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Abstract

In high-performance processors, increasing the number of instructions fetched and

executed in parallel is becoming increasingly complex, and the peak bandwidth is often

underutilized due to control and data dependences. Atrace processor1) efficiently

sequences through programs in large units, calledtraces, and allocates trace-sized units of

work to distributed processing elements (PEs), and 2) uses aggressive speculation to par-

tially alleviate the effects of control and data dependences. A trace is a dynamic sequence

of instructions, typically 16 to 32 instructions in length, which embeds any number of

taken or not-taken branch instructions. The hierarchical, trace-based approach to increas-

ing parallelism overcomes basic inefficiencies of managing fetch and execution resources

on an individual instruction basis.

This thesis shows the trace processor is a good microarchitecture for implementing

wide-issue machines. Three key points support this conclusion.

1. Trace processors perform better than wide-issue superscalar counterpartsbecause they

deliver high instruction throughput without significantly increasing cycle time. The

underlying reason: trace processor cycle time is more sensitive to individual PE com-

plexity than full processor complexity.

2. The trace processor organization naturally supports aggressive speculation. The con-

tiguous instruction window enables high-performance, but relatively transparent, selec-

tive recovery from data misspeculation. Control flow hierarchy and existing data
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speculation support are leveraged to selectively preserve traces after a mispredicted

branch that are control independent of the branch.

3. Trace processors are an evolutionary extension of superscalar processorsand, as a

result, are quite viable. They retain binary compatibility and a conventional, single flow

of control. Wide instruction fetching (using a single program counter) enables instruc-

tions to be scheduled quickly. The approach does not rely on sophisticated and poten-

tially less-robust multithreading or explicitly-parallel compilers to accurately schedule

instruction fetching from multiple, disjoint points in the program.

This thesis makes two main contributions. First, a trace processor microarchitecture is

fully developed, including: the trace cache based, hierarchical sequencing mechanism; the

distributed instruction window and hierarchical issue mechanisms; data speculation mech-

anisms including selective recovery support; and hierarchical control independence tech-

niques. Second, performance evaluations and complexity analysis support the three key

points listed above.
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Chapter 1

Introduction

One of the primary reasons for the continued success of general purpose computers is

the rapid, unyielding growth in microprocessor performance. Successive generations of

high performance microprocessors not only reduce the run time of existing applications,

but also enable new levels of functionality and software complexity.

Improvements in microprocessor performance come about in two ways - advances in

semiconductor technology and advances in processor microarchitecture. It is almost cer-

tain that clock frequencies will continue to increase. The microarchitectural challenge is to

extract parallelism from ordinary, sequential programs -- programs that are not written in

an explicitly parallel fashion, but which nevertheless contain significant amounts of inher-

ent parallelism at the level of individual program instructions. By exploitinginstruc-

tion-level parallelism(ILP), processors can increase the amount of work performed in

parallel and speed execution of the most prevalent class of applications.

Because there are dependences among instructions, finding a sufficient number of

independent operations to execute in parallel requires examining and scheduling a large

group of instructions, called theinstruction window. The larger this window, the farther a

processor may “look ahead” into the program for independent instructions.



2

This basic approach underlies all high performance processing models, whether com-

piler-oriented or hardware-intensive. The predominant high performance processing para-

digm, superscalar processing, faces significant challenges as higher levels of ILP are

needed. The first challenge ismicroarchitectural complexity. The circuits used to construct

the instruction window and instruction fetch/execute mechanisms of a conventional super-

scalar processor are inefficient, i.e. the lengths of critical paths do not scale well as the

peak instruction bandwidth of the processor is increased. As a result, cycle time is poten-

tially lengthened and the performance gains due to higher instruction throughput are

diminished. Secondly, conventional superscalar processors are often unable to extract suf-

ficient parallelism from sequential programs. This is due toarchitectural limitationsin the

management of control and data dependences that obscure instruction-level parallelism.

The purpose of this thesis is to explore a next generation microarchitecture, called the

trace processor[112,96], that addresses both complexity and architectural limitations. The

trace processor 1) exploits hierarchy and replication to manage the complexity of increas-

ing peak hardware parallelism [80,39,112] and 2) performs sophisticated control and data

flow management to partially alleviate dependence constraints on instruction-level paral-

lelism [96,81,86].

1.1  Hierarchy and replication: managing complexity

The proposed microarchitecture (Figure 1-1) is organized entirely aroundtraces. A

trace is a long sequence of instructions, e.g. 16 to 32 instructions, that may contain any

number of taken or not-taken branch instructions. Traces introduce hierarchy. Rather than
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working at the granularity of individual instructions, the processor more efficiently

sequences through the program at the higher level of traces and allocates execution

resources to trace-sized units of work.

As will be discussed in the following two subsections, the trace-based approach over-

comes the basic inefficiencies of managing processor fetch and execution resources on an

individual instruction basis.

Figure 1-1: Trace processor.
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1.1.1  Low latency, high bandwidth instruction fetching

As peak instruction issue rates grow from relatively modest, 4-way issue typical of

today’s processors to 8-way, 12-way, or even 16-way issue of future generation proces-

sors, it will become necessary to predict and fetch multiple basic blocks in a single cycle.

The trace processor achieves high bandwidth control flow prediction by treating

traces as the fundamental unit of prediction, not individual branch instructions. A

next-trace predictor[39] performs a single trace prediction and, in doing so, implicitly

predicts multiple branches in a single cycle.

To greatly simplify the process of fetching multiple, possibly noncontiguous basic

blocks in a single cycle, the instructions that form a trace are stored together as a single

contiguous unit in a special instruction cache, called thetrace cache[41,75,80,71]. A con-

ventional instruction cache distributes instructions from the same trace among multiple,

noncontiguous cache lines, and requires several cycles to assemble the trace. The distinc-

tion between a conventional instruction cache and the trace cache is shown in Figure 1-2.

Figure 1-2: Distinction between conventional instruction cache and trace cache.A
trace may contain any number of predicted-taken branches, in which case the instructions
are stored in noncontiguous locations throughout a conventional instruction cache. The
same group of instructions are stored together in a trace cache line.

Instruction Cache Trace Cache
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1.1.2  A hierarchical instruction window organization

The instruction issue mechanism is possibly the most complex aspect of current

dynamically scheduled superscalar processors [69]. Each cycle, the processor examines

the instruction window for instructions that have received their input values and are ready

to issue (wakeup logic). Of the ready instructions, a number of them are selected for issue

based on issue bandwidth and other resource constraints (select logic). The selected

instructions possibly read values from the register file and are routed to functional units,

where they execute and write results to the register file. Each result must also be quickly

bypassed to functional units to be consumed by pipelined, data dependent instructions

(operand bypass circuits). Clearly, the four aspects of instruction issue -- wakeup logic,

select logic, register file, and operand bypasses -- grow in complexity as the size of the

instruction window, the instruction issue bandwidth, and number of parallel execution

units are increased [69].

A trace is an “instruction window” itself, albeit a smaller one, and this realization can

be exploited to break down complexity. A single trace window is depicted in Figure 1-3,

with its data flow divided hierarchically into intra-trace and inter-trace values [112].Local

valuesare produced and consumed solely within a trace and are not visible to other traces.

Global valuesare communicated among traces. Global input values to a trace are called

live-ins and global output values of a trace are calledlive-outs.
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Figure 1-3: Data flow hierarchy of traces.

Based on this data flow hierarchy, the large trace processor instruction window is dis-

tributed among multiple smaller processing elements (PEs), as shown in Figure 1-1. Each

PE resembles a small-scale superscalar processor and at any given time is allocated a sin-

gle trace to process. A PE has 1) enough instruction issue buffers to hold an entire trace, 2)

multiple dedicated functional units, 3) a dedicated local register file for storing local val-

ues, and 4) dedicated local result buses, corresponding to write ports into the local register

file and local result bypasses.

Logically, a single global register file stores global values. Each PE contains a copy of

the global register file for private read bandwidth. Write bandwidth to the global register

file cannot be similarly distributed: all PEs are connected to a common set of global result

buses, which provide the datapaths for bypassing global values among traces and writing

values into the global register file.

The hierarchical instruction window simplifies instruction issue mechanisms.

• Instruction wakeup logicmonitors fewer result tag buses. Although each PE monitors

both its own local result tags and all global result tags, overall, fewer tags are monitored

due to reduced global register traffic.

global “live-ins”

global “live-outs”
local values
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• Instruction select logicis fully distributed. Each PE independently selects ready

instructions from its trace and routes them to dedicated functional units.

• Register read/writebandwidth is satisfied by private local register ports and the corre-

sponding, reduced reliance on global register ports.

The size and complexity of the global register file is reduced with respect to a conven-

tional superscalar register file because much of the register traffic is off-loaded to the

local register files. That is, for an equivalent instruction window, the global register file

requires fewer registers and fewer read/write ports than the monolithic file of supersca-

lar processors.

• Fast bypassingof local values among functional units within a PE is feasible, despite a

longer latency for bypassing global values among PEs.

The slower scaling of interconnect delay relative to logic delay has been identified as a

serious problem in forthcoming IC technologies [6]. Result bypasses are primarily long

interconnect and are impacted most by this trend [69]. The trace processor exploits

communication locality in programs [21] to localize interconnect, most notably the

local result bypasses within PEs; managing values uniformly would unnecessarily

penalize communication latency for all values. A technique for partially hiding global

communication latency is discussed in Section 1.2.1.1.

Traces must be dispatched to the PEs at a maximum rate of one per cycle as they are

predicted and fetched by the trace processor frontend. Higher fetch bandwidth usually
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implies increasingly complex dependence checking and register renaming hardware. For-

tunately, as with control flow prediction and instruction fetching, the instruction dispatch

stage is simplified by dispatching a trace as a single unit.

The identification of local values, live-ins, and live-outs of a trace are performed at

trace cache fill time, and the dependence information cached with the trace. This essen-

tially moves the complex dependence checking logic from the dispatch stage to the fill

side of the trace cache. Furthermore, local values are pre-renamed to the local register file

during dependence checking of the trace [112].

Now, the dispatch stage operates efficiently at the trace-level, by virtue of renaming

only live-in and live-out registers [112]. Live-in and live-out registers are renamed to the

global register file to establish register dependences with other traces in the window. The

trace dispatch stage is simplified in the following ways.

• Dependence checking logic is eliminated and live-in/live-out registers are explicitly

labeled in the trace for fast renaming.

• Register rename map complexity is reduced because the checkpointing granularity is

increased. Maps are checkpointed at trace boundaries instead of at every branch

instruction.

• Merging instructions into the window is simplified. A single trace is routed to a single

PE, whereas an instruction-granularity processor routes multiple instructions to as

many, possibly noncontiguous instruction buffers.
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1.1.3  Summary via analogy

Prior to superscalar processors, comparatively simple dynamically scheduled proces-

sors fetched, dispatched, issued, and executed one instruction per cycle, as shown in the

left-hand side of Figure 1-4. The branch predictor predicts up to one branch each cycle

and a single PC fetches one instruction from a simple instruction cache. The renaming

mechanism, e.g. Tomasulo’s algorithm [105], performs simple dependence checking by

looking up a couple of source tags in the register file. And at most one instruction is

steered to the reservation station of a functional unit each cycle. After completing, instruc-

tions arbitrate for a common data bus, and the winner writes its result and tag onto the

bypass bus and into the register file.

The superscalar paradigm “widens” each of these pipeline stages in a manner that

increases complexity with each additional instruction per cycle. This is clearly manage-

able up to a point: high-speed, dynamically scheduled 4-way superscalar processors cur-

rently set the standard in microprocessors. But there is a crossover point beyond which it

becomes more efficient to manage instructions in groups, that is, hierarchically.

The trace processor is one possible approach for managing instructions hierarchically.

In the right-hand side of Figure 1-4, the top-most level of the trace processor hierarchy is

shown (the trace-level). The picture is virtually identical to that of the single-issue

out-of-order processor on the left-hand side. The unit of operation has changed from 1

instruction to 1 trace, but the pipeline bandwidth remains 1unit per cycle.

In essence, grouping instructions within traces is a reprieve. Complexity does not nec-

essarily increase with each additional instruction added to a trace. Additional branches are
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absorbed, as are additional source and destination operands. Hardware parallelism is

allowed to expand incrementally -- up to a point, at which time perhaps another level of

hierarchy, and another reprieve, is needed.

Figure 1-4: Analogy between a single instruction and a single trace.

1.2  Speculation: mitigating data and control dependences

Instruction-level parallelism is limited by data dependences between instructions.

Pairs or groups of instructions form dependence chains; instructions within a chain exe-

cute serially but instructions among multiple, disjoint chains may execute in parallel. A

large instruction window exposes this irregular parallelism, partially alleviating the effects

of data dependences. However, fundamental architectural limitations remain.
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1. An effective instruction window relies on accurate trace prediction. Even relatively

infrequent trace mispredictions severely limit the size of theusefulinstruction window

and are often catastrophic to performance.

2. Data dependences ultimately cause poor utilization of the peak issue bandwidth, even

with 100%-accurate trace prediction. With longer interconnect delays imminent, the

latency for resolving data dependences is likely to increase, worsening the serial nature

of dependence chains.

3. A significant subset of data dependences are not immediately identifiable by the pro-

cessor, namely, dependences between load and store instructions. Resolving memory

dependences conservatively, i.e. assuming loads depend on all prior unresolved stores,

only worsens the problem of true data dependences by introducing false ones.

The trace processor features advanced speculation techniques to partially address

these problems. Section 1.2.1 describes two data speculation techniques, the first a novel

application of value prediction [51,87,27] to break inter-trace data dependences and the

second a variant of the address resolution buffer [24] for speculative memory disambigua-

tion. Section 1.2.2 describes a sophisticated control flow management technique,control

independence[46,20,83], for maintaining accurate instruction windows despite trace

mispredictions.
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1.2.1  Data speculation techniques

1.2.1.1  Live-in prediction

When a trace is renamed and dispatched to a PE, its live-in values are predicted

(Figure 1-1). Predicting live-in values -- as opposed to predicting all trace values or per-

forming no value prediction at all -- is meaningful in several ways.

Of course, predicting only inter-trace values meshes with the overall trace processor

strategy of performing operations at the trace-level. Trace-level value prediction reduces

bandwidth to the value prediction tables and working set of the value predictor.

The hierarchical trace processor, with its multiple processing elements, is in some

sense a parallel processor. Correctly predicting live-ins decouples and enhances the paral-

lel processing of traces and, in particular, improvesload balance. A more sophisticated

alternative would be to select traces carefully based on data dependences, i.e. data-depen-

dence-basedtrace selection [115].

Finally, live-in values are inherently slower to compute due to global communication

latency. Value prediction in this case is more critical to performance than if the same val-

ues were local. One can even make a new case for value prediction: it is potentially a key

enablerfor distributing the instruction window, clocking the chip very fast, and necessar-

ily lengthening global latencies. This is purely conjecture, although Chapter 6 presents

limited supporting data.
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1.2.1.2  Memory dependence speculation

A load instruction issues to the data cache as soon as its address is available and a

cache port is free. There may or may not be dependences with prior unresolved store

instructions in the window. Thus, a simple memory dependence prediction is performed:

predict no dependence [24].

If a load issues before a prior dependent store, then the prediction is incorrect and the

load must re-issue to the cache to get the correct store value. Also, all subsequent data

dependent instructions must be selectively re-issued.

A variant of the address resolution buffer (ARB) [24] is used to detect memory depen-

dence violations and selectively re-issue incorrect load instructions. Selectively re-issuing

all subsequent data dependent instructions is achieved transparently and automatically via

the underlying selective recovery model of the trace processor, described in the next sub-

section.

1.2.1.3  Selective recovery model

Because data speculation is pervasive in the trace processor, data misspeculation is

relatively frequent and recovery plays a central role in the design of the trace processor

data dependence mechanisms. There are two challenges.

1. Recovery must be selective, i.e. only those instructions affected by incorrect data

should be re-executed [51]. Misspeculation is frequent enough to demand high-perfor-

mance recovery.
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2. There are three sources of data misspeculation -- live-in mispredictions, misspeculated

load instructions, and partially incorrect control flow (control independence,

Section 1.2.2). Often, multiple sources of data misspeculation interact in complex

ways. The number of unique recovery scenarios is virtually unlimited. All scenarios

must be handled with a simple selective recovery model.

Selective recovery is divided into two steps. First, the “source” of a violation is

detected and only that instruction re-issues.Detection is performed by the violating

instruction itself. In this way, the detection logic is distributed; and since detection occurs

at the source, it is trivially clear which instruction to re-execute. Detection mechanisms

vary with the type of violation (mispredicted live-in, load violation, etc.) and are described

in Chapter 3.

Second,the existing instruction issue logicprovides the mechanism to selectively

re-issue all incorrect-data dependent instructions. When the violating instruction re-issues,

it places its new result onto a result bus. Data dependent instructions simply re-issue by

virtue of receiving new values.

An instruction may issue any number of times while it resides in the instruction win-

dow. It is guaranteed to have issued for the final time when it is ready to retire (all prior

instructions have retired), therefore, traces remain allocated to PEs until retirement.
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1.2.2  Control independence

Branch instructions are a major obstacle to maintaining a large window of useful

instructions because they introduce control dependences: the next group of instructions to

be fetched following a branch instruction depends on the outcome of the branch. High per-

formance processors deal with control dependences by using branch prediction. Predicting

branch outcomes allows instruction fetching and speculative execution to proceed despite

unresolved branches in the window. Unfortunately, branch mispredictions still occur, and

current implementations squash all instructions after a mispredicted branch, thereby limit-

ing the effective window size. Following a squash, the window is often empty and several

cycles are required to re-fill it before instruction execution proceeds at full efficiency.

Often only a subset of dynamic instructions immediately following a branch truly

depend on the branch outcome, however. These instructions arecontrol dependenton the

branch. Other instructions deeper in the window may becontrol independentof the

mispredicted branch: they will be fetched regardless of the branch outcome, and do not

necessarily have to be squashed and re-executed [46,20,83].

Control independence typically occurs when the two paths following a branch re-con-

verge before the control independent instruction, as depicted in Figure 1-5. Upon detect-

ing the misprediction, the incorrect control dependent instructions are squashed and

replaced with the correct control dependent ones, but processing of control independent

instructions can proceed relatively unaffected. Exploiting control independence requires

three basic mechanisms outlined below.
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1. The re-convergent point must be identified in order to distinguish and preserve the con-

trol independent instructions in the window.

2. The processor must support insertion and removal of control dependent instructions

from themiddle of the window.

3. The mispredicted control flow may cause some incorrect data dependences to be

formed between control independent instructions and instructions before the re-conver-

gent point. These incorrect data dependences must be repaired and the incorrect-data

dependent, control independent instructions selectively re-executed.

The re-convergent point is where the incorrect and correct control dependent paths

meet, and instructions after the re-convergent point are control independent instructions.

This definition is different from a static definition of control independence. In a static def-

inition, the re-convergent point is whereall possible control dependent pathsmeet (often

called the post-dominator basic block). Therefore, the statically-defined re-convergent

point can not be closer to the mispredicted branch (in terms of dynamic instructions) than

our dynamically-defined re-convergent point. In either case, control independence is

exploited only if the re-convergent point is within the instruction window.

Control independence is an effective technique for mitigating the effects of branch

mispredictions. A recent study shows potential performance improvements of 30% in

wide-issue superscalar processors [83]. However, practical mechanisms for the three out-

lined requirements need to be explored. In [83], control dependence information is ideally

conveyed from the compiler to hardware for identifying re-convergent points, yet simple
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hardware-only detection of re-convergent points is desirable. And the reorder buffer of

superscalar processors is managed as a fifo with insertion and removal of instructions per-

formed only at the head and tail of the fifo, not in the middle. Arbitrary expansion and

contraction, beginning and ending atany pointin the window, may be complex. Finally,

conventional register and memory dependence mechanisms are inadequate for control

independence. A new overall data flow management strategy is needed -- one that supports

data speculation in general.

Figure 1-5: Control independence example.

In this thesis, the trace processor microarchitecture is explored as a practical and

effective platform for control independence. There are three major contributions towards

control independence.

1. Trace-level re-convergence is not guaranteed despite re-convergence at the instruc-

tion-level. Novel trace selection techniques are developed to expose control indepen-

dence at the trace-level.
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2. Control independence’s potential complexity stems from insertion and removal of

instructions from the middle of the instruction window. Trace processors manage con-

trol flow hierarchically (traces are the fundamental unit of control flow) and this results

in an efficient implementation.

3. Control independent instructions must be inspected for incorrect data dependences

caused by mispredicted control flow. Existing data speculation support is easily lever-

aged to selectively re-execute incorrect-data dependent, control independent instruc-

tions.

1.3  Thesis, contributions, and outline

The thesis of my research is thattraceprocessorsarea goodmicroarchitecturefor

implementing wide-issue machines. I defend this thesis by arguing three key points.

1. Trace processors are an evolutionary extension of superscalar processors.

Trace processors do not require instruction set architecture changes and, consequently,

they maintainbinary compatibility. Binary compatibility is arguably a major reason for

the success of dynamic superscalar processors because it enables new processor gener-

ations to run existing software.

Trace processors retain asingle flow of control. Wide instruction fetching enables

instruction dependences to be established quickly and, likewise, instructions to be

scheduled quickly. This approach isrobust in that it performs well over a range of

applications. And it does not rely on sophisticated and potentially less-robust multi-
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threading or very-long instruction word (VLIW) compilers to accurately schedule

instruction fetching from multiple, disjoint points in the program.

2. Trace processors demonstrate better overall performance than conventional supersca-

lar counterparts.

Distributing resources results in less scheduling flexibility and non-uniform operand

bypassing, both of which reduce the average number of instructions executed per cycle.

But the cycle time of a distributed processor is more sensitive tosingle PE complexity

and not the entire processor, which gives the trace processor an overall performance

advantage over conventional superscalar processors. Overall, trace processors outper-

form aggressive superscalar counterparts because the trace processor microarchitecture

enables both high ILP and a fast clock.

3. The trace processor organization naturally supports aggressive speculation.

The contiguous instruction window enables aggressive, but relatively transparent,

selective recovery from data misspeculation. Control flow hierarchy and existing data

speculation support are leveraged to manage the complexity of exploiting control inde-

pendence.

The trace processor architecture draws from a substantial and influential body of

research. The multiscalar execution paradigm [20,22,100] and its adaptation from com-

piler-defined tasks to dynamic traces [112,103,96,81] lay solid foundations for the trace
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processor. These and other related work are discussed at length in Chapter 2 - “Related

Work”.

My contributions are two-fold. First, I fully develop a trace processor microarchitec-

ture in Chapter 3. There I describehow to build a processor organized around traces. Key

components of a trace processor are identified and defined, and solutions are provided.

The key components are 1) the trace cache based, hierarchical sequencing mechanism, 2)

the distributed instruction window and hierarchical issue mechanisms, 3) data speculation

mechanisms including selective recovery support, and 4) hierarchical control indepen-

dence techniques.

Second, I present performance evaluations and complexity analysis that support the

three key points listed above: the first two points (wide instruction fetching and overall

performance advantage) are supported by experiments in Chapter 5 - “Evaluation of Hier-

archy”, and the third point (platform for aggressive speculation) is supported by experi-

ments in Chapter 6 - “Evaluation of Speculation”. My experimental method and simulator

infrastructure are described in Chapter 4 - “Experimental Method”.
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Chapter 2

Related Work

The organization of the related work discussion follows the overall organization of the

thesis and trace processor: high bandwidth frontend, distributed execution model, data

speculation, and control independence. As will be seen, my thesis leverages the contribu-

tions of an influential and highly relevant body of research.

