
A Deep Dive Into TAGE-SC-L
Alberto Ros

Computer Engineering Department
University of Murcia

Spain
aros@ditec.um.es

Abstract
TAGE-SC-L is the state-of-the-art branch predictor. In this work, we
analyze the TAGE-SC-L predictor in depth and propose a number
of optimizations on top of it. The key contributions of this work are
related to (i) the series used to choose the history lengths, (ii) the
selection of predictions from the different predictor components,
and (iii) the allocation, update, and replacement of TAGE entries.

Our evaluation using the 105 training traces provided by the
championship shows that our proposal obtains an average mispre-
dictions per kilo-instruction (MPKI) of 3.4120 and an average of
145.4 cycles on the wrong path per kilo-instruction (CycWpPKI).

1 Introduction
TAGE-SC-L [3], winner of the 5𝑡ℎ Championship Branch Prediction,
is the state-of-the-art branch predictor. The 64KB TAGE-SC-L im-
plementation provided on the 6𝑡ℎ Championship Branch Prediction
achieves for the 105 training traces an average mispredictions per
kilo-instruction (MPKI) of 3.7506 and an average of 152.5 cycles on
the wrong path per kilo-instruction (CycWpPKI).

The TAGE-SC-L predictor consists of the following prediction
components:

• The TAGE predictor, a large structure that includes a bimodal
predictor, and several tagged tables using geometrically in-
creasing history lengths. The tagged tables are grouped into
two sets of tables: one for low history lengths using fewer
bits for the tag field, and another for high history lengths
using more bits for the tag.

• The Loop predictor, a small, high-accurate, low-coverage
predictor used to detect the end of the loops.

• The Statistical Corrector (SC), a perceptron-like predictor [2]
used to cover some of the cases in which TAGE provides a
non-negligible fraction of mispredictions.

• A set of counters to decide which of the above described
components will provide the final prediction.

In this work, we analyze TAGE-SC-L in depth and propose some
optimizations on top of it. Hence, this work focuses on improving
MPKI. However, as a consequence of the reduction in MPKI, the
CycWpPKI metric is also expected to get lower.

We started by creating a version of TAGE-SC-L using ≈192 KB,
as a new baseline predictor used for this work. This new version
doubles the size of the TAGE tables and multiplies the bimodal
component by 8. It also increases the number of TAGE tables from
10+20 (for low and high history lengths) to 14+30, and uses an extra
bit in the low history tables (9 bits in total) to store the tags. The
loop prediction size is also doubled. Similarly, all SC components

‘CBP 2025’, June 21, 2025, Tokyo, Japan
2025. ACM ISBN How.to.remove.this?(Not.ACM)
https://doi.org/How.to.remove.this?(Not.ACM)

are doubled as well, except for the path history component, which
is multiplied by 4. We also made some changes that do not affect
the size of the predictor, such as setting a higher number of history
lengths to (NHIST=42), having fewer histories assigned to low his-
tory length banks (BORN=9), allocating one more entry to TAGE on
a misprediction (NNN=2), and increasing the period to reset entries
(BORNTICK=512*3). This new baseline achieves 3.4405 MPKI (146.1
CycWpPKI).1

Once we have defined a new baseline, we add the proposed mod-
ifications on top of it. In particular, this work makes the following
contributions.

• We propose a different series for choosing the history lengths.
Instead of geometrically increasing history lengths, we ad-
vocate starting with a quadratic sequence and ending with
a generalized geometric sequence with linearly increasing
multipliers.

• We increase the accuracy of the branch prediction with a
careful selection of the components that provide the predic-
tion, taking into consideration the confidence of the loop
predictor and the use of the alternate prediction.

• We improve the usefulness of the entries in the TAGE ta-
bles, by filtering the allocation of entries and enhancing the
eviction policy.

2 Enhancements to TAGE-SC-L
This section describes the behavior of key components within the
TAGE-SC-L predictor, along with our proposed modifications and
optimizations to these components.

