
Understanding Prediction-Based Partial Redundant Threading
for Low-Overhead, High-Coverage Fault Tolerance

Vimal K. Reddy Sailashri Parthasarathy * Eric Rotenberg
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27695

{vkreddy, ericro}@ece.ncsu.edu

* Architecture Modeling Infrastructure Group
 Intel Corporation

Hudson, MA 01749
sailashri.parthasarathy@intel.com

Abstract
Redundant threading architectures duplicate all instructions to
detect and possibly recover from transient faults. Several lighter
weight Partial Redundant Threading (PRT) architectures have
been proposed recently. (i) Opportunistic Fault Tolerance
duplicates instructions only during periods of poor single-thread
performance. (ii) ReStore does not explicitly duplicate
instructions and instead exploits mispredictions among highly
confident branch predictions as symptoms of faults. (iii)
Slipstream creates a reduced alternate thread by replacing many
instructions with highly confident predictions. We explore PRT as
a possible direction for achieving the fault tolerance of full
duplication with the performance of single-thread execution.
Opportunistic and ReStore yield partial coverage since they are
restricted to using only partial duplication or only confident
predictions, respectively. Previous analysis of Slipstream fault
tolerance was cursory and concluded that only duplicated
instructions are covered. In this paper, we attempt to better
understand Slipstream’s fault tolerance, conjecturing that the
mixture of partial duplication and confident predictions actually
closely approximates the coverage of full duplication. A thorough
dissection of prediction scenarios confirms that faults in nearly
100% of instructions are detectable. Fewer than 0.1% of faulty
instructions are not detectable due to coincident faults and
mispredictions. Next we show that the current recovery
implementation fails to leverage excellent detection capability,
since recovery sometimes initiates belatedly, after already retiring
a detected faulty instruction. We propose and evaluate a suite of
simple microarchitectural alterations to recovery and checking.
Using the best alterations, Slipstream can recover from faults in
99% of instructions, compared to only 78% of instructions
without alterations. Both results are much higher than predicted
by past research, which claims coverage for only duplicated
instructions, or 65% of instructions. On an 8-issue SMT
processor, Slipstream performs within 1.3% of single-thread
execution whereas full duplication slows performance by 14%.
A key byproduct of this paper is a novel analysis framework in
which every dynamic instruction is considered to be
hypothetically faulty, thus not requiring explicit fault injection.
Fault coverage is measured in terms of the fraction of candidate
faulty instructions that are directly or indirectly detectable before
retirement. This framework provides a reliable means to compare

coverage of different PRT approaches, avoiding pitfalls of
incomplete fault injection experiments. Moreover, one simulation
does the work of very many fault injection experiments.

Categories and Subject Descriptors B.8.1 [Performance and
Reliability]: Reliability, Testing, and Fault-Tolerance. C.1.0
[Processor Architectures]: General. C.4 [Performance of
Systems] – fault tolerance.
General Terms Design, Performance, Reliability.
Keywords Simultaneous multithreading (SMT), chip
multiprocessor (CMP), slipstream processor, transient faults, time
redundancy, redundant multithreading, branch prediction, value
prediction.

1. Introduction
Redundant multithreading architectures [15][16][19][25] fetch
and execute all dynamic instructions in a program twice, via two
redundant threads on a simultaneous multithreading (SMT)
pipeline, to detect and possibly recover from single transient
faults that affect the pipeline. The first and second results of each
duplicated instruction are compared. A difference indicates a
transient fault occurred in the pipeline. Recovery may be possible,
by preventing retirement of the first faulty instruction in one [19]
or both threads [25] and restarting both threads from this
instruction.
The performance overhead of dual redundant threads on an SMT
pipeline can be significant due to resource contention (fetch,
issue, and retire bandwidth, physical registers, etc.) and checking
bandwidth. Various techniques have been proposed for reducing
resource pressure, involving staggering the two threads and
exploiting the leading thread’s outcomes to reduce the trailing
thread’s resource utilization [6][16][19]. Checking bandwidth can
be relieved by reducing the number of result comparisons
[16][25].
While the techniques above improve the performance of
redundant threads, they still duplicate all dynamic instructions.
Lighter weight approaches have been proposed [4][23][26], that
duplicate only a subset of the dynamic instruction stream. We
refer to these approaches as Partial Redundant Threading (PRT)
and discuss them in the context of the PRT spectrum shown in
Figure 1.

• Partial duplication. Opportunistic Fault Tolerance [4]
duplicates instructions only during periods of poor single-
thread performance (e.g., during L2 cache misses or low
instruction-level parallelism).

• Confident predictions. ReStore [26] does not explicitly
duplicate instructions. Instead, highly confident branch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright © 2006 ACM 1-59593-451-0/06/0010…$5.00.

83

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1168918.1168869&domain=pdf&date_stamp=2006-10-20

predictions are used to indirectly detect faults. Since a highly
confident branch prediction is very likely correct, a
“misprediction” may indicate, not that the prediction is
wrong, but rather that a fault afflicted the branch or an
instruction in the backward slice of the branch. Whether due
to a fault or a misprediction, the processor rolls back to a prior
register/memory checkpoint. If there was a fault, rolling back
masks the fault if the original faulty instruction is logically
after the checkpoint (i.e., not yet retired) and therefore the
checkpoint is not corrupted.

• Partial duplication and confident predictions. Slipstream
[13][23] combines partial duplication and confident
predictions. A second reduced thread is created by (i)
removing predictable branches and their backward slices,
replacing them with highly confident branch predictions, (ii)
removing predictable dynamically-dead instructions and their
backward slices, and (iii) removing predictable silent writes
(they do not change the value in a location) and their
backward slices, implicitly replacing them with highly
confident value predictions.

PARTIAL REDUNDANT THREADING (PRT) SPECTRUM

Confident
Predictions

Partial
Duplication

Partial
Duplication

&
Confident

Predictions
EX:

Opportunistic
EX:

Slipstream
EX:

ReStore
Figure 1. Partial Redundant Threading (PRT) spectrum.

The goal of this paper is to determine whether or not PRT can
achieve the coverage of full duplication with the performance of
single-thread execution, or determine how close PRT can get to
this ideal. From a performance standpoint, PRT approaches are
more efficient than full duplication and may provide a path
towards achieving single-thread performance. From a fault
tolerance standpoint, Opportunistic and ReStore provide only
partial coverage. The only previous work on Slipstream fault
tolerance is cursory and concluded “the system transparently
recovers from transient faults affecting redundantly-executed
instructions” [23][13], i.e., only duplicated instructions are
covered. In this paper, we attempt to better understand
Slipstream’s fault tolerance, conjecturing for the first time that the
mixture of partial duplication and confident predictions actually
closely approximates the coverage of full duplication. In
particular, the contributions of this paper are as follows.

• We provide a thorough dissection of the four prediction
scenarios in slipstream, illuminating cases in which faulty
instructions are detectable vs. undetectable. This analysis
shows, for the first time, that slipstream is able to detect faults
in nearly 100% of dynamic instructions. Fewer than 0.1% of
faulty instructions are undetectable due to the coincidence of
a fault and an incorrect confident prediction, two flawed
counterparts which reinforce each other.