2.1  High bandwidth instruction fetching

2.1.1  Alternative high bandwidth fetch mechanisms

At least four previous studies have focused on high bandwidth instruction fetching.

All of these attempt to fetch multiple, possibly noncontiguous basic blocks each cycle

from the instruction cache.

First, Yeh, Marr, and Patt [120] consider a fetch mechanism that provides high band-

width by predicting multiple branch target addresses every cycle. The method features a

branch address cache, which extends the branch target buffer (BTB) [47] to store a tree of

target addresses. With a branch target buffer, a single branch prediction and a BTB hit pro-

duce the starting address of the next basic block. Similarly, a hit in the branch address

cache combined with multiple branch predictions produces the starting addresses of the
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next severalbasic blocks. These addresses are fed into a highly interleaved instruction

cache to fetch multiple basic blocks in a single cycle.

A second study by Dutta and Franklin [17] uses a similar approach to the branch

address cache (providing multiple branch targets), but with a new method for predicting

multiple branches in a single cycle. Their approach hides multiple individual branch pre-

dictions within a single prediction; e.g., rather than make 2 branch predictions, make 1

prediction that selects from among 4 paths. This enables the use of more accurate

two-level predictors.

Another hardware scheme proposed by Conte, Mills, Menezes, and Patel [13] uses

two passes through an interleaved branch target buffer. Each pass through the branch tar-

get buffer produces a fetch address, allowing two nonadjacent cache lines to be fetched. In

addition, the interleaved branch target buffer enables detection of any number of branches

in a cache line. In particular, the design is able to detect short forward branches within a

line and eliminate instructions between the branch and its target using acollapsing buffer.

The work also proposes compiler techniques to reduce the frequency of taken branches.

Seznec, Jourdan, Sainrat, and Michaud [91] propose a technique for achieving multi-

ple branch prediction without tree-like predictor structures or sequential predictor

accesses used in other approaches. The technique is calledmultiple-block ahead predic-

tion. In conventional BTB sequencing, the current fetch block is used to lookup the imme-

diate successor block, implying a serial chain of accesses to achieve multiple block

prediction. To overcome this, the current fetch block can instead be used to predict some

number of blocks ahead, breaking the serial access chain. This same prediction model can
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also be applied to pipelining the branch predictor in superpipelined processors, or for

pipelining longer latency two-level predictors.

2.1.2  Trace cache development

Melvin, Shebanow, and Patt proposed thefill unit andmultinodeword cache[58,59].

The first work qualitatively describes the performance implications of smaller or larger

atomicunits of work at the instruction-set architecture (ISA), compiler, and hardware lev-

els. The authors argue for small compiler atomic units and largeexecution atomic unitsto

achieve highest performance. The former is motivated by compile-time flexibility. Larger

execution units are said to allow for more efficient processing: by using larger indivisible

units of work, less processor state must be maintained for exception recovery. The fill unit

is proposed as the hardware mechanism for compacting the smaller compiler units into the

large execution units, which are then stored for reuse in a decoded instruction cache. The

follow-on work [59] evaluates the performance potential of large execution atomic units.

Although this work only evaluates sizes up to that of a single VAX instruction and a basic

block, it also suggests joining two consecutive basic blocks if the intervening branch is

“highly predictable”.

In [60], software basic block enlargement is discussed. In the spirit of trace schedul-

ing [19] and trace selection [35], the compiler uses profiling to identify candidate basic

blocks for merging into a single execution atomic unit. The hardware sequences at the

level of execution atomic units as created by the compiler. The advantage of this approach

is the compiler can optimize and schedule across basic block boundaries.
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Franklin and Smotherman [23] extended the fill unit’s role to dynamically assemble

VLIW-like instruction words from a RISC instruction stream, which are then stored in a

shadow cache. This structure eases the issue complexity of a wide issue processor. They

further applied the fill unit and a decoded instruction cache to improve the decoding per-

formance of a complex instruction-set computer (CISC) [97]. In both cases, cache lines

are augmented to storetrees to improve the utilization of each line.

Four works have independently proposed the trace cache as a complexity-effective

approach to high bandwidth instruction fetching. Johnson [41] proposed theexpansion

cache, which addresses cache alignment, branch prediction throughput, and instruction

run merging. The expansion process also predetermines the execution schedule of instruc-

tions in a line. Unlike a pure VLIW cache, the schedule may consist of multiple cycles via

cycle tagging. Peleg and Weiser [75] describe the design of adynamic flow instruction

cachewhich stores instructions independent of their virtual addresses, the defining charac-

teristic of trace caches. Rotenberg, Bennett, and Smith [79,80] motivate the concept with

comparisons to other high bandwidth fetch mechanisms (branch address cache and col-

lapsing buffer, Section 2.1.1), both in terms of complexity and performance, and define

some of the trace cache design space. Patel, Friendly, and Patt [71] expand upon and

present detailed evaluations of this design space, arguing for a more prominent role of the

trace cache. Two trace cache papers appear in a special issue on cache memories of the

Transactions on Computers [73,84].
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2.2  Processor paradigms

2.2.1  Multiscalar paradigm

2.2.1.1  Managing complexity in multiscalar processors

Work in the area of multiscalar processors, by Franklin and Sohi [20,21,22,24] and

Sohi, Breach, and Vijaykumar [8,9,10,100,113,114,115], first recognized the complexity

of implementing wide instruction issue in the context of centralized resources. They

pointed out the difficulty of scaling instruction fetch and dispatch bandwidth, the register

file, and the instruction window and associated issue mechanisms.

The result of their research is an interesting combination of compiler and hardware.

The compiler divides a sequential program intotasks, each task containing arbitrary con-

trol flow. Task control flow boundaries are conveyed in the binary via instruction set exten-

sions to guide the hardware sequencing mechanism.

The processor is comprised of multiple, replicated processing elements. At run-time, a

hardware task-level sequencer predicts and schedules tasks onto the PEs. Task-level

sequencing [100,38] is facilitated by atask cachefor caching the binary’s task information

and anext task predictorthat learns the history of prior task sequences to predict future

task sequences. The PEs independently and concurrently fetch and execute instructions

from their respective tasks. Therefore, the instruction fetch and prediction bottleneck is

overcome by hierarchical sequencing.

• The task-level sequencer takes large strides through the dynamic instruction stream by

predicting one task per cycle.
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• Independent instruction-level sequencers among the PEs (i.e., replicated program

counters, instruction caches, and branch predictors) providemultiple flows of control

for implicit, high instruction fetch and branch prediction bandwidth.

A distributed register file and distributed issue mechanisms are proposed based on a

study of register dependences [21]. The study reveals that register values have short life-

times and are consumed fairly soon after being produced. Potentially many instances of an

architected register are produced within a task, but only thelast instance needs to be com-

municated to other tasks. Thus, there is a hierarchy of register values, those produced and

consumed solely within a task and those communicated among tasks. The register hierar-

chy is exploited to distribute instruction issue and register dependence mechanisms.

• Distributed register file: Each PE has its own register file. Intra-task values (i.e. local

values) are written to and read from only the physical register file allocated to the par-

ticular task. Other register files do not observe this register traffic.

The PE register files are connected in a unidirectional ring (although an arbitraryphysi-

cal networkmay be used to implement alogical ring) to communicate inter-task values

among the distributed register files. When a task is dispatched to a PE, in addition to the

start PC of the task, acreate maskof all architected registers potentially written by the

task is indicated. Task create masks are generated by the compiler, conveyed via the

binary’s task information, and eventually cached in the task cache. At run-time, create

masks are forwarded to and accumulated by subsequent PEs, which then know to syn-
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chronize on the indicated registers, i.e., wait for prior tasks to communicate those regis-

ters. Specialforward bitsin instruction opcodes or explicitregister release instructions

indicate the last instance of an architected register within a task; the PE forwards the

last instance to subsequent tasks via the inter-task communication ring.

• Distributed issue mechanism: Each PE forms its own instruction window for executing

instructions within a task. The size of the PE window is in no way tied to the size of a

task because tasks can be arbitrarily large. Instruction issue logic is greatly simplified in

multiscalar processors because each PE subwindow is relatively small and each PE is

provided dedicated functional units. Also, full operand bypassing of intra-task values is

feasible, despite longer operand bypass delays for communicating inter-task values via

the ring.

2.2.1.2  Aggressive speculation in multiscalar processors

The multiscalar compiler need not guarantee that tasks are control and data indepen-

dent, a deviation from conventional parallelizing compilers. Thus, the hardware employs

aggressive control and data speculation to concurrently execute tasks.

The problem of ambiguous memory dependences is exacerbated in multiscalar pro-

cessors because loads and stores may befetchedout-of-order, a consequence of multiple

flows of control. Theaddress resolution buffer(ARB) [24] was proposed to allow load

instructions to issue speculatively (always predict no dependence with prior tasks) and

detect store-load dependence violations after the fact (i.e., when stores perform). Recovery

involves squashing and restarting all subsequent tasks. To reduce the number of memory
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dependence squashes, explicit memory dependence prediction can be employed to syn-

chronize loads and stores [63]; the ARB is still used to detect remaining mispredictions.

Register dependences are explicitly specified by the compiler via create masks. Create

masks are typically used by the processor to synchronize tasks. Create masks are conser-

vative, however, because they are a summary of registers modified along all paths through

a task. Also, possible final register values that are control dependent on intra-task branches

are typically forwarded to other tasks only after the intra-task branches are resolved. These

are not fundamental restrictions and, as with memory dependences, register dependences

may be speculated [113] given sufficient compiler and hardware support.

The multiscalar paradigm also promotes advanced control speculation. Control flow

is managed hierarchically and this results in a conceptually simple implementation of con-

trol independence. A branch misprediction within a task does not necessarily cause subse-

quent tasks to squash if they are control independent of the mispredicted branch.

Discussion of multiscalar control independence is deferred to Section 2.4, where control

independence architectures are described at length.

2.2.1.3  Distributing the data cache and memory disambiguation hardware

This thesis does not consider the complexity of scaling data cache and memory dis-

ambiguation bandwidth. Thespeculative versioning cache[28] addresses the problem of

load and store bandwidth. It features a distributed data cache that also performs memory

renaming (versioning) and speculative memory disambiguation, for use in distributed pro-

cessors and particularly the multiscalar paradigm. Each PE has its own data cache for pri-
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vate read/write bandwidth and a fast access time; furthermore, the data cache performs

cache line versioning and detects speculative load mispredictions. A coherency-like mech-

anism ensures proper coordination of PE data caches. Related work along these lines

includes the Stanford Hydra Project [31,32,65,66,67,68] and the CMU STAMPede Project

[102], discussed in the next section.

2.2.2  Speculative multithreaded processors

I now briefly summarize speculative multithreaded processors [2,16,66,102,106] that

have the following fundamental aspects in common with the multiscalar paradigm. This

also provides an opportunity to summarize the potential architectural advantages of the

multiscalar and speculative multithreading paradigm.

1. Threads (tasks) are extracted from a single, sequential program -- ordinary programs

written in a sequential programming model. Thus, a simple programming model is

retained and thread (task) information may be viewed as performance hints. Thread

identification may be compiler or hardware oriented; the hardware thread selection

work that I am aware of is [107,56,2].

2. Multiple flows of control are implemented to fetch and execute multiple threads con-

currently and possibly out-of-order. There are primarily two advantages of multiple

flows of control. Firstly, it enables large instruction windows and the extraction of dis-

tant parallelism without actually forming a single,contiguousinstruction window. Sec-

ondly, multiple flows of control implies hierarchical management of control flow and,

therefore, a conceptually simple implementation of control independence. A branch
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misprediction within a thread does not necessarily cause subsequent threads to squash

if they are control independent of the mispredicted branch (more on this in Section 2.4).

3. Threads are initiated speculatively, i.e., the compiler need not guarantee that parallel

threads are control and data independent. The hardware provides mechanisms for

run-time verification of speculation. Misspeculation occurs when there are data depen-

dences among threads and the dependences are violated, or when control flow does not

reach an initiated thread. Typical recovery actions involve squashing threads after and

including the first misspeculated thread. Thedynamic multithreading architecture

(DMT) [2] buffers entire threads, however, enabling a certain degree of selective recov-

ery: upon detecting misspeculation, entire threads are re-fetched from buffers and ana-

lyzed to isolate the affected instructions, and these instructions are selectively

re-executed.

Projects that embody these architectural principles include the SPSM architecture

[16], the Superthreaded architecture [106], Dynamic Multithreading [2], UPC Speculative

Multithreading [54,55,56,107], and several single-chip multiprocessor projects -- the Stan-

ford Hydra Project [31,32,65,66,67,68] and CMU STAMPede Project [102].

2.2.3  Trace processors

Traces are essentially “unwound”, dynamic versions of static multiscalar tasks

(although tasks may be arbitrarily large). Vajapeyam and Mitra recognized the similarity

of static tasks and dynamic traces, and proposed the first trace processor organization
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[112,62]. In particular, they proposed 1) partitioning the instruction window based on

traces, 2) partitioning the register file into a global file and per-trace local files, and 3)

reusing register renaming information for registers local to a trace. Sundararaman and

Franklin also recognized the similarity of tasks and traces, and proposed an adaptation of

the multiscalar processor to trace-based execution [103].

Smith and Vajapeyam [96] put forth trace processors as a next generation architecture

for exploiting forthcoming billion transistor chips. Rotenberg, Jacobson, Sazeides, and

Smith [81] follow up on the trace processor proposal with a comprehensive microarchitec-

ture definition and evaluation. The trace processor’s aggressive control and data specula-

tion techniques were initially described and explored in [81]. Jacobson, Rotenberg, and

Smith [39] developed the next trace predictor. A full trace processor control independence

microarchitecture and evaluation is presented in [86].

Traces can be pre-processed to speed their execution within PEs or, alternatively,

reduce the strength of PEs without degrading performance [95,40]. Nair and Hopkins [64]

employdynamic instruction formattingto pre-schedule traces, although this work is sug-

gested in the context of VLIW processors and not trace processors. Friendly, Patel, and

Patt [26] and Jacobson and Smith [40] present a suite of dynamic trace optimizations,

including explicit scheduling or assignment of scheduling priorities, collapsing of depen-

dent operations for execution on combined functional units [87], and constant propaga-

tion.
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2.2.4  Clustering based on data dependences

Ranganathan and Franklin [77] describe a taxonomy of decentralized ILP execution

models. The instruction window may be decentralized based on 1) execution units, 2) con-

trol dependences, and 3) data dependences. One of the earliest dynamically scheduled pro-

cessors, the Tomasulo-based IBM 360/91 [105], is an example of decentralization based

on execution units -- a cluster of reservation stations is associated with a particular func-

tional unit -- although only part of the scheduling mechanism (the logic that arbitrates

among ready-to-issue reservation stations) is distributed. Examples of the second

approach are multiscalar and trace processors, because tasks and traces are contiguous

instruction sequences.

The PEWs architecture by Kemp, Ranganathan, and Franklin [43,78], depen-

dence-based superscalar processors by Palacharla, Jouppi, and Smith [70], Multicluster

architecture by Farkas, Chow, Jouppi, and Vranesic [18], and the DEC Alpha 21264

microprocessor [48] steer instructions to clusters of functional units (PEs) based on where

their data dependences are likely to be resolved. The underlying idea is to minimize global

communication among functional unit clusters and, conversely, maximize local communi-

cation within a cluster. Thus, data dependent instructions are likely to reside within the

same cluster.

Data dependence clustering simplifies the instruction window in two ways. Firstly,

instruction scheduling is simplified within a cluster. Instructions tend to form serial depen-

dence chains in each queue, and perhaps only the instruction at the head of the queue

needs to be considered for issue. Secondly, partial bypasses perform comparably to com-
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plete bypasses because communication is localized as much as possible within each clus-

ter.

2.2.5  VLIW and block-structured ISAs

The concept of traces has long existed in the software realm of instruction-level paral-

lelism. Early work by Fisher [19], Hwu and Chang [35], and others on trace scheduling

and trace selection for microcode recognized the problem imposed by branches on code

optimization. Subsequent VLIW architectures and novel ISA techniques, for example

[36,61,33], further promote the ability to schedule long sequences of instructions contain-

ing multiple branches.

2.3  Data speculation

2.3.1  Value prediction

Lipasti, Wilkerson, and Shen observed thevalue locality property of programs

[49,50,51], i.e. the property that many instructions produce and consume a small number

of values and that these values are often predictable. Source or destination operands are

predicted, and instructions execute speculatively based on the predictions. This results in

higher instruction-level parallelism because dependent instructions that would otherwise

execute serially now execute in parallel [50].

Sazeides and Smith [88] study a range of value predictors (constant, stride, and con-

text-based). Their proposed context-based value predictors [88] provide the highest accu-

racy; this class of value predictor is used for live-in prediction in Chapter 6.
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Smith and Vajapeyam [96] first proposed applying value prediction to inter-trace

(inter-thread) dependences, and the follow-on work explores this venue [81]. Subse-

quently, at least two other architectures have proposed breaking inter-thread dependences

using value prediction -- DMT [2] and the UPC speculative multithreaded architecture

[107].

2.3.2  Memory dependence prediction

Franklin and Sohi [24] proposed a hardware approach for speculative memory disam-

biguation. In multiscalar processors, loads issue speculatively as soon as their addresses

are available. The ARB tracks all speculatively-performed load instructions. When a store

is performed, the ARB checks if any subsequent loads to the same address were specula-

tively performed; if so, the task containing the least-speculative dependent load is restarted

and subsequent tasks are squashed.

As mentioned in Section 2.2.2, all speculative multithreaded processors likewise

speculate on memory dependences and provide some form of run-time misspeculation

detection. Recovery actions may be hardware or software based.

In trace processors, the ARB is modified to track only stores. The ARB creates multi-

ple store versions and orders versions based on sequence numbers. Loads are stillserviced

by the ARB: the ARB returns the assumed-correct version of data based on sequence

number comparisons. However, speculative loads aretrackedby the PEs containing them.

Misspeculation detection is therefore performed by the PEs, by monitoring stores as they

issue on the cache buses. Moving the speculative load tracking function into the PEs is
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motivated by the selective recovery model. The trace processor’s ARB variant was first

published in [81].

Explicit memory dependence prediction may be used to significantly reduce the num-

ber of misspeculated load instructions. Moshovos, Breach, Vijaykumar, and Sohi [63]

developed a highly accurate mechanism for predicting memory dependences and synchro-

nizing dependent memory operations.

2.3.3  Selective re-issuing

Lipasti [51] first proposed selective re-issuing in the context of data speculation.

Sazeides [89] formalized the concept by dividing the underlying mechanism into three

steps, and proposed a taxonomy of speculative architectures based on these steps. The

three steps are 1) check predictions (equality), 2) recover in the case of a value misspecu-

lation (invalidation), and 3) inform direct and indirect successors of a correctly predicted

instruction that their operands are valid (verification). According to [89], the superspecula-

tive architecture [51] usesparallel invalidationandparallel verification-- that is, special

hardware is required to quickly propagate invalidation and verification information to all

direct and indirect successor (dependent) instructions.

To the best of my knowledge, the trace processor as proposed in [81] and in this thesis

is one of the firstserial invalidationandserial verificationarchitectures, which has the

advantage of exploiting the underlying issue and retirement mechanisms for performing

invalidation and verification, respectively [89]. Invalidation is performed by virtue of

receiving a new source operand value (issue mechanism), and verification is performed by
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virtue of the trace processor retirement model (instructions remain in their issue buffers

until retirement). This thesis also contributes to selective re-issuing by articulating the

conceptually complicated, but actually simple, interaction of multiple and diverse mispre-

dictions (Section 1.2.1.3).

In addition to an in-depth analysis of data speculation support, Sazeides develops a

detailed data-speculative microarchitecture [89] (a case study). The microarchitecture

extends an RUU-based superscalar processor [99] to support parallel invalidation and ver-

ification.

Forms of selective recovery appear in at least three other contexts. Firstly, although

entire tasks are squashed, the multiscalar processor selectively repairs registers in a

well-orchestrated effort among the multiple, distributed register files [8]. Secondly,

although all instructions are squashed after a branch misprediction, the instruction reuse

buffer [98] selectively re-executes instructions based on the state of the reuse buffer.

Finally, the DMT architecture [2] performs selective re-execution; instructions are

re-fetched from the thread (buffered in the second-level window) and dependences are

analyzed to find the minimum subset of instructions that require re-execution.

2.4  Control independence and other control flow techniques

2.4.1  Limit studies

Lam and Wilson’s limit study [46] demonstrates that control independence exposes a

large amount of instruction-level parallelism, on the order of 10 to 100, for control-inten-
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sive integer benchmarks. This work was followed up by Uht and Sindagi [111] in their

study of “minimal control dependences” and showed similar results.

2.4.2 Control independence in multiscalar and multithreaded processors

Control independence is a property of a dynamically executed program. Ways of

exploiting control independence can vary with the hardware and software techniques

being used. I identify two general classes of implementations (although hybrids are possi-

ble).

• Multiple flows of control with a noncontiguous instruction window.This class of

machines has multiple instruction fetch units and can simultaneously fetch from dis-

joint points in the dynamic instruction stream. The instruction window, i.e. the set of

instructions simultaneously being considered for issue and execution, does not have to

be a contiguous block from the dynamic instruction stream. Clearly, control indepen-

dent code regions are good candidates for parallel fetching, though this is not a require-

ment. Multiscalar and speculative multithreaded processors fall into this class.

• Single flow of control with a contiguous instruction window.This class of machines has

a single program counter and can fetch along a single flow of control at any given time.

The instruction window is a contiguous set of dynamic instructions. Control indepen-

dence is implemented by allowing the program counter to skip back and forth in the

dynamic instruction stream. Superscalar processors fall into this class [82].
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Each class of machines has advantages. With implementations having multiple flows

of control, there is a natural hierarchical structure: each flow of control fetches and oper-

ates on its own “task” or thread. Control decisions are separated into inter-task and

intra-task levels. Intra-task mispredictions can be isolated to the task containing the

misprediction, and later control independent tasks can proceed in a fairly straightforward

manner. This hierarchical task-based structure leads to what is effectively a non-contigu-

ous instruction window where instructions can be fairly easily inserted and removed as

control mispredictions occur. The hierarchy also allows for multiple branch mispredic-

tions to be serviced simultaneously if they are in different tasks.

An advantage of a single control flow implementation is that the single fetch unit can

scan all the instructions as it builds the single instruction window and, therefore, has more

complete knowledge of potential dependences. This potentially leads to more aggressive

data dependence resolution and recovery mechanisms (discussed below). In addition,

these methods may be able to take advantage of finer grain control independence, at the

level of individual basic blocks, for example.

Trace processor control independence is a combination of the two models. A single

flow of control is retained for a more complete picture of potential dependences, but con-

trol flow is managed hierarchically to simplify instruction window management.

The aggressive data dependence resolution and recovery mechanisms presented in this

thesis bear important distinctions with other control independence architectures. Specifi-

cally, multithreading approaches may resolve inter-thread data dependences conserva-

tively [113]. That is, even though control flow within a thread does not directly affect other
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threads, values dependent on the control flow may not be forwarded to other threads until

the control flow is resolved. If speculative data forwarding is performed, entire threads are

squashed when incorrect values are referenced, losing some or all of the benefits of control

independence [103,113]. This is only true for designs without selective reissuing capabil-

ity, e.g. large threads may preclude being selective. In a sense, this approach to control

independence more closely resembles guarding [3,76], which converts control depen-

dences into data dependences. This is not always the case: Vijaykumar, Breach, and Sohi

[113] study several register forwarding strategies, including speculative register forward-

ing guided by (compiler) profiling to reduce the frequency of task squashes.

