
Co-simulation Framework for Streamlining Microprocessor Development on
Standard ASIC Design Flow

Tomoyuki Nakabayashi†, Tomoyuki Sugiyama†, Takahiro Sasaki†, Eric Rotenberg‡, and Toshio Kondo†

†Graduate School of Engineering, Mie University
Tsu, Mie, 514-8508, Japan

Tel: +81-59-231-9780, Fax: +81-59-231-9781
‡Department of Electrical and Computer Engineering, North Carolina State University

Raleigh, North Carolina, 27695-7911, USA
Email: {tomoyuki, sugiyama, sasaki, kondo}@arch.info.mie-u.ac.jp, ericro@ncsu.edu

Abstract— In this paper, we present a practical processor
co-simulation framework for not only RTL simulation but also
gate/transistor level simulation, and even chip evaluation with an
LSI tester. Our framework includes an off-chip system call emula-
tion mechanism, which handles system calls to evaluate and verify
the processor design with general benchmark programs without
pseudo-circuits in the processor design. Therefore, our frame-
work can be consistently used from RTL design to chip fabrica-
tion. We also propose a checkpoint mechanism that resumes a
program from a pre-created checkpoint. This mechanism is not
affected by the non-deterministic problem on a multi-core pro-
cessor. Moreover, we propose a cache warming mechanism when
resuming from a checkpoint.

I. INTRODUCTION

As multi-core architecture has become commonly used to
improve processor performance, designing a state-of-the-art
multi-core chip in a short time has become essential for proces-
sor research. A development environment that contains useful
mechanisms and can be used throughout the entire processor
research provides efficient infrastructure to researchers. We
classify the steps of fabricating a novel processor chip into five
phases, 1) design space exploration using a simulator, 2) reg-
ister transfer level (RTL), 3) gate level, 4) transistor level, and
5) fabricated chip. There are two challenges to streamline the
processor development through the entire standard ASIC de-
sign flows.

1. Emulating system calls in RTL through fabricated chip:
When researchers prototype a processor from RTL, to gate
and transistor level, to ASIC, it is often desirable to fo-
cus on user level code because they are interested in the
core part of the processor and not all of the system level
support. They may be in this situation because they de-
signed the RTL from scratch or because they are using
open source toolsets (e.g., FabScalar) which provide a
level of sophistication in the microarchitecture but do not
currently feature system level support. As a matter of con-
venience, and a matter of research productivity, it is good
to dispense with the issue of explicitly supporting system

calls in the processor design. While emulation is often
used in simulators written in a high-level language, it is
unwieldy to carry that over to RTL/gate/transistor simula-
tions and not at all possible to emulate in the same way
for a fabricated chip.

2. Reducing turnaround time through sampled execution:
Except for the fabricated chip phase, all other simulation-
based phases in particular gate/transistor level cannot sim-
ulate the entire workloads in a reasonable timeframe.
Therefore, we need a checkpoint mechanism to resume
a simulation from an arbitrary region of interest (ROI).
Moreover, checkpoints are useful when hardware bugs are
detected in the fabricated chip. A checkpoint allows for
bypassing the bug (if it is infrequent) to get to another
ROI. Therefore, it is also useful for validation in the fab-
ricated chip phase.

In this paper, we propose a co-simulation framework to ad-
dress these challenges. This paper makes the following con-
tributions:

1. Our framework includes an off-chip system call emulation
mechanism that handles system calls using general load
and store instructions. This enables the processor design
to involve the execution of a program using system calls
without booting an OS on the target processor for evalua-
tion and verification. The off-chip system call emulation
mechanism enables a prototype processor that cannot han-
dle system calls to execute a program using system calls.
Therefore, researchers can improve research productivity.

2. Our framework also contains a checkpoint mechanism to
reduce turnaround time for evaluation and verification.
The checkpoint mechanism restores not only essential
state (register file, program counter, inflight file/network
operations, and memory state of the process) but also op-
tional state (warming up the caches).

• Essential state restoration: Our checkpoint mech-
anism resumes a program from an ROI even on a
multi-core processor chip. With this mechanism, re-
searchers can shorten turnaround time and obtain the
result in the ROI.

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 400

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

• Optional state restoration: The checkpoint mecha-
nism also contains a start-up routine to warm up the
cache with the cache replacement algorithm. The
warm up mechanism reduces the time to achieve
a peak performance and also improves simulation
accuracy by diminishing the effect of cold started
cache.

