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Energy is a valuable resource in embedded systems as the lifetime of many such systems is con-

strained by their battery capacity. Recent advances in processor design have added support for

dynamic frequency/voltage scaling (DVS) for saving energy. Recent work on real-time scheduling

focuses on saving energy in static as well as dynamic scheduling environments by exploiting idle

time and slack because of early task completion for DVS of subsequent tasks. These scheduling algo-

rithms rely on a priori knowledge of worst-case execution times (WCET) for each task. They assume

that DVS has no effect on the worst-case execution cycles (WCEC) of a task and scale the WCET

according to the processor frequency. However, for systems with memory hierarchies, the WCEC

typically does change under DVS because of requency modulation. Hence, current assumptions

used by DVS schemes result in a highly exaggerated WCET. This paper contributes novel tech-

niques for tight and flexible static timing analysis, particularly well-suited for dynamic scheduling

schemes. The technical contributions are as follows: (1) We assess the problem of changing exe-

cution cycles owing to scaling techniques. (2) We propose a parametric approach toward bounding

the WCET statically with respect to the frequency. Using a parametric model, we can capture

the effect of changes in frequency on the WCEC and, thus, accurately model the WCET over any

frequency range. (3) We discuss design and implementation of the frequency-aware static timing

analysis (FAST) tool based on our prior experience with static timing analysis. (4) We demonstrate

in experiments that our FAST tool provides safe upper bounds on the WCET, which are tight. The

FAST tool allows us to capture the WCET of six benchmarks using equations that overestimate

the WCET by less than 1%. FAST equations can also be used to improve existing DVS schedul-

ing schemes to ensure that the effect of frequency scaling on WCET is considered and that the

WCET used is not exaggerated. (5) We leverage three DVS scheduling schemes by incorporating

FAST into them and by showing that the energy consumption further decreases. (6) We compare

experimental results using two different energy models to demonstrate or verify the validity of
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simulation methods. To the best of our knowledge, this study of DVS effects on timing analysis is

unprecedented.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Schedul-
ing; D.4.7 [Operating Systems]: Organization and Design—Real-time systems and embedded
systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Real-time systems, scheduling, dynamic voltage scaling,

worst-case execution time analysis

1. INTRODUCTION

Power is an important constraint for mobile, battery-powered embedded de-
vices. Limitations on the lifetime of embedded devices have resulted in advances
in embedded architectures to extend the lifetime of devices. Microprocessor de-
signs ranging from low-end 8-bit up to high-end 32-bit embedded architectures
(e.g., the Atmel Atmega AVR family on the low end and the Intel XScale on
the high end, just to name two extremes) support dynamic adjustment of pro-
cessing speed to prolong battery life. Generally, two techniques are employed in
unison. On one side, dynamic frequency scaling allows the speed of instruction
execution to change during the operation of a device. On the other side, dynamic
voltage scaling modulates the level of the supply voltage upon demand. Both
schemes, referred to as DVS in the following, work hand in hand: When the
frequency is lowered by a certain degree, the voltage can be also be reduced to a
lower level. Furthermore, both scaling techniques impact the power consump-
tion of a device: power scales linearly with the frequency and quadratically
with the voltage. Hence, considerable energy savings may result in a concerted
approach of dynamic frequency and voltage scaling [Chandrakasan et al. 1992].

Real-time systems are particularly well-suited to profit from DVS. Because
of periodic task execution, it is generally not feasible to utilize the range of
sleeping modes that modern processors offer. Tasks are frequently invoked (on
a periodic basis in the order of a few milliseconds). The time to enter a sleep
mode (and the later wakeup time) is in the order of tens of milliseconds, which
generally matches the order of magnitude of a real-time task’s period. Hence,
suspension in sleep modes is not a viable option for real-time systems. Real-time
systems, however, often have task sets that underutilize the processor. Hence,
reducing the frequency of execution, while still meeting deadlines through DVS,
is a viable option resulting in considerable energy reduction.

Recently, a number of hard real-time DVS, scheduling schemes have been
studied, ranging from compiler support [Mosse et al. 2000] over numerous static
scheduling approaches [Gruian 2001; Pillai and Shin 2001] to dynamic meth-
ods [Pillai and Shin 2001; Aydin et al. 2001; Dudani et al. 2002]. All of these
approaches have their own merits in that they provide a solution suitable to
certain systems, depending on scheduling methods, and utilization bounds of
the task sets and architectural properties, such as scaling overhead.

Any DVS scheduling scheme is subject to the same constraints as other hard
real-time systems: The worst-case execution time (WCET) of a task has to be
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known a priori, i.e., safe bounds on a task’s execution time have to be obtained.
Prior work on static timing analysis provides the means to derive relatively
tight WCET bounds for simple embedded architectures, which are provably
safe. A number of research groups have addressed various issues in the area
of bounding the WCET of a real-time task. Conventional methods for static
analysis have been extended from unoptimized programs on simple CISC pro-
cessors to optimized programs on pipelined RISC processors and from uncached
architectures to instruction and data caches [Park 1993; Lim et al. 1994; Healy
et al. 1995; Mueller 2000; White et al. 1999; Li et al. 1996]. The challenge of
static timing analysis is to provide not only safe but also tight bounds on the
WCET in order to impose a high enough processor utilization. These analy-
sis approaches result in tight bounds for deterministic microarchitectures with
simple components.

In the context of DVS, static timing analysis is generally assumed to remain
valid with frequency scaling. The conjecture is that reducing a processor’s fre-
quency still results in the same number of cycles of execution for a task. Hence,
considering the processor frequency should suffice to derive safe WCET bounds.
However, this simplistic view generally does not hold for any realistic architec-
tures. Consider the impact of memory references. Any instruction or data ref-
erence that is resolved through a main memory access operates at external bus
frequency. However, bus frequencies generally diverge from internal processor
frequencies and they do not scale at the same rate as does the DVS scaling.
For example, the first generation Compaq Ipaq has a StrongArm microproces-
sor (SA-1110) that scales at eight frequencies, but only supports two different
external bus frequencies [Corp.].