2.1 History is not how it was told
TAGE-SC-L uses geometrically increasing history lengths.2 The
TAGE predictor is trained first using the lowest history lengths and,
on mispredictions, it allocates entries using larger histories. The
rationale behind geometrically increasing lengths is to get precision
using many low history lengths, but also to be able to cover patterns
that are predictable using few large histories.

However, the current implementation of TAGE increases per-
formance by not using the same "weight" for all history lengths,
meaning that some lengths of the geometric series are even dis-
carded after creating it, while others are granted two ways in the
TAGE tables instead of one. Figure 1 shows in the blue line the geo-
metric series (y axis) of 21 elements (x axis). Those history lengths
that are discarded are represented without a circle, while those that
are granted two ways are represented with a double-sized circle.
Note that the y-axis is logarithmic, and hence the geometric series

1Other minor arrangements in the code to simplify the update of the predictor were
also done at this step, without significantly impacting MPKI.
2The "GE" from TAGE comes from GEometrically.

1

https://doi.org/How.to.remove.this?(Not.ACM)


‘CBP 2025’, June 21, 2025, Tokyo, Japan Alberto Ros

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of history length

101

102

103

Le
ng

th
 o

f t
he

 h
ist

or
y

Geometric
Square-SuperExp

Figure 1: History lengths for the TAGE component

is seen as a straight line. We can observe that the extremes in the
blue line have less weight, whereas the middle lengths have more
weight.

This decision motivates the choice of a different series, where the
low and high lengths increase at a higher speed than in the geomet-
ric series, but the middle lengths increase slower. Our proposal is to
start with a quadratic sequence, which at the beginning increases
faster than the geometric series and at the end slower. Then at some
point, it switches to a generalized geometric sequence with linearly
increasing multipliers (the growth factor increases at each step),
hence growing faster than a geometric series function. Figure 1
shows the resulting series (in orange), using the same weight (one
way) for all elements.

The series can be generalized as follows. A quadratic sequence
increases by adding to each term a value that itself grows monoton-
ically. For example, in the sequence of squares [1, 4, 9, 16, ...], each
element increases by 3, 5, 7, and so on, meaning that 2 is added
to the previous increment each time. This constant addition (2 in
this example) is known as the second difference, denoted by 𝑑 . If
we let ℎ1 represent the first term of the sequence and 𝑘 represent
the initial increasing value, the general formula for our quadratic
sequence is given in Equation 1.

ℎ𝑛 =

{
ℎ1, 𝑛 = 1
ℎ𝑛−1 + 𝑑 · (𝑛 − 1) + 𝑘, 𝑛 > 1

(1)

On the other hand, the geometric sequence with increasing mul-
tipliers can be generalized as shown in Equation 2, assuming that
ℎ1 represents the first term of the sequence,𝑚 represents the initial
increasing multiplier and 𝑓 represents its increasing value.

ℎ𝑛 =

{
ℎ1, 𝑛 = 1
round(ℎ𝑛−1 · (𝑓 · (𝑛 − 1) +𝑚)), 𝑛 > 1

(2)

We round the resulting value as history lengths are integer num-
bers.

To combine both functions, we just need to decide on a thresh-
old 𝑡 to change from quadratic series to super-exponential series,
resulting in the Equation 3.

ℎ𝑛 =


ℎ1, 𝑛 = 1
ℎ𝑛−1 + 𝑑 · (𝑛 − 1) + 𝑘, 1 < 𝑛 < 𝑡

round(ℎ𝑛−1 · (𝑓 · (𝑛 − 𝑡 + 1) +𝑚)), 𝑛 ≥ 𝑡

(3)

Using Equation 3, the values shown in Figure 1 in the orange
line are those obtained for the first 21 elements of the series when
ℎ1 = 2, 𝑑 = 2, 𝑘 = 1, 𝑓 = 0.1,𝑚 = 1.1, and 𝑡 = 15. Using this series,
the MPKI is reduced to 3.4276 (145.9 CycWpPKI). In addition, the
design of TAGE is simplified, since it only requires a direct-mapped
table, instead of a set-associative one.

