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Abstract
In this paper, we propose register-value-aware predictor utilizing
nested large tables (RUNLTS). RUNLTS is a branch predictor based
on TAGE-SC-L. We introduce a novel component that exploits
correlations between branch directions and register values. We
also introduce novel methods for determining history-length sets
and controlling entry allocation, enabling the predictor to leverage
larger hardware resources. We evaluate RUNLTS using the latter
halves of the 105 training traces provided by CBP 2025. The evalua-
tion results show that, on average, RUNLTS achieves a BrMisPKI
of 3.197 and a CycWpPKI of 140.3.

1 Introduction
The number of in-flight instructions in recent high-performance
CPUs has increased significantly, making branch prediction more
critical than ever. At CBP5 in 2016, the most powerful CPUs fea-
tured a fetch width of four instructions and a reorder buffer (ROB)
capable of storing approximately 200 instructions. In contrast, to-
day’s most powerful CPUs have a fetch width of ten instructions
and an ROB capable of storing over 500 instructions. In such large-
scale processors, the number of instructions flushed due to branch
mispredictions often exceeds one hundred instructions, and the
impact of a single branch misprediction on performance and power
consumption is greater than ever.

In this context, we propose RUNLTS, a branch predictor based on
TAGE-SC-L [9], which is widely regarded as the best-performing
predictor to date, and we introduce the following techniques to
achieve further performance improvements:

• We propose a novel prediction method that exploits corre-
lations between register values and branch directions (Sec-
tion 4.2). Our method generates a short digest characterizing
each register value and improves prediction accuracy by
capturing correlations between these digests and branch
directions. We implemented this method by integrating it
into the statistical corrector (SC) of the existing TAGE-SC-L
predictor.
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Figure 1: TAGE bank viewer (web_7 trace).

• To scale the predictor to larger configurations, we introduced
a large bimodal table (Section 3.1.1), a novel history-length
set that differs from the conventional geometric history-
length scheme (Section 4), and a new technique for control-
ling entry allocation (Section 4.1).

• We incorporate the improved variant of the innermost loop
iteration (IMLI) recently proposed in [11]. In particular, we
found that assigning a greater weight to IMLI predictions
significantly improves overall prediction accuracy, and we
have integrated this enhancement into our predictor.

• We revisit the call-stack-based history mechanism [8, 15]
and the pipeline-aware-predictor updates of FTL++ [2], in-
corporating both into our predictor.

2 Background
In this section, we present various analyses of existing predictors
and the provided traces, along with the insights derived from them.

2.1 Preliminary Analysis
We developed several supporting tools to facilitate the analysis of
candidate predictors and traces. For example, we implemented a
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tool to visualize predictor table accesses (Figure 1), developed a log
generator for the pipeline visualization tool [14], and created a util-
ity to reconstruct assembly code from traces. Using these tools, we
analyzed the traces to identify the programs that generated them.
Specifically, we found that several traces originate from bench-
mark suites such as Speedometer, SunSpider, SPECjbb, and SPEC
CPU. These analyses provided valuable insights for understanding
predictor behavior and improving prediction accuracy.

2.2 TAGE and BATAGE
We considered two baseline predictors: TAGE from CBP5 [9] and
BATAGE [4].

(1) TAGE is widely regarded as the most accurate branch predic-
tor, primarily comprising multiple tagged tables. TAGE-SC-L
enhances TAGE by adding a statistical corrector (SC), a vari-
ant of the hashed perceptron predictor, as well as a loop
predictor, in order to further improve prediction accuracy.

(2) BATAGE is a predictor with a simpler design, achieving pre-
diction accuracy comparable to TAGE. BATAGE uses the
same tag-based table structure as TAGE. While TAGE relies
on a single saturating counter to make predictions, BATAGE
employs two independent counters, one for taken outcomes
and one for not-taken outcomes, to estimate prediction con-
fidence.

We initially selected BATAGE as a baseline candidate because
its tables each output a confidence metric, making it easy to inte-
grate into various hybrid predictors. We also chose BATAGE for
its simplicity: it always uses the tag-match output with the high-
est confidence, whereas TAGE dynamically selects between two
tag-match outputs.