In short, when static timing analysis is applied in the context of DVS, tight-
ness and safety assumptions may no longer hold: WCET bounds may either not
be tight (considerable overestimation upon fast memory operations for lower
processor frequencies) or are no longer safe (underestimation potentially lead-
ing to missed deadlines upon a reduced data bus frequency). As a result, the
memory latency also has to be adjusted to discrete values according to dynamic
settings for execution frequencies and memory latencies. Instead of obtaining
one discrete WCET through static timing analysis, different values for each pro-
cessor frequency/bus frequency pair would have to be obtained. While this may
still be a feasible approach for a static schedule and for a small number of such
frequency pairs, it becomes infeasible for dynamic scheduling paradigms or a
large number of frequency pairs. For certain scheduling, approaches that ex-
hibit intratask DVS, such a static approach, becomes impossible if tight bounds
for the WCET are to be determined because the point of frequency changes dur-
ing task execution is typically unknown at static time, e.g., because of dynamic
scheduling, preemption, and early completion.

The contribution of this paper is to remedy this problem by promoting a
new methodology for frequency-aware static timing analysis (FAST). Instead
of obtaining a WCET bound for each frequency pair, FAST takes static tim-
ing analysis to a novel level suitable for dynamic scheduling. FAST expresses
WCET bounds as a parametric term whose components are frequency-sensitive
parameters. On the one side, cycles are interpreted in terms of the processor
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frequency; on the other hand, memory accesses are expressed in terms of the
memory latency overhead because of the external bus speed. This parametric
expression of the WCET allows one to determine on-the-fly the WCET for a
given frequency pair. This is particularly appealing when scheduling decisions
occur dynamically and when the number of frequency pairs becomes large, such
as is the case with state-of-the-art processors with fine-grained frequency set-
tings [Intel 2000].

Another contribution of this paper is its methodology to evaluate benefits
of energy conservation. Instead of using a single simulation methodology, as
done in most prior work, two different analytical approaches are employed.
A commonly used power estimation model on one side is compared to a more
detailed power model that separately considers architectural components. The
former is based on estimating power via its proportional relation to processor
frequency and the square of the voltage, while the latter, known as the Wattch
model [Brooks et al. 2000], considers power consumption for the register file,
functional units, branch prediction, etc., based on their dynamic utilization
in conjunction with frequency and voltage levels. The comparison shows a con-
siderable difference in estimated absolute energy consumption, which indicates
that absolute values from simulations can be controversial. Both models loosely
agree in that they show an overall reduction in energy consumption because of
our approach, which validates our claims about the potential of FAST.

In the following, we detail the technical innovations necessitated by DVS
to ensure that safe and flexible WCET predictions may be obtained. We pro-
vide motivating examples, discuss the design of our FAST analysis tool, and
we show the feasibility of our approach in a set of experiments that demon-
strate flexibility and competitiveness while still providing tight bounds on the
WCET. Related, as well, are future work and a summary, which conclude our
contributions.

2. EFFECTS OF FREQUENCY SCALING ON WCET

In this section, we motivate the need for a parametric frequency model and
assess the challenges of supporting this novel model in a static timing analysis
tool. We also describe the parametric frequency model in detail and we illustrate
the key features in examples.

2.1 Motivation

Real-time systems that use DVS-based scheduling, scale the WCET, assuming
that the number of worst-case execution cycles (WCEC) remains constant, even
with a change in the frequency. This assumption holds for systems where the
memory latency can scale with processor frequency (systems with on-chip mem-
ory). In contrast, for a system where the memory latency does not scale with
processor frequency (systems with dynamic memory and memory hierarchies),
the WCEC of a task does not remain constant when the frequency is scaled,
since an increase in the frequency typically increases the number of cycles re-
quired to access memory. This behavior is caused by a constant access latency
for memory references, regardless of changing processor frequencies.
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Fig. 1. Actual vs. assumed WCEC for fft.

Notice that the memory access time depends on the front-side bus (FSB)
instead of the processor frequency. Either the FSB has a constant frequency or
it does not provide scaling at the same rate as a processor, i.e., FSB frequencies
typically are constrained by a considerably smaller range. Let us assume a
constant FSB frequency, which is most common.

By assuming that the WCEC remains constant, one ignores the fact that the
WCEC reduces with frequency, which results in overestimations of the WCET.
Figure 1 depicts results for the C-lab real-time benchmark fft, where the ac-
tual WCEC for a system with a memory hierarchy is compared to a constant
WCEC. The WCEC for the benchmark was calculated for a simple in-order
pipeline with instruction and data caches. In this example, it is assumed that
the memory access latency is constant. Figure 1 illustrates that the number of
WCEC increases proportionally with the processor frequency. This results from
an increasing number of wait cycles for a constant time memory latency as the
frequency increases. The slope of the actual WCEC depends on the number of
accesses to main memory (and the latency to frequency ratio). Hence, the slope
depends on the number of misses in the instruction and data caches combined.
Therefore, the accuracy of paradigms that measure the worst-case behavior of
the instruction and data caches not only control the accuracy of the WCEC,
but also affect the accuracy by which the WCEC can be scaled with frequency.
Figure 2 depicts the equivalent WCET to the two WCEC curves in Figure 1.
The actual WCET depicted indicates the assumption of a constant WCEC, in-
dependent of frequency modulations, result in considerable overestimations of
the WCET.

The objective of the work described in this paper is to accurately model the
actual WCEC and, thereby, the actual WCET of real-time tasks. We derive a
parametric frequency model for this purpose. The model provides WCET bounds
that remain tight and accurate throughout any frequency range. The paramet-
ric model complements real-time systems employing a DVS-base scheduling
scheme and it is paramount to achieving higher energy savings. Ignoring the
change in WCEC with frequency results in considerably smaller energy savings.
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Fig. 2. Actual vs. assumed WCET for fft.

2.2 Parametric Frequency Model

Our parametric frequency model can be used for timing analysis with any sim-
ple in-order single-issue pipeline. The model is applicable to systems with or
without a memory hierarchy. We consider the model in a system with a memory
hierarchy in the following and we contribute solutions to the technical chal-
lenges posed. We assume that the system is equipped with an on-chip instruc-
tion and data cache and that the main external memory has a constant access
latency. For now, let us assume that a static timing analyzer has detected a
worst-case path, which is an assumption that is lifted in Section 3.2. To ac-
curately model the WCET in systems with memory hierarchies, we propose a
parametric frequency model that accurately captures the effect of frequency
scaling by splitting the WCEC of a task into two components. The first com-
ponent, i, captures the ideal number of cycles required to execute the task
assuming perfect caches. In other words, i does not scale with frequency. The
second component, m, counts the total number of instruction and data cache
misses for the task. m is the part of the WCEC that scales with frequency and
depends on the memory access latency. If a system without caches is consid-
ered, i would count the total number of cycles used for nonmemory operations,
while m would count the total number of memory references. Thus, the WCEC
is expressed as follows:

WCEC = i + mN (1)

where N is the number of cycles required to access the memory, which depends
on the latency of the memory and the frequency of the processor. For a uniform
memory latency, the WCEC can be easily be converted into the WCET by di-
viding by the frequency. This frequency model can accurately model the actual
WCET, because it separates the WCEC into components, one that scales and
one that does not scale with processor frequency.