Our co-simulation framework can be consistently used in RTL,
gate and transistor level simulations, and in fabricated chip
evaluation because all the above mechanisms are implemented
without pseudo-circuits such as direct programming interface-
C (DPI-C) in the processor design. In addition, our framework
does not depend on the microarchitecture of a processor. We
introduced our framework into two processor design projects:
a simple single pipeline processor and a complex out-of-order
processor.

II. RELATED WORK

A. Processor simulators

Many processor simulators [1, 2] and system simulators [3,
4, 5] written in a high-level language are used for processor re-
search. Researchers take advantage of such simulators in the
early stage of research in accordance with their intended use.
Since our main focus is from RTL to fabrication, in which re-
searchers evaluate the precise hardware cost, energy efficiency,
and circuit delay for their proposed approach, we describe three
focused mechanisms: 1) system call emulation to simplify pro-
cessor architecture, 2) checkpoint mechanisms to reduce sim-
ulation time, and 3) cache warming mechanism to achieve a
highly accurate evaluation. These mechanisms, however, are
used only in each simulator. Our goal is to use these mecha-
nisms in all phases of standard ASIC design flows.

B. Synthesizable processors

Some open synthesizable processors can be used from RTL
implementation to chip fabrication [5, 6, 7, 8]. Since FabScalar
and OpenSPARC have a co-simulation environment, we de-
scribe these two processors in more detail.

FabScalar automatically generates synthesizable RTL de-
signs of differently designed superscalar cores. FabScalar con-
tains an instruction set simulator, called functional simulator,
to verify RTL by concurrently running the same instructions in
RTL design and the functional simulator, and cross-checking
the architectural state instruction-by-instruction. The func-
tional simulator is also used for emulating a system call, so
RTL design can handle a system call as a one-cycle-instruction.
Also FabScalar provides fast-skip and checkpoint mechanisms
to avoid long simulation time and re-simulating up to a check-
point. However, FabScalar currently has drawbacks in system
call emulation (described in Section IV) and the checkpoint
mechanism (described in Section V). Our aim was to improve
the two mechanisms based on FabScalar.

OpenSPARC is the open-source version of UltraSPARC T1
and T2 processors. Currently, RTL design, simulation tools,
and verification package are all available. OpenSPARC pro-
vides a complete RTL design to boot a full OS and useful tools

for simulation and verification including checkpoint and cache
warming. However, there is the level of abstraction gap as the
next step from a processor simulator, and this gap makes it dif-
ficult to advance the research phase beyond simulator-based
exploration. By contrast, our off-chip system call emulation
mechanism enables a designer to evaluate a prototype proces-
sor omitting touchy hardware for an OS with general bench-
mark programs. In addition, cache warming of OpenSPARC is
implemented by programming language interface (PLI) in ver-
ilog, this limits the use to only in RTL simulation. Our cache
warming mechanism is unique in that it is consistently used
from RTL to fabricated chip.

III. CO-SIMULATION FRAMEWORK

A. Co-simulation overview

This subsection gives an overview of our co-simulation
framework. The framework consists of a functional simulator
written in a high-level language and processor design. Note
that processor design refers to all designs of RTL, gate, transis-
tor level, and fabricated chip. Fig. 1 shows how the functional
simulator is used in our framework. The functional simula-
tor assists in the verification and evaluation of processor de-
sign. The cross-checking architectural state guarantees instruc-
tion set level behavior of processor design, and fast-skip and
checkpoint mechanisms reduce turnaround time. In addition,
the functional simulator emulates system calls by calling the
host OS according to a request from processor design.

B. Challenges

Three challenges in the co-simulation framework are de-
scribed below.

System call emulation: System call emulation is significantly
beneficial in that a designer can run a general program without
booting an OS on the target processor. Our system call emula-
tion mechanism described in Section IV can be used for every
research phase. Our framework exploits general load and store
instructions to communicate with the emulator; therefore, no
special mechanism is necessary in the processor design.

Checkpoint mechanism: The checkpoint mechanism is used
not only to reduce turnaround time but also to evaluate only
an ROI. Checkpoint creation for a multiprocessor should con-
sider the non-deterministic problem. In Section V we propose
a checkpoint mechanism that solves this problem.

