):
confident
prediction

 
Figure 4. PRT using partial duplication and confident 

predictions. 
So far we have discussed prediction-based PRT generically. The 
slipstream implementation in this paper specifically exploits four 
types of prediction to form the partial thread. 
1. Branch prediction. Highly predictable branches are removed. 

(a) Dependence between 
full and partial threads. 

(b) Fault in non-duplicated 
instruction is undetectable. 
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2. Silent write prediction. This is a special case of value 
prediction. Instructions that predictably write the same value 
into a logical register as the previous write to the logical 
register are removed. The implied value prediction is the 
value in the logical register prior to writing it. 

3. Dead write prediction. Predictably dead register-writing 
instructions are removed. 

4. Silent store prediction. Store instructions that predictably 
store the same value into a memory location as the previous 
store to the location are removed. 

Instructions in the backward slices of confidently predicted 
branches, silent writes, dead writes, and silent stores are also 
removed. However, note that a backward-slice instruction is only 
removed if all of its consumers are removed [20][23][13][5]. 
In the following subsections, we analyze each of the four 
prediction scenarios in depth to understand when faults are 
detectable vs. undetectable. The key idea is to consider both 
correct prediction and incorrect prediction. The analysis reveals 
that faulty instructions are undetectable only when faults coincide 
with mispredictions. Fortunately, mispredictions among confident 
predictions are very rare. 

2.3.1 Confident Branch Prediction 
Figure 5 shows a confidently predicted branch I and its producer 
H. Annotations (f) and (p) denote which thread an instruction 
belongs to, full or partial, respectively. The full thread has 
instances H(f) and I(f). Counterparts H(p) and I(p) are removed 
from the partial thread, as indicated by dashed circles and arcs, 
and replaced with a confident branch prediction. This confident 
branch prediction becomes the redundant counterpart of I(f). I(f) 
produces the wrong branch outcome due to a transient fault in 
either H(f) or I(f), depicted by an X over I(f). If the confident 
branch prediction is correct, then it will differ from the incorrect 
branch outcome of I(f) as shown in Figure 5(a), thus detecting a 
faulty H(f) or I(f). However, if the confident branch prediction is 
incorrect, depicted by an X over I(p), then it will match the 
incorrect branch outcome of I(f) as shown in Figure 5(b), failing 
to detect a faulty H(f) or I(f). 

orfault

confident 
branch 

prediction
!=

detected

H(f) H(p)

I(f) I(p)

(a) Correct prediction for removed branch: 
Fault detected.  

orfault

==
undetected

confident 
branch 

prediction

H(f) H(p)

I(f) I(p)

(b) Incorrect prediction for removed branch: 
Fault not detected.  

Figure 5. Confidently predicted branch removed from partial 
thread. 

2.3.2 Confident Silent Write Prediction 
Figure 6 shows a confidently predicted silent write K, and its 
producer J and consumer L. The full thread has instances J(f), 
K(f), and L(f). The predicted silent write K(p) and its producer 
J(p) are removed from the partial thread, as indicated by their 
dashed circles and arcs. They are implicitly replaced with a 
confident value prediction that is the value produced by the last 
writer of K’s logical destination register. That is, the consumer of 
the predicted silent write, L(p), remains in the partial thread and it 
is predictively renamed to the previous writer of K’s register (not 

shown) instead of K(p) itself. As such, L(p) becomes a predictive 
redundant counterpart of L(f). L(f) produces a wrong result due to 
a transient fault in either J(f), K(f), or L(f), depicted by an X over 
L(f). If K(p) is truly a silent write, then L(p) produces the correct 
result, thus detecting a faulty J(f), K(f), or L(f), as shown in 
Figure 6(a). However, if K(p) is not actually a silent write, then 
L(p) may produce an incorrect result since it uses a stale value 
instead of the present value from K(p). If L(p) and L(f) are 
incorrect in exactly the same way, a faulty J(f), K(f), or L(f) is not 
detected, as shown in Figure 6(b). 

confident 
silent 
write

!=
detected

or

fault

or

J(f)

K(f)

L(f)

J(p)

K(p)

L(p)

(a) Predicted silent write correct: 
Fault detected.  

confident 
silent 
write 

==
undetected
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fault

or

J(f)

K(f)

L(f)

J(p)

K(p)

L(p)

(b) Predicted silent write incorrect: 
Fault not detected.  

Figure 6. Confidently predicted silent write removed from 
partial thread. 

2.3.3 Confident Dead Write Prediction 
Figure 7 shows a confidently predicted dead write N and its 
producer M. The full thread has instances M(f) and N(f). The 
predicted dead write N(p) and its producer M(p) are removed 
from the partial thread, as indicated by their dashed circles and 
arcs. N(f) produces a wrong result due to a transient fault in either 
M(f) or N(f), depicted by an X over N(f). If N is truly dead as in 
Figure 7(a), then a faulty M(f) or N(f) will not be detected, 
because there is no redundant counterpart for N(f) to compare 
against nor is there a redundantly executed consumer of N(f) to do 
an indirect comparison. However, an undetected faulty M(f) or 
N(f) is safe for this very reason – it is not referenced in the future. 
If N is actually live as in Figure 7(b), then an unforeseen 
consumer O is brought into the picture. O(f) produces a wrong 
result due to a transient fault in either M(f), N(f), or O(f), depicted 
by an X over O(f). The partial thread’s counterpart, O(p), may 
also produce a wrong result because it consumes a stale value, 
instead of the value that was supposed to be produced by the 
removed, presumed dead write N(p). If O(f) and O(p) produce the 
same wrong result, then a faulty M(f), N(f), or O(f) is not 
detected, as shown in Figure 7(b). 

confident 
dead 
write

not detected, safe

orfault

dead dead

(a) Predicted dead write correct: 
Fault not detected but safe.
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N(f)
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(b) Predicted dead write incorrect: 
Fault not detected.