However, we found that BATAGE does not scale as well as TAGE.
To improve accuracy under the large hardware budgets available
in CBP 2025, it is essential to allocate multiple entries upon each
misprediction. We discovered that the useful bit (u-bit) of TAGE
is crucial in large-scale predictors that employ such aggressive
learning. The u-bit is set not according to whether its prediction
was correct but according to whether the entry is deemed useful;
it is set if omitting that entry would have caused a misprediction.
Only useful entries are protected from replacement, while others
remain subject to eviction. This mechanism ensures that only the
most necessary entries are retained, while redundant entries are
evicted.

In contrast, BATAGE determines whether an entry can be over-
written based on the prediction confidence of each entry. The confi-
dence increases when the prediction is correct; thus, the confidence
does not necessarily reflect the actual usefulness of the entry. We
observed that, when the predictor is scaled up, BATAGE tends to
retain unnecessary entries and does not scale as efficiently as TAGE.

3 High-level Design Overview
Based on these observations, we selected TAGE-SC1 from CBP5
as our baseline. We then applied several enhancements to further
improve its accuracy. Figure 2 shows an overview of RUNLTS. The

1The loop predictor is omitted in our design because of its high complexity and low
contribution to the prediction accuracy.
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Figure 2: High-level overview of RUNLTS.
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Figure 3: Structure of table predictors, consisting of a large
Bimodal predictor and tagged tables with bank interleaving.

basic structure of RUNLTS is the same as that of TAGE-SC, con-
sisting of multiple tagged tables and an SC. To exploit correlations
with register values, we feed not only the PC and branch history
but also register-value digests into the SC.

3.1 Bimodal and Tagged Tables
3.1.1 Large Base Predictor. As shown on the left-hand side of Fig-
ure 3, RUNLTS uses a Bimodal predictor with 128 K entries (20 KiB)
capacity as its base predictor. This is more than a fivefold increase
compared with the 8 K-entry (1.25 KiB) Bimodal predictor used
in the 64 KiB TAGE-SC-L design from CBP5, although the total
storage budget has increased by only a factor of three.

This large base predictor can effectively handle the ever-growing
instruction footprints ofmodern applications. In dynamic languages
such as JavaScript, instruction footprints are significantly larger
than those of conventional programs. Addressing such large foot-
prints has become a critical challenge in modern processor front-
end design for both server- and client-based applications [3, 5, 7, 10].
This enlarged base predictor thus provides a simple and efficient
means to handle these large footprints.

3.1.2 Novel History Lengths. We introduce a novel method for
selecting history lengths tailored to large-scale predictors. Con-
ventional predictors such as TAGE and BATAGE commonly use
geometric history lengths. Additionally, CBP5 TAGE-SC-L employs
an approach that sparsifies very short and very long histories while
densely allocating medium histories using skewed-associative pat-
terns, as described by Seznec [11]. In contrast, we found that the
method that combines a second-order arithmetic progression with
a geometric progression (Figure 4) is near-optimal, and we have
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Figure 4: Our novel history lengths selection, combining a second-order arithmetic progression and a geometric progression.
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Figure 5: Design of statistical corrector (SC) predictor.

adopted it. Note that, unlike CBP5 TAGE-SC-L, our configuration
does not use skewed-associative tables.

3.2 Statistical Corrector Structure
Figure 5 shows the structure of the SC in RUNLTS. Although the
SC uses the same components as those in the TAGE-SC-L predictor
from CBP5, we introduced the following extensions:

(1) sC: Call-stack-based history [8]
(2) sI: BrIMLI and TaIMLI [11]
(3) sR: Our proposed component for exploiting register-value

correlations (Section 4.2)

We also discovered that assigning greater weight to useful predic-
tions in the sI component significantly improves accuracy, and we
incorporated this mechanism into RUNLTS.

4 Predictor Operation
The predictor’s operation remains almost the same as that of TAGE-
SC-L. This section summarizes the novel elements we introduced.