Cache warming: Our checkpoint mechanism contains cache
warming mechanism as a part of optional checkpoints. Restor-
ing a checkpoint is exposed to a large performance gap with
a peak performance because the simulation is resumed with a
cold started cache. In addition, in the gate and transistor level
phases, it takes a long time to achieve the peak. Our cache
warming mechanism described in Section VI warms up the
cache in the shortest time and improves evaluation accuracy.

We introduced our framework into two processor design
projects: an embedded processor [9] and FabScalar.

401

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

functional
simulator

fast-skip or
restore checkpoint

time

processor design
take over
architectural state

Region of interest

functional
simulator

cycle-accurate behavior

cross-check

instruction set level
verification

system call

one cycle emulation

Fig. 1. Co-simulation framework.

IV. SYSTEM CALL EMULATION

In general benchmark programs such as SPEC, a processor
must handle system calls (services from an OS kernel) to han-
dle the file system, network, memory, process, thread, and se-
curity. For this reason, to evaluate a processor design with gen-
eral benchmarks, the processor either boots an OS or uses an
alternative stand-alone C library. There are two requirements.
One is that researchers directly execute benchmarks on a full
implemented processor to evaluate and verify in a short time.
Since booting an OS takes a large amount of time, especially
in gate and transistor level, it is difficult to evaluate or verify
a processor design on a full system. Moreover, although using
an LSI tester has an advantage of directly evaluating or testing
a fabricated chip with input vectors, such LSI testers limit the
execution cycle up to insufficient cycles for running a target ap-
plication. The other requirement is that to evaluate a microar-
chitectural approach, researchers often require only primal in-
structions such as arithmetic, logical, branch, and memory ac-
cess instructions, and tends to omit subsidiary hardware for an
OS such as memory management unit and internal processor
registers. Implementing such hardware requires researchers to
have a deep understanding of such hardware.

Because of these two requirements, executing general pro-
grams without an OS is valuable. Newlib is a C library intended
for use on embedded systems [10]. A processor can execute
programs without an OS with the addition of a few low-level
routines. However, another binary file using Newlib is needed.
In addition, Newlib requires emulation of peripheral systems
and does not support multiple processes and cores.

Emulating a system call as an instruction solves the above
problems. When a system call occurs, the functional simulator
detects the call and emulates it by calling the host OS. Later, the
processor design continues execution after reflecting the result
of the system call.

To emulate a system call, the processor design somehow no-
tifies the emulator of the occurrence of the system call. Fur-
thermore, the processor design must take over the system call
result. In the RTL phase, this is not difficult because a test mod-
ule can look into the submodule, which asserts a relative signal,
and overwrite the architectural state. FabScalar currently uses
this method; however, it is used only in the RTL phase and pre-
vents regions including system calls from being evaluated on
FPGA [11]. Therefore, our framework is necessary for emulat-

Processor design
(RTL to Chip)

Off-chip
emulator

Memory

0000.0000

7fd0.0000

Memory
mapped
trigger

 R0
 :
 :
 :
 :
 :
R31

load/store

Architectural state
before/after
a system call

PC

Fig. 2. Off-chip system call emulation mechanism.

ing system calls beyond the RTL phase.

A. Implementation of off-chip system call emulator

The concept of our system call emulation mechanism is jug-
gling a system call as consecutive stores and loads. We ex-
plain our emulation mechanism using Figs. 2 and 3. Fig. 2
shows memory mapping and how to trigger/reflect a system
call emulation. We allocate a memory space (e.g., from address
7fd00000) to interact with the off-chip emulator. First, when a
system call occurs, the processor jumps to the system call trap
routine like a real product. We use the routine shown in Fig. 3
instead of a true routine if an user wants to emulate system
calls. Second, the processor design involves storing the archi-
tectural state, i.e., register file, to the prescribed space because
the emulator requires the register file values to emulate the re-
quired system call. Next, the emulator emulates the system call
when a store is executed into the probing address (7fd00000).
Finally, the emulator writes the values updated by the system
call into the same memory space to which the processor stored
the register values, then the processor loads the modified val-
ues using load instructions. Note that if the processor includes
a cache, the stores and loads should be non-cacheable mem-
ory access instructions. This emulation mechanism does not
require any dedicated hardware in the processor design; there-
fore, the processor maintains a pure design. Since the processor
interacts with the emulator using load and store instructions in
our framework, the emulation mechanism can be consistently
used from RTL to fabrication. This enables the processor de-
sign to execute a general program without booting an OS.