M(f)
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Figure 7. Confidently predicted dead write removed from 
partial thread. 
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2.3.4 Confident Silent Store Prediction 
The analysis for silent store predictions mirrors that of silent write 
predictions in Section 2.3.2 and Figure 6, where instruction K is a 
store and instruction L is a dependent load instruction. However, 
the store K(f) may be faulty in two ways: faulty value or faulty 
address. Figure 6 only shows the faulty value case. Nonetheless, a 
faulty store address merely causes the store K(f) to store to a 
different address than the load L(f), leading to the same situation 
of a faulty load L(f). 

2.3.5 Result: % Undetectable Faulty Instructions 
Since instruction-removal mispredictions are rare in slipstream 
(due to conservative confidence), we expect very few 
mispredictions and correspondingly low loss in coverage. In all 
benchmarks studied, we measure losses in coverage below 0.1%. 
Therefore, slipstream can detect faults in 99.9% of instructions. 
Fault recovery is a separate issue. A good recovery 
implementation will capitalize as much as possible on the fault 
detection capability. We discuss recovery in the next section. 

3. Fault Recovery 
We now discuss slipstream’s fault recovery capability, given its 
excellent fault detection capability. Section 3.1 reviews the 
previous recovery implementation and discusses its weaknesses. 
Section 3.2 proposes recovery improvements. Section 3.3 
proposes early (direct) checks of silent writes/stores to improve 
the chances for successful (i.e., timely) recovery. 

3.1 Previous Recovery Implementation 
The slipstream recovery implementation described in previous 
papers [13][23] works as follows. When a duplicated instruction 
detects a fault, it posts a fault exception and the slipstream 
processor waits for the exception to reach the head of the reorder 
buffer (ROB). Then, the full and partial threads are re-
synchronized and restarted from the faulty duplicated instruction. 
This recovery implementation attributes the fault to the duplicated 
instruction. However, it may be that its non-duplicated producer is 
faulty. Suppose this is the case. The above delayed recovery 
model permits the faulty producer to retire, corrupting the full 
thread’s architectural state which is supposed to be a safe 
checkpoint for recovery. When recovery is initiated, the partial 
thread’s architectural state inherits the flawed full thread’s 
architectural state. Now, both threads are architecturally corrupted 
and the system is potentially unrecoverable, depending on 
whether or not the corrupt state is architecturally masked in the 
future. 

3.2 Recovery Alterations 
3.2.1 ROB-head Recovery 
The problem with the previous recovery implementation is not so 
much delaying recovery until the detected fault reaches the head 
of the ROB, as restarting the threads from the faulty consumer 
instead of from the faulty producer. In other words, previous 
slipstream implements “consumer recovery” instead of “producer 
recovery”. 
Producer recovery is more conservative since it always attributes 
a fault to the producer. However, the overhead of extra squashed 
instructions is a small price to pay for recovery from faults in 
non-duplicated instructions, the primary objective of this paper. In 

practice the overhead is negligible, since slipstream 
mispredictions are rare thus recovery is rarely initiated. 
Implementing producer recovery explicitly would require 
dependence vectors, so that a faulty consumer could mark its 
direct/indirect producers as potentially faulty. Instead, we propose 
a hardware-free approach that emulates producer recovery 
(achieves the same coverage). Namely, the two threads are 
restarted from the oldest instruction in the ROB (ROB head) at 
the time the fault is detected. Recovery succeeds if the original 
faulty instruction is still in the ROB when the fault is detected, 
since it is prevented from retiring in this case. 

3.2.2 ROB Occupancy Threshold 
Slipstream staggers its two threads. Staggering enables the trailing 
thread to use outcomes from the leading thread as mostly perfect 
branch and value predictions [19][16]. Breaking dependences in 
the trailing thread causes it to fetch and execute more efficiently. 
In an SMT implementation, this releases resources back to the 
leading thread and thereby reduces overall execution time for the 
dual threads. 
In our case, efficiency means low occupancy of the ROB by the 
full thread (the trailing thread). While this is good for 
performance, it reduces the effectiveness of ROB-head Recovery. 
Low ROB occupancy means a faulty non-duplicated instruction is 
more likely to retire before it is detected by a consumer. ROB-
head Recovery is unsuccessful in this case. 
One countermeasure for boosting ROB occupancy is to target a 
ROB occupancy threshold (e.g., 32 or 48 instructions). The target 
is met and maintained by throttling full thread retirement. We 
study the performance/coverage trade-off of various ROB 
occupancy thresholds, in the results section. 

3.2.3 History Buffer 
One way to increase the success rate of producer recovery without 
delaying retirement is to use a history buffer [21]. Before an 
instruction retires from the ROB and commits its value to the 
architectural register/memory state, the previous committed value 
is read and stored in the history buffer. When a fault is detected, 
the ROB is flushed as before (ROB-head Recovery). In addition, 
the architectural state is restored to an even earlier precise state by 
stepping through the history buffer in reverse and using the saved 
values to undo changes to the architectural state. If the original 
faulty instruction had retired from the ROB but not the history 
buffer, then the faulty committed value is safely removed. 
The history buffer is a potentially simpler alternative than register 
and memory checkpoints advocated by ReStore but the principle 
is the same. 