The following examples are presented to show that the parametric model
can capture the effects of different sequences of instructions in a task. Only
sequences that contain data or instruction cache misses are of concern since
they are affected during frequency scaling. A sequence of instructions without
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Fig. 3. Sample instruction sequence.

Fig. 4. Example 1: instruction cache miss.

any cache misses can be captured exclusively by the i component and represents
a trivial example of our parametric model. For the following examples, let N =
10, as shown in the figures below. We assume separate instruction and data
caches and frequency scaling under our model with an arbitrary simple in-
order pipeline.

Consider a sequence of four instructions, as shown in the Figure 3. This
instruction sequence is executed in a processor with a simple six-stage in-order
pipeline. The pipeline stages are fetch (IF), decode (ID), issue (IS), execute (EX),
memory access (MEM), and write-back (WB).

1. In Figure 4, we observe the effects of an instruction cache. Consider instruc-
tion B resulting in a miss. While instruction B misses in the instruction
cache, all other cache accesses result in hits. Since instructions are stalled
until the miss on B is resolved, the number of cycles involved can be sepa-
rated into two components. With i = 9 and m = 1 in Eq. (1), the WCEC is
accurately captured by our model as WCEC = 9 + 1N . Hence, the WCEC
is accurately modeled for any value of N resulting in an accurate WCET,
regardless of frequencies.

2. In Figure 5, we observe the effects of a data cache miss. Instruction B misses
in the data cache while all other cache accesses are hits. With i = 9 and
m = 1, the WCEC is again calculated as 9 + 1N . Since the data miss stalls
subsequent instructions, one can separate the number of cycles required for
the memory access. However, had the Instruction C or any other stalled in-
struction performed any useful work instead of being stalled, a potential
for overestimation would occur for the model, e.g., for multicycle floating-
point operations, and branch mispredictions. Any such overestimation re-
sults from the overlap of useful cycles with the memory stall. In our model,
the i component counts these useful cycles while the m component counts
data miss. Overlap would not be considered by the model. For example, if
instruction C took an extra cycle to execute, the new WCEC would become
10 + 1N . The model does not consider the overlap between the data miss
and the extra cycle used by instruction C. A similar problem is also observed
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Fig. 5. Example 2: data cache miss.

Fig. 6. Example 3: instruction + data cache miss.

in example 1, if the instruction miss overlaps with a high execution latency
instruction.

The potential for overestimations implies that the obtained WCET ob-
tained still provides an upper bound on the execution time, albeit not nec-
essarily a tight one. Removing overestimations because of instructions with
high execution latencies, however, is non-trivial because instructions may
have different execution latencies. Subsequent experiments show that these
design choices have a diminishing affect on the tightness of WCET bounds.

3. In Figure 6, we observe the effects of a simultaneous instruction and data
cache misses. Instruction B results in a data cache miss while the instruction
C results in an instruction cache miss. All other cache accesses are hits. With
i = 9 and m = 2, the WCEC = 9 + 2N . The instruction and the data cache
misses cannot be serviced together. Hence, instruction B is stalled until
instruction C’s cache miss is serviced. The model captures all sequences of
instructions, where a cache miss stalls yet another cache miss. Notice that
the two misses in question need not result from consecutive instructions. We
observe some overestimation because of overlapping of some work with the
miss cycles.

In the above examples, different combinations of cache misses were consid-
ered, which can occur in a simple pipeline. In the presence of these misses, the
parametric model accurately captures the worst-case timing behavior for any
sequence of instructions. Overestimation is expected when a high execution la-
tency operation overlaps with a miss or when an I-cache miss overlaps with a
D-cache miss.
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Fig. 7. Obtaining safe WCET bounds.

3. TIMING ANALYSIS

In this section, we describe conventional static timing analysis and briefly con-
trast the approach to dynamic timing analysis methods. We specify the novel
enhancements necessitated by DVS to adapt conventional static timing analy-
sis to a frequency-aware static timing analysis (FAST) tool.

3.1 Static Timing Analysis

Schedulability analysis for hard real-time systems requires that WCET be
safely bounded in order to ensure feasibility of scheduling a taskset for a given
scheduling policy, such as rate-monotone and earliest-deadline-first scheduling
[Liu and Layland 1973]. If the execution time of a task were obtained through
dynamic timing analysis based on experimental or trace-driven approaches,
these values would not provide a safe bound of the WCET [Wegener and Mueller
2001]. On the one side, it is difficult to determine the worst-case input set even
for moderately complex tasks that would exhibit the WCET and to perform
exhaustive testing over the entire input space is infeasible, except for trivial
cases. On the other side, even if the worst-case input set was known, the in-
teraction between the software and hardware might cause the task to exhibit
its WCET for a different input set. The cause of this behavior is architectural
complexity, such as complex pipelines and caching mechanisms.

Static timing analysis is a viable alternative to dynamic timing analysis
and, while various static approaches have been studied, we will constrain our-
selves to one such toolset without loss of generality [Healy et al. 1999; Mueller
2000; White et al. 1999]. The WCET bounds obtained by static timing analysis
provide a guaranteed upper bound on the computation time of a task. Static
timing analysis performs the equivalent of a traversal over all execution paths
to determine timing information independent of a program trace and without
tracking values or program variables. Loop bodies only require a few traversals
to determine the worst-case behavior of the entire loop because of an efficient
fixed-point approach. As the execution paths are traversed, the behavior of the
architectural components along the execution paths is captured. The paths are
composed to form loops, functions, and, ultimately, the entire application to
calculate both WCEC and WCET.

Figure 7 depicts an overview of the organization of this timing analysis
toolset. An optimizing compiler has been modified to produce control flow and
branch constraint information as a side effect of the compilation of a source file.
The original research compiler VPCC/VPO [Benitez and Davidson 1988] was
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Table I. Instruction Categories for WCET

Cache Category Definition

Always miss Instruction may not be in cache when referenced.

Always hit Instruction will be in cache when referenced.

First miss Instruction may not be in cache on 1st reference for each loop execution,

but is in cache on subsequent references.