The off-chip system call emulation mechanism is of course
used for evaluating and verifying a complete processor. Also,
a prototype processor design which does not support system
calls can be evaluated with general benchmarks. This aspect
improves research productivity to evaluate a microarchitectural
approach.

V. CHECKPOINT MECHANISM

A checkpoint mechanism saves the state of a simulation in
an ROI and later continues the simulation from the ROI. A
checkpoint mechanism goes through two phases: checkpoint

402

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

bfc003d0 <__trap_syscall>:
/* Save architectural state */
sw $1, 0x104(k0)

sw $31, 0x17c(k0)
/* Trigger for system call */
sw 0x01, 0x0000(k0)
/* Restore the result */
lw $1, 0x104(k0)

lw $31, 0x17c(k0)

Fig. 3. System call trigger routine

bfc00000 <__reset_handler>:
lui k0, 0x7fd0
lw $1, 0x104(k0)

lw $31, 0x17c(k0)
/* load program counter */
lw k1, 0x278(k0)
jr k1

Fig. 4. Reset routine

creation phase with only the functional simulator, and resume
phase with the processor design. We can repeat the resume
phase during verification and evaluation of a processor to re-
duce turnaround time.

In our co-simulation framework, we resume a program using
a similar routine as the system call emulation for use in every
design phase to restore the architectural state. We use the reset
routine shown in Fig. 4. After the processor is reset, the pro-
gram counter is initialized to bfc00000, which is the general
start address of the reset routine. In the routine, the processor
loads register file values and the program counter written into
the prescribed memory space. The program counter indicates
the starting point of a checkpoint.

However, if the co-simulator naively resumes a benchmark
program from a checkpoint, a system call (file- and network-
related) cannot be correctly executed. In the following expla-
nation, we use a sequence of file system operations as an ex-
ample to simplify the problem. The co-simulator leaves file
input/output (I/O) to the OS running on a host computer. Fig. 5
shows the issue of resuming simulation from a checkpoint.
When a file is opened, the off-chip system call emulation mech-
anism calls the OS to handle the file opening (Fig. 5.A). Once
the file is opened, the co-simulator treats I/O operation to the
file in the same way (Fig. 5.B). Once the simulation reaches at
the start point of an ROI, the co-simulator creates the check-
point, then the file is closed because the co-simulator quits
(Fig. 5.C). For this reason, when the co-simulator resumes the
simulation from the checkpoint (Fig. 5.D) and a file I/O occurs
(Fig. 5.E), the co-simulator cannot handle the file I/O because
the file is not open.

To solve this problem, FabScalar dumps the state not only at
a checkpoint but also at file I/Os in an ROI as shown in Fig. 6.
In the checkpoint creation phase, FabScalar executes a program

Program

CP

open
OS

OS
write

req.

req.

functional simulator processor design

File close

insts

Resume
phase

Checkpoint creation
phase

File:
:

fopen

fwrite

:
:

fwrite

:

:

:

A

B

C

File is
not open!

D

E

checkpoint

dump

restore

Fig. 5. Problem with checkpoint mechanism.

beyond a checkpoint to dump the state after file I/Os in the ROI
(Fig. 6.A). To resume a program, FabScalar restores the state
at the checkpoint (Fig. 6.B). When a file I/O occurs during the
resumed simulation, the dumped state after the file I/O is re-
stored (Fig. 6.C); therefore, FabScalar reproduces the state after
the file I/O. With this method, FabScalar provides a checkpoint
mechanism. However, FabScalar can execute only file I/Os that
were pre-executed in the checkpoint creation phase. In addi-
tion, this mechanism cannot be applied to a multiprocessor en-
vironment because we cannot create the preceding checkpoint.
Because the execution order is non-deterministic in a multipro-
cessor, the order of system calls is also non-deterministic.