3.3 Direct Checks of Silent Writes and Stores 
Since silent writes and stores are removed from the partial thread, 
their counterparts in the full thread have nothing to compare with. 
Therefore, faults affecting these instructions in the full thread are 
detected by future duplicated consumers (e.g., instruction L in 
Figure 6a). An indirect check is not useful if it is too late to 
prevent retiring the original faulty instruction. 
Fortunately, direct checks are possible for silent writes and stores. 
First, the slipstream components that facilitate instruction removal 
(IR-detector and IR-predictor) can be augmented to remember the 
reason for speculatively removing an instruction. Therefore, 
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predicted silent writes and stores can be explicitly marked in the 
full thread (e.g., K(f) in Figure 6 is marked for direct checking). 
Second, predicted silent writes and stores can be directly checked 
in the full thread by comparing the value being written or stored 
with the value already in the register or memory location. If the 
values differ, either the prediction is wrong (not truly silent) or 
the silent instruction is faulty. Either way recovery is needed (to 
repair the partial thread or to mask the fault, respectively). 

3.3.1 Methods for Directly Checking Silent Writes 
Directly checking a predicted silent write in the full thread 
requires obtaining the value of the previous write to the same 
logical register. We propose and evaluate five approaches listed 
below. We advocate the fourth approach (ORT_ret) because it 
essentially comes for free in the existing slipstream 
implementation and results show it increases coverage about as 
well as the other approaches. 
All approaches except ORT_ret require knowing the previous 
physical register mapping of the logical register since it is this 
physical register that will have the previous value. In some 
contemporary superscalar processors, the previous mapping is 
already read from the rename map table before updating it with 
the new mapping. 

• RF: When a predicted silent write issues, it indexes the 
physical register file using the previous mapping, to obtain 
the previous value of the logical register. If the previous value 
has not been produced yet, the direct check of the silent write 
is not performed. This approach is the most complex since it 
increases pressure on register read ports and may require 
changes to the select logic for read port arbitration. 

• ORT_dis: Slipstream’s Operand Rename Table (ORT) is an 
existing component that detects dead writes and silent writes, 
an essential part of learning what to remove from the partial 
thread in the future [5]. It resembles an architectural register 
file, namely it is indexed by logical register and values are 
committed to it as instructions retire. These values facilitate 
detection of silent writes: a silent write is detected when its 
value matches the corresponding one in the ORT. The ORT 
can be leveraged for direct checks of silent writes, before or at 
retirement. In the case of ORT_dis, the ORT is queried at 
dispatch. When a predicted silent write dispatches, it reads the 
corresponding value from the ORT. The immediately 
previous write may not have retired yet in which case the 
ORT does not have the value we need to compare with. This 
can be determined by adding a mapping field to the ORT 
which indicates the committed mapping. If the previous 
mapping obtained at dispatch matches the ORT committed 
mapping, the ORT value is the immediately previous value 
we want to compare with. Otherwise the direct check of the 
silent write is not performed. 

• ORT_exe: This approach is the same as ORT_dis except the 
ORT is queried when the predicted silent write executes. 
Waiting until execution increases the chance that the previous 
value is in the ORT. 

• ORT_ret: The ORT is queried for the previous value when the 
predicted silent write retires. In fact, this query is already 
done by the IR-detector in the course of learning about past 
silent writes, but previously this query was not exploited to 
perform direct checks of predicted silent writes (and possible 

recovery) before retirement. ORT_ret essentially comes for 
free in the baseline slipstream implementation. While this 
direct check detects and recovers from faults in all correctly 
predicted silent writes, without a history buffer recovery 
model, the direct check is too late to recover from faults 
originating in the backward slices of the silent writes. 
Fortunately, results in Section 6 show that good coverage is 
primarily needed for the silent writes themselves. 

• ORT_all: This is a combination of ORT_dis, ORT_exe, and 
ORT_ret: the ORT is queried at all stages until the previous 
value becomes available in the ORT. The previous value is 
guaranteed to be available by the time the predicted silent 
write retires (ORT_ret). 

3.3.2 Method for Directly Checking Silent Stores 
A predicted silent store is converted to a load in the load/store 
pipeline to obtain the previous value at the store address [7]. If it 
is truly silent, there is no net increase in cache bandwidth since 
the converted load replaces the store. 
Assuming the silent store prediction is correct (assumption for 
coverage, as explained in Section 2), the direct check can detect a 
fault in either the silent store address or value. If the value is 
flawed, it will differ from the value in memory and be detected as 
a silent store misprediction. If the address is flawed, and the 
wrong location contains a different value than the store value, the 
flawed address will be detected as a silent store misprediction. If 
the value in the wrong location is the same as the store value, then 
the silent store is silent with respect to both the original and 
wrong locations, therefore, the flawed address is masked. 