The more recently proposeddynamic multithreading architecture(DMT) [2] buffers

entire threads in a second-level instruction window, enabling a certain degree of selective

recovery. Upon detecting a mispredicted branch, entire threads are re-fetched from buffers

and analyzed to isolate data dependent, control independent instructions, and these

instructions are selectively re-executed.

2.4.3  Control independence in superscalar processors

Rotenberg, Jacobson, and Smith [82,83] examine the potential of control indepen-

dence in the context of wide-issue superscalar processors. An aggressive implementation

achieves improvements on the order of 30%. The proposed mechanisms are complex due

to the non-hierarchical superscalar organization, and there is a reliance on the compiler to

provide complete control dependence information. The study in [83] is intended to bound

the performance potential of control independence and determine if it is worthwhile to
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explore practical implementations, and is therefore a necessary prelude to my trace pro-

cessor research effort.

The instruction reuse buffer by Sodani and Sohi [98] provides another way of exploit-

ing control independence. It saves instruction input and output operands in a buffer --

recurring inputs can be used to index the buffer and determine the matching output. In the

proposed superscalar processor with instruction reuse, there is complete squashing after a

branch is mispredicted. However, control independent instructions after the squash can be

quickly re-evaluated via the reuse buffer.

Another approach by Chou, Fung, and Shen [12] uses a dual reorder buffer design. A

misprediction causes one of the reorder buffers to complete squash, but control and data

independent instructions from the second reorder buffer are preserved.

2.4.4  Control independence in trace processors

Control independence in trace processors is first introduced by Rotenberg, Jacobson,

Sazeides, and Smith [81] but, because it is not the focus of that paper, the major issues are

not formalized, conveyed, nor fully understood. The problem is not formalized in terms of

fine-grain control independence(FGCI) andcoarse-grain control independence (CGCI),

and trace-level reconvergence and its implications to trace selection are not discussed.

(FGCI and CGCI are two types of control flow management: FGCI refers to branches

whose control dependent paths fit within a trace and CGCI refers to branches whose con-

trol dependent paths span multiple traces.) Performance gains are observed in two of the

benchmarks, and these gains are due to manually-inserted, FGCI-like trace selection hints
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conveyed in the benchmark binaries; PEs are managed in a fifo queue so CGCI is not

explicitly exploited. A more sophisticated treatment of trace processor control indepen-

dence is presented in [86], and is the direct basis for the control independence concepts

presented in this thesis.

2.4.5  Predication and multi-path execution

Predication [3,76,53,4] and selective multi-path execution [111,34,110,44,116,1]

attempt to identify hard-to-predict branches, either through profiling or branch confidence

estimators (respectively), and fetch both paths of these branches. In the case of multi-path

execution, both paths are fully renamed and executed as separate threads. When the

branch is resolved, one of the threads is squashed and the other becomes the primary

thread of execution.

Predication is in some sense the software equivalent of multi-path execution applied to

forward-branching regions of the CFG. In one form of predication, the control dependent

instructions do not execute until their predicates are computed, i.e. multiple paths are

fetched but only the correct path is executed. Alternatively, withpredicate promotion

[104] or predicated state buffering[4], instructions from multiple paths may execute con-

currently, and only the results from the correct path are committed.

Predication and multi-path execution waste resources by fetching and possibly execut-

ing both the correct and incorrect control dependent paths of branches. This results in a

performance gain over conventional speculation if the branches are mispredicted. Unfortu-

nately, multi-path execution is applied to some fraction of correctly predicted branches,
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and alternatively, some fraction of incorrectly predicted branches are not covered by

multi-path execution.

A problem specific to predication is the aggravation of data dependences. The purpose

of branch prediction is two-fold: 1) quickly determine which instructions to fetch next and

2) quickly establish and resolve data dependences among instructions. Predication only

addresses the first aspect. It “removes” branches, so the instructions to be fetched are

known in advance (all instructions in the predicated region are fetched). It does not, how-

ever, address the second aspect. Without predicated state buffering, all predicated instruc-

tions must wait for their controlling predicate to be resolved. Branch prediction eliminates

this control dependence if the prediction is correct, and it is correct more often than incor-

rect. With predicated state buffering, instructions within a region need not wait for predi-

cates, but their computed results are not forwardedoutside the region until predicate

conditions are resolved.

The idea behind control independence is to always trust branch prediction and specu-

lation, and take measures only when a misprediction occurs, thereby avoiding the above

difficulties. When a misprediction does occur, predication and multi-path execution can

potentially reduce the branch misprediction penalty more than control independence,

because only part (or none) of the path after the branch is recovered in the case of control

independence. On the other hand, because only a single path is followed, control indepen-

dence may still capture more control independent instructions within the window than

predication or multi-path execution.



43

Dynamic Hammock Predication (DP) [45] is loosely related to the FGCI technique

developed in Section 3.4.3, only in that both techniques exploitif-then and

if-then-else constructs. There are clear distinctions between my trace selection

work and DP. First, FGCI and any form of control independence is not predication. FGCI

relies on branch prediction and reduces the misprediction penalty when mispredictions do

occur. Predication eagerly executes multiple control dependent paths in anticipation of

mispredictions. Second, the DP technique is not fully dynamic -- the compiler identifies

and marksif-then and if-then-else regions for predication. FGCI on the other

hand implementsdynamic detectionof control flow constructs. Lastly, my FGCI algorithm

can dynamically analyze arbitrarily complex, nested forward-branching code, whereas DP

is restricted to regions containing only a single conditional branch.

2.4.6  Other misprediction tolerance techniques

The mispredict recovery cacheproposed by Bondi, Nanda, and Dutta [7] caches

instruction threads from alternate paths of mispredicted branches. The goal of this work is

to quickly bypass the multiple fetch and decode stages of a long CISC pipeline following a

branch misprediction.

Friendly, Patel, and Patt [25] proposeinactive issue, a misprediction recovery model

based on the trace cache. During trace cache indexing, if only a prefix of a trace matches

the branch predictions, the non-matching instructions are still dispatched into the instruc-

tion window, where they are inactive. If the branch predictions for the trace were incorrect,
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and in fact the fetched trace is the correct path, the inactive instructions are quickly acti-

vated to reduce the misprediction recovery penalty.
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Chapter 3

Trace Processor Microarchitecture

The trace processor microarchitecture is developed in this chapter. Figure 3-1 shows

the key processor components that are covered, and in which sections they are covered.

Section 3.1 describes the trace processor frontend. Section 3.2 covers the distributed

instruction window: trace dispatch (Section 3.2.1), PE resource management

(Section 3.2.2), and the processing element (Section 3.2.3). Section 3.3 describes the data

speculation mechanisms.

Finally, control independence is described in Section 3.4. Control independence

involves trace selection (Section 3.4.1.2), PE resource management (Section 3.4.1.1), and

data speculation support (Section 3.4.1.3).
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Figure 3-1: Roadmap for covering the trace processor microarchitecture.

3.1  Trace processor frontend

The trace processor frontend, shown in Figure 3-2, is designed to provide high
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through the program at the higher level of traces, both for 1) control flow prediction and 2)

fetching instructions.

Figure 3-2: Trace processor frontend.
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traces emanating from the same starting PC can reside simultaneously in the trace cache

even if it is direct mapped [80].

The output of the trace cache is one or more traces, depending on the cache associa-

tivity. A trace identifier is stored with each trace in order to determine a trace cache hit,

analogous to the tag of conventional caches. The desired trace is present in the cache if

one of the cached trace identifiers matches the predicted trace identifier.

Ideally, during trace-level sequencing, the next trace is predicted correctly and it hits

in the trace cache. The trace is passed to the dispatch stage where live-in and live-out reg-

isters are renamed, establishing the register dependences with previous traces in the pro-

cessor. The renamed trace is allocated to a PE via the dispatch bus.

Unfortunately, trace-level sequencing does not always provide the required trace.

Instruction-level sequencing, discussed in the next subsection, is required to construct

non-existent traces or repair trace mispredictions.

3.1.2  Instruction-level sequencing

Theoutstanding trace buffersin Figure 3-2 are used to 1) construct new traces that are

not in the trace cache and 2) track branch outcomes as they become available from the exe-

cution engine, allowing detection of mispredictions and repair of the traces containing

them. There is one outstanding trace buffer per PE.

Each fetched trace is dispatched to both a PE and its corresponding trace buffer. In the

case of a trace cache miss, only the trace prediction is received by the allocated buffer. The

trace prediction (starting PC and branch outcomes) provides enough information to con-
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struct the trace from the instruction cache, although this typically requires multiple cycles

due to predicted-taken branches. Meanwhile, the trace dispatch pipe is stalled -- no other

traces may pass through renaming because of the missing trace. However, the fetch stage

is free to continue predicting traces, and these traces are placed in their outstanding trace

buffers despite not reaching the dispatch stage. When the missing trace has been con-

structed and pre-renamed, the dispatch pipe is restarted and supplied with traces from the

buffers in predicted program order. The non-blocking fetch pipe allows multiple trace

cache misses to be serviced in parallel, restricted only by the number of datapaths to/from

the instruction cache.

In the case of a trace cache hit, the trace is dispatched to the buffer. This allows repair

of a partially mispredicted trace, i.e. when a branch outcome returned from execution does

not match the path indicated within the trace. In the event of a branch misprediction, the

trace buffer begins re-constructing the tail of the trace (or all of the trace if the start PC is

incorrect) using the corrected branch target and the instruction cache. For subsequent

branches in the trace, asecond-level branch predictor is used to make predictions.

When a trace buffer is through constructing and pre-renaming its trace, it is written

into the trace cache and dispatched to the execution engine. If the newly constructed trace

is a result of misprediction recovery, the trace identifier is also sent to the trace predictor

for repairing its path history.
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3.1.3  Trace prediction

The trace predictor, shown in Figure 3-3, is based on Jacobson’s work on path-based,

high-level control flow prediction [38,39].

Figure 3-3: Jacobson’s trace predictor.

An index into a correlated prediction table is formed from the sequence of past trace

identifiers. The hash function used to generate the index is called aDOLC function:

‘D’ epth specifies the path history depth in terms of traces;‘O’ ldest indicates the number

of bits selected from each trace identifier except the two most recent ones;‘L’ ast and

‘C’ urrent indicate the number of bits selected from the second-most recent and most

recent trace identifiers, respectively.

Each entry in the correlated prediction table contains a trace identifier and a 2-bit

counter for replacement. The predictor is augmented with several other mechanisms [39].

• Hybrid prediction. In addition to the correlated table, a second, smaller table is indexed

with only the most recent trace identifier. This second table requires a shorter learning

time and suffers less aliasing pressure.
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• Return history stack. At call instructions, the path history is pushed onto a special stack.

When the corresponding return point is reached, path history before the call is restored.

This improves accuracy because control flow following a subroutine is highly corre-

lated with control flow before the call.

• Alternate trace identifier. An entry in the correlated table is augmented with an alter-

nate trace prediction, a form of associativity in the predictor. If a trace misprediction is

detected, the outstanding trace buffer responsible for repairing the trace can use the

alternate predictionif it is consistent with known branch outcomes in the trace. If so,

the trace buffer does not have to resort to the second-level branch predictor; instruc-

tion-level sequencing is avoided altogether if the alternate trace also hits in the trace

cache.

3.1.4  Trace selection

Trace processor performance is strongly dependent ontrace selection, the algorithm

used to divide the dynamic instruction stream into traces. At a minimum, trace selection is

composed of a few simple trace termination rules, dictated by basic hardware constraints.

The most notable of these is maximum trace length, i.e. trace cache line size. Trace line

size is perhaps the most important selection constraint because it affects the performance

of all trace processor components and usually influences other, more sophisticated trace

selection constraints.

In addition to basic termination rules, trace selection may include sophisticated heu-

ristics designed to improve various aspects of the trace processor. Trace selection is not
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comprehensively investigated in this thesis and it remains an important area of future

research. Nonetheless, implications of trace selection are discussed below.

• Trace cache performance

Trace line size affectsbandwidth per cache hitandcache hit rate, both of which factor

into overall fetch bandwidth.

The interaction between trace line size and hit rate, however, is difficult to assess

because it depends on the quality of trace selection. Trace cache miss rate versus trace

line size is plotted for two benchmarks in Figure 3-4, using only basic trace selection

(stop at the maximum trace length or at any indirect control transfer instruction). Four

trace cache configurations are represented, 16KB through 128KB, all 4-way associa-

tive.

For a fixed-size trace cache, miss rate increases with longer trace lines. Less con-

strained trace selection results in more static to dynamic expansion and, consequently,

more traces. Furthermore, there are fewer total trace lines in the cache to accommodate

the line size increase. Finally, additional trace selection constraints (specifically, stop-

ping at indirect control transfers) create traces shorter than a trace line: internal frag-

mentation tends to increase with trace line size. All of these factors combine to increase

the trace cache miss rate.



53

Figure 3-4: Impact of trace line size on trace cache miss rate.
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create shorter and fewer unique traces. Firstly, shorter traces contain fewer branch

instructions, so a given DOLC function captures less global path history. Secondly,

fewer unique traces naturally decreases the amount of unique context for making pre-

dictions. Both of these effects combine to reduce trace prediction accuracy.

• Trace construction latency

The latency of trace construction increases with trace length and, furthermore, a trace

must be fully constructed before restarting the trace dispatch pipeline. Therefore, any

benefits due to longer trace lines must be weighed against the higher trace construction

penalty.

• Hierarchical instruction window

Trace line size affects the complexity and performance of the hierarchical instruction

window. A longer trace line increases the ratio of local values to global values. There-

fore, complexity may be shifted away from global resources to the processing element.

Performance implications are less clear. With longer traces, more communication is

localized, potentially reducing the latency of dependence chains. But load balance

among PEs is also affected. Whether longer traces improve or degrade load balance is

unknown. This aspect of trace selection is investigated in Chapter 5.

In the future, sophisticated heuristics might manage load balance based on 1) critical

path estimates within traces and 2) data dependences among traces (see [114,115]).
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• Enhancing parallel trace execution

Trace selection can possibly analyze data flow to enhance the parallel execution of

traces. Parallel trace execution is enhanced explicitly by reducing inter-trace depen-

dences and scheduling the remaining dependences (see [114,115]), or implicitly by

exposing highly-predictable values at trace boundaries.

• Control independence

Trace selection gathers information about re-convergent points in the instruction stream

to expose control independence. This aspect of trace selection is investigated in depth

in Section 3.4.

3.1.5  Discussion of hierarchical sequencing

In Figure 3-5(a), a portion of the dynamic instruction stream is shown with a solid

horizontal arrow from left to right. The stream is divided into traces T1 through T5. This

sequence of traces is produced independently of where the instructions come from -- trace

predictor/trace cache, trace predictor/instruction cache, or branch predictor/instruction

cache.

Figure 3-5: Two sequencing models.(a) Hierarchical (b) Non-hierarchical.
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For example, if the trace predictor mispredicts T3, the trace buffer assigned to T3

resorts to instruction-level sequencing. This is shown in the diagram as a series of steps,

depicting smaller blocks fetched from the instruction cache. The trace buffer strictly

adheres to the boundary between T3 and T4, dictated by trace selection, even if the final

instruction cache fetch produces a larger block of sequential instructions than is needed by

T3 itself.

I call this processhierarchical sequencingbecause there exists a clear distinction

between inter-trace control flow and intra-trace control flow. Inter-trace control flow, i.e.

trace boundaries, is effectivelypre-determinedby trace selection and is unaffected by

dynamic effects such as trace cache misses and mispredictions.

A contrasting sequencing model is shown in Figure 3-5(b). In this model, trace selec-

tion is “reset” at the point of the mispredicted branch, producing the shifted traces T3’,

T4’, and T5’. This sequencing model does not work well with path-based next trace pre-

diction. After resolving the branch misprediction, trace T3’ and subsequent traces must

somehow be predicted. However, this requires a sequence of traces leading to T3’ and no

such sequence is available (indicated with question marks in the diagram).

A potential problem with hierarchical sequencing is misprediction recovery latency.

Explicit trace prediction uses a level of indirection: a trace is first predicted, and then the

trace cache is accessed. This implies an extra cycle is added to the latency of mispredic-

tion recovery. However, this extra cycle is not exposed. First, consider the case in which

the alternate trace prediction is used. The primary and alternate predictions are supplied by

the trace predictor at the same time, and stored together in the trace buffer. Therefore, the
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alternate prediction is immediately available for accessing the trace cache when the

misprediction is detected. Second, if the alternate is not used, then the second-level branch

predictor and instruction cache are used to fetch instructions from the correct path. In this

case, the instruction cache is accessed immediately with the correct branch target PC

returned by the execution engine.

Unfortunately, the trace dispatch model aggravates both trace misprediction and trace

cache miss recovery latency because a trace must be fully constructed before it is globally

renamed and dispatched to a PE.

3.2  Distributed instruction window

3.2.1  Trace dispatch and retirement

The dispatch stage performs decode, global renaming, and live-in value predictions.

Live-in registers of the trace are renamed by looking up physical registers in the most

recent global register rename map. Independently, live-out registers receive new names

from the free-list of global physical registers. The most recent global register rename map

is copied (checkpointed) and the new map is updated to reflect the renamed live-out regis-

ters. The dispatch stage also looks up value predictions for all live-in registers.

The mechanism for committing register state is essentially the same as used by con-

temporary superscalar processors [94], only performed at the trace-level. The dispatch and

retire stages manage atrace-based active list(or reorder buffer). At trace dispatch time,

the trace is allocated an entry in the active list. An entry contains a list ofold physical reg-

istersto which each live-out register was renamed prior to renaming this trace. At retire-
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ment, this list indicates which physical registers to return to the global freelist. Also

included in the active list entry is a pointer to the register map used to rename the trace’s

live-in registers; this map is freed at retirement.

Precise exception handling is straightforward and conventional, but the trace model

introduces a few unique aspects. If an exception is raised within a trace, processing of the

exception is delayed until 1) the trace is at the head of the active list and 2) all instructions

in the trace before the excepting instruction have completed execution. Then, the excep-

tion is handled like a branch misprediction, in that the corresponding outstanding trace

buffer is notified of the exception, the register rename maps are backed up to the first map,

and all PEs are squashed. The trace buffer backs up to the instruction just prior the except-

ing instruction,terminates the trace at that instruction, and pre-renames the “short trace”

as it normally does during trace construction. The “short trace” is re-dispatched to a PE, it

executes, and retires. At this point, state is precise and the exception handler is invoked.

3.2.2  Allocating and freeing PEs

Because the trace-based active list handles traceretirement, a PE can theoretically be

freed as soon as its trace hascompletedexecution. Unfortunately, knowing when a trace is

“completed” is not simple, due to the waves-of-computation model: a mechanism is

needed to determine when an instruction has issued for the last time [51].

A simpler approach is used in the trace processor. A PE is freed when its trace is

retired because retirement guarantees instructions are done. The approach is somewhat

costlier -- in terms of performance or resources, depending on the viewpoint -- because
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PEs are freed in the same order they are allocated (i.e. FIFO), even though they might in

fact complete out-of-order.

3.2.3  Processing element

The datapath for a processing element is shown in Figure 3-6. There are enough

instruction buffers to hold the longest trace. For loads and stores, the address generation

part is treated as an instruction in these buffers. The memory access part of loads and

stores are placed into load/store buffers, which interface directly to cache ports (address

and data buses). A set of registers close to the global register file stores live-in value pre-

dictions. Predictions are also dispatched to a separate validation unit which compares pre-

dictions to values received from other traces.

The timing of instruction issue is critical. The following two subsections describe

local and global wakeup timings, respectively.
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Figure 3-6: Processing element detail.
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It takes one or more cycles to issue an instruction to a functional unit, e.g. in

Figure 3-7, one cycle to wakeup and select the instruction and one cycle to obtain values

from the register files. Therefore, to ensure the dependent instruction reaches a functional

unit in time for the bypassed data, resulttagsmust be broadcast in advance of the result

data. In particular, as shown in Figure 3-7, there is a critical timing window -- just at the

end of instruction wakeup/select -- during which the just-issued instruction broadcasts its

tag in order to wakeup the dependent instruction in the following cycle.

Figure 3-7: Local wakeup timing.
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local result bus slot must be obtained before broadcasting the tag. The critical logic cycle

in Figure 3-8 -- from instruction window, to local bus arbiter, to local result tag bus, back

to instruction window -- is characteristic of any small-scale, out-of-order superscalar pro-

cessor.

Figure 3-8: Local wakeup datapath and control.
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Because issuing proceeds regardless of result bus availability, additional buffering and

tracking is required for issued instructions. Associated with each functional unit is a buffer

for holding completed results. For control, information about outstanding instructions is

queued within the local bus arbiter. The local bus arbiter 1) arbitrates on behalf of out-

standing instructions awaiting a local result bus, 2) drives the local result tag buses, and 3)

sends signals to the functional unit buffers to direct data onto the local result data buses.

3.2.3.2  Global wakeup timing

The timings (Figure 3-9) and datapaths (Figure 3-10) for global wakeup are similar to

that of local wakeup: there are separate global tag and data result buses; tags are broadcast

in advance of the data; global result buses are arbitrated (completely independent of local

arbitration); buffering and tracking are required for outstanding instructions awaiting a

global result bus.

There are two major differences, however. First, it takes longer to broadcast global

tags and data due to cross-PE communication latency, e.g. one extra cycle in Figure 3-9.

This means dependent instructions in different PEs cannot execute back-to-back. How-

ever, the issue mechanism still ensures the timeliest schedule as dictated by the minimum

global communication latency.

Second, arbitration is slightly more timing-critical because it requires communication

among all PE arbiters (the wires labeled “global arbitration” in Figure 3-10). Timely arbi-

tration is achieved by a combination of factors: 1) point-to-point interconnect, 2) only a

small amount of readily-available information needs to be communicated among PEs (e.g.
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number of buses requested), and 3) it may be feasible to “cycle-steal” a fraction of the sub-

sequent tag broadcast cycle or preceding wakeup/select cycle. Alternatively, another cycle

can be added to the global bypass latency (2 cycles instead of 1) to account for global bus

arbitration.

Figure 3-9: Global wakeup timing.
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3.3  Data misspeculation

Because data speculation is pervasive in the trace processor, data misspeculation is

relatively frequent and recovery plays a central role in the design of the trace processor

data dependence mechanisms. There are two challenges.

1. Recovery must be selective, i.e. only those instructions affected by incorrect data

should be re-executed [51]. Misspeculation is frequent enough to demand high-perfor-

mance recovery.

2. There are three sources of data misspeculation -- live-in mispredictions, misspeculated

load instructions, and partially incorrect control flow (control independence,

Section 3.4). Often, multiple sources of data misspeculation interact in complex ways

(an example is given below). The number of unique recovery scenarios is virtually

unlimited. All scenarios must be handled with a simple selective recovery model.

Selective recovery is divided into two steps. First, the “source” of a violation is

detected and only that instruction re-issues.Detection is performed by the violating

instruction itself. In this way, the detection logic is distributed; and since detection occurs

at the source, it is trivially clear which instruction to re-execute. Detection mechanisms

vary with the type of violation (mispredicted live-in, load violation, etc.) and are described

in the subsections that follow.

Second,the existing instruction issue logicprovides the mechanism to selectively

re-issue all incorrect-data dependent instructions. When the violating instruction re-issues,
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it places its new result onto a result bus. Data dependent instructions simply re-issue by

virtue of receiving new values.