• We identify weaknesses in slipstream’s current recovery
implementation that cause it to fall far short of 100%
instruction coverage despite excellent detection capability,

and propose and evaluate three simple microarchitectural
alterations to recovery. The problem is that recovery may
initiate too late, after already retiring the faulty instruction
which it is supposed to prevent from retiring. With the best
alterations, slipstream can recover from faults in 99% of
instructions, compared to only 78% of instructions without
alterations. Both results are higher than predicted by past
work, which claims coverage for only duplicated instructions,
or 65% of instructions.

• We identify opportunities for earlier checks of silent writes,
further increasing chances that recovery occurs prior to
retiring a faulty instruction.

• We develop a novel analysis framework in which every
dynamic instruction is considered to be hypothetically faulty,
i.e., all instructions are “candidate faulty instructions”. This
approach is equivalent to separate fault injection experiments
for each and every instruction, all in the same experiment,
avoiding pitfalls of incomplete random fault injection
experiments and doing the work of many experiments with
one simulation. Fault tolerance is measured in terms of the
fraction of candidate faulty instructions that are directly or
indirectly detectable before retirement. This is the key
criterion for successful recovery: the first faulty instruction
must be detected before it retires, so that the architectural
state is a safe checkpoint for recovery. Our analysis
framework and instruction coverage metric enable a fair
comparison of different PRT approaches.

• We provide in-depth quantitative analysis of slipstream fault
tolerance and performance for the suite of new check and
recovery alterations mentioned above. The best
implementation yields 99% instruction coverage within 1.3%
of single-thread performance, compared to 100% instruction
coverage and 14% performance loss with full duplication, on
average.

• To demonstrate the wider applicability of principles
articulated in this paper, we provide in-depth analysis of
performance/coverage trade-offs of a ReStore-like
architecture that uses only branch predictions for detection.

Corresponding to the first contribution above, Section 2 analyzes
the fault detection capabilities of the three PRT approaches. This
includes detailed analysis of slipstream’s four prediction
scenarios. Corresponding to the second and third contributions
above, Section 3 discusses problems with slipstream’s recovery
implementation and proposes recovery alterations and early check
optimizations to better capitalize on slipstream’s fault detection
capability. In Section 4, we explain our novel analysis framework
for measuring fault tolerance in terms of instruction coverage.
Simulation environment is described in Section 5. Results are
presented in Section 6. Related work is discussed in Section 7.
Finally, we summarize the paper in Section 8.

2. Fault Detection
In order to recover from faults, they must first be detected. In this
section we analyze the fault detection capabilities of each of the
three PRT approaches.

2.1 Opportunistic: Partial Duplication
Partial duplication produces a full thread and a partial thread. For
the example in Figure 2, instruction A is not duplicated and

84

instruction B is duplicated. Thus, the full thread consists of
instructions A(f) and B(f) and the partial thread consists of only
B(p). Throughout this paper, “(f)” denotes an instruction in the
full thread and “(p)” denotes an instruction in the partial thread.

full thread partial
thread

A(f)

B(f) B(p)

Non-duplicated
Instruction

Duplicated
Instruction

full thread partial
thread

A(f)

B(f) B(p)

fault

==
undetected

Figure 2. PRT using only partial duplication.

The partial thread requires some results from the full thread, to
compensate for its missing instructions, as shown in Figure 2(a).
Thus, there are dependences between the full thread and the
partial thread. As explained below, these dependences are the
reasons for loss in coverage.
A fault that affects a duplicated instruction is detectable. For
example, a fault that affects either B(f) or B(p) is detectable
because the two instances will differ.
However, a fault that affects a non-duplicated instruction is not
detectable because (1) there is no direct counterpart for
comparison and (2) the fault cannot be detected indirectly by
duplicated consumers. For example, a fault that affects A(f) is not
detectable, because its faulty result is consumed by both B(f) and
B(p), as shown in Figure 2(b). Thus, both instances of the
consumer instruction B will be flawed in the same way, and their
comparison will not detect a problem.

2.2 ReStore: Confident Predictions
As explained in Section 1, ReStore executes only one thread and
some faults are detected as “mispredictions” among confident
branch predictions. Figure 3 shows an example, where the thread
consists of a branch instruction (br) and its producer instruction.
The corresponding branch prediction is confident. If the confident
prediction is correct (very likely), it can detect a fault in either the
branch or its producer. This is because the faulty branch outcome
will differ from the correct prediction, as shown in Figure 3(a).
On the other hand, if the confident prediction is incorrect, it will
not detect a fault in either instruction since the faulty branch
outcome and the incorrect prediction match, as shown in Figure
3(b). Generalizing, ReStore can detect faults among branches and
their backward slices, that are confidently and correctly predicted.
In ReStore, the confidence threshold controls coverage and
performance. Coverage is maximized when the confidence
threshold is zero, i.e., when all branch predictions are deemed
confident. In this case, faults are detectable among all correctly
predicted branches and their backward slices. This is the upper
bound on coverage for ReStore using only branch symptoms, i.e.,
not counting exceptions and other symptoms [26]. Unfortunately,
performance is significantly degraded in this case, because all
mispredictions (not just mispredictions among confident
predictions) cause rollbacks to a checkpoint.

orfault
confident
branch

prediction
(correct)

!=
detectedbr

orfault

==
undetectedbr

confident
branch

prediction
(incorrect)

 (a) (b)
Figure 3. PRT using only confident predictions.

2.3 Slipstream: Partial Duplication &
Confident Predictions
In Section 2.1, we explained that partial duplication loses
coverage due to dependences between the full thread and partial
thread.
To achieve full coverage with partial duplication, the partial
thread must be independent of the full thread. The key idea is to
only exclude those dynamic instructions from the partial thread,
whose effects can be confidently emulated by predictions. In
general, this implies replacing predictable instructions and their
backward slices with confident branch and value predictions.
Confident proxy predictions make it possible to fetch and execute
the partial thread self-sufficiently, without relying on the full
thread for unchecked results. The partial thread is speculative, yet
the combination of highly confident prediction and execution
yields control-flow and data-flow outcomes that are almost
always equal to corresponding outcomes of the full thread, in the
fault-free case. Because the partial thread is accurate and
independent, it is nearly as good a redundant counterpart as a
second full thread.
This prediction-based PRT paradigm is depicted in Figure 4. The
key difference from Section 2.1 and Figure 2 (partial duplication
only) is that the partial thread is no longer influenced by
unchecked outcomes from the full thread. Assuming the
speculative partial thread is correct in the fault-free case, this
separation makes it possible to detect a single transient fault in
any one of the three instructions shown, even the singly executed
producer instruction A(f) in the full thread. As shown, a fault in
A(f) is inherited by the full thread’s instance of the redundantly
executed consumer, B(f), but not by the partial thread’s instance,
B(p). Thus, the two instances B(f) and B(p) will differ, indirectly
detecting the original fault.

full thread partial thread

A(f)

B(f) B(p)

fault

!=
detected

proxy for A(p):
confident
prediction

Figure 4. PRT using partial duplication and confident

predictions.
So far we have discussed prediction-based PRT generically. The
slipstream implementation in this paper specifically exploits four
types of prediction to form the partial thread.
1. Branch prediction. Highly predictable branches are removed.

(a) Dependence between
full and partial threads.

(b) Fault in non-duplicated
instruction is undetectable.

85

2. Silent write prediction. This is a special case of value
prediction. Instructions that predictably write the same value
into a logical register as the previous write to the logical
register are removed. The implied value prediction is the
value in the logical register prior to writing it.

3. Dead write prediction. Predictably dead register-writing
instructions are removed.

4. Silent store prediction. Store instructions that predictably
store the same value into a memory location as the previous
store to the location are removed.