4. Novel Coverage Analysis 
Instead of literally injecting faults in the simulator, we view each 
and every instruction as potentially faulty. Accordingly, we say 
that each instruction is a “candidate faulty instruction”. Each 
candidate faulty instruction is scrutinized to determine whether or 
not it is directly or indirectly checked before it retires. In 
slipstream, duplicated instructions and some non-duplicated 
instructions (explained below) are directly checked via pairwise 
comparisons whereas all other non-duplicated instructions are 
indirectly checked, as discussed in Section 2.3. If the analysis 
framework determines that a candidate faulty instruction is 
checked either directly or indirectly before retirement, the 
instruction is included in coverage since recovery would succeed 
in this case (the faulty instruction would be prevented from 
retiring, or the faulty instruction is architecturally dead [9]). 
Analysis is straightforward for duplicated instructions and 
directly-checked non-duplicated instructions. Directly-checked 
non-duplicated instructions include (1) confident branches and (2) 
confident silent writes and stores, only if direct checks of silent 
writes and stores are employed. We call these instructions 
“checkers” since they check themselves. Checkers are included in 
coverage if there are no coincident mispredictions (mispredictions 
cause losses in coverage, as discussed in Section 2.3.5).  
The complexity of the analysis framework stems from non-
duplicated instructions that are not directly checked. We call these 
instructions “non-checkers” since they cannot check themselves. 
Our analysis technique examines a forward slice of each non-
checker instruction in the full thread, sufficient for safely 
(conservatively) determining whether or not the instruction is 
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checked by checker descendants before retirement or does not 
need to be checked (architecturally dead). Note that this is only a 
measurement technique in the simulator, not a hardware 
mechanism (although it could be a useful mechanism for 
explicitly deferring retirement of non-checker instructions for 
higher coverage). 
Because of the possibility of masking consumers, using only the 
first completed checker descendant is not a safe indicator that its 
non-checker ancestor is checked before retirement. A masking 
consumer is one which cannot detect a faulty producer because it 
produces a correct output despite an incorrect input. While it may 
seem like the faulty producer does not matter, it depends on 
whether or not there are additional, non-masking consumers. 
Ideally, the analysis should identify the first completed non-
masking checker descendant, since it truly checks its non-checker 
ancestor. However, determining whether or not an instruction is 
non-masking is sometimes difficult because it depends on specific 
values and fault locations interacting with the operation type. 
Moreover, we prefer a conservative value-agnostic measure of 
coverage, as a bound. 
Therefore, instead of explicitly searching for the first completed 
non-masking checker descendant, the analysis considers all 
direct/indirect checker descendants under the assumption that one 
or more are unknowingly masking. More formally, a finite 
forward slice is identified, whose leaf instructions consist of only 
checker instructions: (1) duplicated instructions, (2) confident 
branches, (3) confident dead writes, and/or (4) confident silent 
writes or stores, only if direct checks of these are employed. 
An example forward slice of a non-checker instruction, A, is 
shown in Figure 8. The terminal instructions (leaf instructions) of 
the slice include three duplicated instructions D, F, and H. In 
addition, there are two other terminal instructions, a confident 
branch E and confident dead write G. There is a very simple 
criterion for knowing when a forward slice is fully formed. It is 
fully formed when there are no “live” non-checker instructions in 
the slice. If there are no live non-checker instructions, there are no 
possible places in the slice where additional terminal instructions 
(checker descendants) can be added. In the example, non-checker 
instructions A, B, and C have all been killed and hence the 
forward slice of A is fully formed (note that G must also be killed, 
confirming its checker status as a confident dead write). In 
addition, the forward slices of non-checker instructions B and C 
are fully formed, too. 

A

D

B C

HE F G

Non-checker

Checker, duplicated

confident 
dead write

confident
branch

leaf instructions 
of forward slice

Checker, non-duplicated

 

Figure 8. Forward slice example. 

If the following three criteria are met before a non-checker 
instruction is retired, then the non-checker instruction is covered, 
assuming ROB-flush or History Buffer recovery: 

1. Its forward slice is fully formed, i.e., there are no live non-
checker instructions remaining in the ongoing slice, since 
these represent possible places to add other checkers. 

2. All predictions in the slice are correct (mispredictions 
reduce coverage, as explained in Section 2, and this is 
accounted for in overall coverage). 

3. All terminal instructions of the slice have completed 
execution, not only checking themselves but also indirectly 
checking all non-checker ancestors in the slice. 

If none of the terminal instructions of a fully-formed 
misprediction-free slice detect a fault, it confirms that either (i) 
the non-checker ancestors are fault-free or (ii) the non-checker 
ancestors may be faulty but all of their checker descendants are 
masking instructions, so they can be safely retired despite being 
faulty. 

5. Simulation Environment 
Our detailed cycle-level simulator models three different 
execution modes on a common simultaneous multithreading 
(SMT) microarchitecture, shown in Table 1. 
1. Single: Only a single thread. 
2. Slip: Slipstream execution using a partial leading thread and 

a full trailing thread. 
3. Slip-Full: Slipstream execution using a full leading thread 

and a full trailing thread (100% coverage). This models an 
optimized full duplication approach [19][16], since the 
trailing thread is “accelerated” by outcomes from the leading 
thread. Full duplication is achieved by turning off instruction 
removal from the leading thread. 

Table 1.  SMT microarchitecture for all three modes. 

L1 I & D 
caches 

64KB, 4-way, 64B line, LRU, 
L1hit = 1 cycle, L1miss/L2hit = 10 cycles 

L2 unified 
cache 

1MB, 8-way, 64B line, LRU, 
L1miss/L2miss = 100 cycles 

branch predictor gshare, 16-bit history, 220 entries 

superscalar core

reorder buffer (ROB): 256 
load/store queue: 64 
issue queue: 64 
dispatch/issue/retire bandwidth: 8 
cache ports: 4 read/write 

Our slipstream implementation mirrors the microarchitecture 
described in previous work and we also use the same parameters 
for slipstream components and A-stream/R-stream memory 
management [5][14]. 
We run SPEC2K integer benchmarks compiled with the 
Simplescalar gcc compiler [2] for the PISA ISA. The compiler 
optimization level is –O3. Reference inputs are used. In our runs, 
we skip 1 billion instructions and simulate 100 million 
instructions. Only 10 of 12 integer benchmarks are run because 
eon and crafty do not compile. 

6. Results 
6.1 Instruction Breakdown 
To understand coverages of different slipstream variants in 
subsequent sections, it is useful to refer to the breakdown of 
retired instructions in Figure 9. Three types of checkers are shown 
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at the bottom of each bar: (1) Dup – duplicated instructions, (2) B 
– confident branches, (3) D – confident dead writes. The next two 
types may be checkers or non-checkers, depending on whether or 
not direct checks are employed: (4) SS – confident silent stores, 
(5) SW – confident silent writes. The next four types are non-
checkers: (6) bs_B – in backward slice of confident branch, (7) 
bs_SS – in backward slice of confident silent store, (8) bs_SW – 
in backward slice of confident silent write, (9) Other – this 
includes smaller components such as bs_D (backward slice of 
confident dead write) and instructions in backward slices of 
multiple types. We will refer to this breakdown chart when 
explaining coverages. 
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Figure 9. Breakdown of retired instructions. 