An instruction may issue any number of times while it resides in the instruction win-

dow. It is guaranteed to have issued for the final time when it is ready to retire (all prior

instructions have retired), therefore, traces remain allocated to PEs until retirement.

An example scenario is shown in Figure 3-11. Five instructions are shown from left to

right, and four snapshots in time show execution progress. Arrows indicate dependence

chains: dashed arrows are unresolved dependences, solid arrows are incorrectly resolved

dependences, and thick solid arrows are correctly resolved dependences. There are ini-

tially three predictions: two incorrect live-in predictions for instructions i1 and i4 and a

correct memory dependence prediction for the load instruction i3. The number of times

each instruction has issued is indicated.

• Snapshot 1: Instruction i1 issues with an incorrectly predicted value but its result has

not yet propagated to the address generation of store i2. The load i3 has issued but its

result has not yet propagated to instruction i4. Instruction i4 has issued with an incor-

rectly predicted value and, in turn, caused i5 to issue.

• Snapshot 2: The store i2 computes an incorrect address but has not yet issued. The load

i3 propagates a correct value to i4 and i4 detects its initial prediction was incorrect; i4

re-issues, as does i5. At this point, the dependence chain i3-i4-i5 is correctly but tempo-

rarily resolved.
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• Snapshot 3: The store i2 incorrectly issues to address A. The load i3 detects a violation

(even though it is actually correct) and re-issues itself. The new, incorrect load value

gets propagated through instructions i4 and i5.

• Snapshot 4: Instruction i1 receives its input value and detects that its initial prediction

was incorrect, so i1 re-issues; the store i2 generates a correct address B and then issues

to that address. The load i3 detects that it was incorrectly linked to the store i2 and

re-issues, in turn causing instructions i4 and i5 to re-issue.

Instructions issue up to four times in this example. Several “waves of computation”

are required to arrive at the final, correct result.
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3.3.1  Live-in value mispredictions

Live-in predictions are validated when the computed values are received from the glo-

bal result buses. Instruction buffers and store buffers monitor comparator outputs corre-

sponding to live-in predictions they used (Figure 3-6). If the predicted and computed

values match, instructions that used the predicted live-in are not re-issued. Otherwise they

do re-issue, in which case the validation latency appears as a misprediction penalty,

because in the absence of speculation the instructions may have issued sooner [51].

3.3.2  Memory dependence mispredictions

The memory system (Figure 3-12) is composed of a data cache, an ARB derivative

[24], distributed load/store buffers in the PEs, and memory buses connecting them. The

ARB buffers speculative memory state and maintains multiple versions per memory loca-

tion (memory renaming).

When a trace is dispatched, all of its loads and stores are assignedsequence numbers.

Sequence numbers indicate the program order of all memory operations in the window.

Handling of stores and loads are discussed in each of the next two subsections.
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Figure 3-12: Abstraction of the memory system.

3.3.2.1  Handling stores

• When a store first issues to memory, it supplies its address, sequence number, and data

on one of the memory buses. The ARB creates a new version for that memory address

and buffers the data. Multiple versions are ordered via store sequence numbers.

• If a store must re-issue because it has received a new computed address, it must first

“undo” its state at the old address, and then perform the store to the new address. Both

transactions are initiated by the store sending its old address, new address, sequence

number, and data on one of the memory buses.

• If a store must re-issue because it has received new data, it simply performs again to the

same address.

. . . PEs . . .
ST LD ST LD ST LD

global memory buses

data1

(commit)
DATA CACHE

dataNdata2address
multiple versions

Address Resolution Buffer (ARB)



72

3.3.2.2  Handling loads

• A load sends its address and sequence number to the memory system. If multiple ver-

sions of the location exist, the memory system knows which version to return by com-

paring sequence numbers. The load is supplied both the data and the sequence number

of the store which created the version. Thus,loads maintain two sequence numbers: its

own and that of the data.

• If a load must re-issue because it has received a new computed address, it simply

re-issues to the memory system as before with the new address.

• Loads snoop all store traffic (store address and sequence number). A load must re-issue

if 1) the store address matches the load address, 2) the store sequence number is logi-

cally less than that of the load (i.e. the store is before the load in program order), and 3)

the store sequence number is logically greater than that of the load data (i.e. the load

has an incorrect, older version of the data). This is a true memory dependence violation.

The load must also re-issue if the store sequence number simply matches the sequence

number of the load data. This takes care of the store 1) sending out new data or 2)

changing its address via a store undo operation (a false dependence had existed

between the store and load).

3.3.2.3  Regarding sequence numbers

The sequence numbers assigned to loads and stores are derived simply from the PE

number plus location in the PE’s trace, and are calledphysical sequence numbers. To per-
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form comparisons, however, the physical sequence numbers must first be translated tolog-

ical sequence numbers based on the logical order of PEs.

Essentially, a small table maps physical PE number to logical PE number. This func-

tionality rests with trace processor window management, so additional details regarding

sequence number translation is deferred to Section 3.4.2.

3.4  Control independence

3.4.1  Overview

An overview of trace processor control independence is presented in the following

three subsections. I begin with the hierarchical instruction window and how it is inherently

suited to flexible window management. Then, the interesting problem of ensuring and

identifying trace-level re-convergenceis described. Finally, I describe how the selective

misspeculation recovery model of trace processors supports the data flow management

requirements of control independence.

3.4.1.1  Exploiting hierarchy: flexible window management

The hierarchical instruction window enables flexible window management in two

ways.

1. Hierarchical management of control flow. In some cases it is possible to isolate the

effects ofintra-trace control flowfrom inter-trace control flow. This is true if the long-

est control dependent path of a branch fits entirely within a trace. If such a branch is

mispredicted, instructions following the branch but in the same trace are squashed,
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while subsequent traces are not squashed. Within a PE, a simple (non-selective) squash

model is preserved, yet at a higher level it appears as if instructions are inserted/

removed from themiddle of the instruction window.

This is calledfine-grain control independence (FGCI)because the branch and its

re-convergent point are close together. Figure 3-13(a) shows an example in which a

misprediction inPE1 affects only control flow within the PE, and inter-trace control

flow (links between PEs) is unaffected.

2. Hierarchical management of resources. If one or more control dependent paths of a

branch are longer than a trace, then recovering from a misprediction involves squashing

and inserting an arbitrary number of traces in the middle of the window. To do so, the

PEs are managed as a linked-list instead of a fifo. This is no more complex than fifo

management, however, because the unit of insertion/removal (a trace) is large and

therefore efficient to manage.

This is calledcoarse-grain control independence (CGCI)because the branch and its

re-convergent point are in different traces. Figure 3-13(b) shows an example in which

two tracest2 and t3 must be removed from the middle of the instruction window and

tracet6 inserted in their place.
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Figure 3-13: Flexible window management in a trace processor.
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3.4.1.2  Trace selection: ensuring and identifying trace-level re-convergence

Trace-based window management simplifies arbitrary instruction insertion and

removal but introduces a new problem. Although control flow eventually re-converges

after a branch,trace-level re-convergenceis not guaranteed. Consider Figure 3-14(a), in

which the two control dependent paths of the branch are of different lengths. In

Figure 3-14(b), a different set of traces is selected depending on the direction of the

branch, even traces after the re-convergent point. I.e. re-convergence is not manifested at

the trace-level.

Trace-level re-convergence must be ensured in order to exploit both FGCI and CGCI.

This rests withtrace selection, the algorithm for dividing the dynamic instruction stream

into traces. Essentially, trace selection must synchronize the control dependent paths of a

branch so that regardless of which path is taken, the same sequence of control independent

traces are selected. Traces may be synchronized at the re-convergent point itself, but more

generally at any control independent point after the re-convergent point. I develop two dif-

ferent trace selection techniques to address FGCI and CGCI separately.

Small if-then , if-then-else , and nestedif-then-else constructs that do

not contain loops or function calls are ideally suited to FGCI mechanisms. First, they have

fixed-length and relatively short control dependent paths, most of which fit within a trace.

Table 6-3 (see Chapter 6) shows that in the worst case, less than 10% of these constructs

have a control dependent path longer than 32 instructions. Secondly, they account for a

large enough fraction of mispredictions (20% - 60%) to be specially targeted for control
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independence. Lastly, these regions can be precisely and efficiently detected by hardware

because of their directed, acyclic control flow.

Figure 3-14: The problem of trace-level re-convergence.(a) Instruction-level re-con-
vergence. (b) Default selection does not ensure trace-level re-convergence. (c) FGCI selec-
tion and (d) CGCI selection ensure trace-level re-convergence.
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path lengths, trace selection synchronizes control dependent paths at the re-convergent

point -- this is shown in Figure 3-14(c). This padding technique enables traces to expand

or contract to recover from mispredictions, without affecting the boundaries of subsequent

traces, similar totasksin multiscalar processors [100]. Section 3.4.3 describes how for-

ward-branching regions are detected and analyzed, and how trace selection uses the result-

ant information to expose FGCI.

All other branches are covered by CGCI. In the extreme case, trace selection could

search for the precise, i.e. nearest, control independent points for all branches, and then

use these points to delineate traces. However, experience with this approach has yielded

negative results. There are so many re-convergent points that synchronizing at every one

of them creates a large number of small traces, worsening PE utilization, trace cache per-

formance, and trace predictor performance.

Instead, trace selection can exploit a limited number of easily identified, “global” con-

trol independent points in the dynamic instruction stream. Loop back-edges, loop exits,

and subroutine return points are all examples of global re-convergent points [81,2,82,83].

To ensure trace-level re-convergence for CGCI branches, traces are delineated at chosen

global re-convergent points -- as shown in Figure 3-14(d). Then, if a branch is mispre-

dicted, an exposed global re-convergent point nearest the branch is found in the window

and assumed to be the first control independent trace. Section 3.4.4 describes CGCI trace

selection.
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3.4.1.3  Managing data dependences

A mispredicted branch instruction causes not only incorrect control flow, but poten-

tially incorrect data flow as well. After repairing the control flow, control independent

instructions must be inspected for incorrect data dependences both through registers and

memory, and any incorrect-data dependent instructions selectively reissued.

As we have seen, a primary feature of trace processors is the pervasive use of data

speculation. Selective misspeculation recovery was anticipated as an important problem

and plays a central role in the trace processor microarchitecture [81]. The selective recov-

ery model as it applies to control independence is reviewed in Section 3.4.2.2.

3.4.2  Trace processor window management

In Section 3.4.1.1, I highlighted the two ways in which trace processors flexibly insert

and remove instructions from the middle of the instruction window: FGCI and CGCI. The

following two sections provide details regarding control flow and data flow management,

respectively.

3.4.2.1  Managing control flow

Sophisticated control flow management is performed by the trace processor frontend

since it controls PE allocation (trace dispatch) and deallocation (trace squash). Basic oper-

ation of the frontend was described previously in Section 3.1 and depicted in Figure 3-2.

Recall that a trace is not only dispatched to the PE but also placed in the correspond-

ing outstanding trace buffer. The trace buffer monitors branch outcomes as they become
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available from the PE. If a misprediction is detected, the trace predictor is backed up to

that trace, as are the global register rename maps. Also, the trace buffer begins repairing

the trace from the point of the branch misprediction, using either the alternate trace predic-

tion or the simple branch predictor to fetch instructions. However, subsequent PEs and

their traces are not affected at this point, i.e. they continue processing instructions. When

the mispredicted trace has been repaired, the trace-level sequencer is restarted in one of

two ways, depending on whether the branch is covered by fine- or coarse-grain control

independence.

1. Fine-grain: Control flow recovery for FGCI is very simple because the PE arrangement

is unaffected. The frontend merely dispatches the repaired trace from its trace buffer to

the affected PE. Within the affected PE, only instructions after the mispredicted branch

are squashed.

At this point, the register rename map reflects correct register dependences up to and

including the repaired trace; atrace re-dispatch sequence, described in the next subsec-

tion, makes a pass through the control independent traces to update their register depen-

dences.

2. Coarse-grain: First, the sequencing hardware locates an exposed global re-convergent

point in the window -- the oneafterand generallynearestthe mispredicted trace. CGCI

trace selection (Section 3.4.4) detects and chooses certain global re-convergent points

at which to terminate traces; these points are always “exposed” as trace boundaries and,

therefore, visible to the sequencing hardware. Note that an exposed global re-conver-
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gent point may not exist in the window, in which case CGCI is not exploited. Even if

one is located, it may or may not actually be control independent with respect to the

mispredicted branch.

Next, the traces between the mispredicted branch and the first (assumed) control inde-

pendent trace are squashed and their PEs deallocated. The trace predictor fetches the

correct control dependent traces and they are allocated to newly freed PEs. Squashing

and allocating PEs proceed in parallel, just as dispatch and retirement proceed in paral-

lel. If there are more correct control dependent traces than incorrect ones, then PEs

must be reclaimed from the tail (i.e. the most speculative PE).

Finally, the control flow is successfully repaired when re-convergence is detected, i.e.

when the next trace prediction matches the first control independent trace. Although

re-convergence is not guaranteed, if and when it occurs, a trace re-dispatch sequence is

performed on the control independent traces to update their register dependences, as

described in the next subsection.

With CGCI, the logical or program order of PEs can no longer be inferred from just

the head/tail pointers and thephysicalorder of PEs. Logically inserting and removing PEs

between two arbitrary PEs, i.e. inserting and removing control dependent traces, requires

managing the PEs as a linked-list. The linked-list control structure is simply a small table

indexed by physical PE number, with each entry containing three fields: logical PE num-

ber (order in the list) and pointers to the previous and next PEs. Also, head PE and tail PE
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pointers are needed as before. The control structure (table plus head/tail pointers) is con-

sulted and possibly updated by the trace-level sequencer when dispatching, retiring,

squashing, and re-dispatching traces.

3.4.2.2  Managing data flow

After the sequencing hardware repairs control flow, incorrect-data dependent, control

independent instructions must be identified and selectively reissued. The first step is to

detect the “source” of a data dependence violation and reissue that instruction. There are

two possible sources: 1) a stale physical register name representing an incorrect register

dependence, or 2) a load instruction that loaded an incorrect version of a memory location.

The second step is to selectively reissue all subsequent data dependent instructions.

Stale physical register names.The frontend initiates atrace re-dispatch sequenceafter

control flow is repaired. Control independent traces are re-dispatched in sequential (pro-

gram) order from the trace buffers to respective PEs. Live-in registers are renamed using

the updated maps, and live-out registers do not change their mappings. The source register

names of each instruction in the PE-resident trace are checked against those in the re-dis-

patched trace. Only those instructions with updated register names are reissued.

Incorrect loads.For memory dependences, I leverage the existing mechanism for detect-

ing incorrectly disambiguated loads. Recall from Section 3.3.2, detection of “normal”

memory dependence violations is based on loads snooping store addresses and sequence

numbers on the cache ports.
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This same mechanism works for control independent loads that are incorrectly disam-

biguated due to mispredicted branches. There are two cases.

• When a store is removed from the window, i.e. if it is among the incorrect control

dependent instructions, it schedules a store undo operation (only if it has performed

already).

• A store on the correct control dependent path is brought into the window late, and may

appear as a normal disambiguation violation when control independent loads observe

the late-performed store.

Sequence number comparisons first require translating physical to logical sequence

numbers. In [81], because the PEs are organized in a physical ring, the mapping is fairly

direct. Now, due to the arbitrary arrangement of PEs, translation requires consulting the

linked-list control structure (each PE maintains a copy). Recall that the linked-list table

maintains physical to logical PE translations: this field exists solely for disambiguation

support.

Selectively re-issuing dependence chains.After detecting the “source” of a data depen-

dence violation (stale register name or incorrect load), the violating instruction is

re-issued. The second step is to selectively re-issue all subsequent data dependent instruc-

tions. This happens transparently in the trace processor because instructions remain in the

PEs until they retire. Therefore, if an instruction has already issued and it receives one or

more additional values, it simply re-issues as many times as is necessary.
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3.4.3  Trace selection for FGCI

An example of FGCI trace selection is shown in Figure 3-15. Basic blocks are labeled

with a letterA throughH, and block sizes are shown in parentheses. Control flow edges are

labeled with the longest path length leading to that edge. The maximum trace length is 16

in the example.

Figure 3-15: Example of an embeddable region.

The branch in block A is a candidate for FGCI because the maximum length of any of

its control dependent paths is 10 instructions, well within the maximum trace length. The

region enclosed in the dashed box (the branch in block A and its control dependent

instructions) is called theembeddable region, and thedynamic region sizeof this region is

its maximum path length, 10.

trace

{A,E,G,H}

{A,E,F,H}

{A,B,D,F,H}
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During trace construction, if a branch with an embeddable region is encountered, the

accrued trace length is incremented by the branch’s dynamic region size,irrespective of

which control dependent path is actually selected. The result will be one of four traces as

shown in the table of Figure 3-15. First, not all traces are 16 instructions long, only the

trace which actually embeds the longest control dependent path. Second, all traces end at

the same instruction, namely the last instruction in basic block H. This of course achieves

the desired effect: if the trace predictor predicts one trace and it turns out to be incorrect, it

can be replaced with one of the alternate traces without changing the sequence of subse-

quent control independent traces. Third, any of three branch mispredictions is covered by

this region -- the branches in basic blocksA, B, andE.

Exposing FGCI first requires finding branches with embeddable regions

(Section 3.4.3.1). AFGCI-algorithm is applied to each newly-encountered branch to

check if it has an embeddable region. If it does, the goal of the algorithm is to determine 1)

the re-convergent PC that closes the region and 2) the dynamic region size. The latter

amounts to computing the longest path through a topologically sorted DAG [14] in hard-

ware. This gathered information is cached so that it does not have to be re-computed each

time a branch is encountered. Then, trace selection can use the cached information to con-

ceptually pad traces (Section 3.4.3.2).

3.4.3.1  FGCI-algorithm

The underlying idea behind the FGCI-algorithm is to serially scan a static block of

instructions following a forward conditional branch. Only a single pass is required and the
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static block is generally no larger than the maximum trace length, and often much smaller.

While scanning, the algorithm simultaneously 1) maintains path lengths and 2) searches

for the re-convergent point.

Conceptually, each instruction is modeled as a node having one or more incoming

control flow edges, each edge having a value equal to the maximum path length leading to

the edge. The algorithm assigns a value to the node equal to the maximum value of incom-

ing edges plus one for the current instruction. In this way, the longest control dependent

path lengths are propagated from incoming edges to outgoing edges.

The key to the algorithm, therefore, is determining all incoming edges to an instruc-

tion. The implicit edge between two sequential instructions is readily apparent. The edges

between forward branches/jumps and their targets require explicit storage. When a for-

ward branch/jump is encountered, its taken target PC is written into a small associative

array, calledTargets. This records the edge for use later, when the target instruction is

eventually reached. Of course, the edge must be labeled with a path length, so in addition

to writing the target PC, the branch/jump also writes its own computed length into the

array. Thus, an edge inTargetsis a tuple {target PC, length}. When the target instruction is

eventually reached, its PC is associatively searched inTargetsto get the path length of the

incoming edge.

Note that multiple branches/jumps may have the same target, a case which appears as

multiple incoming edges to the target instruction. This is efficiently handled byTargets.

Only the edge with the longest path length needs to be remembered. A branch/jump does
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not write the array if an entry for the target already exists and the stored length is greater

than that being written.

Given this overview of computing the maximum path length to any instruction, I can

explain how the algorithm computes the re-convergent point and dynamic region size. The

algorithm maintains three words of state plus theTargetsarray, which has enough entries

to support a reasonable number of targets in a region (e.g. 4 to 6). In the notation below,

the current instruction being analyzed is denoted asi. Also, the notationTargets(pc) means

thatpc is associatively searched inTargets and the corresponding path length is output.

1. pc: This is a local program counter used for serially scanning the code block. In an

implementation, a cache line is fetched from the instruction cache and buffered, and the

low bits ofpc are used to index into the buffer.

2. length: This is the maximum path length from the first instruction in the region to the

current instruction (scan point). The current instruction modifieslength, and the new

value is a simple function of path lengths from incoming edges.

lengthi = 1 + MAX(lengthi-1, Targets(pci))

Only two edges have to be examined: the edge from the preceding instruction

(lengthi-1) and the edge that represents all prior branches/jumps to instructioni (Tar-

gets(pci)). The former edge may not exist if the preceding instruction is an uncondi-

tional jump, and the latter edge may not exist if there are no prior branches/jumps to

instructioni. If neither exists, then the instruction is unreachable from within the region
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and therefore does not contribute to the dynamic region size. Thepc is updated to skip

over unreachable instructions.

3. Targets: If instruction i is a branch/jump with targettargeti, thenTargetsis updated as

follows.

if ((targeti does not exist inTargets) || (lengthi > Targets(targeti)))
Targets(targeti) = lengthi

4. max_pc: This is the most distant forward branch/jump target yet seen. If the current

instruction is a branch or jump,max_pcis overwritten with the target address if it is

greater thanmax_pc.

The re-convergent point is reached whenpc equalsmax_pc. In this case, the branch

enclosing the region is a candidate for FGCI. Three pieces of information are gathered for

the branch: 1) a flag which indicates this branch has an embeddable region, 2) the re-con-

vergent PC -- simply the value ofmax_pc, and 3) the dynamic region size -- ifi is the

re-convergent instruction, the dynamic region size is equal toMAX( lengthi-1, Targets(pci)).

There are several other terminating conditions which indicate the branch is not a can-

didate for FGCI. If the value oflengthexceeds the maximum trace length before re-con-

vergence, or if a backward branch, function call, or indirect branch are encountered,

scanning is terminated.

The information computed by the FGCI-algorithm is written into a cache called the

branch information table(BIT). All forward conditional branches allocate entries in the
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BIT, whether they have an embeddable region or not, because trace selection needs to

know this determination. For a 16K-entry BIT and a trace length of 32 instructions, a BIT

entry is 4 bytes long: a tag (16 bits), a flag indicating embeddable or not (1 bit), the

dynamic region size (5 bits), and the re-convergent point in the form of an offset from the

start of the region (10 bits is reasonable).

In Figure 3-16, the FGCI-algorithm is applied cycle-by-cycle to the example sub-

graph of Figure 3-15. The diagram shows basic blocksA throughG as they are statically

laid out in memory; solid and dashed edges indicate conditional branch targets and direct

jump targets, respectively. The four pieces of state are shown varying in time from left to

right (each column corresponds to a cycle and a single instruction). If analysis is per-

formed at the rate of 1 instruction/cycle, the latency in this case is at least 21 cycles to

compute the re-convergent PC (6e) and dynamic region size (10).

The FGCI-algorithm has several characteristics amenable to hardware implementa-

tion. First, it performs a single pass which yields a simple controller and simple state

maintenance. Second, limiting analysis to 1 instruction/cycle helps manage complexity as

well as reduce bandwidth to the instruction cache. The design is relatively non-intrusive to

the cache port -- in the above example, 2 or 3 cache line fetches are initiated over 21

cycles, for a line size of 16 words.
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3.4.3.2  FGCI trace selection

When a forward conditional branch is encountered during trace selection, the branch

PC is used to access FGCI information from the BIT. If the information does not exist, a

BIT miss handler initiates the FGCI-algorithm and trace construction stalls until the han-

dler completes.

If the BIT indicates the branch is a candidate for FGCI, and the current trace length

plus the dynamic region size of the branch does not exceed the maximum trace length con-

straint, then the following actions are performed.