First hit Instruction is in cache on 1st reference for each loop execution, but may

not be in cache on subsequent references.

replaced by GCC with a Portable Instruction Set Architecture (PISA) backend
that interfaces with SimpleScalar. Real-time applications are compiled into
assembly code using the GCC PISA compiler. The control-flow graph and in-
struction, as well as data references, are extracted from the assembly code.
Upper bounds on the number of iterations performed by loops are provided—a
prerequisite for performing static timing analysis. A static instruction cache
simulator uses the control-flow information to construct a control-flow graph of
the program that consists of the call graph and the control flow of each function.
The program’s control-flow graph is then analyzed and a caching categorization
for each instruction and data reference in the program is produced. Separate
categorizations are provided for each loop level in which the instructions and
data references are contained. The categorizations for instruction references
are described in Table I. Next, the timing analyzer uses the control flow and
constraint information, caching categorizations, and machine-dependent infor-
mation (e.g., pipeline characteristics) to calculate bounds on the WCET.

The approach in this paper differs from our prior toolset as follows. Our
tool separates static I-cache and D-cache (instruction/data cache) analysis. The
D-cache analysis currently lacks sufficiently detailed information about refer-
ences for the GCC compilation phase and D-cache analysis does not fully match
the SimpleScalar model. The focus of this paper is on enhancing the timing an-
alyzer with respect to the FAST model and PISA instruction set. However,
since we use our SimpleScalar-based architectural simulation environment
[Anantaraman et al. 2003] to validate our approach, we have to make simplify-
ing assumptions about data caches. Specifically, we assume a constant number
of data cache accesses to be misses for each application to model compulsory
misses. The remaining references are considered to be hits, which models a suf-
ficiently large cache. This simplifying assumption does not affect the design of
FAST, i.e., our model supports a more precise static data cache analysis as well.

The timing analyzer uses the control-flow information and loop bounds,
caching categorizations, and pipeline description to derive WCET bounds. The
pipeline simulator considers the effect of structural hazards (an instruction
occupying the universal function unit for multiple cycles), data hazards (a
load-dependent instruction stalls for at least one cycle if it immediately fol-
lows the load), branch prediction (backward–taken/forward–not taken), and
cache misses (derived from caching categorizations) for alternative execution
paths through a loop body or a function. Static branch prediction is easily ac-
commodated by worst-case analysis: the misprediction penalty is added to the
nonpredicted path (not taken path for backward branches and taken path for
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forward branches). Path analysis (see below) selects the longest execution path
as usual. Once timings for alternate paths in a loop are obtained, a fixed-point
algorithm (quickly converging in practice), is employed to safely bound the time
of the loop, based on the its body’s cycle counts.

The fixed-point approach generally requires path analysis for only a few it-
erations. Given the longest path for the first iteration, the next-longest path is
determined for the second iteration, which may differ from the original path
because of caching effects. The lengths of these paths are monotonically de-
creasing because of cache effects, and once we reach a fixed-point, subsequent
loop iterations can be safely approximated by this fixed-point timing value.
When the longest paths of consecutive iterations are combined, we account for
the pipeline overlap between the tail of the earlier path and the head of the
path that follows. The alternative—no overlap—is tantamount to draining the
pipeline between iterations. Using this fixed-point approach, the timing ana-
lyzer ultimately derives WCET bounds, first for each path, then for loops, and,
finally, for functions within the program. A timing analysis tree is constructed,
where each node of the tree corresponds to a loop or function. Nodes in the tree
are processed in a bottom-up manner. In other words, the WCET for an outer
loop/caller is not calculated until the times for all of its inner loops/callees are
known. This means that the timing analyzer predicts the WCET for programs
by first analyzing the innermost loops and functions before proceeding to higher-
level loops and functions, eventually reaching the tree’s root (e.g., main()). For
our purposes, the timing analysis tree provides a convenient method for obtain-
ing WCET for a specific scope, in particular, for subtasks. From the description
in this section, it becomes evident that static timing analysis is nontrivial, even
for simple pipelines.

3.2 Frequency-Aware Static Timing Analysis

The static timing analysis tool calculates the WCEC for a particular task. How-
ever, static timing analysis has to be performed whenever the processor fre-
quency is changed. Reassessing the WCET bound is paramount to temporal
safety, since a change in the processor frequency causes a change in the num-
ber of cycles required to access the memory, since front-side bus frequencies
do not scale at all (or at least not at the same rate). Because of the change
in memory latency, the WCEC information for different paths changes, which
may result in a different worst-case path than before. Our frequency model can
be elegantly incorporated into static timing analysis such that it calculates the
number of cycles for each possible worst-case path in the program. The follow-
ing technical innovations to the static timing analysis framework support such
flexible calculations.

Instead of using the memory access cycles to simulate the sequence of in-
structions in the pipeline, the ideal number of cycles is calculated, assuming all
cache accesses to be hits. The instruction and data cache misses are accumu-
lated as a side effect to compose a first order polynomial equation describing
the WCEC.

Static timing analysis requires different paths through the same node (loop
or function) to be compared. The path with the worst WCEC is used as the
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WCEC for the node. After integrating the frequency model into the framework,
one has to compare two equations to determine which one was to result in a
larger number of execution cycles. The challenge here is posed by having to
consider both equations: One of them (e.g., for path one) has greater WCEC for
some range of frequencies, while the other (for path two) has greater WCEC for
the rest of the frequency range. Remember that the frequency model is a first-
order polynomial. Consider the case where two equations intersect, i.e., both
polynomials have a common solution. We propose three approaches to address
this problem.

1. One can maintain an ordered list of equations and the ranges where sub-
sequent polynomials represent a larger WCEC than previous ones. Since
the frequency model is a first-order polynomial with different slopes, there
exists an intersection point constraining the range for each equation.

2. Alternatively a curve-fitting equation could capture the effects of both equa-
tions. This obviates the need for maintaining large numbers of equations,
but increases the complexity of the parametric equation. A higher-order poly-
nomial with strict upper bounds on each base polynomial would provide a
relatively close fit. The resulting curve would not be as tight as in case (1),
but may suffice if the slopes of the original polynomials do not diverge signif-
icantly. This would impose more overhead on dynamic scheduling schemes
that have to perform additional arithmetic to evaluate the equation upon
any scheduling action.

3. Another, easier solution is to declare a valid range of frequencies for the
processor. If two equations intersect outside the given range, we simply
have to choose the equation that provides the higher WCEC within the
valid range. If two equations intersect within this specified range, we use a
simple curve-fitting technique through a first-order polynomial that pro-
vides a WCEC greater or equal to the values of either of the original
equations.