6.2 Slipstream with Base Recovery 
In this section we present coverages for various slipstream 
implementations that all use the base recovery model. The base 
recovery model restarts from the checker that detects the fault, 
whether or not the original faulty instruction is in the backward 
slice of the checker. Thus, in all cases, coverage is limited to only 
checker instructions (those that can check themselves): Dup, B, 
D, and possibly SS, SW. 
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Figure 10. Coverages of slipstream with base recovery. 

Coverages are shown in Figure 10. The first bar (PriorWork) 
shows the coverage of baseline slipstream as predicted by prior 
work [23][13]. The coverage only includes Dup, which is an 
underestimate. The second bar (Slip) shows the true coverage of 
baseline slipstream, corresponding to all checker instructions 

(Dup, B, D). Coverage of Slip is 78% on average, whereas 
PriorWork puts coverage at only 65% on average. 
The next five bars show slipstream augmented with direct checks 
of both silent stores and silent writes (Slip+SS+SW_*). There are 
five bars corresponding to the five methods for direct checking of 
silent writes, using notation from Section 3.3.1. 
With Slip+SS+SW_*, coverage includes a varying percentage of 
SW instructions depending on when the direct checks of SW 
instructions are performed. As expected, querying the ORT at 
dispatch (ORT_dis) yields the least coverage of SW instructions 
since the ORT often does not yet contain the previous value for 
comparison. 
Querying the ORT at retirement (ORT_ret) yields total coverage 
of SW instructions since the previous value is always available 
for comparison at that time. The downside of ORT_ret is that, 
unless history buffer recovery is used, no bs_SW instructions are 
covered despite total coverage of SW instructions. This downside 
is not apparent in this section due to the inadequate base recovery 
model (no backward slice instructions are covered at all). 
Referring to Figure 9, notice that bs_SW constitutes less than 1% 
of instructions whereas SW itself constitutes 7% of instructions, 
on average. We conclude that any increase in bs_SW coverage 
that may be afforded by earlier direct checks of SW (e.g., 
ORT_dis or ORT_exe) is not worth the greater loss in SW 
coverage. While RF achieves the same coverage of SW 
instructions as ORT_ret, RF is more complex to implement. 
Summing up, ORT_ret is the best choice in that it yields the 
highest incremental coverage and it is very cheap to implement in 
an existing slipstream implementation. 
Slip+SS+SW_ORT_ret yields the highest coverage with base 
recovery: 88%. 

6.3 Slipstream with New Recovery 
In this section, we explore the coverage benefits of new 
slipstream recovery approaches. All coverages in Figure 11 are 
for Slip+SS+SW_ORT_ret, varying only the recovery model. The 
first bar reiterates coverage of base recovery (base). The next 
three bars show coverages with ROB-head (RH) recovery, i.e., 
when a checker instruction detects a fault, the processor restarts 
both threads from the instruction at the head of the ROB. The 
number after RH indicates whether or not our second technique, 
ROB occupancy management, is used and what the occupancy 
threshold is. RH0 means there is no threshold hence no occupancy 
management. RH32 and RH48 correspond to ROB-head recovery 
with ROB occupancy targets of 32 and 48 instructions by the full 
thread, respectively. 
RH0 increases coverage to 95%, up from 88% with base 
recovery. This is due to partial coverage of non-checkers, for the 
first time. RH32 and RH48 increase coverage of non-checkers 
even further. By deferring retirement of non-checkers, 
RH32/RH48 increase the chances that non-checkers are indirectly 
checked before retirement. Coverages reach 97% and 98% for 
RH32 and RH48, respectively. However, a potential drawback of 
ROB occupancy management is performance degradation, which 
we explore further in Section 6.5. 
The history buffer (HB) approach provides a performance-
friendly alternative to ROB occupancy management. The final 
two bars in Figure 11 show history buffers of 16 instructions 
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(HB16) and 32 instructions (HB32). Coverage is 98% and 99% 
for HB16 and HB32, respectively. 
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Figure 11. Coverage of Slip+SS+SW_ORT_ret for various 

recovery approaches. 

6.4 No Direct Checks of Silent Writes 
We introduced direct checks of silent writes and silent stores to 
guarantee coverage of these instructions. The rationale is that 
indirect checks of silent writes and silent stores, via their forward 
slices, are not guaranteed to be timely. However, this rationale is 
pessimistic for silent writes, whose complete forward slices are 
likely to be in the window, and effective. Therefore, in this 
section, we consider eliminating direct checks of silent writes in 
favor of indirect checks. 
While base recovery cannot cover silent writes without direct 
checks, the new recovery schemes should be able to cover many 
silent writes indirectly. 
Figure 12 shows coverages for slipstream with direct checks of 
silent stores but no direct checks of silent writes (Slip+SS). With 
base recovery, Slip+SS achieves 81% coverage, down from 88% 
with Slip+SS+SW. With the new recovery schemes, there is a 
gradual increase in coverage from 90% for RH0 to 98% for 
HB32. We conclude that most silent writes can be covered by 
indirect checks, with good recovery. 
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Figure 12. Coverage of Slip+SS for various recovery 

approaches. 

Notice that a new category, bs_Dup, appears in Figure 12. In the 
slipstream paradigm, of all the types of predicted-ineffectual (i.e., 
non-duplicated) instructions – branches, dead writes, silent writes, 
silent stores, and their backward slices – only silent writes and 
silent stores can possibly lead to predicted-effectual (i.e., 
duplicated) instructions. Since silent writes no longer check 
themselves, the bs_Dup category signifies that some silent writes 
are now indirectly checked by duplicated instructions. 