Instructions in the backward slices of confidently predicted
branches, silent writes, dead writes, and silent stores are also
removed. However, note that a backward-slice instruction is only
removed if all of its consumers are removed [20][23][13][5].
In the following subsections, we analyze each of the four
prediction scenarios in depth to understand when faults are
detectable vs. undetectable. The key idea is to consider both
correct prediction and incorrect prediction. The analysis reveals
that faulty instructions are undetectable only when faults coincide
with mispredictions. Fortunately, mispredictions among confident
predictions are very rare.

2.3.1 Confident Branch Prediction
Figure 5 shows a confidently predicted branch I and its producer
H. Annotations (f) and (p) denote which thread an instruction
belongs to, full or partial, respectively. The full thread has
instances H(f) and I(f). Counterparts H(p) and I(p) are removed
from the partial thread, as indicated by dashed circles and arcs,
and replaced with a confident branch prediction. This confident
branch prediction becomes the redundant counterpart of I(f). I(f)
produces the wrong branch outcome due to a transient fault in
either H(f) or I(f), depicted by an X over I(f). If the confident
branch prediction is correct, then it will differ from the incorrect
branch outcome of I(f) as shown in Figure 5(a), thus detecting a
faulty H(f) or I(f). However, if the confident branch prediction is
incorrect, depicted by an X over I(p), then it will match the
incorrect branch outcome of I(f) as shown in Figure 5(b), failing
to detect a faulty H(f) or I(f).

orfault

confident
branch

prediction
!=

detected

H(f) H(p)

I(f) I(p)

(a) Correct prediction for removed branch:
Fault detected.

orfault

==
undetected

confident
branch

prediction

H(f) H(p)

I(f) I(p)

(b) Incorrect prediction for removed branch:
Fault not detected.

Figure 5. Confidently predicted branch removed from partial
thread.

2.3.2 Confident Silent Write Prediction
Figure 6 shows a confidently predicted silent write K, and its
producer J and consumer L. The full thread has instances J(f),
K(f), and L(f). The predicted silent write K(p) and its producer
J(p) are removed from the partial thread, as indicated by their
dashed circles and arcs. They are implicitly replaced with a
confident value prediction that is the value produced by the last
writer of K’s logical destination register. That is, the consumer of
the predicted silent write, L(p), remains in the partial thread and it
is predictively renamed to the previous writer of K’s register (not

shown) instead of K(p) itself. As such, L(p) becomes a predictive
redundant counterpart of L(f). L(f) produces a wrong result due to
a transient fault in either J(f), K(f), or L(f), depicted by an X over
L(f). If K(p) is truly a silent write, then L(p) produces the correct
result, thus detecting a faulty J(f), K(f), or L(f), as shown in
Figure 6(a). However, if K(p) is not actually a silent write, then
L(p) may produce an incorrect result since it uses a stale value
instead of the present value from K(p). If L(p) and L(f) are
incorrect in exactly the same way, a faulty J(f), K(f), or L(f) is not
detected, as shown in Figure 6(b).

confident
silent
write

!=
detected

or

fault

or

J(f)

K(f)

L(f)

J(p)

K(p)

L(p)

(a) Predicted silent write correct:
Fault detected.

confident
silent
write

==
undetected

or

fault

or

J(f)

K(f)

L(f)

J(p)

K(p)

L(p)

(b) Predicted silent write incorrect:
Fault not detected.

Figure 6. Confidently predicted silent write removed from
partial thread.

2.3.3 Confident Dead Write Prediction
Figure 7 shows a confidently predicted dead write N and its
producer M. The full thread has instances M(f) and N(f). The
predicted dead write N(p) and its producer M(p) are removed
from the partial thread, as indicated by their dashed circles and
arcs. N(f) produces a wrong result due to a transient fault in either
M(f) or N(f), depicted by an X over N(f). If N is truly dead as in
Figure 7(a), then a faulty M(f) or N(f) will not be detected,
because there is no redundant counterpart for N(f) to compare
against nor is there a redundantly executed consumer of N(f) to do
an indirect comparison. However, an undetected faulty M(f) or
N(f) is safe for this very reason – it is not referenced in the future.
If N is actually live as in Figure 7(b), then an unforeseen
consumer O is brought into the picture. O(f) produces a wrong
result due to a transient fault in either M(f), N(f), or O(f), depicted
by an X over O(f). The partial thread’s counterpart, O(p), may
also produce a wrong result because it consumes a stale value,
instead of the value that was supposed to be produced by the
removed, presumed dead write N(p). If O(f) and O(p) produce the
same wrong result, then a faulty M(f), N(f), or O(f) is not
detected, as shown in Figure 7(b).

confident
dead
write

not detected, safe

orfault

dead dead

(a) Predicted dead write correct:
Fault not detected but safe.

M(f)

N(f)

M(p)

N(p)

confident
dead
write

==
undetected

not
dead

not
dead

or

fault

or

(b) Predicted dead write incorrect:
Fault not detected.

M(f)

N(f)

M(p)

N(p)

O(f) O(p)

Figure 7. Confidently predicted dead write removed from
partial thread.

86

2.3.4 Confident Silent Store Prediction
The analysis for silent store predictions mirrors that of silent write
predictions in Section 2.3.2 and Figure 6, where instruction K is a
store and instruction L is a dependent load instruction. However,
the store K(f) may be faulty in two ways: faulty value or faulty
address. Figure 6 only shows the faulty value case. Nonetheless, a
faulty store address merely causes the store K(f) to store to a
different address than the load L(f), leading to the same situation
of a faulty load L(f).

2.3.5 Result: % Undetectable Faulty Instructions
Since instruction-removal mispredictions are rare in slipstream
(due to conservative confidence), we expect very few
mispredictions and correspondingly low loss in coverage. In all
benchmarks studied, we measure losses in coverage below 0.1%.
Therefore, slipstream can detect faults in 99.9% of instructions.
Fault recovery is a separate issue. A good recovery
implementation will capitalize as much as possible on the fault
detection capability. We discuss recovery in the next section.

3. Fault Recovery
We now discuss slipstream’s fault recovery capability, given its
excellent fault detection capability. Section 3.1 reviews the
previous recovery implementation and discusses its weaknesses.
Section 3.2 proposes recovery improvements. Section 3.3
proposes early (direct) checks of silent writes/stores to improve
the chances for successful (i.e., timely) recovery.

3.1 Previous Recovery Implementation
The slipstream recovery implementation described in previous
papers [13][23] works as follows. When a duplicated instruction
detects a fault, it posts a fault exception and the slipstream
processor waits for the exception to reach the head of the reorder
buffer (ROB). Then, the full and partial threads are re-
synchronized and restarted from the faulty duplicated instruction.
This recovery implementation attributes the fault to the duplicated
instruction. However, it may be that its non-duplicated producer is
faulty. Suppose this is the case. The above delayed recovery
model permits the faulty producer to retire, corrupting the full
thread’s architectural state which is supposed to be a safe
checkpoint for recovery. When recovery is initiated, the partial
thread’s architectural state inherits the flawed full thread’s
architectural state. Now, both threads are architecturally corrupted
and the system is potentially unrecoverable, depending on
whether or not the corrupt state is architecturally masked in the
future.