4.1 Tagged-Table Allocation
Tomake effective use of the 192 KiB capacity and to quickly respond
to new program phases, we dynamically adjust the entry allocation
of TAGE. In conventional TAGE, only one entry is allocated per
branch misprediction [12]. While this approach minimizes the table
footprint and is nearly optimal for small predictors, it does not
hold for large predictors. For example, the 64 KiB TAGE-SC-L from
CBP5 allocates two entries per branch misprediction [9]. A more
aggressive allocation can benefit predictors with a 192 KiB capacity.
However, if it is too aggressive, it may evict useful information, and
thus some form of allocation throttling is desirable.

We propose a thrashing-detectionmethod for TAGE that requires
no extra storage and can adjust the allocation rate on the fly. While
the BATAGE predictor can detect thrashing, detecting it in TAGE
has remained an open problem [4]. We observed that combinations
in which the prediction counter is 0 or −1 and the u-bit is set
rarely appear. To repurpose these combinations, we force the u-
bit unset whenever these combinations arise; we verified that this
change has virtually no impact on prediction accuracy. Then, we
can safely re-purpose these combinations as an explicit marker for
newly allocated entries: when an entry is allocated, we initialize

3



‘CBP 2025’, June 21, 2025, Tokyo, Japan Toru Koizumi, Toshiki Maekawa, Masanari Mizuno, Maru Kuroki, Tomoaki Tsumura, and Ryota Shioya

(a) INT registers

leading one/zero #

trailing one/zero #

Value[5:0] 611

(b) FP registers

Value[31:26]

Val[15:13]

Value[63:55]

38

For FP16

For FP32

For FP64

(c) Flag register Value[3:0]Value[3:0]Value[3:0]

05

Figure 6: Method for generating a digest from register values.

its counter to 0 or −1 and set the u-bit to 1, and we clear the u-bit
as soon as the entry is referenced. To detect thrashing using this
marker, we add two counters that track (1) the number of times
these newly allocated entries lead to correct predictions and (2) the
number of times they are evicted without being referenced. Entry
allocation rate is then adjusted based on the ratio of successful
predictions to evictions.

4.2 Register Components
We extended the SC with components that capture correlations
between register values and branch outcomes. The components use
digests of currently available register values as their input.

While the register value components can contribute to prediction
accuracy when the instructions that generate register values are
sufficiently distant, they are particularly effective immediately after
a branch misprediction. In general, it is difficult for predictors to
observe the execution results of instructions within ∼100 prior
instructions before the branch at prediction time, making it hard to
exploit their correlation with branch direction. However, we found
that by the time a branch resolves and its misprediction is revealed,
many in-flight instructions have already finished execution, thereby
enlarging the set of values visible to the predictor when it restarts,
and this fact can be exploited. By leveraging these extra values
after the flush, our scheme can correct subsequent mispredictions
starting with the second one.

To keep track of which logical registers hold a valid digest at
prediction time, RUNLTS adopts a method similar to Tomasulo’s
algorithm. We use a dedicated table that contains one entry per
logical register. Each entry consists of a valid bit and a payload
that can hold either a 14-bit tag or a 12-bit digest. At decode, an
instruction that writes a register stores its ROB index as a tag in the
corresponding entry and clears the valid bit. When the instruction
completes, we overwrite the payloadwith the digest of the produced
value and set the valid bit. Whenever the branch predictor queries
the table, any entry whose valid bit is set forwards its digest to the
register-value components in the SC for prediction.

Figure 6 shows the method we propose for generating digests of
register values. RUNLTS generates a 12-bit digest from each 64-bit
register value, with the format depending on the register type. (1)
For integer registers, the digest encodes the count of leading zeros
(or ones), the count of trailing zeros (or ones), and the six least
significant bits, effectively capturing characteristics of addresses
and round numbers. (2) For floating-point registers, we inspect the
most significant bits to classify the format and then extract the sign

bit along with the most significant bits of the exponent. (3) For
condition-code flags, we replicate the four flag bits three times to
fill the 12-bit digest.

Figure 5(c) shows the register components, which exploit corre-
lations between register values and branch directions. This com-
ponent is organized into eight banks, each corresponding to eight
or nine logical registers. As with the SC’s existing components, it
comprises two tables: one that tracks prediction usefulness and one
that determines the predicted branch direction.

Unlike the existing components, this component picks the digest
of the most useful register among those available and forwards
it to the second table. Each entry of the first table holds an eight-
(or nine-) element vector of weights reflecting the usefulness of
each register. This structure enables the selection of the most useful
digest without adding extra memory ports.