6.5 Performance 
Figure 13 shows the performance of (1) single-thread execution 
(Single), (2) Slipstream with full duplication (Slip-Full), (3) 
Slipstream with partial duplication and base recovery (Slip:base), 
and (4) Slipstream with partial duplication, using 
Slip+SS+SW_ORT_ret and various recovery models (Slip+:*). 
Single and Slip-Full show the two extremes between full 
performance and full fault tolerance. Slip-Full achieves 100% 
fault tolerance, but at the price of 14% average slowdown. 
Among benchmarks with IPCs above 2.5 (bzip, gap, gcc, perl, and 
vortex), where the processor is utilized moderately well by a 
single thread, the average slowdown of Slip-Full is 18.5%. 
We use the first three bars (Single, Slip-Full, Slip:base) to 
categorize benchmarks into three groups. Mcf, twolf, and vpr 
show little difference in performance among different threading 
scenarios. These benchmarks utilize the processor poorly with a 
single thread, hence adding another thread has little impact. Gap 
is in its own category. Gap utilizes the processor quite well with a 
single thread and both Slip-Full and Slip:base cause a significant 
slowdown. Slip:base underperforms because gap has little 
instruction removal as can be seen in Figure 9: 87% of 
instructions are duplicated. Finally, bzip, gcc, gzip, parser, perl, 
and vortex show mild to significant slowdown with Slip-Full, yet 
Slip:base performs comparably to Single. In some cases Slip:base 
outperforms Single, which is not unexpected since slipstream is 
known to enhance performance on both CMP and SMT substrates 
[13]. 
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Figure 13. Performance comparisons. 

On average, Slip:base is only 1.3% slower than Single, whereas 
Slip-Full is 14% slower. Among 2.5+ IPC benchmarks, Slip:base 
is only 2.7% slower, whereas Slip-Full is 18.5% slower. 
Next we look at Slip+ with various recovery models. All 
benchmarks show the expected behavior. First, there is a gradual 
decrease in performance from base through RH0, RH32, RH48. 
RH0 flushes more instructions than base, and RH32/RH48 defer 
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retirement. Second, the history buffer approaches HB16 and 
HB32 climb back to the performance of base because retirement 
is not deferred. Perl, twolf, and vortex show slightly more 
performance with Slip+:* compared to Slip:base. This is due to 
slight timing perturbations caused by converting silent stores to 
loads in Slip+. 

6.6 Using Only Branch Predictions 
In this section, we apply our forward-slice analysis framework to 
estimate the dynamic instruction coverage of a ReStore-like 
architecture. In particular, there is only a single thread and 
confident branch predictions are used to check corresponding 
branches and their backward slices, as discussed in Section 2.2. 
Figure 14 shows the coverage and breakdown of covered 
instructions. All correctly predicted branches are covered because 
a correct prediction will differ from a wrong outcome. Thus, both 
confident (B) and unconfident (b) correctly predicted branches are 
included in coverage. However, only mispredictions among 
confidently predicted branches cause a rollback to an earlier point 
in the program. Therefore, our forward-slice analysis only 
considers confident correctly predicted branches (B) as checkers, 
i.e., terminals of a forward slice. Accordingly, an arbitary 
instruction is not considered checked until its forward slice has 
only confident correctly predicted branches (B) and/or dead 
writes (D) for leaves. In Figure 14, arbitrary instructions that are 
successfully checked in this way constitute the bs_B category (in 
backward slice of B). The number of bs_B instructions increases 
with larger rollback distances, as shown for various recovery 
models (RH0, HB32, HB64, HB128). On average, Single+B 
(single thread with B as checkers) yields 33% coverage with 
HB128 recovery (D, B, b, and bs_B are covered). 
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Figure 14. Coverage for Single+B(+b). 

Coverage can be maximized by rolling back for all branch 
mispredictions. This means both confident (B) and unconfident 
(b) correctly predicted branches are checkers (that is, all correctly 
predicted branches). This covers additional instructions, bs_b (in 
backward slice of b) and bs_B+b (in backward slice of B and b) in 
Figure 14. On average, coverage for Single+B+b is 40% with 
HB128 recovery. 
A more optimistic analysis assumes no fault masking by B (or b) 
instructions, meaning that an arbitrary instruction is considered 
checked by the first B (or b) instruction encountered in its forward 
slice. Corresponding optimistic coverages are shown in Figure 15. 
(There is no bs_B+b category since the first B or b instruction is 

used to check.) On average, optimistic coverages for Single+B 
and Single+B+b are 50% and 60%, respectively, with HB128 
recovery. 
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Figure 15. Optimistic coverage for Single+B(+b). 

Performance of Single+B and Single+B+b is shown in Figure 16. 
The performance of Single+B+b is not shown with a dedicated 
bar, rather, it is shown with a negative error bar with respect to 
the Single+B bar. Peformance of Single (no coverage) and Slip-
Full (full coverage) are shown for comparison. 
The performance degradation of Single+B, with respect to Single, 
is mild. Rollbacks are rare because only mispredictions among 
confidently predicted branches cause rollbacks. As expected, the 
performance degradation increases slightly with more distant 
rollbacks (from RH0 to HB128). 
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Figure 16. Performance of Single+B(+b). 

The performance degradation of Single+B+b (negative error bar) 
is severe, because all mispredictions cause rollbacks. For the same 
reason, performance is very sensitive to the rollback distance. 
Nonetheless, for some benchmarks and rollback distances, 
Single+B+b outperforms Slip-Full (albeit with less coverage). 