3.2 Recovery Alterations
3.2.1 ROB-head Recovery
The problem with the previous recovery implementation is not so
much delaying recovery until the detected fault reaches the head
of the ROB, as restarting the threads from the faulty consumer
instead of from the faulty producer. In other words, previous
slipstream implements “consumer recovery” instead of “producer
recovery”.
Producer recovery is more conservative since it always attributes
a fault to the producer. However, the overhead of extra squashed
instructions is a small price to pay for recovery from faults in
non-duplicated instructions, the primary objective of this paper. In

practice the overhead is negligible, since slipstream
mispredictions are rare thus recovery is rarely initiated.
Implementing producer recovery explicitly would require
dependence vectors, so that a faulty consumer could mark its
direct/indirect producers as potentially faulty. Instead, we propose
a hardware-free approach that emulates producer recovery
(achieves the same coverage). Namely, the two threads are
restarted from the oldest instruction in the ROB (ROB head) at
the time the fault is detected. Recovery succeeds if the original
faulty instruction is still in the ROB when the fault is detected,
since it is prevented from retiring in this case.

3.2.2 ROB Occupancy Threshold
Slipstream staggers its two threads. Staggering enables the trailing
thread to use outcomes from the leading thread as mostly perfect
branch and value predictions [19][16]. Breaking dependences in
the trailing thread causes it to fetch and execute more efficiently.
In an SMT implementation, this releases resources back to the
leading thread and thereby reduces overall execution time for the
dual threads.
In our case, efficiency means low occupancy of the ROB by the
full thread (the trailing thread). While this is good for
performance, it reduces the effectiveness of ROB-head Recovery.
Low ROB occupancy means a faulty non-duplicated instruction is
more likely to retire before it is detected by a consumer. ROB-
head Recovery is unsuccessful in this case.
One countermeasure for boosting ROB occupancy is to target a
ROB occupancy threshold (e.g., 32 or 48 instructions). The target
is met and maintained by throttling full thread retirement. We
study the performance/coverage trade-off of various ROB
occupancy thresholds, in the results section.

3.2.3 History Buffer
One way to increase the success rate of producer recovery without
delaying retirement is to use a history buffer [21]. Before an
instruction retires from the ROB and commits its value to the
architectural register/memory state, the previous committed value
is read and stored in the history buffer. When a fault is detected,
the ROB is flushed as before (ROB-head Recovery). In addition,
the architectural state is restored to an even earlier precise state by
stepping through the history buffer in reverse and using the saved
values to undo changes to the architectural state. If the original
faulty instruction had retired from the ROB but not the history
buffer, then the faulty committed value is safely removed.
The history buffer is a potentially simpler alternative than register
and memory checkpoints advocated by ReStore but the principle
is the same.

3.3 Direct Checks of Silent Writes and Stores
Since silent writes and stores are removed from the partial thread,
their counterparts in the full thread have nothing to compare with.
Therefore, faults affecting these instructions in the full thread are
detected by future duplicated consumers (e.g., instruction L in
Figure 6a). An indirect check is not useful if it is too late to
prevent retiring the original faulty instruction.
Fortunately, direct checks are possible for silent writes and stores.
First, the slipstream components that facilitate instruction removal
(IR-detector and IR-predictor) can be augmented to remember the
reason for speculatively removing an instruction. Therefore,

87

predicted silent writes and stores can be explicitly marked in the
full thread (e.g., K(f) in Figure 6 is marked for direct checking).
Second, predicted silent writes and stores can be directly checked
in the full thread by comparing the value being written or stored
with the value already in the register or memory location. If the
values differ, either the prediction is wrong (not truly silent) or
the silent instruction is faulty. Either way recovery is needed (to
repair the partial thread or to mask the fault, respectively).

3.3.1 Methods for Directly Checking Silent Writes
Directly checking a predicted silent write in the full thread
requires obtaining the value of the previous write to the same
logical register. We propose and evaluate five approaches listed
below. We advocate the fourth approach (ORT_ret) because it
essentially comes for free in the existing slipstream
implementation and results show it increases coverage about as
well as the other approaches.
All approaches except ORT_ret require knowing the previous
physical register mapping of the logical register since it is this
physical register that will have the previous value. In some
contemporary superscalar processors, the previous mapping is
already read from the rename map table before updating it with
the new mapping.

• RF: When a predicted silent write issues, it indexes the
physical register file using the previous mapping, to obtain
the previous value of the logical register. If the previous value
has not been produced yet, the direct check of the silent write
is not performed. This approach is the most complex since it
increases pressure on register read ports and may require
changes to the select logic for read port arbitration.

• ORT_dis: Slipstream’s Operand Rename Table (ORT) is an
existing component that detects dead writes and silent writes,
an essential part of learning what to remove from the partial
thread in the future [5]. It resembles an architectural register
file, namely it is indexed by logical register and values are
committed to it as instructions retire. These values facilitate
detection of silent writes: a silent write is detected when its
value matches the corresponding one in the ORT. The ORT
can be leveraged for direct checks of silent writes, before or at
retirement. In the case of ORT_dis, the ORT is queried at
dispatch. When a predicted silent write dispatches, it reads the
corresponding value from the ORT. The immediately
previous write may not have retired yet in which case the
ORT does not have the value we need to compare with. This
can be determined by adding a mapping field to the ORT
which indicates the committed mapping. If the previous
mapping obtained at dispatch matches the ORT committed
mapping, the ORT value is the immediately previous value
we want to compare with. Otherwise the direct check of the
silent write is not performed.

• ORT_exe: This approach is the same as ORT_dis except the
ORT is queried when the predicted silent write executes.
Waiting until execution increases the chance that the previous
value is in the ORT.

• ORT_ret: The ORT is queried for the previous value when the
predicted silent write retires. In fact, this query is already
done by the IR-detector in the course of learning about past
silent writes, but previously this query was not exploited to
perform direct checks of predicted silent writes (and possible

recovery) before retirement. ORT_ret essentially comes for
free in the baseline slipstream implementation. While this
direct check detects and recovers from faults in all correctly
predicted silent writes, without a history buffer recovery
model, the direct check is too late to recover from faults
originating in the backward slices of the silent writes.
Fortunately, results in Section 6 show that good coverage is
primarily needed for the silent writes themselves.

• ORT_all: This is a combination of ORT_dis, ORT_exe, and
ORT_ret: the ORT is queried at all stages until the previous
value becomes available in the ORT. The previous value is
guaranteed to be available by the time the predicted silent
write retires (ORT_ret).

3.3.2 Method for Directly Checking Silent Stores
A predicted silent store is converted to a load in the load/store
pipeline to obtain the previous value at the store address [7]. If it
is truly silent, there is no net increase in cache bandwidth since
the converted load replaces the store.
Assuming the silent store prediction is correct (assumption for
coverage, as explained in Section 2), the direct check can detect a
fault in either the silent store address or value. If the value is
flawed, it will differ from the value in memory and be detected as
a silent store misprediction. If the address is flawed, and the
wrong location contains a different value than the store value, the
flawed address will be detected as a silent store misprediction. If
the value in the wrong location is the same as the store value, then
the silent store is silent with respect to both the original and
wrong locations, therefore, the flawed address is masked.