By using one of the above techniques, we ensure that a FAST equation ob-
tained always provides an upper bound on the WCEC of the task, regardless of
the chosen frequency. For our FAST framework, we have used the third, which
is the easiest technique to bound FAST equations.

4. FAST–DVS SCHEMES

Most DVS scheduling algorithms use the assumption that the WCEC is con-
stant with frequency when scaling the WCET. By not considering the effect
on WCEC during frequency modulation, DVS schemes assume a considerably
overestimated WCET. Thus, DVS schemes fail to completely utilize available
slack, because the scaled WCET is not a tight bound. We have implemented our
parametric frequency model as the FAST framework. Parametric equations ob-
tained by FAST can be used in DVS scheduling schemes to ensure that the
scaled WCET remains an accurate and tight bound of the execution time for a
task. Thus, we can increase the efficiency of DVS schemes and further reduce
the energy consumption of the system.
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DVS schemes can execute a task set at a lower frequency provided that a
schedulability test deems the task set feasible and tasks do not exceed their
WCET. For DVS schemes based on earliest-deadline-first (EDF) scheduling,
the schedulability test expressed in Eq. 2 must be satisfied by the task set to
ensure feasibility. Eq. 2 represents the original Liu and Layland utilization test
of the system without considering frequency scaling [Liu and Layland 1973].

C1

P1

+ C2

P2

+ · · · + Cn

Pn
≤ 1 (2)

C1, C2, . . . , Cn represent the WCET for each of the n tasks. P1, P2, . . . , Pn

represent the respective periods of the tasks. As is common in base EDF, tasks’
deadlines are assumed to be equal to their periods. Let us now consider a scaling
factor α that identifies the actual (scaled) frequency, such that α = fc/ fm, where
fc is the scaled frequency, and fm is the maximum processor frequency.

Next, let us express Eq. (1) in time instead of cycles where the number of
cycles, N , is expressed in terms of the actual frequency, fc, and the memory
latency, L, using the relation N = L × fc, and fc is then substituted by fm × α

by definition of α.

C = WCEC
fc

= i + mLfc

fc
= i + mLfmα

fmα
(3)

Recall that Eq. (2) does not consider the effect of frequency scaling on WCET.
By combining Eq. (3) with Eq. (2), we yield a more accurate scaling factor by
taking the effects of frequency scaling on WCET into account, as seen in Eq. (4).

i1 + αm1Lfm

P1 fmα
+ · · · + in + αmnLfm

Pn fmα
≤ 1 (4)

By solving for α, we get:

n∑
j=1

ij + αmj Lfm

Pj fm
≤ α

n∑
j=1

ij

Pj fm
+

n∑
j=1

αmj L
Pj

≤ α

n∑
j=1

ij

Pj fm
≤ α − α

n∑
j=1

mj L
Pj

n∑
j=1

ij

Pj fm
≤ α

(
1 −

n∑
j=1

mj L
Pj

)
∑n

j=1
ij

Pj fm(
1 − L

∑n
j=1

mj

Pj

) ≤ α

∑n
j=1

ij

Pj

fm

(
1 − L

∑n
j=1

mj

Pj

) ≤ α (5)
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Fig. 8. FAST–static voltage scaling for EDF.

The scaling factor in Eq. (5) results in a much lower frequency fc. The WCET
used is not exaggerated, and slack is exploited efficiently.

In our implementation work, we integrated FAST equations into DVS–EDF
scheduling as proposed by Pillai and Shin through (a) static voltage scaling, (b)
cycle-conserving RT–DVS, and (c) look-ahead RT–DVS [Pillai and Shin 2001].
With only minimal changes to the original algorithms, we integrated the FAST
equations into the respective DVS schemes, thereby improving energy savings
obtained.

4.1 FAST–Static Voltage Scaling

The static voltage-scaling scheme introduced by Pillai and Shin [2001] uses
the modified EDF test shown in Eq. (2) to calculate the scaling factor α. This
algorithm uses all static slack in the system. The processor frequency for the
entire task set is set statically. Dynamic slack produced during runtime because
of early completion of tasks is not considered for frequency scaling. The FAST
equations for the WCET can be integrated into the static voltage scheme, as
shown in Figure 8. Equation (1) represents the WCET of all tasks and the scal-
ing factor is calculated using Eq. (5). The FAST–static voltage-scaling algorithm
performs better than the original static voltage scheme, because it considers the
portion of WCET that scales with frequency.

4.2 FAST–Cycle-Conserving RT–DVS

The cycle-conserving RT–DVS by Pillai and Shin [2001] calculates the utiliza-
tion for a task set at every task release and task completion. Upon task release,
the utilization is calculated based on the WCET. Upon task completion, the
utilization is calculated by considering the actual execution time of the com-
pleted task instead of the WCET. This algorithm uses the static slack available
in the system as well as the dynamic slack generated due to early task comple-
tions. Figure 9 shows the necessary modifications to the original algorithm to
incorporate the FAST equations.

The FAST–cycle-conserving DVS scheme outperforms the original scheme,
since it takes the actual execution times as well the scaling levels of previous
tasks into account. The scheme derives the current system utilization after task
completion by considering the actual execution time. In FAST–cycle-conserving
RT-DVS, the total number of cycles and the total number of misses experienced
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Fig. 9. FAST–cycle-conserving DVS for EDF.

by a task are determined during executing, e.g., by hardware counters, which
have become quite common for modern architectures. The actual execution time
is also converted into a FAST equation to consider its scaling with frequency.
The system utilization and the scaling factor are calculated through Eq. (4)
and (5).

4.3 FAST–Look-Ahead RT–DVS

The look-ahead RT–DVS schemes by Pillai and Shin [2001] finds the minimum
amount of work that may be performed between now and the next scheduling
event without missing any deadlines. All work is deferred till the last possible
moment, also referred to as last-chance scheduling [Chetto and Chetto 1989].
As a side effect, the frequency may be increased as execution approaches a
deadline. In practice, most tasks complete execution early, i.e., prior to their
WCET. Hence, the frequency rarely has to be raised to complete by a deadline.
This algorithm also uses all the static slack (idle) as well as most of the dy-
namic slack. Figure 10 depicts the modified original algorithm to integrate the
FAST equations into the DVS scheme. Figure 10 also shows a modification to
the look-ahead RT–DVS algorithm for task completion by setting c left j = Cj

(see appendix). The FAST–look-ahead scheme also takes advantage of FAST
equations to lower energy consumption of the algorithm. The terms i left and
m left describe the computation left in the form of a FAST equation. Hard-
ware counters are employed to track total cycles completed and total misses
inflicted, while a task is executing. The s component shown in Figure 10 cannot
be converted into a FAST equation unless considerable changes are made to
the algorithm. Doing so would make the algorithm more aggressive, leading
to lower frequencies. To avoid excessive modifications, only the next scheduled
task is expressed in the form of a FAST equation. The experiments show that
the performance of the algorithm is improved even with minimal modifications
to the algorithms.
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Fig. 10. FAST–look-ahead DVS for EDF.