7. Related Work 
There has been significant interest in redundant multithreading 
architectures in recent years. These architectures exploit 
simultaneous multithreading [16][19][23][25], chip 
multiprocessors [3][8][23], or modified superscalar hardware 
[1][15][22]. A universal goal has been maximizing both coverage 
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and performance. Thus, we focus discussion of related work on 
optimizations towards this goal, including (1) reducing resource 
pressure, (2) reducing checking bandwidth, and (3) reducing 
instruction count. 
Several techniques have been developed to reduce resource 
contention. First, resource pressure can be reduced by staggering 
the two threads, such that one thread runs slightly ahead of the 
other [19][16][22][23]. The leading thread passes its outcomes to 
the trailing thread for checking. The leader/follower arrangement 
enables a key performance optimization: the leading thread’s 
outcomes can be leveraged as likely-correct (they are correct in 
the fault-free case) branch and value predictions in the trailing 
thread [19]. The trailing thread executes more efficiently because 
all of its control and data dependences are eliminated (no wrong-
path instructions and perfect value prediction in fault-free case). 
The effect is that the trailing thread requires fewer resources than 
the leading thread for the same performance, thus releasing 
resources back to the leading thread, reducing overall execution 
time for dual-redundant execution. 
Recent work proposes other per-structure optimizations for 
reducing resource pressure [6], such as packing dual instances of 
a dynamic instruction into the same physical register for short-
width values (exploiting advance knowledge from the leading 
thread) or intelligently reallocating some leading thread’s 
physical registers to the trailing thread to yield a net reduction in 
physical register pressure. 
In another direction, several techniques have been proposed for 
reducing the number of checks (comparisons). All instructions are 
still executed twice, so that whichever two instructions are 
compared, they are still based on separate computation. One 
approach can detect all single transient faults by checking only 
store instructions [16]. Dependence Based Checking Elision 
[25][3] reduces the number of checks based on the idea that a 
fault propagates through dependent instructions, so checking an 
instruction in a chain implicitly checks instructions leading to it. 
Prediction-based PRT approaches exploit the same principle to 
recover from faults on singly executed instructions. In this case 
there is no choice but to check only the consumer whereas in 
DBCE all instructions are redundantly executed with the option of 
not checking all of them. The key difference is that prediction-
based PRT fully capitalizes on the notion of consumer-based 
checking, by not only eliminating the check of the producer, but 
the producer instruction itself. This reduces pressure not only on 
the checking machinery, but the processor as a whole. 
A number of varied approaches reduce the number of redundantly 
executed instructions. Two of these, Slipstream [5][12][13][14] 
[20][23] and ReStore [26], employ forms of predictive checking. 
As mentioned earlier, past characterization of slipstream fault 
tolerance is not extensive and yields a coverage bound limited to 
only redundantly executed instructions. This paper contributes 
new analysis that reveals theoretical coverage of singly executed 
instructions, and recovery techniques to achieve the coverage. 
ReStore [26] is closely related in two respects. First, fault 
detection is achieved purely by symptoms such as exceptions, 
cache misses, TLB misses, and branch mispredictions, a form of 
predictive checking since no redundant execution is used at all 
(although frequent and distant rollbacks are in some sense 
redundant execution after the fact). Second, when such symptoms 
are detected, the processor rolls back to a prior distant checkpoint, 

in the hope that the faulty instruction has not retired. This is 
similar in spirit to recovery of singly executed instructions in this 
paper. ReStore does not exploit redundant execution a priori and 
thus is one extreme of the predictive checking spectrum. The 
“partial thread” has no computation at all and this has 
performance implications (frequent rollbacks if any misprediction 
is a symptom) and/or coverage drawbacks (using only confident 
branch mispredictions as symptoms limits coverage to their slices 
only). We believe the predictive checking spectrum has more 
design points worth exploring. 
Opportunistic fault tolerance [4] also reduces the number of 
redundantly executed instructions by initiating redundancy only 
during phases of otherwise poor performance. Singly executed 
instructions are not covered. Hybrid compiler/hardware 
approaches [17][18] provide a level of control over performance 
and coverage not feasible in purely hardware threading 
approaches, such as complex analytical frameworks for 
identifying code regions where performance and coverage are not 
conflicting. Finally, instruction reuse can be used to reduce the 
number of redundant executions [10]. 
A related MS thesis laid the initial groundwork for this paper [11]. 
It describes a hardware implementation of the forward slice 
checking analysis. The hardware mechanism explicitly classifies 
instructions as checked or not checked at retirement, and stalls 
commit, accordingly. This paper shows that check status does not 
need to be literally tracked in hardware, and the proposed 
recovery models achieve similar high coverage without explicit 
tracking. This paper also contributes an in-depth study of 
prediction-based partial redundant threading. 

8. Summary 
Prediction-based checking is a promising new direction in 
efficient fault tolerance. In this paper, we showed for the first time 
that the combination of confident predictions and partial 
duplication can approximate the fault tolerance of full duplication. 
Slipstream is a convenient substrate for testing this hypothesis, as 
it embodies the notion of comparing a full thread with an 
independent, reduced, predictive thread. We performed a 
thorough dissection of four prediction scenarios, revealing near-
100% fault detection capability despite duplicating as few as 43% 
of instructions. We then revamped slipstream’s recovery and 
checking implementation with a suite of strategies that now make 
it possible to nearly fully capitalize on the excellent fault 
detection capability. Our initial foray into prediction-based partial 
redundant threading, yielded instruction coverages of 99% with 
performance close to a single thread. 
We plan to extend the analysis framework and develop 
corresponding microarchitecture techniques to encompass more 
sophisticated error models. The analyzed scenarios assume faults 
surface directly as erroneous instruction outcomes and the 
“structure” of the dynamic instruction stream is unaffected. 
However, faults may cause inter-instruction dependences to 
change, potentially introducing scenarios outside the scope of our 
analysis framework. An extended analysis framework may guide 
the development of more robust microarchitecture techniques. 
Longer term, we would like to understand how far we can push 
the prediction side of prediction-based PRT to achieve extremely 
low-overhead and high-coverage fault-tolerant architectures. The 

93



principles and analysis framework developed in this paper may 
reveal additional steps towards this grand challenge. 