There are a few solutions to the problems. M5 uses the so-
lution of dumping all necessary information into a checkpoint
file, e.g., the offset of the file descriptor manipulated in the sim-
ulation. By contrast, we adopt another solution because M5’s
solution requires the dumping all inflight operations such as file
system and network. In our solution, the simulator executes
only related system calls to resume a program with inflight op-
erations. Fig. 7 shows our solution. Our co-simulator dumps
the difference in state between each file I/O up to a checkpoint
in the checkpoint creation phase (Fig. 7.A). It skips the instruc-
tions between each file I/O using the dump file and executes
only file I/Os (Fig. 7.B). After it reaches the checkpoint, it con-
tinues execution including file operations (Fig. 7.C). As a re-
sult, our co-simulator skips to a checkpoint at high speed with-
out any restriction.

Although our solution has the advantage of handling all in-
flight operations in the same way, restoration speed depends
on the number of system calls up to a checkpoint. To demon-
strate that our solution is practical, we evaluated the restor-
ing of speed using SPEC2000 INT benchmarks. We created
a checkpoint in SimPoint [12] and resumed the checkpoint for
each benchmark program. Table I lists the evaluation results.
The upper half compares the time to forward each benchmark
to the SimPoint. We evaluated all benchmarks on Intel Core i7-
2600 CPU @ 3.40 GHz with 4 GB memory. We used a 4-width

403

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

Program
:
:

fopen

fwrite

:
:

CP

open

fwrite

:

:

:

OS

OS
write

req.

req.

File close

insts

fwrite

End

A
C

File

B

OS
writereq.

functional simulator processor design

Resume
phase

Checkpoint creation
phase

checkpoint

restore

dump

Fig. 6. Checkpoint mechanism of FabScalar.

TABLE I
DEMONSTRATION OF CHECKPOINT MECHANISM.

gzip mcf bzip parser twolf

Gate-levela (day) 13,757 6,389 11,297 13,260 12,319

RTL designa (day) 844 326 715 680 645

fast-skip (min.) 244 103 206 210 212

checkpoint (sec.) 0.50 0.68 0.77 3.84 0.53

skipped insts (100 million) 1,189 553 977 1,146 1,066

checkpoint file size (MB) 832 326 384 1780 119

system calls 65 116 101 1,027 133

aEstimated by million instructions per second (MIPS) value

fetch superscalar processor design as the RTL design and syn-
thesized the RTL design for the gate-level estimation. We used
Cadence NC-Verilog, version 09.20-s038, for simulation and
Synopsys Design Compiler, version H-2013.03-SP2, for syn-
thesis. We note that checkpoint restoration succeeded in both
RTL and gate-level simulations. The lower half of the table
summarizes the number of skipped instructions, the file size of
the checkpoint, and the number of system calls up to the Sim-
Point. The results show that restoring a checkpoint took a few
seconds in the worst case and the file size of the checkpoint was
not so large.

VI. CACHE WARMING MECHANISM

A cache system has a large impact on processor perfor-
mance. When we resume a benchmark program from a check-
point, a cold started cache incurs a performance gap with peak
performance, as shown in Fig. 8. Therefore, the evaluation ac-
curacy is degraded because of the performance gap. Further-

open
OS

OS

File

write

req.

req.

File close

A B

C

File
open

write

req.

req.

write

write

req.

req.

A

A

B

B

Program
:
:

fopen

fwrite

:
:

CP

fwrite

:

:

:

insts

fwrite

OS

OS

OS

OS

functional simulator processor design

Resume
phase

Checkpoint creation
phase

checkpoint

dump

restore

Fig. 7. Proposed checkpoint mechanism.

more, it takes a long simulation time to warm up a cache sys-
tem to analyze the peak performance/energy. OpenSPARC has
a cache warming mechanism using PLI in verilog HDL. This
implementation limits the use to only in the RTL phase. By
contrast, our cache warming mechanism can be used in all de-
sign phases. It is particularly effective in shortening the test
vector for an LSI tester. In addition, our cache warming mech-
anism defines a certain time when the cache system is warmed
up, this feature enables a designer to evaluate only a specified
period after the processor achieves the peak in simulation, as
shown in Fig. 9.

Fig. 9 shows our cache warming mechanism. Our co-
simulator also has a cache simulator written in C language.
When the co-simulator creates a checkpoint, the cache sys-
tem dumps the cache warming routine (binary file, actually),
as shown in Fig. 9. Lines that are accessed with the same index
are dumped in order of the least recently used (LRU) value to
restore the cache contents including the cache replacement al-
gorithm. We depict that a lower LRU value has a higher priority
for replacement, i.e., an entry whose LRU value is 0 will be re-
placed. The dumped routine is linked when the co-simulator
starts restoration, and it is called in the reset routine before
restoring the architectural state. This mechanism restores the
cache contents by using a software level approach in the short-
est time.