4. Novel Coverage Analysis
Instead of literally injecting faults in the simulator, we view each
and every instruction as potentially faulty. Accordingly, we say
that each instruction is a “candidate faulty instruction”. Each
candidate faulty instruction is scrutinized to determine whether or
not it is directly or indirectly checked before it retires. In
slipstream, duplicated instructions and some non-duplicated
instructions (explained below) are directly checked via pairwise
comparisons whereas all other non-duplicated instructions are
indirectly checked, as discussed in Section 2.3. If the analysis
framework determines that a candidate faulty instruction is
checked either directly or indirectly before retirement, the
instruction is included in coverage since recovery would succeed
in this case (the faulty instruction would be prevented from
retiring, or the faulty instruction is architecturally dead [9]).
Analysis is straightforward for duplicated instructions and
directly-checked non-duplicated instructions. Directly-checked
non-duplicated instructions include (1) confident branches and (2)
confident silent writes and stores, only if direct checks of silent
writes and stores are employed. We call these instructions
“checkers” since they check themselves. Checkers are included in
coverage if there are no coincident mispredictions (mispredictions
cause losses in coverage, as discussed in Section 2.3.5).
The complexity of the analysis framework stems from non-
duplicated instructions that are not directly checked. We call these
instructions “non-checkers” since they cannot check themselves.
Our analysis technique examines a forward slice of each non-
checker instruction in the full thread, sufficient for safely
(conservatively) determining whether or not the instruction is

88

checked by checker descendants before retirement or does not
need to be checked (architecturally dead). Note that this is only a
measurement technique in the simulator, not a hardware
mechanism (although it could be a useful mechanism for
explicitly deferring retirement of non-checker instructions for
higher coverage).
Because of the possibility of masking consumers, using only the
first completed checker descendant is not a safe indicator that its
non-checker ancestor is checked before retirement. A masking
consumer is one which cannot detect a faulty producer because it
produces a correct output despite an incorrect input. While it may
seem like the faulty producer does not matter, it depends on
whether or not there are additional, non-masking consumers.
Ideally, the analysis should identify the first completed non-
masking checker descendant, since it truly checks its non-checker
ancestor. However, determining whether or not an instruction is
non-masking is sometimes difficult because it depends on specific
values and fault locations interacting with the operation type.
Moreover, we prefer a conservative value-agnostic measure of
coverage, as a bound.
Therefore, instead of explicitly searching for the first completed
non-masking checker descendant, the analysis considers all
direct/indirect checker descendants under the assumption that one
or more are unknowingly masking. More formally, a finite
forward slice is identified, whose leaf instructions consist of only
checker instructions: (1) duplicated instructions, (2) confident
branches, (3) confident dead writes, and/or (4) confident silent
writes or stores, only if direct checks of these are employed.
An example forward slice of a non-checker instruction, A, is
shown in Figure 8. The terminal instructions (leaf instructions) of
the slice include three duplicated instructions D, F, and H. In
addition, there are two other terminal instructions, a confident
branch E and confident dead write G. There is a very simple
criterion for knowing when a forward slice is fully formed. It is
fully formed when there are no “live” non-checker instructions in
the slice. If there are no live non-checker instructions, there are no
possible places in the slice where additional terminal instructions
(checker descendants) can be added. In the example, non-checker
instructions A, B, and C have all been killed and hence the
forward slice of A is fully formed (note that G must also be killed,
confirming its checker status as a confident dead write). In
addition, the forward slices of non-checker instructions B and C
are fully formed, too.

A

D

B C

HE F G

Non-checker

Checker, duplicated

confident
dead write

confident
branch

leaf instructions
of forward slice

Checker, non-duplicated

Figure 8. Forward slice example.

If the following three criteria are met before a non-checker
instruction is retired, then the non-checker instruction is covered,
assuming ROB-flush or History Buffer recovery:

1. Its forward slice is fully formed, i.e., there are no live non-
checker instructions remaining in the ongoing slice, since
these represent possible places to add other checkers.

2. All predictions in the slice are correct (mispredictions
reduce coverage, as explained in Section 2, and this is
accounted for in overall coverage).

3. All terminal instructions of the slice have completed
execution, not only checking themselves but also indirectly
checking all non-checker ancestors in the slice.

If none of the terminal instructions of a fully-formed
misprediction-free slice detect a fault, it confirms that either (i)
the non-checker ancestors are fault-free or (ii) the non-checker
ancestors may be faulty but all of their checker descendants are
masking instructions, so they can be safely retired despite being
faulty.

5. Simulation Environment
Our detailed cycle-level simulator models three different
execution modes on a common simultaneous multithreading
(SMT) microarchitecture, shown in Table 1.
1. Single: Only a single thread.
2. Slip: Slipstream execution using a partial leading thread and

a full trailing thread.
3. Slip-Full: Slipstream execution using a full leading thread

and a full trailing thread (100% coverage). This models an
optimized full duplication approach [19][16], since the
trailing thread is “accelerated” by outcomes from the leading
thread. Full duplication is achieved by turning off instruction
removal from the leading thread.

Table 1. SMT microarchitecture for all three modes.

L1 I & D
caches

64KB, 4-way, 64B line, LRU,
L1hit = 1 cycle, L1miss/L2hit = 10 cycles

L2 unified
cache

1MB, 8-way, 64B line, LRU,
L1miss/L2miss = 100 cycles

branch predictor gshare, 16-bit history, 220 entries

superscalar core

reorder buffer (ROB): 256
load/store queue: 64
issue queue: 64
dispatch/issue/retire bandwidth: 8
cache ports: 4 read/write

Our slipstream implementation mirrors the microarchitecture
described in previous work and we also use the same parameters
for slipstream components and A-stream/R-stream memory
management [5][14].
We run SPEC2K integer benchmarks compiled with the
Simplescalar gcc compiler [2] for the PISA ISA. The compiler
optimization level is –O3. Reference inputs are used. In our runs,
we skip 1 billion instructions and simulate 100 million
instructions. Only 10 of 12 integer benchmarks are run because
eon and crafty do not compile.

6. Results
6.1 Instruction Breakdown
To understand coverages of different slipstream variants in
subsequent sections, it is useful to refer to the breakdown of
retired instructions in Figure 9. Three types of checkers are shown

89

at the bottom of each bar: (1) Dup – duplicated instructions, (2) B
– confident branches, (3) D – confident dead writes. The next two
types may be checkers or non-checkers, depending on whether or
not direct checks are employed: (4) SS – confident silent stores,
(5) SW – confident silent writes. The next four types are non-
checkers: (6) bs_B – in backward slice of confident branch, (7)
bs_SS – in backward slice of confident silent store, (8) bs_SW –
in backward slice of confident silent write, (9) Other – this
includes smaller components such as bs_D (backward slice of
confident dead write) and instructions in backward slices of
multiple types. We will refer to this breakdown chart when
explaining coverages.

0

10

20

30

40

50

60

70

80

90

100

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

Avg

%
 o

f t
ot

al
 in

st
ru

ct
io

ns

Other
bs_SW
bs_SS
bs_B
SW
SS
D
B
Dup

Figure 9. Breakdown of retired instructions.

6.2 Slipstream with Base Recovery
In this section we present coverages for various slipstream
implementations that all use the base recovery model. The base
recovery model restarts from the checker that detects the fault,
whether or not the original faulty instruction is in the backward
slice of the checker. Thus, in all cases, coverage is limited to only
checker instructions (those that can check themselves): Dup, B,
D, and possibly SS, SW.

0

10

20

30

40

50

60

70

80

90

100

Prior Work Slip RF ORT_dis ORT_exe ORT_ret ORT_all

%
 o

f i
ns

tr
uc

tio
ns

 c
ov

er
ed

SW
SS
D
B
Dup

Slip+SS+SW_*
Figure 10. Coverages of slipstream with base recovery.