1. The cumulative trace length is incremented by the dynamic region size.

2. Incrementing of the cumulative trace length is halted while a given path through the

embeddable region (as dictated by branch prediction) is added to the trace.

3. Incrementing the cumulative trace length resumes when the re-convergent point (from

the BIT) is reached.

Managing the cumulative trace length in this way guarantees paths shorter than the longest

path through the embeddable region are effectively “padded” to the longest path length.

If the current trace length plus the dynamic region size of the branch exceeds the max-

imum trace length constraint, then the current trace is terminated before the branch. Defer-

ring the branch to the next trace ensures all potential FGCI is exposed.
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3.4.4  Trace selection and heuristics for CGCI

Trace selection and the trace processor frontend coordinate to exploit CGCI. Trace

selection delineates traces at key global re-convergent points. When a misprediction is

detected, the frontend chooses one of the points, if there are any in the window, to serve as

the trace-level re-convergent point for recovery.

3.4.4.1  Trace selection: exposing global re-convergent points

In this thesis, I consider only two types of global re-convergent points. These are the

targets of return instructions and the not-taken targets of backward branches, shown with

black dots in Figure 3-17(a) and Figure 3-17(b), respectively.

The default trace selection algorithm terminates traces at the maximum trace length or

at any indirect branch instruction; indirect branches include jump indirect, call indirect,

and return instructions. Therefore, default trace selection already ensures trace-level

re-convergence at the exits of functions, i.e. return targets.

An additional CGCI trace selection constraint, calledntb, terminates traces at pre-

dictednot-takenbackward branches. This ensures trace-level re-convergence at the exits

of loops.
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Figure 3-17: Trace selection for exposing global re-convergent points.

3.4.4.2  CGCI heuristics: choosing a global re-convergent point for recovery

Trace selection only ensures trace-level re-convergence at easily identified, global

re-convergent points. When a branch misprediction is detected, one from possibly many

such points in the window must be chosen as the trace-level re-convergent point used for

recovery actions. Only two CGCI heuristics are considered and are described below.

• RET: The frontend locates the nearest trace that ends in areturn instruction. The imme-

diately subsequent trace is assumed to be the first control independent trace.

• MLB-RET: If the mispredicted branch is a backward branch, I assume it is a loop

branch as depicted in Figure 3-17(b). Based on this assumption, the frontend locates the

nearest trace whose starting PC matches the not-taken target of the branch; it is likely

the correct re-convergent point. This heuristic,MispredictedLoop Branch (MLB), is

always considered first. However, if the mispredicted branch is not a backward branch,

then theRET heuristic is applied.

(b)

call

(a)

return



94

The RET heuristic is designed to cover arbitrary mispredictions within a function

since control flow re-converges at the function exit. However, due to nested functions,

there may be any number of other return instructions before the intended function exit.

Choosing the nearest return instruction, therefore, is only a guess. Often, the result is bet-

ter than intended -- when the chosen return is closer than the function exit, but still control

independent with respect to the misprediction. Other times, however, the chosen return is

on the incorrect control dependent path.

The MLB heuristic (ofMLB-RET) is designed to specifically and accurately cover

mispredicted loop branches, a substantial source of branch mispredictions (refer to

Table 6-3). Loops with small bodies and a small but unpredictable number of iterations

fall in this category, and there are often many control independent traces after the mispre-

dicted loop branch.

TheRETheuristic requires only default trace selection, whereasMLB-RETrequires,

in addition, thentb selection constraint to expose loop exits.
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Chapter 4

Experimental Method

4.1  Simulator

The experiments in this thesis are based on a detailed and fully execution-driven trace

processor simulator co-authored by myself and Quinn Jacobson. The simulator was devel-

oped using the Simplescalar toolkit [11]. A high-level block diagram of the simulator

infrastructure is shown in Figure 4-1. There are four major components in the simulator

infrastructure: simplescalar binary, functional simulator, timing simulator, and debug

buffer.

Figure 4-1: Simulator infrastructure.

control/data flow
oracle

control/data flow
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Benchmarks are compiled to create asimplescalar binary. The compiler is gcc-based

(gnu C compiler) and targets the simplescalar instruction set architecture (ISA). The ISA

resembles the MIPS ISA, however, one major difference is that delayed branches are elim-

inated from the architecture.

There are two simulators that run in parallel, afunctional simulatorand atiming sim-

ulator. The two simulators are completely independent. They independently fetch and

execute instructions from the binary and manage their own copies of the program state.

The functional simulator runs ahead of the timing simulator and pushes control and data

flow information for each executed instruction onto thedebug buffer(whose function is

described later).

The timing simulator is the bulk of the infrastructure. It faithfully models the trace

processor microarchitecture as described in Chapter 3. The timing simulator is fully exe-

cution-driven in the following sense:

• Instructions are fetched and executed speculatively based on trace and branch predic-

tion. There is no explicit foreknowledge of whether a prediction is correct or incorrect.

Therefore, instruction fetching and execution proceeds along both correctly and incor-

rectly speculated paths.

• Instructions are executed; they consume and produce values, and these values are com-

municated among instructions, register state, and memory state.

This approach is essential for accurately modeling data speculation and control inde-

pendence. Instructions may execute with incorrect speculative values and re-issue any
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number of times upon receiving new values; loads may pollute the data cache (or inadvert-

ently prefetch) with wrong addresses; extra bandwidth demand is observed on result

buses, etc.

The timing simulator is quite complex and some level of verification is essential. The

functional simulator is known to be correct because 1) it is a very simple architectural sim-

ulator, not a timing simulator (its core issim-fastof the Simplescalar toolkit), and 2) it

only needs to be verified once for each benchmark. Limited verification is provided by the

debug buffer, the only interface between the functional and timing simulators. Before

retiring each instruction, the timing simulator pops what should be the corresponding,

known-correct instruction information from the debug buffer. The PC and operands of the

retired instruction are compared to the known-correct debug buffer state.

In addition to verification, the debug buffer provides another indispensable capability.

Perfect data and control speculation is possible by consulting the debug buffer for oracle

predictions (the reason the functional simulator must run ahead of the timing simulator).

The two debug buffer interfaces are labeled in the diagram as “assert control/data flow”

and “oracle control/data flow”.

4.2  Configuring the trace processor

Trace processor parameters are shown in Table 4-1. The table is organized hierarchi-

cally, e.g. the trace processor frontend has several components and each component has

several parameters. Ultimately, individual parameters are described and, in most cases,

default configurations are given.
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Several key parameters are varied within and among chapters. These are indicated

with shaded entries in Table 4-1, and I discuss them below. Other parameters may depend

on the shaded entries in a deterministic way, e.g. the number of local result buses is always

equal to PE issue width; such parameters are not discussed further since their relationship

to other parameters is fixed.

• Trace cache.

A wide range of trace cache configurations are evaluated in Section 5.1. In particular,

trace cache size, associativity, and indexing (PC-only indexing versus path associative

indexing) are varied.

All other chapters use the default size, associativity, and indexing indicated in

Table 4-1. Trace line size varies, however, in which case the number of trace cache lines

is adjusted to maintain a constant trace cache size (instruction storage only). The trace

line size is either 16 or 32 instructions, corresponding to 2K or 1K trace cache lines,

respectively.

• Trace construction.

All experiments except those in Section 5.1 use the default trace construction parame-

ters.

Section 5.1 changes only one parameter, the fetch bandwidth from the instruction cache

when the second-level branch predictor drives instruction fetching (see Section 3.1.2).

This parameter is the last bullet under “trace processor frontend -> trace construction ->
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trace construction bandwidth”. A slightly more aggressive instruction cache design is

used. When the second-level branch predictor is used to fetch from the instruction

cache, any number ofsequentialbasic blocks up to a full cache line may be fetched in a

single cycle, instead of just one basic block per cycle. This rule is identical to the third

bullet under “trace processor frontend -> trace construction -> trace construction band-

width”, and requires either an interleaved BTB [13,79] or a merged BTB/instruction

cache design [84] to allow fast, parallel prediction of any number of not-taken

branches.

• Trace selection.

Trace selection varies in only two ways. Firstly, the maximum trace length is either 16

or 32 instructions. The more fundamental variations involve exposing control indepen-

dence, i.e. FGCI and CGCI trace selection, used only in Chapter 6.

• Trace processor dimensions.

The trace processor “dimensions” are trace length (PE window size), number of PEs,

and PE issue bandwidth. These parameters are frequently varied, particularly in Chap-

ter 5, which evaluates the distributed instruction window in substantial detail.

• Global register file.

In all evaluation chapters, the size of the global register file is guaranteed not to limit

performance, i.e. there is an unlimited number of physical registers. In Section 5.4.3,
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however, I determine the actual number of global physical registers that are required for

several key trace processor configurations.

• Global result buses.

In Chapter 5, global result bus bandwidth is unconstrained for many experiments: the

number of global result buses is equal to the aggregate issue bandwidth. As explained

in the appropriate subsections, unconstrained global result bus bandwidth is necessary

to isolate other performance factors relevant to a distributed instruction window. One

subsection in the chapter is devoted to measuring sensitivity to global result bus band-

width, however.

In other chapters, the number of global result buses is chosen to be commensurate with

trace processor configuration (dimensions). In Section 5.1, a superscalar processor is

used, in which case there is no register hierarchy and the number of result buses equals

the issue bandwidth. Refer to Section 4.4 for a description of modeling superscalar pro-

cessors using the common simulator infrastructure.

Global result bus latency is also frequently varied in Chapter 5, but elsewhere it is fixed

at one cycle.

• Cache/ARB buses.

The number of buses, or ports, to the data cache and ARB subsystem is chosen to be

commensurate with the particular trace processor configuration. Table 4-2 shows for

each trace processor configuration 1) the number of cache/ARB buses and 2) the num-

ber of buses that can be arbitrated by a single PE.
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Table 4-1: Trace processor parameters and configuration.

trace processor
frontend

trace cache

size = 128kB (instruction storage only)
assoc. = 4-way
trace line = 16 or 32 instructions
repl. = LRU
path associative indexing
written upon constructing a trace (not at retirement)

trace predictor

Hybrid:

216-entry path-based predictor; DOLC = {7,3,6,8}

216-entry simple predictor

Return History Stack

Correlated predictor entry: tag, primary id, alternate id, 2-bit
repl. ctr.

Simple predictor entry: trace id, 4-bit repl. ctr.

trace construction

1 outstanding trace buffer per PE

Trace construction bandwidth:
• All trace constructors share a single datapath, or port, to the

instruction cache, branch predictor, and optional BIT.
• The port is non-blocking: if one trace buffer is awaiting an

instruction cache miss, another trace buffer can use the port.
• When instruction cache fetching is driven by the trace predictor

(primary or alternate trace id), the instruction cache can fetch any
number ofsequentialbasic blocks up to a cache line in a single
cycle.

• When the second-level branch predictor is required to fetch from
the instruction cache, only one basic block up to a cache line can
be fetched in a single cycle.

instruction cache

2-way interleaved (can fetch through cache line boundaries)
size = 64kB
assoc. = 4-way
repl. = LRU
line size = 16 instructions
miss penalty = 12 cycles (1 for miss, 10 to service, 1 for re-lookup)

branch predictor
(BTB)

size = 16K entries
assoc. = direct mapped andtagless
entry = 2-bit predictor plus taken target

BTB miss handling: Hit or miss is not determined in the normal
manner since there is no tag. However, branch targets are com-
puted during trace construction and a 1-cycle penalty is incurred
if the branch is predicted-taken and the taken target from the
BTB does not match the computed taken target.
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trace processor
frontend
(cont.)

BIT

Only used for FGCI trace selection.
size = 8K entries
assoc. = 4-way
BIT miss handling:
• Unlimited MSHRs. An MSHR invokes the FGCI-algorithm.

• Latency of the FGCI-algorithm is equal to dynamic region size.

• Contention for the instruction cache port is not modeled because
the FGCI-algorithm requires little instruction cache bandwidth.

trace selection

Default: stop at maximum trace length (16 or 32) and indirect
branches. Indirect branches include jump indirect, call indirect, and
return instructions.

Other: FGCI and CGCI trace selection

PE
management

Up to 2 PEs can be reclaimed (1 trace retirement and 1 trace squash) and 1 PE allocated
(1 trace dispatch) per cycle.

trace processor
“dimensions”

trace length

(PE window size)
varies (16 or 32)

number of PEs varies (2,4,8,16)

PE issue width varies (1,2,4)

hierarchical
register file

local register file
physical registers = unlimited
read ports = 2 times PE issue bandwidth
write ports = 1 times PE issue bandwidth

global register file
physical registers = unlimited
read ports = 2 times PE issue bandwidth (due to replication)
write ports = # of global result buses

functional units n symmetric, fully-pipelined FUs (forn-way issue)

operand
bypasses

local result buses
# buses = PE issue bandwidth
latency = 0 (i.e., local bypass occurs at end of execution stage)

global result buses
# buses =varies
latency =varies (default: 1 cycle)

pipeline
latencies

fetch 1 cycle

dispatch 1 cycle

issue 1 cycle

execution
latencies

address generation = 1 cycle

cache access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

selective
recovery

load re-issue
penalty

1 cycle : models the snoop latency

value misp.
penalty

1 cycle : models the operand validation latency

Table 4-1: Trace processor parameters and configuration.
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data memory
subsystem

data cache

size = 64kB
assoc. = 4-way
repl. = LRU
line size = 64 bytes
miss penalty = 14 cycles (2 for miss, 10 to service, 2 for re-lookup)
MSHRs = unlimited outstanding misses

ARB

Unlimited speculative store buffering:
• Unbounded number of addresses managed.

• Unbounded number of versions per address.

Ideal speculative state commit (never stalls retirement).

Store undo bandwidth:
• Modeled for speculative disambiguation.

• Not modeled for selectively squashing control dependent path.

cache/ARB buses
(ports)

varies (commensurate with trace processor dimensions; see
Table 4-2)

unified
L2 cache

perfect

Table 4-1: Trace processor parameters and configuration.
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Table 4-2: Configuring cache/ARB buses for trace processors.

trace processor configuration
# cache/ARB

buses
# buses arbitrated

per PEtrace length
(PE window size)

# PEs
PE issue

bandwidth

16 2 1 1 1

16 2 2 2 2

16 2 4 2 2

16 4 1 2 1

16 4 2 4 2

16 4 4 4 4

16 8 1 4 1

16 8 2 4 2

16 8 4 4 4

16 16 1 8 1

16 16 2 8 2

16 16 4 8 4

32 2 1 2 1

32 2 2 4 2

32 2 4 4 4

32 4 1 4 1

32 4 2 4 2

32 4 4 4 4

32 8 1 8 1

32 8 2 8 2

32 8 4 8 4

32 16 1 8 1

32 16 2 8 2

32 16 4 8 4
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4.3  Value predictor configuration

Live-in prediction is applied and evaluated only in Section 6.1. A context-based value

predictor is used. Context-based predictors learn values that follow a particular sequence

of previous values [88].

The predictor is organized as a two-level table. The first-level table is indexed by a

uniqueprediction id, derived from the trace id. A given trace has multiple prediction ids,

one per live-in register in the trace. An entry in the first-level table contains a pattern that

is a hashed version of the previous 4 data values of the item being predicted. The pattern

from the first-level table is used to look up a 32-bit data prediction in the second-level

table. Replacement is guided by a 3-bit saturating counter associated with each entry in

the second-level table.

The predictor also assigns a confidence level to predictions [37,51]. Instructions issue

with predicted values only if the predictions have a high level of confidence. The confi-

dence mechanism is a 2-bit saturating counter stored with each pattern in the first-level

table.

The table sizes used in Section 6.1 are very large in order to explore the potential of

such an approach: 218 entries in the first-level, 220 entries in the second-level. Accuracy of

context-based value prediction is affected by timing of updates, which I accurately model.

A detailed treatment of the value predictor can be found in [88].
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4.4  Modeling superscalar processors

In Chapter 5, I compare superscalar and trace processors. The timing simulator is

designed to seamlessly simulate either superscalar or trace processors. A necessary conse-

quence is that the superscalar processor shares many of the same beneficial qualities of the

trace processor -- in particular, the hierarchical frontend (trace cache and trace predictor)

and advanced data flow management (memory dependence prediction with selective

recovery).

The only differences between superscalar and trace processor modes are the window

organization (centralized versus distributed) and the register forwarding mechanism (sin-

gle level versus hierarchical).

1. Centralized instruction window.

In trace processor mode, the number of outstanding traces in the processor may not

exceed the fixed number of PEs. In superscalar mode, the PE simulator construct is still

used to form an instruction window -- this maximally leverages the underlying simula-

tor infrastructure. The appearance of a centralized instruction window is achieved by

providing the superscalar processor with a virtually unlimited number of PEs and out-

standing trace buffers to match. Therefore, the number of PEs does not constrain the

size of the instruction window that can be formed, which is essential since trace selec-

tion often creates traces shorter than the PE window size. Instead, a superscalar window

size parameter constrains the total number ofinstructionsin the processor and the num-

ber oftraces is irrelevant.
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Finally, the per-PE issue bandwidth constraint is substituted with a single, shared issue

bandwidth constraint. There is no limit to the number of instructions that may issue

from one trace or another, other than the superscalar issue bandwidth.

2. Non-hierarchical register forwarding.

The superscalar mode must appear to have a single level of result buses for operand

bypassing. This is achieved by setting the number of local result buses and global result

buses equal to the superscalar issue bandwidth, and when an instruction completes, it

writes its result to both a local and global result bus (logically one result bus). Also, the

local and global result bypass latencies are both set equal to 0.
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As I did for trace processor configurations, Table 4-3 shows the number of cache/

ARB buses for superscalar processor configurations.

Table 4-3: Configuring cache/ARB buses for superscalar processors.

superscalar processor configuration
# cache/ARB buses

window size issue bandwidth

16 1 1

16 2 1

16 4 2

32 1 1

32 2 1

32 4 2

32 8 4

64 2 1

64 4 2

64 8 4

64 16 4

128 4 2

128 8 4

128 16 4

256 4 4

256 8 8

256 16 8



109

4.5  Benchmarks and trace characterization

The SPEC95 integer benchmarks are used for evaluation, each of which is simulated

to completion. Benchmarks, input datasets, and instruction counts are shown in Table 4-4.

The traces produced by default trace selection are characterized for each benchmark

in Table 4-5 and Table 4-6, for length-16 and length-32 traces, respectively. The mini-

mum, maximum, average, and standard deviation are given for each trace characteristic.

The average trace length for maximum-length-16 traces varies from 12.4 (li ) to 15.8

(jpeg) instructions. The average trace length for maximum-length-32 traces varies from

Table 4-4: Benchmarks.

benchmark
input dataset dynamic

instr. countspec dir. command line arguments other relevant files

compressa

a. Benchmark source code modified to make only a single compress/decompress pass.

- 400000 e 2231 - 104 million

gcc ref -O3 genrecog.i -o genrecog.s - 117 million

go - 9 9 - 133 million

jpegb

b. Benchmark source code modified to hardwire in the following (otherwise verbose) arguments:
-image_file vigo.ppm -compression.quality 15 -compression.optimize_coding 0 -compres-
sion.smoothing_factor 90 -difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -ver-
bose 1 -GO.findoptcomp

train vigo.ppm - 166 million

li test test.lsp (queens 7) - 202 million

m88ksim train -c < ctl.in dcrand.lit 119 million

perl train scrabble.pl < scrabble.inc

c. Two more words were added to “scrabble.in”. The file now contains {zed, veil, vanity,abdome,
evilds}.

dictionary 108 million

vortex train vortex.ind

d. The following entries in “vortex.in” were modified: part_count=100, inner_loop=1, lookups=20,
deletes=20, stuff_parts=10, pct_newparts=10, pct_lookups=10, pct_deletes=10, pct_stuffparts=10.

persons.250, lendian.wnv,
lendian.rnv

101 million
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19.7 (li ) to 31.1 (jpeg) instructions (a 60% to 100% increase over maximum-length-16

traces).

On average, length-16 traces have about 5 live-in registers, 5 or 6 live-out registers,

and 4 or 5 local registers. Length-32 traces have on average about 5 or 6 live-in registers, 8

live-out registers, and 10 local registers. In going from length-16 to length-32 traces, the

number of local registers increases more rapidly than either live-in or live-out registers.

For all benchmarks, the number of local registers more than doubles (125% increase on

average). In contrast, live-in registers grow by about 10% and live-out registers by about

40%. In any case, the number of local registers is significant: the amount of write traffic to

the global file and global operand bypasses is reduced by 45% and 57% on average, for

length-16 and length-32 traces, respectively.

Length-16 traces contain an average of 1.8 conditional branches and 2.4 total control

transfer instructions. Length-32 traces contain an average of 3.1 conditional branches and

4.2 total control transfer instructions.

The last two trace characteristics shown in Table 4-5 and Table 4-6 are trace cache

miss and misprediction “penalties”. They depend on the trace construction model and tim-

ings, and must be evaluated in the context of a trace processor organization. I used a trace

processor with 8 PEs, 2-way issue per PE, 4 global result buses, and a global operand

bypass latency of 1 cycle. I place quotes around the word “penalty” because the latency

for constructing a trace is not a fixed number (whereas a penalty is usually interpreted as a

fixed latency, e.g. L1 data cache miss penalty) -- instead, trace construction latency

depends on the number of branches and instructions in the trace, the availability of BTB
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and instruction cache information, the availability of an alternate trace id in the case of

mispredictions, and generally complex timings of the trace construction mechanism which

is modeled in great detail.

Each “penalty” is measured as the number of cycles required to construct (trace cache

miss) or re-construct (trace misprediction) a traceduring the times that the trace construc-

tor has access to the shared instruction cache port; if trace construction is stalled because

another trace constructor is using the cache port, the stall time is not included in the con-

struction time of the first trace. Therefore, trace construction time includes cycles required

to fetch instructions from the instruction cache and predict branches using the BTB, and

both instruction cache and BTB miss latencies are included (a BTB miss for a pre-

dicted-taken branch instruction incurs a one cycle penalty for decoding the branch and

computing the target). For reference, the trace construction mechanism is described in

detail in Section 3.1.2, and specific configuration information is given in Table 4-1.

When interpreting the trace cache miss and misprediction “penalties”, one should

keep in mind that the latencies may partially overlap. For example, if there are multiple

instruction cache ports, then multiple trace constructors may operate in parallel in the

event of back-to-back trace cache misses (Section 3.1.2). Even in the default configura-

tion, which allows only one trace constructor to use the single cache portin a given cycle,

if a trace constructor encounters an instruction cache or BTB miss, another trace construc-

tor may take over the port in the interim.

For length-16 traces, average trace cache miss latencies range from 2 to 5 cycles.

Re-constructing a mispredicted trace incurs less latency, presumably because 1) fewer
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instructions must be fetched to construct only the tail of a trace and 2) often an alternate

trace id is available and it hits in the trace cache (Section 3.1.2) -- on average, between 1

and 3 cycles are required to re-construct the trace. Of course, trace mispredictions are

much costlier than trace cache misses in terms of overall performance, because mispredic-

tions are detected many cycles after fetching traces, whereas misses are detected at fetch

time.