During training, we update the correlations only for logical
registers that were available at prediction time. If several registers
were available within the same bank, it randomly selects one of
them for the update. Owing to this training method, each table in
the register component also needs just a single write port.

Preliminary experiments revealed that stale digests degrade pre-
diction accuracy. Consequently, RUNLTS invalidates each digest
after 256 subsequent instructions have been decoded, ensuring that
only up-to-date information influences future predictions.

5 Discussion
Due to its structural similarity to TAGE-SC, RUNLTS is expected to
exhibit comparable cold-start performance and training sensitivity.
Given that our tables and core structures closely mirror those of
TAGE-SC, we anticipate a similar level of implementation com-
plexity. Integrating the path for sending register digests from the
execution unit to the predictor and recovering the Tomasulo-like
table may present some challenges; we plan to address these in
future work.

6 Experimental Results and Analysis
Weevaluated the proposed branch predictor and compared it against
existing predictors using the CBP2025 simulator [13]. We used the
default configuration, which simulates a processor with a fetch
width of 16 and a frontend depth of 10. The first half of each trace
was used for warm-up, and the second half for measurement.

Table 1 compares RUNLTS with representative existing pre-
dictors. The evaluation results show that, on average, RUNLTS
achieves a BrMisPKI of 3.197 and a CycWpPKI of 140.3. Even
RUNLTS without local history achieved a significant mispredic-
tion reduction over the existing predictors using local histories,
demonstrating the usefulness of our proposed method.

Figure 7 breaks down the contribution of RUNLTS by feature,
showing stacked MPKI deltas relative to our tuned 192 KiB TAGE-
SC-L. For each feature, we measured the difference between a
192 KiB predictor with the feature and one without it. Because
the 192 KiB budget is fixed, the extra storage consumed by a feature
can occasionally make its contribution negative.

The register components yielded the largest and broadest gain,
improving every trace category. Adding the IMLI components re-
duced MPKI by at least one in three traces and delivered notable
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Figure 7: Feature contributions to the MPKI reduction over the TAGE-SC-L baseline. The five traces with exceptionally large
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Table 1: Branch predictors, features used, prediction accuracy
(mispredictions per kilo instructions: MPKI), and the average
penalty (wrong path cycles per kilo instructions: WPC/KI).
The ‘Feature’ column flags features that may involve addi-
tional implementation complexity in practical implementa-
tions: ‘N’, ‘L’, and ‘BI’ denote neural adders, local histories,
and bank interleaving, respectively. The symbol † indicates
the predictors tuned by the authors.

Predictor name Storage Feature MPKI WPC/KI
GEHL perceptron† 192 KiB N 4.088 162.9
TAGE-SC-L [9, 13] 64 KiB BI, N, L 3.751 152.5
TAGE† 192 KiB BI 3.674 152.1
BATAGE† 192 KiB BI 3.667 151.9
BATAGE-GSC† 192 KiB BI, N 3.590 149.5
TAGE-GSC† 192 KiB BI, N 3.533 148.4
BATAGE-SC† 192 KiB BI, N, L 3.462 146.4
TAGE-SC-L [13] 192 KiB BI, N, L 3.428 145.4
TAGE-SC-L† (baseline) 192 KiB BI, N, L 3.408 145.2
Prop. w/o local 192 KiB BI, N 3.269 141.5
Proposed 192 KiB BI, N, L 3.197 140.3

improvements in several others. Incorporating the call-stack his-
tory also helped across a wide range of traces, although part of this
improvement stems from the tables acting as a conventional global
GEHL perceptron in code unrelated to function calls. The dynamic
allocation throttling boosts accuracy on large-footprint traces while
leaving small-footprint traces essentially unchanged. Although the
performance gains from the other features are not notable, each of
the seven features in Figure 7 improves the 105-trace average by at
least 0.005 MPKI and increases accuracy on at least four-sevenths
of the traces individually.

Figure 8 shows the improvement of each trace in prediction accu-
racy from the TAGE-SC-L baseline for RUNLTS. RUNLTS improved
prediction accuracy in all but 7 of the 105 traces. RUNLTS improved
prediction accuracy by 0.052 MPKI at the median and 0.323 MPKI
at the first octile.