Coverages are shown in Figure 10. The first bar (PriorWork)
shows the coverage of baseline slipstream as predicted by prior
work [23][13]. The coverage only includes Dup, which is an
underestimate. The second bar (Slip) shows the true coverage of
baseline slipstream, corresponding to all checker instructions

(Dup, B, D). Coverage of Slip is 78% on average, whereas
PriorWork puts coverage at only 65% on average.
The next five bars show slipstream augmented with direct checks
of both silent stores and silent writes (Slip+SS+SW_*). There are
five bars corresponding to the five methods for direct checking of
silent writes, using notation from Section 3.3.1.
With Slip+SS+SW_*, coverage includes a varying percentage of
SW instructions depending on when the direct checks of SW
instructions are performed. As expected, querying the ORT at
dispatch (ORT_dis) yields the least coverage of SW instructions
since the ORT often does not yet contain the previous value for
comparison.
Querying the ORT at retirement (ORT_ret) yields total coverage
of SW instructions since the previous value is always available
for comparison at that time. The downside of ORT_ret is that,
unless history buffer recovery is used, no bs_SW instructions are
covered despite total coverage of SW instructions. This downside
is not apparent in this section due to the inadequate base recovery
model (no backward slice instructions are covered at all).
Referring to Figure 9, notice that bs_SW constitutes less than 1%
of instructions whereas SW itself constitutes 7% of instructions,
on average. We conclude that any increase in bs_SW coverage
that may be afforded by earlier direct checks of SW (e.g.,
ORT_dis or ORT_exe) is not worth the greater loss in SW
coverage. While RF achieves the same coverage of SW
instructions as ORT_ret, RF is more complex to implement.
Summing up, ORT_ret is the best choice in that it yields the
highest incremental coverage and it is very cheap to implement in
an existing slipstream implementation.
Slip+SS+SW_ORT_ret yields the highest coverage with base
recovery: 88%.

6.3 Slipstream with New Recovery
In this section, we explore the coverage benefits of new
slipstream recovery approaches. All coverages in Figure 11 are
for Slip+SS+SW_ORT_ret, varying only the recovery model. The
first bar reiterates coverage of base recovery (base). The next
three bars show coverages with ROB-head (RH) recovery, i.e.,
when a checker instruction detects a fault, the processor restarts
both threads from the instruction at the head of the ROB. The
number after RH indicates whether or not our second technique,
ROB occupancy management, is used and what the occupancy
threshold is. RH0 means there is no threshold hence no occupancy
management. RH32 and RH48 correspond to ROB-head recovery
with ROB occupancy targets of 32 and 48 instructions by the full
thread, respectively.
RH0 increases coverage to 95%, up from 88% with base
recovery. This is due to partial coverage of non-checkers, for the
first time. RH32 and RH48 increase coverage of non-checkers
even further. By deferring retirement of non-checkers,
RH32/RH48 increase the chances that non-checkers are indirectly
checked before retirement. Coverages reach 97% and 98% for
RH32 and RH48, respectively. However, a potential drawback of
ROB occupancy management is performance degradation, which
we explore further in Section 6.5.
The history buffer (HB) approach provides a performance-
friendly alternative to ROB occupancy management. The final
two bars in Figure 11 show history buffers of 16 instructions

90

(HB16) and 32 instructions (HB32). Coverage is 98% and 99%
for HB16 and HB32, respectively.

0

10

20

30

40

50

60

70

80

90

100

base RH0 RH32 RH48 HB16 HB32

%
 o

f i
ns

tr
uc

tio
ns

 c
ov

er
ed

other
bs_SW
bs_SS
bs_B
SW
SS
D
B
Dup

Figure 11. Coverage of Slip+SS+SW_ORT_ret for various

recovery approaches.

6.4 No Direct Checks of Silent Writes
We introduced direct checks of silent writes and silent stores to
guarantee coverage of these instructions. The rationale is that
indirect checks of silent writes and silent stores, via their forward
slices, are not guaranteed to be timely. However, this rationale is
pessimistic for silent writes, whose complete forward slices are
likely to be in the window, and effective. Therefore, in this
section, we consider eliminating direct checks of silent writes in
favor of indirect checks.
While base recovery cannot cover silent writes without direct
checks, the new recovery schemes should be able to cover many
silent writes indirectly.
Figure 12 shows coverages for slipstream with direct checks of
silent stores but no direct checks of silent writes (Slip+SS). With
base recovery, Slip+SS achieves 81% coverage, down from 88%
with Slip+SS+SW. With the new recovery schemes, there is a
gradual increase in coverage from 90% for RH0 to 98% for
HB32. We conclude that most silent writes can be covered by
indirect checks, with good recovery.

0

10

20

30

40

50

60

70

80

90

100

base RH0 RH32 RH48 HB16 HB32

%
 o

f i
ns

tr
uc

tio
ns

 c
ov

er
ed

Other
bs_SS
bs_B
bs_Dup
SS
D
B
Dup

Figure 12. Coverage of Slip+SS for various recovery

approaches.

Notice that a new category, bs_Dup, appears in Figure 12. In the
slipstream paradigm, of all the types of predicted-ineffectual (i.e.,
non-duplicated) instructions – branches, dead writes, silent writes,
silent stores, and their backward slices – only silent writes and
silent stores can possibly lead to predicted-effectual (i.e.,
duplicated) instructions. Since silent writes no longer check
themselves, the bs_Dup category signifies that some silent writes
are now indirectly checked by duplicated instructions.

6.5 Performance
Figure 13 shows the performance of (1) single-thread execution
(Single), (2) Slipstream with full duplication (Slip-Full), (3)
Slipstream with partial duplication and base recovery (Slip:base),
and (4) Slipstream with partial duplication, using
Slip+SS+SW_ORT_ret and various recovery models (Slip+:*).
Single and Slip-Full show the two extremes between full
performance and full fault tolerance. Slip-Full achieves 100%
fault tolerance, but at the price of 14% average slowdown.
Among benchmarks with IPCs above 2.5 (bzip, gap, gcc, perl, and
vortex), where the processor is utilized moderately well by a
single thread, the average slowdown of Slip-Full is 18.5%.
We use the first three bars (Single, Slip-Full, Slip:base) to
categorize benchmarks into three groups. Mcf, twolf, and vpr
show little difference in performance among different threading
scenarios. These benchmarks utilize the processor poorly with a
single thread, hence adding another thread has little impact. Gap
is in its own category. Gap utilizes the processor quite well with a
single thread and both Slip-Full and Slip:base cause a significant
slowdown. Slip:base underperforms because gap has little
instruction removal as can be seen in Figure 9: 87% of
instructions are duplicated. Finally, bzip, gcc, gzip, parser, perl,
and vortex show mild to significant slowdown with Slip-Full, yet
Slip:base performs comparably to Single. In some cases Slip:base
outperforms Single, which is not unexpected since slipstream is
known to enhance performance on both CMP and SMT substrates
[13].

0

1

2

3

4

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

Avg

IP
C

Single
Slip-Full
Slip:base
Slip+:RH0
Slip+:RH32
Slip+:RH48
Slip+:HB16
Slip+:HB32

Figure 13. Performance comparisons.