As one would expect, trace construction latencies increase for length-32 traces. Aver-

age trace cache miss latencies range from 3.5 to 9 cycles, and re-constructing a mispre-

dicted trace requires 2 to 4 cycles on average.
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Table 4-5: Trace characteristics for length-16 traces.

statistic comp gcc go jpeg li m88k perl vortex

trace

length

(inst)

min/max 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16

avg. 14.5 13.9 14.8 15.8 12.4 13.0 13.0 14.4

std. dev. 2.8 4.1 3.4 1.5 5.1 5.2 5.0 3.3

live-ins

min/max 0/14 0/17 0/19 0/17 0/15 0/20 0/17 0/17

avg. 5.2 4.4 5.0 6.8 4.1 3.9 4.0 5.5

std. dev. 1.8 2.7 2.3 3.1 2.3 1.7 2.5 2.7

live-outs

min/max 0/13 0/14 0/16 0/14 0/16 0/21 0/16 0/15

avg. 6.2 5.7 5.8 6.4 5.1 4.3 5.2 6.3

std. dev. 2.4 2.7 2.4 2.6 2.2 2.5 2.7 2.7

locals

min/max 0/12 0/13 0/13 0/14 0/11 0/14 0/11 0/12

avg. 5.6 3.7 5.9 7.1 2.5 4.9 3.4 2.7

std. dev. 2.4 3.0 3.0 3.1 2.2 3.2 2.7 3.0

loads

min/max 0/12 0/14 0/13 0/11 0/16 0/13 0/16 0/13

avg. 2.1 3.6 3.1 2.9 3.7 2.5 3.7 4.2

std. dev. 1.3 2.7 1.9 2.4 2.6 2.2 2.7 2.6

stores

min/max 0/16 0/16 0/16 0/13 0/14 0/13 0/16 0/16

avg. 0.9 2.0 1.0 1.2 2.2 1.6 2.4 3.5

std. dev. 1.2 2.9 1.9 1.7 2.5 2.0 2.5 3.2

cond.
branches

min/max 0/8 0/11 0/10 0/8 0/8 0/11 0/9 0/9

avg. 2.1 2.1 1.8 1.0 1.9 1.8 1.7 1.7

std. dev. 1.5 1.8 1.4 1.4 1.9 1.7 1.5 1.5

control
inst.

min/max 0/8 0/11 0/10 0/9 0/9 0/11 0/9 0/9

avg. 2.9 2.8 2.3 1.3 2.9 2.5 2.5 2.3

std. dev. 1.4 1.7 1.3 1.8 1.8 1.6 1.5 1.4

trace cache
miss

penaltya

a. See text for comments on how “penalties” are characterized.

min/max 2/12 1/50+ 1/50+ 1/50+ 1/12 1/29 1/42 1/50+

avg. 5.3 5.1 4.4 3.9 2.0 2.8 2.0 5.3

std. dev. 4.7 6.8 5.6 5.1 0.8 1.6 1.5 7.0

trace
mispredict

penaltya

min/max 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+

avg. 1.7 2.5 1.9 1.4 1.5 1.7 1.6 2.6

std. dev. 1.3 3.3 2.0 1.3 1.2 1.7 1.9 4.1
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Table 4-6: Trace characteristics for length-32 traces.

statistic comp gcc go jpeg li m88k perl vortex

trace

length

(inst)

min/max 1/32 1/32 1/32 1/32 1/32 1/32 1/32 1/32

avg. 24.9 24.0 27.2 31.1 19.7 23.8 21.2 25.6

std. dev. 9.6 10.0 8.7 4.1 11.4 9.6 11.6 8.6

live-ins

min/max 1/14 0/19 0/21 1/18 0/24 0/24 0/26 0/20

avg. 5.1 5.0 6.1 8.8 4.4 4.3 4.3 6.3

std. dev. 1.7 3.1 2.8 4.0 2.5 1.7 2.8 2.9

live-outs

min/max 0/17 0/21 0/21 0/20 0/25 0/21 0/20 0/18

avg. 7.6 8.0 8.1 9.3 6.4 6.0 6.9 9.3

std. dev. 3.1 3.6 3.4 3.5 2.8 2.9 3.5 3.8

locals

min/max 0/30 0/27 0/28 0/27 0/23 0/31 0/24 0/25

avg. 12.6 8.0 13.2 17.2 5.6 10.7 7.0 6.5

std. dev. 7.4 6.3 6.6 5.3 5.0 6.4 5.9 4.6

loads

min/max 0/15 0/20 0/20 0/20 0/24 0/17 0/21 0/21

avg. 3.6 6.3 5.6 5.8 5.9 4.6 6.0 7.5

std. dev. 2.3 3.8 2.8 3.9 4.0 3.0 3.7 4.2

stores

min/max 0/28 0/24 0/24 0/24 0/25 0/24 0/26 0/29

avg. 1.6 3.4 1.9 2.4 3.5 2.9 3.8 6.2

std. dev. 2.0 4.5 3.0 2.9 4.2 3.4 3.8 5.8

cond.
branches

min/max 0/15 0/22 0/15 0/13 0/16 0/18 0/15 0/16

avg. 3.6 3.7 3.3 2.0 3.1 3.3 2.8 3.0

std. dev. 2.7 3.1 2.4 2.6 3.2 2.5 2.5 2.0

control
inst.

min/max 1/15 0/22 0/15 0/14 1/16 0/18 0/16 0/16

avg. 5.0 4.8 4.1 2.5 4.7 4.6 4.1 4.1

std. dev. 2.5 2.9 2.2 3.4 3.3 2.5 2.7 2.0

trace cache
miss

penaltya

min/max 1/15 1/50+ 1/50+ 1/50+ 1/12 1/38 1/50+ 1/50+

avg. 9.2 6.8 6.2 4.2 4.4 3.9 3.5 6.3

std. dev. 3.2 9.1 8.0 4.8 1.9 2.0 2.1 8.6

trace
mispredict

penaltya

min/max 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+ 1/50+

avg. 2.8 4.1 3.2 2.8 2.4 2.9 2.2 3.7

std. dev. 2.4 5.1 3.4 2.5 2.7 2.9 3.1 5.7

a. See text for comments on how “penalties” are characterized.
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Chapter 5

Evaluation of Hierarchy

This chapter presents four studies of the trace processor’s hierarchical organization.

The first focuses on the trace cache fetch mechanism and the other three focus on the hier-

archical instruction issue and register communication mechanisms, as outlined below.

• Trace cache.

The trace processor frontend provides high instruction fetch bandwidth with low

latency by predicting and caching sequences of multiple, possibly noncontiguous basic

blocks. Section 5.1 evaluates the performance benefits of the trace cache over otherwise

equally sophisticated, contiguous instruction fetch mechanisms.

• Comparative study of superscalar and trace processors.

A comparison between conventional superscalar processors and trace processors is pre-

sented in Section 5.2. I demonstrate that distributed instruction windows sacrifice some

amount of ILP performance for reduced circuit complexity and potentially shorter cycle

times. This tradeoff is investigated in depth. Specific conclusions may be drawn

directly from the study. But more importantly, the results are presented in such a way
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that the reader may provide his or her own technology context to arrive at different (or

similar) conclusions.

• Three trace processor dimensions.

A non-hierarchical instruction window is typically characterized by two “dimensions”,

window size and issue bandwidth. In a distributed instruction window, these aggregate

dimensions are broken down further into three new and relatively unexplored dimen-

sions: PE window size, number of PEs, and issue bandwidth per PE. Seemingly equiva-

lent trace processors may be derived from different combinations of PE window size,

number of PEs, and PE issue width, with unknown performance implications. The deci-

sion to increase a particular dimension instead of or at the expense of another dimen-

sion also has unknown ramifications. Therefore, the chapter’s third study is devoted to

understanding the three trace processor dimensions.

• Hierarchical register model.

Distribution is based on the premise of locality, i.e., that a fraction of the overall com-

putation can be performed primarily locally and quickly within a processing element.

This premise is tested in the fourth and final study of this chapter, which evaluates the

locality-motivated, hierarchical register storage and forwarding mechanisms of trace

processors.

As indicated in the methodology chapter, I focus on the integer programs of the

SPEC95 benchmark suite due to their irregular, relatively less-predictable control flow and
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irregular instruction-level parallelism. I chose to omit full results for floating point bench-

marks because they are more regular and amenable to a range of ILP techniques (e.g., vec-

tor architectures). Nevertheless, the primary experiments (those in Section 5.2.3) are

repeated for SPEC95 floating point benchmarks in Section 5.5.

5.1  Hierarchical instruction supply

The trace cache is evaluated in the context of a superscalar processor so that artifacts

of a hierarchical instruction window do not obscure the study. For example, several fetch

models are defined for comparative studies; these fetch models produce what are effec-

tively short “traces” and mapping a short instruction sequence to a PE is inefficient. It is

more appropriate to use an execution model that is not closely tied to a particular fetch

model. Therefore, a 16-way superscalar processor with a 256 instruction window is used

in all experiments. Other aspects of the processor are configured as described in

Section 4.2 and Section 4.4.

This section is organized into three subsections. I begin by defining fetch models used

to evaluate the trace cache. Overall performance of the frontend is a combination of trace

cache and trace predictor performance; a subsection is devoted to this topic and a tech-

nique for isolating the performance of either component is developed. The final subsection

presents results.
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5.1.1  Fetch models

To evaluate the performance of the trace cache, I compare it to several more con-

strained fetch models. I first determine the performance advantage of fetching multiple

contiguousbasic blocks per cycle over conventional single block fetching. Then, the bene-

fit of fetching multiplenoncontiguous basic blocks is isolated.

In all models a next trace predictor is used for control prediction, for two reasons.

First, next trace prediction is highly accurate, and whether predicting one or many

branches at a time, it is comparable to or better than some of the best single branch predic-

tors in the literature. Second, it is desirable to have a common underlying predictor for all

fetch models so I can separate performance due to fetch bandwidth from that due to

branch prediction (more on this in Section 5.1.2).

What differentiates the following models is the trace selection algorithm.

• SEQ.1 (“sequential, 1 block”): A “trace” is a single basic block up to 16 instructions in

length.

• SEQ.n (“sequential, n blocks”): A “trace” may contain any number of sequential basic

blocks up to the 16 instruction limit.

• TC (“trace cache”): A trace may contain any number of conditional branches, both

taken and not-taken, up to 16 instructions or the first indirect branch.

The SEQ.1 and SEQ.n models do not use a trace cache because an interleaved instruc-

tion cache is capable of supplying a “trace” in a single cycle [29] -- a consequence of the
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sequential selection constraint. Therefore, one may view the SEQ.1/SEQ.n fetch unit as

identical to the trace processor frontend in Figure 3-2, except the trace cache block is

replaced with a conventional instruction cache. That is, the next trace predictor drives a

conventional instruction cache, and the trace buffers are used to construct “traces” from

the L2 cache/main memory if not present in the cache.

Finally, to establish an upper bound on the performance of noncontiguous instruction

fetching, I introduce a fourth model, TC-perfect, which is identical to TC but the trace

cache always hits.

5.1.2  Isolating trace predictor/trace cache performance

An interesting side-effect of trace selection is that it significantly affects trace predic-

tion accuracy. In general, smaller traces (resulting from more constrained trace selection)

result in lower accuracy. There are at least two reasons for this. First, longer traces natu-

rally capture longer path history. This can be compensated for by using more trace identi-

fiers in the path history if the traces are small; that is, a good DOLC function for one trace

length is not necessarily good for another. For the TC model, DOLC = {7,3,6,8} (a depth

of 7 traces) consistently performs well over all benchmarks [39]. For SEQ.1 and SEQ.n, a

brief search of the design space shows DOLC = {17,3,4,12} (a depth of 17 traces) per-

forms well.

Tuning the DOLC parameters is apparently not enough, however -- trace selection

affects accuracy in other ways. The graph in Figure 5-1 shows trace predictor performance

using an unbounded table, i.e. using full, unhashed path history to make predictions. The
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graph shows trace mispredictions per 1000 instructions for SEQ.1, SEQ.n, and TC trace

selection, as the history depth is varied. For thegobenchmark, trace mispredictions for the

SEQ.n model do not dip below 8.8 per 1000 instructions, whereas the TC model reaches

as few as 8.0 trace mispredictions per 1000 instructions. Unconstrained trace selection

results in the creation of many unique traces. While this trace explosion generally

increases conflicts in the trace cache, I hypothesize it also creates many more unique con-

texts for making predictions. A large prediction table can exploit this additional context.

Figure 5-1: Impact of trace selection on unbounded trace predictor performance.

I conclude that it is difficult to separate the performance advantage of the trace cache
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To this end, a methodology is developed to statistically “adjust” the overall branch

prediction accuracy of a given fetch model to match that of another model. The trace pre-

dictor itself is not adjusted -- it produces predictions in the normal fashion. However, after

making a prediction, the predicted trace is compared with theactual trace, determined in

advance by a functional simulator running in parallel with the timing simulator. If the pre-

diction is incorrect, the actual trace is substituted for the mispredicted tracewith some

probability. In other words, some fraction of mispredicted traces are corrected. The proba-

bility for injecting corrections was chosen on a per-benchmark basis to achieve the desired

branch misprediction rate.

This methodology introduces two additional fetch models, SEQ.1-adj and SEQ.n-adj,

corresponding to the “adjusted” SEQ.1 and SEQ.n models. Clearly these models are unre-

alizable, but they are useful for performance comparisons because their adjusted branch

misprediction rates match that of the TC model.

5.1.3  Results

5.1.3.1  Performance of fetch models

Figure 5-2 shows the performance of the six fetch models in terms of retired instruc-

tions per cycle (IPC). The TC model in this section uses a 64KB (instruction storage only),

4-way set-associative trace cache. The trace cache is indexed using only the PC (i.e. no

explicit path associativity, except that afforded by the 4 ways).

I can draw several conclusions from the graph in Figure 5-2. First, comparing the

SEQ.n models to the SEQ.1 models, it is apparent that predicting and fetching multiple
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sequentialbasic blocks provides a significant performance advantage over conventional

single-block fetching. The graph in Figure 5-3 shows that the performance advantage of

the SEQ.n model over the SEQ.1 model ranges from about 5% to 25%, with the majority

of benchmarks showing greater than 15% improvement. Similar results hold whether or

not branch prediction accuracy is adjusted for the SEQ.n and SEQ.1 models.

This first observation is important because the SEQ.n model only requires a more

sophisticated, high-level control flow predictor, and retains a more-or-less conventional

instruction cache microarchitecture.

Second, the ability to fetch multiple, possiblynoncontiguousbasic blocks improves

performance significantly over sequential-only fetching. The graph in Figure 5-4 shows

that the performance advantage of the TC model over the SEQ.n model ranges from 15%

to 35%.
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Figure 5-2: Performance of the fetch models.
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Figure 5-3: Speedup of SEQ.n over SEQ.1.

Figure 5-4: Speedup of TC over SEQ.n.

0%

5%

10%

15%

20%

25%

30%

go gcc jpeg li perl m88k vort

%
 im

p
ro

ve
m

en
t 

in
 IP

C
SEQ.n over SEQ.1
SEQ.n-adj over SEQ.1-adj

Speedup of TC over SEQ.n

0%
5%

10%
15%
20%
25%
30%
35%
40%

go gcc jpeg li perl m88k vort

%
 im

p
ro

ve
m

en
t 

in
 IP

C

trace cache

trace predictor



125

Figure 5-4 also isolates the contributions of next trace prediction and the trace cache

to performance. The lower part of each bar is the speedup of model SEQ.n-adj over

SEQ.n. And since the overall branch misprediction rate of SEQ.n-adj is adjusted to match

that of the TC model, this part of the bar approximately isolates the impact of next trace

prediction on performance. The top part of the bar therefore isolates the impact of the

trace cache on performance.

For go, which suffers significantly more branch mispredictions than other bench-

marks, most of the benefit of the TC model comes from next trace prediction. In this case,

the longer traces of the TC model are clearly more valuable for improving the context used

by the next trace predictor than for providing raw instruction bandwidth. Forgcc, how-

ever, both next trace prediction and the trace cache contribute equally to performance. The

other five benchmarks benefit mostly from higher fetch bandwidth.

Finally, Figure 5-2 shows the moderately large trace cache of the TC model very

nearly reaches the performance upper bound established by TC-perfect (within 4%).

Table 5-1 shows trace- and branch-related measures. Average trace lengths for TC

range from 12.4 (li ) to 15.8 (jpeg) instructions (1.6 to over 2 times longer than SEQ.n

traces).

The table also shows predictor performance: primary and alternate trace mispredic-

tions per 1000 instructions, and overall branch misprediction rates (the latter is computed

by checking each branch at retirement to see if it caused a misprediction, whether originat-

ing from the trace predictor or second-level branch predictor). In all cases prediction

improves with longer traces. TC has from 20% to 45% fewer trace mispredictions than
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SEQ.1, resulting in 15% (jpeg) to 41% (m88ksim) fewer total branch mispredictions. Note

that theadjustedbranch misprediction rates for the SEQ models are nearly equal to those

of TC.

Shorter traces, however, generally result in better alternate trace prediction accuracy.

Shorter traces result in 1) fewer total traces and thus less aliasing, and 2) fewer possible

alternative traces from a given starting PC. For all benchmarks exceptgcc and go, the

alternate trace prediction is almost always correct given the primary trace prediction is

incorrect -- both predictions taken together result in fewer than 1 trace misprediction per

1000 instructions.

Table 5-1: Trace statistics.

model measure gcc go jpeg li m88k perl vort

SEQ.1

trace length 4.9 6.2 8.3 4.2 4.8 5.1 5.8

trace misp./1000 8.8 14.5 5.2 6.9 3.5 3.4 1.5

alt. trace misp./1000 2.1 4.5 0.1 0.6 0.4 0.1 0.2

branch misp. rate 5.0% 11.0% 7.7% 3.7% 2.2% 2.2% 1.1%

adjusted misp. rate 3.6% 8.2% 6.6% 3.2% 1.3% 1.4% 0.8%

SEQ.n

trace length 7.2 8.0 9.6 6.3 6.0 7.1 8.2

trace misp./1000 7.3 12.7 4.6 6.9 3.3 3.1 1.2

alt. trace misp./1000 2.7 5.4 0.5 0.9 0.6 0.3 0.3

branch misp. rate 4.4% 10.1% 7.0% 3.7% 2.1% 2.0% 0.9%

adjusted misp. rate 3.6% 8.1% 6.7% 3.1% 1.3% 1.4% 0.8%

TC

trace length 13.9 14.8 15.8 12.4 13.1 13.0 14.4

trace misp./1000 5.4 9.6 4.2 5.5 2.0 2.1 1.0

alt. trace misp./1000 2.7 5.3 0.9 1.3 0.5 0.3 0.3

branch misp. rate 3.6% 8.2% 6.7% 3.1% 1.3% 1.5% 0.8%

control instr. per trace 2.8 2.3 1.3 2.9 2.5 2.5 2.3

RFoverall 7.1 14.4 5.3 3.1 3.7 4.1 2.9

RFdyn 3.0 3.3 3.7 3.2 3.1 2.9 2.1
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Trace caches introduce redundancy -- the same instruction can appear multiple times

in one or more traces. Table 5-1 shows two redundancy measures. Theoverall redundancy

factor, RFoverall , is computed by maintaining a table of all unique traces ever retired.

Redundancy is the ratio of total number of instructions to total number ofuniqueinstruc-

tions for traces collected in the table. RFoverall is independent of trace cache configuration

and does not capture dynamic behavior. Thedynamic redundancy factor, RFdyn , is com-

puted similarly, but using only tracesin the trace cache in a given cycle; the final value is

an average over all cycles. RFdyn was measured using a 64KB, 4-way trace cache.

RFoverall varies from 2.9 (vortex) to 14 (go). RFdyn is less than RFoverall and only

ranges between 2 and 4, because the fixed size trace cache limits redundancy, and perhaps

temporally there is less redundancy.

5.1.3.2  Trace cache size and associativity

In this section, I measure performance of the TC model as a function of trace cache

size and associativity. Figure 5-5 shows overall performance (IPC) for 12 trace cache con-

figurations: direct mapped, 2-way, and 4-way associativity for each of four sizes, 16KB,

32KB, 64KB, and 128KB.

Associativity has a noticeable impact on performance for all of the benchmarks

exceptgo. Go has a particularly large working set of unique traces [81], and total capacity

is more important than individual trace conflicts. The curves ofjpegandli are fairly flat --

size is of little importance, yet increasing associativity improves performance. These two

benchmarks suffer few general conflict misses (otherwise size should improve perfor-
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mance), yet conflicts among traces with the same start PC are significant. Associativity

allows simultaneously caching these path-associative traces.

The performance improvement of the largest configuration (128KB, 4-way) with

respect to the smallest one (16KB, direct mapped) ranges from 4% (go) to 10% (gcc).

Figure 5-6 shows trace cache performance inmisses per 1000 instructions. Trace

cache size is varied along the x-axis, and there are six curves: direct mapped (DM), 2-way

(2W), and 4-way (4W) associative caches, both with and without indexing for path asso-

ciativity (PA). The following index function was chosen (somewhat arbitrarily) for achiev-

ing path associativity: the low-order bits of the PC form the set index, and then the

high-order bits of this index are XORed with the first two branch outcomes of the trace

identifier.

Gcc andgo are the only benchmarks that do not fit entirely within the largest trace

cache. As I observed earlier,go has many heavily-referenced traces, resulting in no fewer

than 20 misses/1000 instructions.

Path associativity reduces misses substantially, particularly for direct mapped caches.

Except forvortex, path associativity closes the gap between direct mapped and 2-way

associative caches by more than half, and often entirely.
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Figure 5-5: Performance vs. size/associativity.
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Figure 5-6: Trace cache misses.
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5.2 Comparative study of superscalar and trace processors

Trace processors present a tradeoff between complexity and instructions executed per

cycle (IPC). Ignoring complexity and cycle time, the trace processor is outperformed by

its superscalar counterpart in terms of IPC, for two reasons. Firstly,load balancebecomes

an issue in a distributed implementation, and secondly,partial bypassingincreases the

latency (in clock cycles) to resolve global data dependences. On the other hand, distrib-

uted resources and partial bypasses potentially enable a faster clock.

To be a viable microarchitecture alternative, the trace processor’s cycle time advan-

tage must outweigh its IPC limitations. In this section, a comparative study of superscalar

and trace processors is developed to better understand the IPC/cycle time tradeoff. The

study is organized in three parts.

1. Section 5.2.2 quantifies the performance impact of distributing the instruction window.

I first explain three load balance factors that degrade trace processor performance.

Then, their combined impact is measured by comparing superscalar and trace proces-

sors of equal window size and issue bandwidth. To isolate only the impact of distrib-

uted resources, both superscalar and trace processors use full bypassing.

2. Section 5.2.3 compares superscalar processors and realistic trace processors employing

partial bypassing. The trace processor incurs one full cycle to bypass global values.

Penalizing global communication in the trace processor provides a simple abstraction

for reasoning about the relative complexity of the two processor models. Since I

account for “global” complexity via a one cycle penalty, overall trace processor com-
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plexity can be approximately characterized by PE, or “local”, complexity -- something

one can more directly reason about.

I compare superscalar and trace processors as follows. First, I identify superscalar and

trace processor configurations that give similar IPC performance. Then, I qualitatively

reason about cycle time based on the relative complexity of a single PE versus the full

superscalar processor.

3. Quantifying complexity is not as straightforward as measuring IPC. Fortunately, Pala-

charla, Jouppi, and Smith [69] derived techniques for analyzing relative complexity in

superscalar processors. In Section 5.2.4, their analytical results are applied to several

design points in a limited demonstration of the trace processor’soverall performance

advantage.

5.2.1  Experimental setup

The superscalar and trace processor models are virtually identical, except 1) the

superscalar processor has a single, centralized instruction window and 2) the trace proces-

sor requires one full cycle to bypass global values, unless stated otherwise.