We briefly estimated the impact of our cache warming mech-
anism on an L1 data cache (total size: 16 KB and line size:
16 bytes). Even in the worst case (cache warming on block-
ing cache), our cache warming mechanism reduced 90% of
the simulation time to stabilize performance compared with a
simulation using cold started cache. As a result, we can cut
15 minutes in gate-level simulation; therefore, we will be en-
able to skip tens of hours for a peak performance evaluation
in transistor-level simulation. Our cache warming mechanism
reduces one more order of magnitude when we use a non-
blocking cache for cache warming.

Currently, optional checkpoints are only for data cache
warming. Expanding optional checkpoints such as instruction

404

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

performance

time

Cache warming

real execution cold started cache

checkpoint

peak performance

performance

time

proposed cache warming

checkpoint

peak performance

cache warming phase

reduce time

performance gap

Fig. 8. Impact on performance using cache warming.

cache warm routine

load addr1
load addr3
load addr0
load addr2

0 12 3index

Tag Tag Tag Tag

4-way set-associative cache

.

.

.

.

.re-gen.
addr0

re-gen.
addr1

re-gen.
addr2

re-gen.
addr3

Dump in
LRU order

LRULRULRULRU

addr0 addr1 addr2 addr3

Fig. 9. Generating cache warming routine.

cache and branch predictors is left for future work.

VII. SUMMARY AND CONCLUSIONS

We proposed a practical processor co-simulation framework
that provides system call emulation, checkpoint, and cache
warming mechanisms through the RTL, gate level, transistor
level, and fabricated chip phases. All the mechanisms were
effective in two processor design projects.

For future work, we intend to demonstrate that our frame-
work can be used for a fabricated chip we are currently design-
ing. Also, the entire co-simulation environment will be avail-
able in the near future.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 24700047. This work is supported by the VDEC of the
University of Tokyo in collaboration with Synopsys, Inc., Ca-
dence Design Systems, Inc., and Rohm Corporation.

REFERENCES

[1] D. Burger and T. M. Austin, “The Simplescalar tool set, version 2.0.
technical report” CS-TR-1997-1342, University of Wisconsin-Madison,
1997.

[2] R. Shioya, M. Goshima, and S. Sasaki, “The design and implementation
of processor simulator Onikiri2”, the Annual Symposium on Advanced
Computing Systems and Infrastructures, poster, 2009.

[3] F. bellard. QEMU: open source processor emulator.
http://bellard.org/qemu/.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S.
K. Reinhardt, “The M5 simulator: modeling networked systems”, IEEE
Micro, 26:52-60, 2006.

[5] N. Fujieda, T. Miyoshi and K. Kise, “SimMips: A MIPS system simula-
tor”, Workshop on Computer Architecture Education held in conjunction
with MICRO-42, pp. 32-39, December 2009.

[6] XUM Version 2.0: the eXtensible Utah Multicore Project, September,
2012.
http://www.cs.utah.edu/formal verification/XUM/.

[7] OpenSPARC:
http://www.oracle.com/technetwork/systems/opensparc/
index.html.

[8] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi,
B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “Fab-
Scalar: Composing synthesizable RTL designs of arbitrary cores within
a canonical superscalar template”, Proceedings of the 38th IEEE/ACM
International Symposium on Computer Architecture (ISCA-38), pp. 11-
22, June 2011.

[9] T. Sugiyama, T. Sasaki, T. Nakabayashi, and T. Kondo, “Development
of C++/RTL co-simulation environment for accelerating VLSI design
of an embedded processor”, Proceedings of the 28th International Tech-
nical Conference on Circuits/Systems, Computers and Communications
(ITC-CSCC 2013), pp. 281-284, July, 2013.

[10] Newlib
http://sourceware.org/newlib/.

[11] B. H. Dwiel, N. K. Choudhary, and E. Rotenberg. “FPGA Modeling of
Diverse Superscalar Processors”, Proceedings of the 2012 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS’12), pp. 188-199, April 2012.

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior”, 10th International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems, Oct. 2002, pp. 45-57.

405

5A-2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 03,2025 at 22:48:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