2.2 How to be more confident
Whenmultiple components generate predictions, selecting themost
appropriate one for each branch becomes of utmost importance. The
confidence level associated with each component plays a pivotal
role in guiding this decision.

2.2.1 The loop predictor. The loop predictor is the most confident
of all components [6]. Once it takes a decision, it should not be
overridden. In TAGE-SC-L, the loop decision may be chosen over
the TAGE prediction. Later, the selected prediction fights with the
decision of the statistical correction. However, this fight does not
consider whether the loop predictor was selected over TAGE as the
prediction provider, but the decision is taken only considering the
TAGE confidence. Instead, we propose that the loop prediction, if
selected, remains the final prediction.

In addition, we refine the confidence of the loop predictor using
values from 0 to 7. This confidence is given by the number of
significant bits (in binary representation) of the product between
the number of loop iterations predicted and the prediction counter
(number of consecutive times that prediction was found correct).
For example, if the product is 30 (111102), the confidence of that
prediction is set to 5.

After refining the loop confidence, we use a set of saturating
counters to decide between the TAGE-SC prediction and the loop
prediction. These counters (choosers from now on) are similar to
the ones employed in TAGE-SC-L: they are moved (increased or
decreased) to the side of the component that in a mismatch of
predictions provides the correct one. To select the chooser, we
use information regarding loop confidence, TAGE confidence (i.e.,
confidence of the longest matching entry), and the decision taken
between the TAGE and SC components. The hash used to select
the chooser among the 32 choosers available for the loop predictor
is depicted in Figure 2.

Loop confidence

3 bits

TAGE has
max conf.

1 bit

TAGE
vs. SC

1 bit

Figure 2: Hash used to select loop prediction choosers

Actually, the loop predictor is only chosen when its confidence
is higher than two, leaving some of the counters unused.

2



A Deep Dive Into TAGE-SC-L ‘CBP 2025’, June 21, 2025, Tokyo, Japan

2.2.2 The alternate prediction. The alternate prediction is the sec-
ond longest matching history length. It is used in TAGE-SC-L when
the longest matching history length is seen as newly allocated (i.e.,
it has low confidence –0 considering values from 0 to 3), and a
chooser indicates that it should be used.

We improved the accuracy of the selection of the alternate pre-
diction by (i) considering also to select it when the confidence
is less than 2 (i.e., it is 0 or 1) and (ii) increasing the number of
choosers, selecting them based on the confidence of the hit (longest
match) entry. The resulting hash to select among the 256 choosers
is depicted in Figure 3.

Hit bank chunk

3 bits

Alternate
confidence

2 bits

Alt bank
hit

1 bit

Hit
conf.

2 bit

Figure 3: Hash used to select alternate prediction choosers

The hit bank chunk keeps the most significant bits of the hit
bank. The alternate bank hit is needed to distinguish whether the
prediction comes from the bimodal table or from an alternate bank.
The hit confidence can only take two values, as only when the
confidence is 0 or 1, the alternate bank can be selected (requiring
only 128 choosers although 256 appear in the code).

We also keep track of a second alternate prediction in order to
update its confidence counter when the branch is resolved. In this
way, we can keep more confidence counters updated.

2.2.3 The statistical corrector (SC). In TAGE-SC-L, the decision
to use TAGE or SC depends on the confidence of the hit bank
in TAGE and the position of the sum from the perceptron-like
tables [2] relative to a threshold. TAGE-SC-L defines three levels of
confidence: high, medium, and low. If TAGE has high confidence
and SC has low confidence, TAGE is selected. If one predictor has
medium confidence and the other has high confidence, two choosers
are used to determine which component to select. In all other cases,
SC is chosen.

We improve that mechanism by using an array of choosers that
are selected based on the confidence of TAGE, the outcome of
the chooser of the alternate bank (see previous subsection), and
the value of the perceptron sum (with respect to the threshold).
By having more choosers and also considering the alternate bank
selection, the accuracy is improved. The hash to choose among the
16 TAGE-SC choosers is depicted in Figure 4.