The superscalar processor uses the same hierarchical frontend as the trace processor,

and it also benefits from memory dependence speculation. And like the superscalar pro-

cessor, the trace processor is provided as many (global) result buses as its aggregate issue

bandwidth, i.e., result bus bandwidth is not a performance limiter.

Full analysis of global result bus bandwidth is deferred to Section 5.4, where I show

the number of required buses is reasonable (e.g. 4 to 6 for large trace processors). Cycle
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time estimation in Section 5.2.4 requires specifying the actual number of global result

buses, in which case I specify the number of buses that performs as well as unconstrained

buses.

I simulated a wide range of superscalar and trace processor configurations. Configura-

tions are labeled as follows.

• superscalar processor:

SS-<window size>-<issue width>

• trace processor:

TP-<total window size>-<total issue width> (<trace length>/<# PEs>/<issue per PE>)

-OR-

<trace length>/<# PEs>

All trace processor configurations in Section 5.2 have a maximum trace length of 16

instructions, which is also the size of each PE window. The number of PEs is 2, 4, 8, or 16,

and the issue bandwidth is 1-, 2-, or 4-way issue per PE. As indicated above, trace proces-

sors are labeled both with aggregate parameters and per-PE parameters; <total window

size> is equal to <# PEs> times <trace length>, and <total issue width> is equal to <#

PEs> times <issue per PE>. For graphs and tables that vary PE issue width along an axis

or column, configurations are labeled with the shorthand notation indicated above (trace

length and number of PEs).
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Superscalar configurations are listed in Table 5-2. For small superscalar processors,

the trace length is less than 16 instructions. Shorter traces were chosen to improve trace

cache hit rate where higher bandwidth is not needed.

Table 5-2: Superscalar processor configurations.

5.2.2  Performance impact of distributing the instruction window

Ignoring complexity and cycle time, a centralized dynamic scheduling window will

outperform an equivalent distributed one due to the following three reasons.

1. Distributed issue bandwidth.

The trace processor divides the instruction window into equal partitions (PEs) and ded-

icates an equal slice of the total issue bandwidth to each partition. One PE may have

more instructions ready to issue than its allotted bandwidth while another PE has idle

issue slots. The trace processor is inflexible and cannot remedy the load imbalance.

2. Window fragmentation.

The trace selection algorithm may produce traces shorter than the maximum trace

length, wasting instruction issue buffers and execution bandwidth in the PE. Although

the superscalar model also uses traces, it has a single, large instruction window that

does not suffer fragmentation due to short traces.

SS-16 SS-32 SS-64 SS-128 SS-256

trace length 4 8 16 16 16

issue width 1, 2, 4 1, 2, 4, 8  2, 4, 8, 16 4, 8, 16 4, 8, 16
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3. Discrete window management.

In the trace processor, instruction buffers are freed in discrete chunks. That is, a PE is

freed and available for allocation only whenall instructions in the current trace have

completed. Discrete window management is inefficient because instruction buffers that

would otherwise be available are tied up by other instructions in the same trace. The

effect is amplified in trace processors with very long traces (e.g. 32) and a small num-

ber of PEs (e.g. 2).

Distributed issue bandwidth, window fragmentation, and discrete window management

are all grouped under the more general term “load balance”.

The graphs in figures 5-9 through 5-16 (one for each benchmark) plot the perfor-

mance of all processor configurations. Dashed and solid curves correspond to superscalar

and trace processors, respectively. Each curve corresponds to a single (aggregate) window

size. Superscalar issue bandwidth, or issue bandwidth per PE for trace processors, is var-

ied along the x-axis. Thus, the graph shows how performance (IPC) scales with issue

bandwidth and window size.

As mentioned earlier in the outline of Section 5.2, for the purposes of this study, the

trace processor is not penalized an extra cycle for bypassing global values. I wish to iso-

late only the performance impact of load balance.

Load balance is quantified by comparing “equivalent” superscalar and trace proces-

sors. Two configurations are equivalent if they have the same aggregate window size and

issue bandwidth. For example, consider what happens to performance when the instruc-
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tion window and issue bandwidth ofSS-64-4 are divided equally into four parts, result-

ing in the equivalentTP-64-4(16/4/1) configuration. The IPC ofgccdecreases from

about 2.75 to just under 2.0, a decrease of 30%.

The performance of nine trace processors relative to their superscalar counterparts is

summarized in Figure 5-7 for all of the benchmarks. Clearly, a distributed instruction win-

dow performs worse than a centralized instruction window of equal size and bandwidth.

Over all benchmarks, distributing the instruction window results in a performance loss of

20% to 30% for most configurations.

Load balance is more pronounced for 8 and 16 single-issue PEs.

TP-128-8(16/8/1) andTP-256-16(16/16/1) perform 40% to 50% worse than

SS-128-8 andSS-256-16 , respectively. These configurations have large instruction

windows and expose a significant amount of instruction-level parallelism. Unfortunately,

single-issue PEs are too inflexible and largely waste this potential. On the other hand, sim-

ply increasing PE issue bandwidth from 1-way to 2-way issue significantly improves load

balance.

Two trends are evident from Figure 5-7. For large instruction windows, load balance

effects are pronounced at narrow PE issue widths but this is remedied by increasing width.

For small instruction windows, namely 2 PEs, load balance is significant and relatively

insensitive to PE issue width. To help interpret this data, I isolate the combined perfor-

mance impact of the two factors that effectivelyreduce the window size of the trace pro-

cessor: discrete window management and window fragmentation. The distributed issue

bandwidth factor is eliminated by giving the trace processor a centralized issue bandwidth
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constraint (like superscalar). From the resulting graph in Figure 5-8, the performance of 2

PEs with respect to equivalent superscalar processors steadily decreases with increasing

PE issue rate. Clearly, eliminating the distributed issue bandwidth factor only exposes the

other two factors. And as might be expected, this is mostly true for small windows (2 PEs)

-- the effective reduction in window size due to discrete window management and frag-

mentation is relatively significant for small windows. For example, discrete window man-

agement potentially halves the window size with 2 PEs by rendering the least speculative

PE underutilized.

Figure 5-7: Performance impact of distributing the instruction window.
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Comparing processors on the basis of equal window size and issue width is somewhat

arbitrary, contrived to point out the problem of load balance. There are two variables in the

overall performance equation: IPC and cycle time. Therefore, it is more useful to compare

two processors that have either equivalent IPC or equivalent complexity. In the next sub-

section, processors having similar performance (IPC) are identified, and then I make qual-

itative observations about the relative complexity of these processors to arrive at overall

performance.

Figure 5-8: Impact of window fragmentation and discrete window management.
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Figure 5-9: Superscalar vs. trace processors with ideal bypasses (compress).

Figure 5-10: Superscalar vs. trace processors with ideal bypasses (gcc).
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Figure 5-11: Superscalar vs. trace processors with ideal bypasses (go).

Figure 5-12: Superscalar vs. trace processors with ideal bypasses (jpeg).
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Figure 5-13: Superscalar vs. trace processors with ideal bypasses (li ).

Figure 5-14: Superscalar vs. trace processors with ideal bypasses (m88ksim).

LI

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 4 8 16

issue width per PE

IP
C

SS-16
SS-32
SS-64
SS-128
SS-256
16/2
16/4
16/8
16/16

M88KSIM

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 4 8 16

issue width per PE

IP
C

SS-16
SS-32
SS-64
SS-128
SS-256
16/2
16/4
16/8
16/16



142

Figure 5-15: Superscalar vs. trace processors with ideal bypasses (perl).

Figure 5-16: Superscalar vs. trace processors with ideal bypasses (vortex).
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5.2.3  Analysis of similar-performance superscalar and trace processors

In Figures 5-17 through 5-24, two graphs are presented for each benchmark. The first

graph plots the performance of all superscalar and trace processor configurations, in the

same manner described previously in Section 5.2.2. The only difference between these

graphs and those in the previous subsection is thatthe trace processor requires one full

cycle to bypass global values.

In the second graph of each figure, processor configurations that have similar perfor-

mance are grouped together into “similar-IPC groups”. The purpose of this graph is to

quickly identify superscalar and trace processor configurations that perform equally well.

For example, a 4 PE trace processor with single-issue elements

(TP-64-4(16/4/1) ) and a 4-way superscalar processor with a 16 instruction window

(SS-16-4 ) have similar performance forgcc, jpeg, li , perl, andvortex. Both processors

have an aggregate issue bandwidth of 4. Despite partitioning its issue bandwidth,

TP-64-4 manages to utilize the bandwidth equally well. This requires an overall larger

window (4 times larger). The circuit complexity of the trace processor is approximately

that of a single PE, however, since global complexity is accounted for by partial bypass-

ing. A PE has complexity on the order ofSS-16-1 and can potentially be clocked faster

thanSS-16-4 .

The results in Figures 5-18 through 5-24 are summarized in Table 5-3. The table pairs

each trace processor with a similar-IPC superscalar processor. (In some cases, there is no

superscalar processor with reasonably similar performance: this appears as a blank table

entry.) The pairing is performed for each benchmark. Fortunately, there is usually a domi-
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nant pairing across all benchmarks. The majority pairing is indicated in the “Summary”

column. The summary column allows comparisons to be made relatively independent of

benchmark.

If there are multiple superscalar configurations that can be paired with a trace proces-

sor, in general, I choose the less complex configuration based on my understanding of ana-

lytical models to be given in Section 5.2.4. In some cases, there are (+) and (-) indicators

in a table entry. A (+) denotes the trace processor performs noticeably better than the indi-

cated superscalar processor, but the IPCs are similar enough to pair. A (-) denotes the

reverse is true.

Below I discuss the trace processor/superscalar processor pairings from Table 5-3.

• 16/2  trace processors

The smallest trace processor configurations,TP-32-2(16/2/1) and

TP-32-4(16/2/2) , show encouraging results. They perform as well as superscalar

processors with a 16 instruction window and 2-way or 4-way issue, i.e.SS-16-2 and

SS-16-4 , respectively. The superscalar and trace processors have equal aggregate

issue bandwidth, but individual PEs have the same size window and half the issue width

of corresponding superscalar processors.

Two small superscalar processors can be connected together to achieve the same IPC

performance as doubling the issue width of one processor. Furthermore, both the per-

ceived and real simplicity of replicating PEs provides a better approach to increasing

hardware parallelism.
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Notice theTP-32-8(16/2/4) configuration is not an effective design point. Two

4-way issue PEs together perform little better than one PE (SS-16-4 ), presumably

because 2-way issue sufficiently exploits the parallelism within a 16 instruction trace.

• 16/4  trace processors

4 PE trace processors continue the promising trends of 2 PE configurations. Connecting

4 single-issue PEs to formTP-64-4(16/4/1) gives the same or better performance

as quadrupling the issue width of one processing element to formSS-16-4 . Overall

circuit complexity remains relatively fixed as the single-issue PEs are replicated and

connected into a trace processor, whereas quadrupling superscalar issue bandwidth

incurs significant additional complexity in the select logic and result bypass circuits, as

will be shown in the next subsection.

Interestingly, theTP-32-4(16/2/2) and TP-64-4(16/4/1) trace processors

perform similarly due to their equal aggregate issue bandwidth. The choice of one con-

figuration over another is a tradeoff between adding more PEs and increasing the paral-

lelism of a single PE. Except form88ksim, 16/4/1 performs slightly better than

16/2/2 due to the larger overall instruction window (64 versus 32). The 4 PE trace

processor is also less sensitive to discrete window management (although it is poten-

tially more sensitive to other load balance factors).

TP-64-8(16/4/2) performs similarly to SS-32-8 and, to a lesser extent,

SS-64-4 . To achieve similar performance, the trace processor matches and then dou-



146

bles either the window size (SS-32-8 ) or the issue bandwidth (SS-64-4 ), but not

both -- an encouraging result considering the trace processor incurs performance penal-

ties due to load balance and partial bypassing. And the superscalar processors are con-

siderably larger and wider than a single 2-way issue processing element.

The TP-64-16(16/4/4) trace processor is required to match the performance of

SS-64-4 in many of the benchmarks, however. Nevertheless, a 16x4 PE is less com-

plex than a 64x4, 128x4, or 256x4 superscalar processor (in several benchmarks, the

16/4/4  trace processor performs similarly toSS-128-4  andSS-256-4 ).

• 16/8  trace processors

The performance ofTP-128-8(16/8/1) is often subsumed by a smaller trace pro-

cessor with 2-way issue elements, i.e. TP-64-8(16/4/2). It is consequently a less inter-

esting design point than the other 8-PE trace processors.

The TP-128-16(16/8/2) trace processor with 2-way issue PEs appears to be the

most effective design point of the 8-PE configurations. This trace processor performs

about the same asSS-64-8 . The trace processor’s aggregate window size and issue

width are both twice that of the superscalar processor, but the complexity of a single PE

is similar toSS-16-2  -- a quarter the “dimensions” ofSS-64-8 .

In the next subsection,TP-128-16(16/8/2) andSS-64-8 form the basis of my

case study on quantitative complexity analysis.
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• 16/16  trace processors

TP-256-16(16/16/1) may be more complexity-effective than

TP-64-16(16/4/4) for equaling the performance ofSS-64-4 . 16/16/1 has sin-

gle-issue PEs, whereas16/4/4 -- a smaller processor overall -- requires 4-way issue

per PE.

The performance of the16/16/2 and16/16/4 processors is matched only by super-

scalar processors having 8-way or higher issue bandwidth. Although the transition from

1-way to 4-way issue incurs significant additional complexity, it is the leap to 8-way

and higher issue rates that poses a serious problem. Consequently, the benefit of trace

processors and other complexity-effective microarchitectures is undoubtedly greatest in

the context of very wide issue processors.
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Table 5-3: Pairing trace processors with similar-IPC superscalar processors.

Trace
Proc.

compress gcc go jpeg li m88ksim perl vortex Summary

16/2

1
SS-16-2

(-)

SS-16-2

(-)

SS-16-2 SS-16-2 SS-16-2
SS-16-2

2
SS-32-2 SS-16-4 SS-32-2 SS-16-4 SS-64-2 SS-64-2 SS-16-4 SS-16-4

SS-16-4

4
SS-64-2 SS-64-2 SS-16-4 SS-16-4

(+)

SS-16-4

(+)

SS-16-4

(+)
SS-16-4

16/4

1
SS-32-2 SS-16-4 SS-64-2 SS-16-4 SS-16-4 SS-64-2 SS-16-4

(+)

SS-16-4

(+)
SS-16-4

2
SS-32-4 SS-32-8 SS-32-8

(+)

SS-64-4 SS-32-8 SS-32-8 SS-64-4
SS-32-8

4
SS-64-4 SS-128-4 SS-64-4 SS-64-4 SS-64-4 SS-64-4 SS-256-4

SS-64-4

16/8

1
SS-32-4 SS-32-8 SS-32-4 SS-32-4 SS-16-4 SS-32-8 SS-32-4

SS-32-4

2
SS-64-4 SS-64-8

(-)

SS-128-4 SS-64-8 SS-64-4 SS-64-8 SS-64-8

(-)
SS-64-8

4
SS-64-8 SS-64-8

(+)

SS-64-8

(+)

SS-64-8
SS-64-8

16/16

1
SS-32-4 SS-64-4 SS-64-4 SS-64-4

(+)

SS-32-4 SS-32-4 SS-64-4

(+)

SS-32-4
SS-64-4

2
SS-64-8 SS-64-8

(+)

SS-128-8

(-)

SS-128-8 SS-64-8 SS-128-8 SS-64-8

(+)
SS-64-8

4
SS-128-8 SS-256-8

(-)

SS-128-8 SS-128-8 SS-128-8 SS-256-8 SS-256-8
SS-128-8
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Figure 5-17: Superscalar vs. trace processors with partial bypasses (compress).
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Figure 5-18: Superscalar vs. trace processors with partial bypasses (gcc).
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Figure 5-19: Superscalar vs. trace processors with partial bypasses (go).
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Figure 5-20: Superscalar vs. trace processors with partial bypasses (jpeg).
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Figure 5-21: Superscalar vs. trace processors with partial bypasses (li ).
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Figure 5-22: Superscalar vs. trace processors with partial bypasses (m88ksim).
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Figure 5-23: Superscalar vs. trace processors with partial bypasses (perl).
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Figure 5-24: Superscalar vs. trace processors with partial bypasses (vortex).
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5.2.4  Case studies: comparing overall performance

In this section I estimate the overall performance advantage of trace processors over

conventional superscalar processors. First, I analyze circuit complexity to arrive at reason-

able cycle time estimates for several trace processor and superscalar processor configura-

tions. Second, these processor configurations are simulated to measure IPC. Overall

performance --instructions per second -- is computed as IPC divided by cycle time.

5.2.4.1  Analytical models

The complexity of superscalar processors is quantified in the technical report by Pala-

charla, Jouppi, and Smith [69]. The report identifies three key areas of complexity -- regis-

ter renaming, instruction window wakeup and select, and result bypassing -- and derives

analytical models for estimating the worst-case delay through each of these circuits. The

analytical models are briefly summarized below, and I also describe how the models are

applied to trace processors. In several cases, due to the hierarchical organization of trace

processors, the inputs to a model change their meaning or the model itself must be modi-

fied slightly. I focus on complexity stemming from the instruction window, i.e. rename

complexity is not considered here.

• Wakeup

Wakeup involves broadcasting result tags to each instruction in the window. Each

instruction compares its operand tags with the result tags to determine if an operand is

available. Thus, the primary logic structure is a CAM (content addressable memory)
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cell. The various delay components of wakeup depend on the dimensions of the cell.

For example, the height of the cell determines the overall height of the instruction win-

dow, which affects the delay for broadcasting tags.

Both the height and width of the cell depend on thenumber of result tags, NUMTAGS,

broadcasted to the window. The overall height of the instruction window depends on

the number of instructions in the window, WINSIZE. Therefore, wakeup delay is a

function of these two variables:

Twakeup = f(NUMTAGS , WINSIZE)

In [69], it is pointed out that NUMTAGS is simply the issue width of the processor. In

trace processors, however, the number of tags is equal to the number of local result

buses plus the number of global result buses.

I do not reproduce the full delay equation here because it is not actually required -- the

technical report tabulates results over a range of window sizes and issue widths. Rele-

vant results are reproduced in Table 5-4. For trace processors, the PE window size and

sum of local and global tags are used to lookup the corresponding delay in the table.

It turns out that wakeup delay is much more sensitive to NUMTAGS than WINSIZE

[69]. WINSIZE affects only one of three major wakeup delay components, whereas

NUMTAGS affects all three. The trace processor does a good job of reducing WIN-

SIZE, in fact, WINSIZE remains constant as more PEs are added. Unfortunately,

NUMTAGS is potentially problematic despite the hierarchical result bus model.
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• Select

The select logic receives individual request signals from all instructions in the window

and outputs as many grant signals. It is organized as a tree of arbiter cells. Each cell

ORs together four request signals into a single request signal to be propagated to the

next level of the tree, until ultimately the root cell is reached. From the root cell, grant

signals are propagated and expanded back up the tree.

The arbitration scheme works for selecting a single instruction to execute on a single

functional unit. If there are multiple functional units of the same type, there are at least

two options. The select logic modules for each functional unit may be serially cas-

caded; request signals are gated by not-grant signals before routing the updated

requests into successive select logic modules. Alternatively, the arbiter cell may be

extended so that request and grant signals indicate the number of resources requested or

granted. As pointed out in [69], the extended arbiter cell becomes quite complex even

for just two functional units, and serially cascading the much simpler select logic mod-

ules is likely faster.

Select delay is a function of log4(WINSIZE) (due to the tree structure), and if there are

N copies of the most common functional unit type, the delay is multiplied by a factor of

N (due to cascading).

Tselect = N * f(log4(WINSIZE))
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The full delay equation is not reproduced here because it is not actually required -- as

with wakeup delay, the technical report tabulates select delay over a range of window

sizes. Relevant results are reproduced in Table 5-5 for a single functional unit. I merely

apply the multiplicative factor N as needed to account for more functional units.

• Result bypassing

By far, the most significant delay component of the result bypass logic is the buswire.

Result bus wires stretch linearly above all of the functional units and the register file. In

this way, results can be written to or read from the bus by any functional unit or the reg-

ister file.

The delay of a result bypass wire of length L is given by:

Tbypass = 0.5 * L2 * Rmetal * Cmetal

RmetalandCmetalare resistance and capacitance per unit length of wire, and their values

are given in Table 5-6. The length L is simply the sum of the heights of functional units

and the register file. The lambda-based (technology independent) functional unit

heights reported in [69] are listed in Table 5-7. The height of a superscalar register file

is given by:

RFheight = NPREG * (cellheight + portheight * (3 * IW))

NPREG is the total number of physical registers,cellheightis the height of a register

file cell in isolation, andportheightis the height added to a cell due to a single port.



161

Lambda-based values forcellheightandportheightare given in Table 5-8. The factor (3

* IW) is the total number of ports for a IW-wide machine assuming 2 read ports and 1

write port is required for each instruction issued per cycle.

The equation for RFheightmust be modified for a trace processor due to the hierarchical

register file, and is given by:

RFheight = GRF * (cellheight + portheight * (2 * IWPE + GRB)) +

LRF * (cellheight + portheight * (3 * IWPE))

The above equation has two components. The first is for the global register file and the

second is for the local register file. GRF and LRF are the sizes of the global and local

register files, respectively, IWPE is the issue width per PE, and GRB is the number of

global result buses. The factor (2 * IWPE + GRB) is the number of global register file

ports. There is a one-to-one correspondence between global result buses and global reg-

ister file write ports, consequently, there are GRB write ports. Because each PE has a

copy of the global register file, the number of read ports is equal to the issue width of

the PE times two for each instruction operand. The local register file component of the

equation is a straightforward translation of the superscalar register file equation.
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Table 5-4: Wakeup delays for 0.18µm technology.Obtained from [69].

Table 5-5: Select delays for 0.18µm technology, assuming a single functional unit.
Obtained from [69].

Table 5-6: Technology constants.Obtained from [69].

Table 5-7: Functional unit heights.Obtained from [69].

Window Size Wakeup Delay (ps)

Issue Width = 2

16 148.1

32 158.6

64 180.5

Issue Width = 4

16 190.6

32 206.3

64 241.3

Issue Width = 8

16 258.3

32 285.1

64 352.3

Window Size Select Delay (ps)

16 250.4

32 371.7

64 373.0

128 502.1

Technology λ Rmetal (Ω/µm) Cmetal (fF/µm)

0.18µm 0.09µm 0.09 1.22

Functional unit Height (λ) Description

Complete ALU (ALUfull) 3200 Comprises adder, shifter, and logic unit

Simple ALU (ALUsimple) 1700 Comprises adder and logic unit

Address Generation Unit (AGEN) 1400 Comprises adder for effective address calculation
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Table 5-8: Register file circuit parameters.Obtained from [69].

5.2.4.2  Quantifying complexity

In my case study, the critical delays of one trace processor and six superscalar proces-

sors are measured.TP-128-16(16/8/2) is an interesting design point because it rep-

resents a reasonably large trace processor with high performance and low PE complexity.

The data in Table 5-3 indicatesTP-128-16(16/8/2) andSS-64-8 perform compa-

rably for most of the benchmarks. For various other benchmarks,SS-64-4 or

SS-128-4 give similar performance. Therefore, I consider superscalar processors with

64 and 128 instruction windows and both 4-way and 8-way issue.

Two smaller superscalar processors,SS-16-2 andSS-32-2 , are also considered.