On average, Slip:base is only 1.3% slower than Single, whereas
Slip-Full is 14% slower. Among 2.5+ IPC benchmarks, Slip:base
is only 2.7% slower, whereas Slip-Full is 18.5% slower.
Next we look at Slip+ with various recovery models. All
benchmarks show the expected behavior. First, there is a gradual
decrease in performance from base through RH0, RH32, RH48.
RH0 flushes more instructions than base, and RH32/RH48 defer

91

retirement. Second, the history buffer approaches HB16 and
HB32 climb back to the performance of base because retirement
is not deferred. Perl, twolf, and vortex show slightly more
performance with Slip+:* compared to Slip:base. This is due to
slight timing perturbations caused by converting silent stores to
loads in Slip+.

6.6 Using Only Branch Predictions
In this section, we apply our forward-slice analysis framework to
estimate the dynamic instruction coverage of a ReStore-like
architecture. In particular, there is only a single thread and
confident branch predictions are used to check corresponding
branches and their backward slices, as discussed in Section 2.2.
Figure 14 shows the coverage and breakdown of covered
instructions. All correctly predicted branches are covered because
a correct prediction will differ from a wrong outcome. Thus, both
confident (B) and unconfident (b) correctly predicted branches are
included in coverage. However, only mispredictions among
confidently predicted branches cause a rollback to an earlier point
in the program. Therefore, our forward-slice analysis only
considers confident correctly predicted branches (B) as checkers,
i.e., terminals of a forward slice. Accordingly, an arbitary
instruction is not considered checked until its forward slice has
only confident correctly predicted branches (B) and/or dead
writes (D) for leaves. In Figure 14, arbitrary instructions that are
successfully checked in this way constitute the bs_B category (in
backward slice of B). The number of bs_B instructions increases
with larger rollback distances, as shown for various recovery
models (RH0, HB32, HB64, HB128). On average, Single+B
(single thread with B as checkers) yields 33% coverage with
HB128 recovery (D, B, b, and bs_B are covered).

0

10

20

30

40

50

60

70

80

90

100

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8

bzip gap gcc gzip mcf parser perl twolf vortex vpr Avg

%
 o

f i
ns

tr
uc

tio
ns

 c
ov

er
ed

bs_B+b
bs_b
bs_B
b
B
D

Figure 14. Coverage for Single+B(+b).

Coverage can be maximized by rolling back for all branch
mispredictions. This means both confident (B) and unconfident
(b) correctly predicted branches are checkers (that is, all correctly
predicted branches). This covers additional instructions, bs_b (in
backward slice of b) and bs_B+b (in backward slice of B and b) in
Figure 14. On average, coverage for Single+B+b is 40% with
HB128 recovery.
A more optimistic analysis assumes no fault masking by B (or b)
instructions, meaning that an arbitrary instruction is considered
checked by the first B (or b) instruction encountered in its forward
slice. Corresponding optimistic coverages are shown in Figure 15.
(There is no bs_B+b category since the first B or b instruction is

used to check.) On average, optimistic coverages for Single+B
and Single+B+b are 50% and 60%, respectively, with HB128
recovery.

0

10

20

30

40

50

60

70

80

90

100

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8
R

H
0

H
B

32
H

B
64

H
B

12
8

R
H

0
H

B
32

H
B

64
H

B
12

8

bzip gap gcc gzip mcf parser perl twolf vortex vpr Avg

%
 o

f i
ns

tr
uc

tio
ns

 c
ov

er
ed

bs_b
bs_B
b
B
D

Figure 15. Optimistic coverage for Single+B(+b).

Performance of Single+B and Single+B+b is shown in Figure 16.
The performance of Single+B+b is not shown with a dedicated
bar, rather, it is shown with a negative error bar with respect to
the Single+B bar. Peformance of Single (no coverage) and Slip-
Full (full coverage) are shown for comparison.
The performance degradation of Single+B, with respect to Single,
is mild. Rollbacks are rare because only mispredictions among
confidently predicted branches cause rollbacks. As expected, the
performance degradation increases slightly with more distant
rollbacks (from RH0 to HB128).

0

0.5

1

1.5

2

2.5

3

3.5

4

bz
ip ga

p
gc

c
gz

ip mcf

pa
rse

r
pe

rl
tw

olf

vo
rte

x vp
r

av
g

IP
C

Single
Single+B:RH0
Single+B:HB32
Single+B:HB64
Single+B:HB128
Slip-Full

Figure 16. Performance of Single+B(+b).

The performance degradation of Single+B+b (negative error bar)
is severe, because all mispredictions cause rollbacks. For the same
reason, performance is very sensitive to the rollback distance.
Nonetheless, for some benchmarks and rollback distances,
Single+B+b outperforms Slip-Full (albeit with less coverage).

7. Related Work
There has been significant interest in redundant multithreading
architectures in recent years. These architectures exploit
simultaneous multithreading [16][19][23][25], chip
multiprocessors [3][8][23], or modified superscalar hardware
[1][15][22]. A universal goal has been maximizing both coverage

92

and performance. Thus, we focus discussion of related work on
optimizations towards this goal, including (1) reducing resource
pressure, (2) reducing checking bandwidth, and (3) reducing
instruction count.
Several techniques have been developed to reduce resource
contention. First, resource pressure can be reduced by staggering
the two threads, such that one thread runs slightly ahead of the
other [19][16][22][23]. The leading thread passes its outcomes to
the trailing thread for checking. The leader/follower arrangement
enables a key performance optimization: the leading thread’s
outcomes can be leveraged as likely-correct (they are correct in
the fault-free case) branch and value predictions in the trailing
thread [19]. The trailing thread executes more efficiently because
all of its control and data dependences are eliminated (no wrong-
path instructions and perfect value prediction in fault-free case).
The effect is that the trailing thread requires fewer resources than
the leading thread for the same performance, thus releasing
resources back to the leading thread, reducing overall execution
time for dual-redundant execution.
Recent work proposes other per-structure optimizations for
reducing resource pressure [6], such as packing dual instances of
a dynamic instruction into the same physical register for short-
width values (exploiting advance knowledge from the leading
thread) or intelligently reallocating some leading thread’s
physical registers to the trailing thread to yield a net reduction in
physical register pressure.
In another direction, several techniques have been proposed for
reducing the number of checks (comparisons). All instructions are
still executed twice, so that whichever two instructions are
compared, they are still based on separate computation. One
approach can detect all single transient faults by checking only
store instructions [16]. Dependence Based Checking Elision
[25][3] reduces the number of checks based on the idea that a
fault propagates through dependent instructions, so checking an
instruction in a chain implicitly checks instructions leading to it.
Prediction-based PRT approaches exploit the same principle to
recover from faults on singly executed instructions. In this case
there is no choice but to check only the consumer whereas in
DBCE all instructions are redundantly executed with the option of
not checking all of them. The key difference is that prediction-
based PRT fully capitalizes on the notion of consumer-based
checking, by not only eliminating the check of the producer, but
the producer instruction itself. This reduces pressure not only on
the checking machinery, but the processor as a whole.
A number of varied approaches reduce the number of redundantly
executed instructions. Two of these, Slipstream [5][12][13][14]
[20][23] and ReStore [26], employ forms of predictive checking.
As mentioned earlier, past characterization of slipstream fault
tolerance is not extensive and yields a coverage bound limited to
only redundantly executed instructions. This paper contributes
new analysis that reveals theoretical coverage of singly executed
instructions, and recovery techniques to achieve the coverage.
ReStore [26] is closely related in two respects. First, fault
detection is achieved purely by symptoms such as exceptions,
cache misses, TLB misses, and branch mispredictions, a form of
predictive checking since no redundant execution is used at all
(although frequent and distant rollbacks are in some sense
redundant execution after the fact). Second, when such symptoms
are detected, the processor rolls back to a prior distant checkpoint,