5. EXPERIMENTAL FRAMEWORK

The experimental framework is divided into two sections. The first section is de-
voted to comparing the WCEC calculated using FAST equations, obtained from
the FAST framework, to the WCEC, obtained from the traditional static timing
analysis tool. The second section tests and compares FAST–DVS algorithms
with the original DVS algorithms proposed by Pillai and Shin [2001].

We assess the energy consumption using two different models for each case:
the classical model, based on E ∼ V 2 f , and an architectural resource model
Wattch [Brooks et al. 2000]. The former is widely used in early general-purpose
DVS work and in real-time systems to evaluate DVS-scheduling algorithms.
The latter has become popular in the architectural community since it inte-
grates with SimpleScalar [Burger et al. 1996]. To provide a proper comparison
between the two, the V 2 f model was also integrated into our SimpleScalar-
based simulator [Anantaraman et al. 2003]. Notice that the results reported in
Section 6 differ from our preliminary paper [Seth et al. 2003], which reported
V 2 f -based energy readings obtained from a scheduler simulator. Our new re-
sults consistently utilize the SimpleScalar architectural simulator, which, be-
sides the Wattch model, we have enhanced by a real-time scheduler and an
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implementation of three DVS scheduling schemes based on EDF, as proposed by
Pillai and Shin [2001]. Hence, the DVS scheduling and task dispatch overheads
are considered in our framework. The overhead of voltage/frequency switching
itself may be considered as part of these overheads.

5.1 Testing the FAST Framework

We redesigned our static timing analyzer [Healy et al. 1999] to create the FAST
framework. The FAST tool, like its predecessor [Anantaraman et al. 2003], is
based on the portable ISA (PISA) used by the SimpleScalar tool set. All instruc-
tion execution latencies are based on the MIPS R10K latencies. Specifically, a
constant memory latency of 100 ns is used. We use a 8 KB direct-mapped in-
struction cache and a 8 KB direct-mapped data cache. For the instruction cache
categorizations, the static cache simulator of our existing tool set is used. To ob-
tain data cache categorizations distinguishing hits and misses, we use a scheme
that assumes a constant number of data accesses as misses and the remaining
references as cache hits. During pipeline simulation, a static branch-prediction
scheme using the Ball–Larus heuristic is modeled [Ball and Larus 1993]. Both
the static-timing analysis tool and the FAST tool model a simple in-order six-
stage pipeline.

When incorporating the frequency model into the static-timing analyzer, two
paths with FAST equations that result in intersecting first-order polynomials
may be encountered. In this case, we resort to the third method, introduced in
Section 3.2, to choose the equation resulting in the worst-case behavior. First,
we try to determine if one equation is always greater than the other for the
valid range of frequencies (100 MHz-1 GHz). Otherwise, we approximate the
two equations by an equation providing a safe upper bound. This may result
in slight overestimations but, overall, still provides sufficiently tight bound of
the WCEC, as will be seen. We also remove the branch misprediction penalty
from the FAST equation if branch misprediction overlaps with a data miss
stall. The overestimation caused by instructions with execution latencies higher
than one are not removed from the equation as they contribute insignificant
savings.

We studied six real-time benchmarks from the C-lab real-time benchmark
suite [C-Lab], commonly utilized for WCET experiments. Three floating point
benchmarks, adpcm, lms, and fft, as well as three integer benchmarks, cnt, srt,
and mm, are analyzed. These benchmarks were compiled by the PISA GCC
compiler integrated with our SimpleScalar-based tool set. From the compila-
tion of these benchmarks, the control-flow graphs and instruction layouts were
obtained, which are taken as inputs to the FAST analyzer and the static cache
analyzer. The FAST output is the WCEC in the form of a parametric equation
conforming with our parametric frequency model. The same benchmarks were
also exposed to the original static timing analysis tool set for comparison. The
original static timing analyzer must be run separately for each frequency un-
der consideration to account for changed memory latency for a given processor
frequency. In contrast, the FAST framework captures the same effect in an
equation (derived from a single analysis step).
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5.2 Testing FAST–DVS Schemes

To test the FAST–DVS schemes, we implemented the algorithms and com-
piled that into PISA object code to simulate the scheduling overhead, along
with each task’s execution, within our SimpleScalar-based simulator. Imple-
mentation features include generic static voltage-scaling support and schedul-
ing algorithms, ranging from base EDF, cycle-conserving RT-DVS, look-ahead
RT-DVS, FAST–static voltage-scaling, FAST–cycle-conserving RT-DVS to
FAST–look-ahead RT-DVS. All the scheduling algorithms can choose a fre-
quency between 100 MHz to 1 GHz for the next scheduled task. The base EDF
algorithm runs all tasks at 1 GHz. All algorithms switch the processor frequency
to 100 MHz during idle times in the schedule, the lowest available frequency,
since it is not realistic to put a processor into sleep mode (with millisecond
overheads) for frequent task releases (in the order of milliseconds).

A combination of task sets resulting from application workloads of six real-
time benchmarks, namely srt, fft, mm, lms, adpcm, and cnt, were studied. The
task sets were exposed to the simulator and energy consumption was calcu-
lated for all scheduling algorithms. The execution times were derived from
exposing the benchmarks to a cycle-accurate pipeline model implemented in
our SimpleScalar-based simulator [Anantaraman et al. 2003]. By exploiting a
cycle-accurate architectural simulator, we can obtain the total number of cache
misses as well as the total number of cycles executed. The execution times
obtained from the architectural simulator are scaled with frequency using the
same assumption used while formulating the FAST parametric model. Namely,
we assume that the total number of execution cycles does not remain constant
with frequency. The same execution time scaling method is used for all the
voltage-scaling algorithms.

Energy consumption is determined based on the V 2 f and the Wattch models.
To evaluate the different FAST–DVS and DVS schemes, we formed several
tasksets using the cnt, srt, mm, adpcm, fft, and lms benchmarks. Three groups
were formed as follows: G1, cnt, srt, and mm (all integer); G2, adpcm, fft, and
lms (all floating point); and G3, cnt, mm, fft, and lms (mixed). The periods were
chosen for each benchmark and from each group two tasksets are created—one
with high utilization and one with low utilization. The high utilization tasksets
have a utilization of approximately 0.9, while the low utilization tasksets have
a utilization of approximately 0.5.