TAGE confidence
and alt chooser

2 bits

SC sum bin in
threshold

2 bits

Figure 4: Hash used to select between TAGE and SC

If the TAGE confidence is 2 or 3, its value is used for the first
two bits. Otherwise, the decision between alternate or hit bank (0
or 1) is used. To fill the last two bits, only three values are used,
exactly as the three SC confidence options in the TAGE-SC-L code,
leaving again some counters unused.

When all the techniques presented in this section to improve
the choosers are enabled, the MPKI is reduced to 3.4216 (145.7
CycWpPKI).

2.3 Be careful when feeding the beast
TAGE-SC-L allocates entries in the TAGE tables even when the loop
predictor is providing the prediction. As previously noted, the loop
predictor typically exhibits very high confidence. We propose not
to waste valuable TAGE entries when the loop predictor is selected
as the prediction component and the prediction is successful, and
in that case to completely bypass the TAGE allocation.

On the other hand, optimizing the replacement policy used in the
TAGE tables is also critical, as mentioned in the TAGE cookbook
by Seznec [5]. Our small contribution here is to increase (set) the
useful (u) bit –used for replacement in TAGE– of the alternate bank
when it correctly predicts the direction of the branch and the hit
bank does not.

With these two techniques, the MPKI is further reduced to 3.4156
(145.5 CycWpPKI).

2.4 Other optimizations and fine tuning
We also implemented a minor tweak in the loop predictor to make
an early change of the branch direction when the allocation is done
using the wrong direction. In other words, if the direction expected
to be the one of the loop exit repeats after allocation, we assume that
it is not the exit direction and we update it, as well as the number
of iterations seen (to 2). We also reset the age of the loop entry
when there is a mismatch in the number of iterations between the
new detected value and the stored one (last number of iterations
detected).

Finally, a bit of fine-tuning has been performed to reach the size
limit of the predictor and perform minor optimizations. The small
IMLI SC table has been removed, the hash function of a bias SC
component has been modified, and the second and third history
tracking tables have been increased.

After these changes, the final MPKI is 3.4120 (145.4 CycWpPKI).

3 Discussion
The optimizations presented in this work are simple and do not
increase the complexity of the predictor. They do not require multi-
plications or other complex operations. In some cases, the predictor
is even simplified with respect to TAGE-SC-L, e.g., no associative
searches in the TAGE tables or the use of a simple policy for feed-
ing TAGE (removing the need of using random numbers in several
cases).

Optimizations are consistent across different baselines and are
expected to have more impact on baselines with less storage re-
quirements or more realistic (e.g., lower number of history lengths).
In fact, as we improved the baseline predictor, the effectiveness of
the presented optimizations was reduced.

In addition, the proposed sequence for choosing history lengths
can be integrated in any branch predictor that uses increasing
history lengths, such as perceptron-based branch predictors [1].

We also believe that a loop predictor can be practically imple-
mented in a real processor by updating it at commit time. To ensure
correct predictions, it is necessary to track the number of branches

3



‘CBP 2025’, June 21, 2025, Tokyo, Japan Alberto Ros

Table 1: Storage requirements of the proposed predictor

Component Fields per entry [variable] and number of entries Size
Bimodal Table [bimodal.table]→ Prediction: 216 1-bit entries, hysteresis: 214 1-bit entries 10 KB 10 KB

TAGE

Low-history tables→ Tag: 9 bits, conf: 3 bits, use: 1 bit, 211× 14 entries 45.5 KB

166.0775 KBHigh-history tables→ Tag: 12 bits, conf: 3 bits, use: 1 bit, 211× 30 entries 120 KB
Global hist. register: 3157 bits, path hist. register: 27 bits, replacement counter: 11 bits 0.39 KB
Hit/alternate bank chooser [use_alt_vs_hit]→ Counter: 6 bits, 256 entries 0.1875 KB

Loop
Table [loop_predictor.table]→ Tag: 10 bits, numIter: 10 bits, currentIter: 10 bits, ctr: 4 bits,
age: 4 bits, dir: 1 bit, 26 entries