in the hope that the faulty instruction has not retired. This is
similar in spirit to recovery of singly executed instructions in this
paper. ReStore does not exploit redundant execution a priori and
thus is one extreme of the predictive checking spectrum. The
“partial thread” has no computation at all and this has
performance implications (frequent rollbacks if any misprediction
is a symptom) and/or coverage drawbacks (using only confident
branch mispredictions as symptoms limits coverage to their slices
only). We believe the predictive checking spectrum has more
design points worth exploring.
Opportunistic fault tolerance [4] also reduces the number of
redundantly executed instructions by initiating redundancy only
during phases of otherwise poor performance. Singly executed
instructions are not covered. Hybrid compiler/hardware
approaches [17][18] provide a level of control over performance
and coverage not feasible in purely hardware threading
approaches, such as complex analytical frameworks for
identifying code regions where performance and coverage are not
conflicting. Finally, instruction reuse can be used to reduce the
number of redundant executions [10].
A related MS thesis laid the initial groundwork for this paper [11].
It describes a hardware implementation of the forward slice
checking analysis. The hardware mechanism explicitly classifies
instructions as checked or not checked at retirement, and stalls
commit, accordingly. This paper shows that check status does not
need to be literally tracked in hardware, and the proposed
recovery models achieve similar high coverage without explicit
tracking. This paper also contributes an in-depth study of
prediction-based partial redundant threading.

8. Summary
Prediction-based checking is a promising new direction in
efficient fault tolerance. In this paper, we showed for the first time
that the combination of confident predictions and partial
duplication can approximate the fault tolerance of full duplication.
Slipstream is a convenient substrate for testing this hypothesis, as
it embodies the notion of comparing a full thread with an
independent, reduced, predictive thread. We performed a
thorough dissection of four prediction scenarios, revealing near-
100% fault detection capability despite duplicating as few as 43%
of instructions. We then revamped slipstream’s recovery and
checking implementation with a suite of strategies that now make
it possible to nearly fully capitalize on the excellent fault
detection capability. Our initial foray into prediction-based partial
redundant threading, yielded instruction coverages of 99% with
performance close to a single thread.
We plan to extend the analysis framework and develop
corresponding microarchitecture techniques to encompass more
sophisticated error models. The analyzed scenarios assume faults
surface directly as erroneous instruction outcomes and the
“structure” of the dynamic instruction stream is unaffected.
However, faults may cause inter-instruction dependences to
change, potentially introducing scenarios outside the scope of our
analysis framework. An extended analysis framework may guide
the development of more robust microarchitecture techniques.
Longer term, we would like to understand how far we can push
the prediction side of prediction-based PRT to achieve extremely
low-overhead and high-coverage fault-tolerant architectures. The

93

principles and analysis framework developed in this paper may
reveal additional steps towards this grand challenge.

9. Acknowledgments
This research was supported by NSF CAREER grant No. CCR-
0092832, and generous funding and equipment donations from
Intel. Any opinions, findings, and conclusions or
recommendations expressed herein are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

10. References
[1] T. M. Austin. Diva: a reliable substrate for deep submicron

microarchitecture design. 32nd International Symposium on
Microarchitecture, pp. 196-207, Nov. 1999.

[2] D. Burger, T. M. Austin, and S. Bennett. The Simplescalar
Toolset, Version 2. Tech. Report CS-TR-1997-1342, CS
Department, University of Wisconsin-Madison, July 1997.

[3] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I.
Pomeranz. Transient-fault recovery for chip multiprocessors.
30th International Symposium on Computer architecture, pp.
98-109, June 2003.

[4] M. Gomaa and T. N. Vijaykumar. Opportunistic transient-
fault detection. 32nd International Symposium on Computer
Architecture, pp. 172-183, June 2005.

[5] J. J. Koppanalil and E. Rotenberg. A simple mechanism for
detecting ineffectual instructions in slipstream processors.
IEEE Trans. on Computers, 53(4):399-413, April 2004.

[6] S. Kumar and A. Aggarwal. Reducing resource redundancy
for concurrent error detection techniques in high
performance microprocessors. 12th International Symposium
on High-Performance Computer Architecture, pp. 212-221,
Feb. 2006.

[7] K. M. Lepak and M. H. Lipasti. On the value locality of
store instructions. 27th International Symposium on
Computer Architecture, pp. 182-191, June 2000.

[8] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading
alternatives. 29th International Symposium on Computer
Architecture, pp. 99-110, May 2002.

[9] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T.
Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. 36th International Symposium on
Microarchitecture, pp. 29-40, Dec. 2003.

[10] A. Parashar, S. Gurumurthi and A. Sivasubramaniam. A
complexity-effective approach to ALU bandwidth
enhancement for instruction-level temporal redundancy. 31st
International Symposium on Computer Architecture, pp.
376-386, June 2004.

[11] S. Parthasarathy. Improving transient fault tolerance of
slipstream processors. M.S. Thesis, ECE Department, North
Carolina State University, Dec. 2005.

[12] Z. R. Purser. Slipstream processors. Ph.D. Thesis, ECE
Department, North Carolina State University, July 2003.

[13] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of
slipstream processors. 33rd International Symposium on
Microarchitecture, pp. 269-280, Dec. 2000.

[14] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. Slipstream
memory hierarchies. Tech. Report CESR-TR-02-3, ECE
Department, North Carolina State University, Feb. 2002.

[15] J. Ray, J. C. Hoe and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. 34th
International Symposium on Microarchitecture, pp. 214-224,
Dec. 2001.

[16] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading. 27th International
Symposium on Computer architecture, pp. 25-36, June 2000.

[17] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I.
August. SWIFT: Software implemented fault tolerance. 3rd
International Symposium on Code Generation and
Optimization, pp. 243-254, March 2005.

[18] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. Design and Evaluation of Hybrid Fault-Detection
Systems. 32nd International Symposium on Computer
Architecture, pp. 148-159, June 2005.

[19] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. 29th International
Symposium on Fault-Tolerant Computing, pp. 84-91, June
1999.

[20] E. Rotenberg. Exploiting large ineffectual instruction
sequences. Technical Report, North Carolina State
University, Nov. 1999.

[21] J. E. Smith and A. R. Pleszkun. Implementation of Precise
Interrupts in Pipelined Processors. 12th International
Symposium on Computer Architecture, pp. 36-44, June 1985.

[22] J. C. Smolens, J. Kim, J. C. Hoe and B. Falsafi. Efficient
Resource Sharing in Concurrent Error Detecting Superscalar
Microarchitectures. 37th International Symposium on
Microarchitecture, pp. 257-268, Dec. 2004.

[23] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
processors: improving both performance and fault tolerance.
9th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 257-
268, Nov. 2000.

[24] D. Tullsen, S. J. Eggers and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. 22nd
International Symposium on Computer Architecture, pp.
392-403, June 1995.

[25] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
fault recovery using simultaneous multithreading. 29th
International Symposium on Computer Architecture, pp. 87-
98, May 2002.

[26] N. J. Wang and S. J. Patel. ReStore: Symptom based soft
error detection in microprocessors. International Conference
on Dependable Systems and Networks, pp. 30-39, June 2005.

94