The frequency/voltage settings used for the scheduling simulator are loosely
based on Intel Xscale, which is reported to have five settings ranging from
150 MHz/0.76 V to 1 GHz/1.8 V [Intel 2000]. From the Xscale, we extrapolated
37 settings ranging from 100 MHz/0.70 V to 1 GHz/1.8 V in 25 MHz/0.03 V
increments. We calculate energy per cycle at a particular frequency by inte-
grating power over a fixed period of time (e.g., over the hyperperiod) using the
relation Power ∼ Voltage2 × frequency.

6. RESULTS FOR FAST FRAMEWORK

The FAST equations for the WCEC for the six benchmarks obtained from the
static timing analysis tool and the FAST tool are compiled in Table II and in
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Table II. WCEC of FAST vs. Traditional

Equations WCET: Static-Timing Analysis/ FAST (WCEC)

Benchmarks i m 100MHZ 400MHZ 700MHZ 1000MHZ

fft 355933 24658 600628/ 1340578/ 2079876/ 2820478/

602675 1342625 2081993 2822525

adpcm 3026370 544104 8433905/ 24749525/ 41065145/ 57380765/

8467410 24790530 41113650 57436770

lms 167890 29905 466438/ 1363598/ 2260748/ 3157898/

466940 1364090 2261240 3158390

cnt 71221 6066 131880/ 313860/ 495840/ 677820/

131881 313861 495841 677821

mm 2038538 59134 2629877/ 4403897/ 6177917/ 7951937/

2629878 4403898 6177918 7951938

srt 3509420 102145 4530868/ 7595218/ 10659568/ 13723918/

4530870 7595220 10659570 13723920

Fig. 11. FAST vs. traditional WCEC.

Figure 11. The FAST scheme differs from conventional static-timing analysis
without parametric expressions of frequencies by less than one half a percent.
Hence, we conclude that the FAST equations accurately model the WCEC ob-
tained from the static analysis tool. Since the effects of scaling on WCEC are
accurately modeled by the FAST equations, the scaling of the WCET can also
be accurately captured.

Table II shows the WCEC for all six benchmarks calculated for four different
frequencies using the FAST equations and compared with the corresponding
WCEC obtained from the static timing analysis tool. Figure 11 plots the ratio
of the WCET for the FAST tool and the static timing analysis tool. Table II and
Figure 11 show that the FAST bounds on WCET match the bounds obtained
by the static timing analyzer exactly for cnt, mm, and srt. For fft, adpcm, and
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Fig. 12. Energy normalized to base EDF for various task sets.

lms, the FAST bounds on WCET are very close to the bounds obtained by the
static timing analyzer. The overestimation in these benchmarks is because of
the presence of floating-point operations that have overlapping execution la-
tencies with memory stalls (see Section 2.2, Figure 5). Thus, the FAST tool can
accurately model the WCEC of tasks with a negligible error (<1%) by using our
parametric frequency model.

7. RESULTS FOR FAST-DVS SCHEMES

Figures 12a to f depict the energy consumption for both the V 2 f and the Wattch
model of all the DVS schemes normalized to the base EDF scheme for all six
tasksets. For each DVS scheme, two bars are presented, the left bar showing
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the energy consumption according to the Wattch model and the right bar that of
the V 2 f model, each relative to normalized base EDF under the corresponding
power model.

The figures show a decrease in energy consumption for all the FAST–DVS
schemes when compared to the original RT–DVS schemes. The first, third, and
fifth bars in the graphs show the energy consumption for the original RT–DVS
schemes. The second, fourth, and sixth bars in the graphs show the improved
energy consumption for the FAST–DVS schemes.

For the integer taskset G1, the Wattch model indicates savings of about 30%
on energy between static and cycle-conserving RT–DVS and the corresponding
FAST variants (Figures 12a and b). For the V 2 f model, savings are even more
considerable (in excess of 50%) for these two scheduling schemes. Lower system
utilization results in slightly higher energy savings, which can be attributed
to exploiting the additional static slack. The look-ahead scheme shows none or
only marginal savings under FAST for high and lower utilizations, respectively,
regardless of the power model. This is caused by fact that the FAST–look-ahead
scheme runs the taskset at a lower frequency and has to recover by raising the
frequency more often than the original look-ahead scheme.

The results are also sensitive to the taskset, as a comparison with the
floating-point taskset shown by G2. Figures 12c and d indicate that G2 still
experiences considerable savings for high utilizations—and slightly lower ones
for lower utilizations—under the corresponding FAST scheme. In case of G2,
savings for the static and cycle-conserving schemes are even higher than in G1.
A comparison between the power models again confirms that the V 2 f model
results in higher savings than the Wattch model reports. The results for the
integer/floating point mix of G3 in Figures 12e and f show savings at levels
between the G1 and G2 tasksets for static and cycle-conserving schemes. The
look-ahead version of FAST results in less significant savings, mostly because
very aggressive savings are already owing to the original look-ahead scheme.

The differences observed for the V 2 f versus Wattch models indicate that
the absolute energy savings obtained by simulation depend on the power model
used. Both models show savings relative to base EDF, which validates the FAST
approach. However, even relative savings differ by 20%. We believe that the
more detailed, architectural Wattch model comes closer to realistically esti-
mating energy savings. The main reason for the inadequacy of the V 2 f model
is in its lack of capturing power dependencies following different curves, such as
seen in caches and similar architectural structures. In cachelike components,
power no longer follows a V 2 f relationship [Zyuban and Kogge 1998]. This
explains the lower energy readings for the Wattch model and also indicates
that differences between the models depend on the size of caches and similar
structures. Hence, the V 2 f model, while suitable as a coarse indicator, may be
inaccurate at a more detailed level since it does not take into account overheads
of different architectural components.

All results depend on the FAST equation for the benchmarks. The scalability
of the WCET depends on the number of misses counted during timing analy-
sis. Because of a worst-case analysis, the number of misses are usually highly
exaggerated, especially for data caches. This means that the original schemes
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are penalized heavily because of their assumptions about scaling the WCET.
Using the FAST equations, the DVS schemes can improve the tightness of
the WCET, which is already highly exaggerated, thereby improving energy
consumption.