0.3047 KB
0.3320 KB

Loop chooser [use_loop_vs_tagesc]→ Counter: 7 bits, 32 entries 0.0273 KB

SC

Thresholds and sum weights 0.0815 KB

15.4907 KB

Three bias tables 1.125 KB
Global history table and history register 3.0049 KB
Path history table 3 KB
Fist local history table and local histories 3.6934 KB
Second local history table and local histories 1.6309 KB
Third local history table and local histories 1.5410 KB
IMLI table 1.0684 KB
SC chooser [use_sc_vs_tage]→ Counter: 7 bits, 16 entries 0.0137 KB

TOTAL 191.90 KB

in flight for each table entry, allowing the predictor to be adjusted
accordingly. This approach is similar to the technique used in stride-
based value prediction [4].

4 Conclusion
This work has proposed several optimizations to TAGE-SC-L, con-
sisting of improving the sequence of the history lengths, performing
better decisions to choose among prediction components, and im-
proving the use of the large, but still limited, TAGE tables. The end
result is an updated predictor, named TASQ-SC-L (from Sequence
Quadatric), that obtains an average MPKI of 3.4120 and an average
CycWpPKI of 145.4 cycles.

Acknowledgments
To Linnea and Marc, because when we play math, I also learn with
them. To Alexandra, for her patience and support.

I would like to thank André Seznec and Daniel Jimenez for vis-
iting the University of Murcia and delivering insightful talks on
branch prediction, which motivated me to work on this topic.

This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (ECHO, grant agreement No 819134), from
the MCIN/AEI/10.13039/501100011033/ and the “ERDF A way of
making Europe”, EU (DAMAS, grant PID2022-136315OB-I00), and
from the MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR (HEEDA, grant TED2021-130233B-
C33).

References
[1] Daniel A. Jiménez. 2016. Multiperspective Perceptron Predictor. In 5th JILP Work-

shop on Computer Architecture Competitions (CBP-5). https://jilp.org/cbp2016/
paper/DanielJimenez1.pdf

[2] Daniel A. Jiménez. 2005. Improved Latency and Accuracy for Neural Branch
Prediction. ACM Transactions on Computer Systems 23, 2 (2005), 197–228. https:
//doi.org/10.1145/1062247.1062250

[3] André Seznec. 2016. TAGE-SC-L Branch Predictors Again. In 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5).

[4] André Seznec. 2018. Exploring value prediction with the EVES predictor. In 1st
Championship Value Prediction (CVP-1). 1–6. https://microarch.org/cvp1/papers/
Seznec.pdf

[5] André Seznec. 2024. TAGE-SC, an engineering cookbook. Technical Report RR-9561.
Inria. Available as Inria Research Report RR-9561.

[6] Sawan Singh, Arthur Perais, Alexandra Jimborean, and Alberto Ros. 2024. Alter-
nate Path Âµ-op Cache Prefetching. In 51st International Symposium on Computer
Architecture (ISCA). 1230–1245. https://doi.org/10.1109/ISCA59077.2024.00092

A Cost Analysis
The storage cost of the proposed predictor is 191.82 KB. Details are
given in Table 1. The cost is indeed a bit lower since some of the
choosers are never employed, but the values in this table have been
selected as described in the code of the predictor.

4

https://jilp.org/cbp2016/paper/DanielJimenez1.pdf
https://jilp.org/cbp2016/paper/DanielJimenez1.pdf
https://doi.org/10.1145/1062247.1062250
https://doi.org/10.1145/1062247.1062250
https://microarch.org/cvp1/papers/Seznec.pdf
https://microarch.org/cvp1/papers/Seznec.pdf
https://doi.org/10.1109/ISCA59077.2024.00092

	Abstract
	1 Introduction
	2 Enhancements to TAGE-SC-L
	2.1 History is not how it was told
	2.2 How to be more confident
	2.3 Be careful when feeding the beast
	2.4 Other optimizations and fine tuning

	3 Discussion
	4 Conclusion
	Acknowledgments
	References
	A Cost Analysis