7 Related Work
Global branch predictors, most notably TAGE [9] and BATAGE [4],
offer the highest baseline accuracy, yet incorporating auxiliary in-
formation can boost performance further. Several studies leverage
values produced in the execution backend, an approach orthogonal
to history-based prediction. Many of these studies typically track

Figure 8: MPKI reduction over the TAGE-SC-L baseline.

dependencies between branch instructions and their producer in-
structions, capturing their correlations through pre-execution and
related mechanisms [6]. The key difference between these tech-
niques and RUNLTS is that RUNLTS directly captures correlations
between register values and branch outcomes.

Heil et al. proposed a technique that directly feeds register-value
information to the branch predictor [1]. Both their design and
ours are similar in that a backing predictor makes most predic-
tions and incorporates register-value information only for hard-to-
predict branches. They implement this idea with a tagged predictor,
whereas we embed it into an SC hashed perceptron predictor.

The key difference lies in the scope of register usage. Their
approach is local; it uses the difference between two registers com-
puted by the branch instruction being predicted. In contrast, our
approach is global; it exploits correlations involving any register,
regardless of whether that register appears in the branch instruc-
tion. This global view lets us capture correlations with registers
that are loaded with different values in each loop iteration.

8 Conclusion
In this paper, we proposed RUNLTS, a branch predictor that scales
to larger hardware resources by leveraging novel history-length
sets, a dynamic entry allocation scheme, and a register-value cor-
relation component. In particular, the register components, which
utilize recently produced register values without explicitly tracking
register dependencies, capture the correlation between register val-
ues and branch outcomes and contribute a significant improvement
in accuracy. Experimental results on the CBP2025 training traces
demonstrated that RUNLTS achieves significant improvements in
prediction accuracy across a wide range of workloads.
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Table 2: Storage budget breakdown of table predictors.

Component Entry structure # of entries Storage (bits)

Bim prediction (1), hysteresis (1/4) 217 163840
Tagged table (low banks) useful/newly (1), ctr (3), tag (9) 9 × 211 239616
Tagged table (high banks) useful/newly (1), ctr (3), tag (13) 25 × 211 870400
Global history 4316
Path history 27
Allocation monitoring counters Useful (16), Decay (16) 32
U-bit monitoring counter TICK (10) 10
Meta predictor UseAltOnNA (5) 24 80
Random number generator Seed (64) 64

Total 1278385

Table 3: Storage budget breakdown of SC components.

Component Prediction weight table (WT) Usefulness weight table (UT) Auxiliary data Storage (bits)

sB: Bias 7 ×
(
210 + 210 + 210

)
6 × 23 21552

sG: Global backward dir 6 ×
(
210 + 210 + 211

)
6 × 23 history (40) 24664

sP: Forward taken path 6 ×
(
29 + 29

)
6 × 23 history (16) 6208

sL: 1st local 6 ×
(
210 + 210 + 211 + 211

)
6 × 23 history (18 × 256) 41520

sS: 2nd local 6 ×
(
210 + 210 + 211 + 211

)
6 × 23 history (21 × 16) 37248

sT: 3rd local 6 ×
(
210 + 210 + 211 + 211

)
6 × 23 history (19 × 16) 37216

sC: Call-stack 6 ×
(
210 + 210 + 211 + 211 + 211

)
6 × 23 history (47 × 8), ptr (3) 49579

sI: IMLI 6 ×
(
210 + 211

)
6 × 28 BrIMLI (10), TaIMLI (11)

last backward PC (64) 20117

sR: Register 6 ×
(
27 + 28 + 29

)
× 8 6 × 65 ×

(
23 + 23 + 23

) { valid (1), payload (14)
decay_ctr (8) } × 65 53863

Meta predictors FirstH (7), SecondH (7) 14
Update thresholds global (12), local (8 × 26) 524

Total 292505
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A Cost Analysis
Table 2 and 3 summarize the storage costs of RUNLTS. The table
predictor consumes 1278385 bits (156.05 KiB), and the SC predictor
consumes 292505 bits (35.71 KiB). The total storage cost is 1570890
bits (191.75 KiB), compliant with the CBP2025 rules.
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