9. Acknowledgments 
This research was supported by NSF CAREER grant No. CCR-
0092832, and generous funding and equipment donations from 
Intel. Any opinions, findings, and conclusions or 
recommendations expressed herein are those of the authors and do 
not necessarily reflect the views of the National Science 
Foundation. 

10. References 
[1] T. M. Austin. Diva: a reliable substrate for deep submicron 

microarchitecture design. 32nd International Symposium on 
Microarchitecture, pp. 196-207, Nov. 1999. 

[2] D. Burger, T. M. Austin, and S. Bennett. The Simplescalar 
Toolset, Version 2. Tech. Report CS-TR-1997-1342, CS 
Department, University of Wisconsin-Madison, July 1997. 

[3] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. 
Pomeranz. Transient-fault recovery for chip multiprocessors. 
30th International Symposium on Computer architecture, pp. 
98-109, June 2003. 

[4] M. Gomaa and T. N. Vijaykumar. Opportunistic transient-
fault detection. 32nd International Symposium on Computer 
Architecture, pp. 172-183, June 2005. 

[5] J. J. Koppanalil and E. Rotenberg. A simple mechanism for 
detecting ineffectual instructions in slipstream processors. 
IEEE Trans. on Computers, 53(4):399-413, April 2004. 

[6] S. Kumar and A. Aggarwal. Reducing resource redundancy 
for concurrent error detection techniques in high 
performance microprocessors. 12th International Symposium 
on High-Performance Computer Architecture, pp. 212-221, 
Feb. 2006. 

[7] K. M. Lepak and M. H. Lipasti. On the value locality of 
store instructions. 27th International Symposium on 
Computer Architecture, pp. 182-191, June 2000. 

[8] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed 
design and evaluation of redundant multithreading 
alternatives. 29th International Symposium on Computer 
Architecture, pp. 99-110, May 2002. 

[9] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. 
Austin. A systematic methodology to compute the 
architectural vulnerability factors for a high-performance 
microprocessor. 36th International Symposium on 
Microarchitecture, pp. 29-40, Dec. 2003. 

[10] A. Parashar, S. Gurumurthi and A. Sivasubramaniam. A 
complexity-effective approach to ALU bandwidth 
enhancement for instruction-level temporal redundancy. 31st 
International Symposium on Computer Architecture, pp. 
376-386, June 2004. 

[11] S. Parthasarathy. Improving transient fault tolerance of 
slipstream processors. M.S. Thesis, ECE Department, North 
Carolina State University, Dec. 2005. 

[12] Z. R. Purser. Slipstream processors. Ph.D. Thesis, ECE 
Department, North Carolina State University, July 2003. 

[13] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of 
slipstream processors. 33rd International Symposium on 
Microarchitecture, pp. 269-280, Dec. 2000. 

[14] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. Slipstream 
memory hierarchies. Tech. Report CESR-TR-02-3, ECE 
Department, North Carolina State University, Feb. 2002. 

[15] J. Ray, J. C. Hoe and B. Falsafi. Dual use of superscalar 
datapath for transient-fault detection and recovery. 34th 
International Symposium on Microarchitecture, pp. 214-224, 
Dec. 2001. 

[16] S. K. Reinhardt and S. S. Mukherjee. Transient fault 
detection via simultaneous multithreading. 27th International 
Symposium on Computer architecture, pp. 25-36, June 2000. 

[17] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. 
August. SWIFT: Software implemented fault tolerance. 3rd 
International Symposium on Code Generation and 
Optimization, pp. 243-254, March 2005. 

[18] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. 
August. Design and Evaluation of Hybrid Fault-Detection 
Systems. 32nd International Symposium  on Computer 
Architecture, pp. 148-159, June 2005. 

[19] E. Rotenberg. AR-SMT: A microarchitectural approach to 
fault tolerance in microprocessors. 29th International 
Symposium on Fault-Tolerant Computing, pp. 84-91, June 
1999. 

[20] E. Rotenberg. Exploiting large ineffectual instruction 
sequences. Technical Report, North Carolina State 
University, Nov. 1999. 

[21] J. E. Smith and A. R. Pleszkun. Implementation of Precise 
Interrupts in Pipelined Processors. 12th International 
Symposium on Computer Architecture, pp. 36-44, June 1985. 

[22] J. C. Smolens, J. Kim, J. C. Hoe and B. Falsafi. Efficient 
Resource Sharing in Concurrent Error Detecting Superscalar 
Microarchitectures. 37th International Symposium on 
Microarchitecture, pp. 257-268, Dec. 2004. 

[23] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream 
processors: improving both performance and fault tolerance. 
9th International Conference on Architectural Support for 
Programming Languages and Operating Systems, pp. 257-
268, Nov. 2000. 

[24] D. Tullsen, S. J. Eggers and H. M. Levy. Simultaneous 
multithreading: Maximizing on-chip parallelism. 22nd 
International Symposium on Computer Architecture, pp. 
392-403, June 1995. 

[25] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
fault recovery using simultaneous multithreading. 29th 
International Symposium on Computer Architecture, pp. 87-
98, May 2002. 

[26] N. J. Wang and S. J. Patel. ReStore: Symptom based soft 
error detection in microprocessors. International Conference 
on Dependable Systems and Networks, pp. 30-39, June 2005. 

 

94