In summary, FAST equations with the RT–DVS schemes are more greedy
and result in lower frequencies. The relative energy benefits are highest in
the static RT–DVS scheme because it has the most scope for improvement. The
cycle-conserving and the look-ahead RT–DVS schemes are dynamic and already
scale the frequency aggressively. The addition of the FAST equations to these
aggressive schemes enables them to scale the frequency even more aggressively,
showing lower energy consumption. However, these dynamic schemes also re-
quire higher scheduling overhead with a complexity of O(n), where n denotes
the number of tasks. FAST allows simpler, lower complexity DVS schemes, such
as the O(1) static RT–DVS variant, to yield results close to their dynamic coun-
terparts. For complex dynamic scheduling schemes, a simpler static scheme in
conjunction with FAST may sometimes be the better choice. Overall, benefits
for FAST are being observed in all cases.

8. RELATED WORK

Recently, a number of research groups have addressed various issues in the
area of predicting the WCET of real-time programs. Conventional methods
for static analysis have been extended from unoptimized programs on simple
CISC processors to optimized programs on pipelined RISC processors, and from
uncached architectures to instruction and data caches [Park 1993; Lim et al.
1994; Healy et al. 1995; Mueller 2000; White et al. 1999; Li et al. 1996]. All
these methods obtain discrete values to bound the WCET in a nonparametric
fashion.

Vivancos et al. [2001] describe techniques for addressing static timing anal-
ysis for variable loop bounds. The so-called parametric timing analysis allows
dynamic schedulers to reassess the WCET based on dynamically determined
loop bounds during program execution. Chapman et al. [1996] used path ex-
pressions to combine a source-oriented parametric approach of WCET analysis
with timing annotations, verifying the latter through the former. Bernat and
Burns [2000] also proposed using algebraic expressions to represent the WCET
of subprograms, where the algebraic expression is parameterized by some of the
subprogram’s parameters. These approaches differ in that they address funda-
mental problems in static timing analysis. Our FAST approach, in contrast,
aims at isolating execution effects as a function of the processor frequency, a
unique, unprecedented approach complementing existing work on static timing
analysis.

9. FUTURE WORK

The Fast–Look ahead DVS algorithm in Figure 10 can be improved by con-
sidering partial execution of preempted tasks in terms of their instruction
(i left) and memory (m left) components instead of a more general counter of
remaining cycles (m left). Consider a task k preempted by a release of another
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task j in task-release of the algorithm. Currently, the preempted task k is
only considered in terms of its c left (k), not its i left (k) and m left (k). Upon
calling defer(), i left (n) and m left (n) be considered only for task n. By not
considering the instruction and memory components of task k, a higher fre-
quencies than necessary may be chosen, which is still correct but presents
a missed opportunity to further reduce power consumption. As stated in
Section 4.3, the s component shown in Figure 10 cannot be directly converted
into a FAST equation, since the calculation of c left is based on i left and m left.

To further reduce power, one could normalize the c left component to the
maximum frequency, f max. By doing so, we assume that the number of misses
on the paths taken so far are not exceeding the number of misses on the worst-
case paths up to this point, which is valid. Hence, we can calculate

c left (k) = i left (k) + L ∗ m left (k)

for a memory latency L and the preempted task k upon a task release, i.e.,
within task-release. This scaled c left value can then be used in subsequent
defer() calculations to more tightly bound the required remaining execution
time of preempted tasks. Hence, lower frequencies may be chosen so that addi-
tional power can be saved.

10. CONCLUSION

In this work, novel techniques for tight and flexible static timing analysis were
developed most suitable—but not restricted to—dynamic scheduling schemes.
The essence of our approach lies in providing frequency-aware bounds on the
WCET through static-timing analysis. Using a frequency-sensitive parametric
model, we can capture the effect of combined DFS/DVS on the WCEC and, thus,
accurately model the WCET over any frequency range. These techniques are
implemented in a FAST tool leveraging prior expertise on static timing analysis.
Experiments show the capability of FAST to derive safe upper bounds on the
WCET, which are almost as tight (within 1%) as conventional, nonparametric
timing analysis. FAST equations can also be used to improve existing DVS
scheduling schemes to ensure that the effect of frequency scaling on WCET is
considered and that the WCET used is not exaggerated. This is demonstrated
by incorporating FAST into three DVS scheduling schemes. Results indicate
significant energy savings over the base DVS schedulers because of FAST for
two different power models. To the best of our knowledge, this study of DVS
effects on timing analysis is unprecedented.

APPENDIX

Modified Look-ahead DVS–EDF

A number of DVS schemes were proposed by Pillai and Shin for scheduling
hard real-time systems [Pillai and Shin 2001]. A simple, static scaling ver-
sion uniformly scales the frequency for all tasks based on utilization tests for
schedulability, both for rate-monotone and EDF scheduling. Cycle-conserving
EDF lowers utilization upon task completion temporarily to the proportion of
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the actual execution time. Look-ahead EDF is an extension to these schemes,
that capitalize on early task completion by deferring work for future tasks in
favor of scaling the current task. Scaling of the current task occurs based on a
modified utilization test that benefits from both idle slots and early task com-
pletion. At any completion (both early and on time), the utilization is effectively
reduced for the completing task (up until its next release time).

Specifically, upon task completion, cci = c left1 = 0 according to cycle-
conserving EDF and look-ahead EDF, respectively. The defer calculations of
look-ahead EDF then reassesses the utilization based on future and past dead-
lines for released and completed tasks, respectively.

We modified the look-ahead EDF by setting c lefti = Ci at task completion
instead of assigning a zero value. In addition, we reassess the utilization strictly
based on the next deadline in the future, regardless of whether tasks are al-
ready released. This allows us to look ahead even further in the schedule and,
thereby, potentially save additional energy by lowering frequencies more ag-
gressively, and it retains the safety of the schedule by adhering to the EDF
utilization test. If the WCET is not fully utilized, then other tasks may still
benefit from early completion up to the threshold given by the idle times left in
the schedule. This modified look-ahead EDF scheme was implemented in our
comparison and is shown to result in up to 34% lower energy consumption than
the original scheme. On the average, the modified scheme saves an additional
5–11% of energy for utilizations between 25% and 100%. At high utilizations,
our modification occasionally requires between 0.5–8% more energy, which is
due to considering an actual time of cci = 0 in the original scheme up to the
next release of a task. Hence, it would be possible to switch between the two
schemes based on a utilization threshold as a trigger. Additional savings over
the modified scheme because of early completion can only be obtained by con-
sidering the density of a schedule at some instance in time, such as given by
the maximal schedule utilized in our feedback EDF scheme.
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