SS-16-2 is the basic building block of the trace processor and should provide an inter-

esting comparison. I expect its cycle time to be shorter than that of the trace processor

because global circuitry is absent. The comparison will demonstrate the net performance

gain when multiple small-sized superscalar processors are connected together in a trace

processor.

Table 5-9 shows the parameters used in the wakeup, select, and bypass delay models

for each of the processor configurations. The wakeup model requires two parameters,

NUMTAGS and WINSIZE. The number of tags broadcast to the PE window is the total

number of local and global result tag buses. There are 2 local result buses in a 2-way issue

Parameter Value

cellheight 40λ
portheight 10λ
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PE. Data in Section 5.4.1 indicates 6 global result buses perform as well as unlimited

result buses forTP-128-16(16/8/2) . Thus, NUMTAGS equals 8 in the trace proces-

sor. I point out that 4 global result buses perform almost as well as 6. Although I could

parameterize the wakeup model using 4 or 5 global result buses, that would make for 6 or

7 NUMTAGS, and there are no delays in Table 5-4 corresponding to these datapoints. For

the superscalar processors, NUMTAGS is equal to the total issue width.

The select model requires two parameters, WINSIZE and N. WINSIZE is equal to PE

window size in the case of the trace processor, or total window size in the case of super-

scalar processors. N is based on the number and type of functional units. Although IPC is

measured using fully symmetric functional units, the complexity analysis uses a reason-

able mix of functional units described in [69] and reproduced in Table 5-10. I assume 1)

ALU operations are routed to either theALUfull or ALUsimple functional units, and 2) if

there are no separate AGEN units, then address computations are performed by bothALU-

full andALUsimplefunctional units, otherwise address computations are performed only by

AGEN. Based on these assumptions, N is computed is follows.

• 2-way issue: N = 2 because arbitration must be performed for the two ALUs

together.

• 4-way issue: N = 2 because arbitration involves a maximum of two functional units,

i.e. either two ALUs or two AGENs.

• 8-way issue: N = 4 because arbitration involves a maximum of four functional units,

i.e. either four ALUs or four AGENs.
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The bypass delay model is parameterized by four numbers in the trace processor,

GRF (global register file size), LRF (local register file size), IWPE (PE issue width), and

GRB (number of write ports to the global register file, i.e. number of global result data

buses). Measurements in Section 5.4.3 indicate a global register file of 80 registers per-

forms as well as an unconstrained register file, forTP-128-16(16/8/2) . The average

number of local values per trace (Table 4-5) suggests a local register file of 8 registers is

adequate. And, as stated previously, there are 6 global result data buses. For superscalar

processors, bypass delay is parameterized by physical register file size and issue band-

width. NPREGS is equal to 80 forSS-64 and 120 forSS-128 , in accordance with [69].

I assume 40 physical registers forSS-16-2 (32 architected + 8 speculative) and 60 for

SS-32-2 .

Table 5-9: Parameter values for wakeup, select, and bypass models.

Processor
Configuration

Select
Bypass

Wakeup

NUMTAGS WINSIZE N GRF / NPREG LRF IW / IWPE GRB

TP-128-16 (16/8/2) 8 16 2 80 8 2 6

SS-16-2 2 16 2 40 - 2 -

SS-32-2 2 32 2 60 - 2 -

SS-64-4 4 64 2 80 - 4 -

SS-64-8 8 64 4 80 - 8 -

SS-128-4 4 128 2 120 - 4 -

SS-128-8 8 128 4 120 - 8 -
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Table 5-10: Functional unit mix for various processor/PE issue widths.Mixes for
4-way and 8-way issue are obtained from [69].

Finally, computed delays and estimated cycle times are shown in Table 5-11. Wakeup

delay is given in the first column. Wakeup delays for windows larger than 64 instructions

are unavailable because they are not investigated in [69]; the authors suggest larger super-

scalar windows should be formed by banking. Along those lines, wakeup delays for

SS-128 configurations are estimated using the delays of correspondingSS-64 configu-

rations and adding about 10% for the overhead of banking (hence the ~ symbol preceding

theSS-128  wakeup delays).

Wakeup delay for the trace processor is 25% faster than wakeup delay forSS-64-8 .

Since both processors broadcast 8 tags, this improvement is due entirely to the small PE

window. SS-64-4 has slightly faster wakeup logic than the trace processor because

NUMTAGS affects delay more than WINSIZE. In spite of a small PE window, wakeup in

the trace processor is still a potential problem because the number of tags is not reduced as

much as one would like. On the other hand, as suggested earlier, only 4 or 5 global tags

may be implemented to get nearly the same IPC performance and an even greater reduc-

tion in wakeup delay.

Issue width Functional unit mix

2 1ALUfull , 1ALUsimple

4 1ALUfull , 1ALUsimple, 2AGEN

8 2ALUfull , 2ALUsimple, 4AGEN
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The effect of NUMTAGS is evident by comparing the trace processor andSS-16-2 .

The window size is 16 in both cases, butSS-16-2 broadcasts only 2 tags.SS-16-2

wakeup delay is consequently 40% faster.

Select delay is shown in the second column of Table 5-11. Interestingly, select logic is

the larger component of total issue delay (third column, wakeup plus select delay). Select

delay increases substantially with both window size and issue bandwidth. It is particularly

sensitive to issue bandwidth because arbitration complexity increases linearly with the

number of functional units. The modest, dedicated issue bandwidth within PEs, coupled

with the small PE window, substantially reduces arbitration complexity. Essentially, select

logic is fully distributed in the trace processor. Select delay is reduced by more than 60%

with respect toSS-64-8  and 50% with respect toSS-128-4 .

Local bypass wire lengths and resulting delays are shown in the 6th and 7th columns.

The 8-way issue superscalar processors have substantially longer bypass delays because of

the quadratic dependence on bypass wire length.

The trace processor has relatively short local bypass wires for two reasons. Firstly, a

PE has only two functional units. Secondly, the global register file is smaller than the reg-

ister file of an equivalent superscalar processor; there are fewer ports and fewer registers

due to the hierarchical register model. Note that the local register file is also included in

the wire length computation. With respect toSS-64-8 , the length of wire running over

functional units and register files is reduced by about 70% and 50%, respectively, for an

overall reduction in bypass delay of 80%.
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The bypass delay of the smaller superscalar processorSS-64-4 is more comparable

to that of the trace processor. Substantially fewer ports are required for 4-way issue than

8-way issue, as a result, the length of wire running over theSS-64-4 register file and the

trace processor’s local plus global register files is comparable. The bypass delay of

SS-16-2 is fairly negligible and 75% faster than the trace processor’s local bypass delay.

The length of wire running over theSS-16-2 register file is 66% shorter because it has

half the number of physical registers and four fewer write ports than the trace processor’s

global register file.

An analytical model for global bypass delay is beyond the scope of this study. The

lengths of global result wires depend on the overall trace processor floorplan. As shown in

the second-to-last column of Table 5-11, global bypass delay is estimated to be about 1000

ps based on the bypass delay of the comparably-sizedSS-128-8  configuration.

I am now ready to make cycle time estimations for each of the configurations.

• TP-128-16(16/8/2)

A range of cycle times is given for the trace processor. If global bypass wires set the

critical path at 1000 ps, then the cycle time is 1 ns. Suppose, however, that global

bypass can meet the timing constraints set by the issue logic (wakeup and select). Then

the cycle time is about 0.8 ns. The last column in Table 5-11 shows the range of cycle

times for the trace processor: 0.8 ns to 1.0 ns. If wakeup and select set the cycle time at

0.8 ns, then the implied latency for performing an add instruction or similar ALU oper-

ation is just under 700 ps, because local bypass takes 130 ps.
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These estimates, including the 700 ps ALU operation, are consistent with theSemicon-

ductor Roadmap’sprojections for 0.18µm technology [90] and projections for forth-

coming 1+ GHz processors.

• Superscalar processors

Wakeup and select delays dictate the cycle time estimates for all of the superscalar pro-

cessors. Cycle time estimates based on wakeup and select delay are shown in the last

column of Table 5-11 (the first number listed). The 8-way issue processors have consid-

erably longer cycle times than 4-way issue processors: 1.9 ns to 2.4 ns for 8-way versus

1.0 ns to 1.3 ns for 4-way, for the two window sizes. Among the medium-size supersca-

lar processors, the cycle times of all butSS-64-4 are considerably longer than the

trace processor cycle time.

The cycle time estimate forSS-16-2 is noticeably better than the trace processor’s

upper bound estimate. This is due to the global bypass delay estimate. But the trace

processor’s lower bound estimate is only slightly worse thanSS-16-2  cycle time.

For superscalar processors, a second cycle time is indicated within parentheses in the

last column. Suppose one could improve the select logic and, instead, bypass delay

were the critical path. The second cycle time estimate reflects the combined ALU

latency (700 ps, as described above) and bypass delay. The cycle time does not change

much forSS-64-4 , SS-32-2 , or SS-16-2 because their delays are well balanced.

The cycle times of other superscalar processors decrease by 25% to 30%. Nevertheless,
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bypass delay is substantial -- e.g. forSS-64-8 , bypass delay nearly equals the latency

of an ALU operation.

Table 5-11: Delay computations and cycle time estimates.

5.2.4.3  Overall performance

The graphs in Figures 5-25 through 5-31 show theoverall performance improvement

of TP-128-16(16/8/2) relative to the six superscalar configurations asrelative cycle

time decreases (each graph has six curves, one per superscalar configuration). More pre-

cisely:

1. The x-axis is the reduction in cycle time of the trace processor with respect to the

superscalar processor. Note:T is cycle time andx is the cycle time reduction. TheSS

andTP subscripts denote superscalar and trace processors.

Processor
Config.

Wakeup
delay
(ps)

Select
delay
(ps)

Wakeup
+ Select
delay
(ps)

Local Bypass Global
Bypass
delay
(ps)

cycle
time
(ns)

Σ FUheight

(λ)
RFheight

(λ)
wire length

(λ)
Delay
(ps)

TP-128-16
(16/8/2)

260 500 760 4900 12000 16900 130 < 1000 0.8 - 1.0

SS-16-2 150 500 650 4900 4000 8900 35 - 0.7 (0.7)

SS-32-2 160 740 900 4900 6000 10900 53 - 0.9 (0.8)

SS-64-4 240 750 990 7700 12800 20500 190 - 1.0 (0.9)

SS-64-8 350 1500 1850 15400 22400 37800 640 - 1.9 (1.3)

SS-128-4 ~270 1000 1300 7700 19200 26900 320 - 1.3 (1.0)

SS-128-8 ~390 2000 2400 15400 33600 49000 1100 - 2.4 (1.8)

x
TSS TTP–

TSS
-----------------------------=
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2. The y-axis is the overall performance improvement of the trace processor with respect

to a superscalar processor and is computed as follows. Note:IPC is instructions per

cycle,T is cycle time, andIPS is instructions per second (i.e. overall performance).

Referring to the graphs in Figures 5-25 through 5-31, except forli andm88ksim, the

curve labeledSS-64-8 crosses near the origin. This reconfirms that the trace processor

andSS-64-8 have similar IPC. But as the clock period of the trace processor decreases

with respect to the clock period ofSS-64-8 , the trace processor gives better overall per-

formance, i.e. more instructions executed per second.

Consider the graph forgcc, which is fairly representative of the other benchmarks.

Because the trace processor has slightly lower IPC thanSS-64-8 , a 5% shorter clock

period is needed to break even in terms of overall performance. From Table 5-11, the trace

processor clock period is from 47% to 58% shorter than theSS-64-8 clock period (0.8

ns to 1.0 ns for the trace processor versus 1.9 ns for the superscalar processor). These two

endpoints are plotted directly on theSS-64-8 curve and connected with a visible arc.

From the arc, I observe that the trace processor performs from 80% to 120% better than

SS-64-8  based on cycle time estimates and IPC measurements.

y
IPSTP IPSSS–

IPSSS
---------------------------------------

IPCTP
TTP
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IPCSS
TSS

-----------------–

IPCSS
TSS

-----------------

-----------------------------------------

IPCTP
1 x–( )TSS
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IPCSS
TSS

-----------------–

IPCSS
TSS

-----------------

---------------------------------------------------

IPCTP
1 x–
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  IPCSS–
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From the same graph, I observe that the trace processor performs about 15% better

thanSS-64-4 given the same clock period. The arc on this curve indicates that the clock

period of the trace processor is from 0% to 20% shorter than the clock period of SS-64-4,

and this corresponds to an overall performance improvement of up to 45%. About 1/3 of

the overall improvement is due to IPC and 2/3 to clock rate.

The trace processor’s clock period is from 15% to 40%longer than the clock period

of SS-16-2 . But the trace processor has significantly higher IPC and the net result is an

overall performance improvement. For example,gcc shows an overall improvement of

about 50% to 90%. Evidently, it is beneficial to connect multiple, small superscalar build-

ing blocks into a trace processor. The incremental clock period overhead is absorbed and

the increase in IPC provides a substantial payoff.

The three configurations discussed so far (SS-16-2 , SS-64-4 , and SS-64-8 )

form a complete picture. The trace processor performs better than bothSS-16-2 and

SS-64-8 , but for different reasons. On the one hand,SS-16-2 has a fast cycle time but

its IPC is too low to be competitive; on the other hand,SS-64-8 has reasonably high IPC

but its cycle time is too slow.SS-64-4 is closest to the trace processor both in terms of

cycle time and IPC. Evidently,SS-64-4 is the best superscalar design point in terms of

overall performance.
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Figure 5-25: TP-128-16(16/8/2) vs. six superscalar processors (gcc).
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Figure 5-26: TP-128-16(16/8/2) vs. six superscalar processors (go).
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Figure 5-27: TP-128-16(16/8/2) vs. six superscalar processors (jpeg).
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Figure 5-28: TP-128-16(16/8/2) vs. six superscalar processors (li ).
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Figure 5-29: TP-128-16(16/8/2) vs. six superscalar processors (m88k).
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Figure 5-30: TP-128-16(16/8/2) vs. six superscalar processors (perl).
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Figure 5-31: TP-128-16(16/8/2) vs. six superscalar processors (vortex).
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5.2.4.4  Caveats

The previous study has the following shortcomings, and results should be interpreted

with these shortcomings in mind.

1. Global bypass delay for the trace processor is only a rough estimate.

2. The analytical model for bypasses does not account for periodic buffering (repeaters)

along long wires. The model, therefore, exaggerates quadratic effects.

3. Select delay calculations are potentially suspect because of the assumption that multi-

ple functional units require serialized arbitration. After drawing out the logic for an

arbiter node, it is clear that placing two arbiters in series is better than complicating the

arbiter logic: the simple arbiter has one level of logic per node, and a complex arbiter

necessarily has two levels of logic at each node. But it is unclear what happens to the

complex arbiter as the number of functional units increases from two to four.

4. The study assumes cycle time is set by wakeup/select delays and/or bypass delays. But

another part of the processor may dictate cycle time, such as the register file, caches,

etc. Alternatively, even if cycle time is a function of wakeup/select/bypass delays, keep

in mind that certain latencies remain constant -- for example, the cache access latency

may be fixed and, therefore, may require more cycles as cycle time decreases. My sim-

ulations are contrary to this, because the number of cycles for a cache hit is fixed.
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5.3  Three dimensions of trace processors

The three “dimensions” of trace processors are explored in this section: trace length

(PE window size), number of PEs, and PE issue width. The study is organized into two

parts. In the first part, only length-16 traces are considered and the relative importance of

number of PEs and PE issue width is investigated. Trace length is deferred to the second

part.

5.3.1  Number of PEs versus PE issue width

In this subsection, the relative importance of number of PEs and PE issue width is

investigated for length-16 trace processors. My general approach is to determine when it is

more beneficial to increase the number of PEs or PE issue width. Refer to the IPC graphs

in Figures 5-32 through 5-38. The analysis pertains to the four curves labeled 16/*.

For a small number of PEs, doubling the number of PEs is more beneficial than dou-

bling or even quadrupling the PE issue rate. This is particularly true for 2 PEs because the

window is too small to effectively utilize a large aggregate issue bandwidth -- an overall

window of 32 instructions simply does not expose enough ILP.

For 4 or more PEs, however, it is more beneficial to double the PE issue rate from

1-way issue to 2-way issue than to double the number of PEs. The trend is more noticeable

as the overall window increases in size. Larger trace processors naturally expose more

instruction-level parallelism and single-issue PEs are too weak to exploit this potential

(recall the load balance observations in Section 5.2.2). But for 2-way issue PEs, it again

becomes more beneficial to double the number of PEs than to double the issue rate. This is
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clearly visible in the graphs as a leveling off of the curves for length-16 traces. Evidently,

a length-16 trace is too small a “window” to effectively utilize an issue bandwidth of 4.

In summary, if we are restricted to change only one dimension at a time, following is

the sequence of configurations that maximize the incremental performance improvement

at each step. (This trend applies to all of the benchmarks.)

5.3.2  Trace length

Trace length is a complex dimension. It impacts the trace processor in so many ways,

some of which were enumerated in Section 3.1.4. Trace length affects two essential

aspects of the distributed instruction window.

1. Load balance- The size of the PE window affects the distribution of work and instruc-

tion-level parallelism among PEs.

2. Global versus local complexity- The number of global values decreases with longer

traces (assuming constant window size). Firstly, this means fewer values incur the glo-

bal bypass delay. Secondly, there is a general shift from globalprocessor-level com-

plexity to local PE-level complexity. Physically constructing an equivalent instruction

window requires connecting fewer PEs together. For the same IPC performance, poten-

tially fewer global result buses are needed, and the global register file may be smaller

(both in terms of registers and write ports). Wakeup delay and bypass delay are reduced

16/2/1 16/4/1 16/4/2 16/8/2 16/16/2 16/16/4
# PEs issue/PE # PEs # PEs issue/PE
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due to fewer global tags and a smaller global file, respectively. Of course, the reduced

global complexity is accompanied by an increase in local complexity: the PE window,

local register file (size and ports), and PE issue width are all affected by the longer

traces.

The graphs in Figures 5-32 through 5-38 show performance (IPC) for two trace

lengths, 16 and 32 instructions. The global bypass latency is one cycle. All configurations

use unconstrained global result buses and global register files to avoid a per-configuration

search of the design space. Furthermore, complexity (or cycle time) is not considered in

my somewhat limited analysis of trace length. Thus, only a few of the issues discussed

above are covered by the analysis -- load balance and global bypass latency -- both of

which are captured by IPC.

I begin by considering trace processors of equal dimensions except for trace length,

i.e. the same number of PEs and issue width per PE. Refer to any of the graphs in Figures

5-32 through 5-38. For single-issue PEs, length-32 traces almost always perform worse

than length-16 traces. Thus, in spite of the fact that total issue bandwidth is the same and

the length-32 trace processor has twice the total window size, the length-16 trace proces-

sor wins. Single-issue PEs are sensitive to load balance, and length-32 traces exacerbate

the problem by moving even more work into a single PE.

I hypothesize that parallelism is often unevenly distributed among instructions in the

window, in which case it is better to divide the window finely (i.e. shorter traces). Coarsely

dividing the instruction window localizes “clusters” of parallelism within individual PEs.
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Also, branch mispredictions in either case limit the effective size of the window -- but

given an identically-located misprediction, the coarser window provides less effective

issue bandwidth to instructions before the mispredicted branch.

As issue width is increased, however, there is a crossover point and length-32 traces

perform better. Forgo, jpeg, m88ksim, and perl, the crossover point is consistently at

2-way issue. At 4-way issue, the performance gap between length-32 and length-16 traces

is even wider, and all benchmarks exceptvortexshow better performance with length-32

traces. Increasing PE issue bandwidth reduces sensitivity to load balance, and the

length-32 trace processor is able to exploit its larger instruction window and more local-

ized communication to exceed length-16 trace processor performance.

Next, I compare length-16 and length-32 trace processors that have the same aggre-

gate window size and issue bandwidth. Thus, for each length-16 trace processor configura-

tion, the corresponding length-32 trace processor has half the number of PEs and twice the

issue bandwidth per PE, as shown in Table 5-12. The comparison determines whether it is

better to have longer or shorter traces for a fixed amount of hardware parallelism (consid-

ering only IPC and not cycle time).

Referring to Table 5-12, three processor pairs perform similarly for most of the

benchmarks:TP-64-4(16/4/1) and TP-64-4(32/2/2) , TP-64-8(16/4/2)

andTP-64-8(32/2/4) , andTP-128-16(16/8/2) andTP-128-16(32/4/4) .

For the other three processor pairs, length-32 traces consistently perform better than

length-16 traces.
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Table 5-12: Comparing equivalent length-16 and length-32 trace processors.

Figure 5-32: Varying the three trace processor dimensions (gcc).

Equivalent Trace
Processor Configs.

gcc go jpeg li m88k perl vortex

TP-64-4(16/4/1)

TP-64-4(32/2/2)
= =

=

(32+)
= 32 > 16 =

=

(32+)

TP-64-8(16/4/2)

TP-64-8(32/2/4)
=

=

(16+)

=

(32+)

=

(16+)
32 > 16

=

(16+)
=

TP-128-8(16/8/1)

TP-128-8(32/4/2)
32 > 16 32 > 16 32 > 16 32 > 16 32 > 16 32 > 16 32 > 16

TP-128-16(16/8/2)

TP-128-16(32/4/4)
= = 32 > 16 = 32 > 16 = 32 > 16

TP-256-16(16/16/1)

TP-256-16(32/8/2)
32 > 16 32 > 16 32 > 16 32 > 16 32 > 16 32 > 16 32 > 16
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Figure 5-33: Varying the three trace processor dimensions (go).

Figure 5-34: Varying the three trace processor dimensions (jpeg).
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Figure 5-35: Varying the three trace processor dimensions (li ).

Figure 5-36: Varying the three trace processor dimensions (m88ksim).
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Figure 5-37: Varying the three trace processor dimensions (perl).

Figure 5-38: Varying the three trace processor dimensions (vortex).
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5.4  Hierarchical register mechanism

The hierarchical division of registers is presumably beneficial because fewer values

are globally communicated. The global register file size and write ports are reduced, fewer

global result buses are required, and fewer values incur the longer global bypass latency.

In this section, I 1) quantify the aforementioned benefits of the hierarchical register mech-

anism, 2) demonstrate that the benefits only increase with longer traces, and 3) determine

global parameters that perform as well as unconstrained global resources.

5.4.1  Register communication bandwidth

The graphs in Figures 5-39 through 5-45 plot performance as a function of global

result bus bandwidth. I model 2, 4, and 6 global result buses. Also, to measure the benefit

of register hierarchy, there are two register models. The first treats all values as globals, i.e.

both local and global values must be communicated via the global result buses. This

model is labeled “non-hier” (non-hierarchical) in the graphs. The second model uses hier-

archical communication and is labeled “hier” in the graphs. In all experiments, the latency

to communicate local and global values is uniform and fast, in order to isolate only band-

width aspects.

Four trace processor configurations are simulated. The configurations were chosen to

represent two window sizes, 128 and 256, since I expect bandwidth requirements to

increase with the overall level of hardware parallelism. For each window size, equivalent

length-16 and length-32 trace processors are represented. The16/8/2 and32/4/4 trace

processors tend to perform similarly, as do16/16/2 and32/8/4 to a lesser extent, so I
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can effectively quantify the impact of trace length on global result bus bandwidth require-

ments.

Several trends are evident from the graphs in Figures 5-39 through 5-45. For a given

number of result buses, register hierarchy significantly improves performance. With 2

result buses and no hierarchy, IPC saturates at a low value for all benchmarks and all con-

figurations. As one might expect, the saturation point is between 2.0 and 3.0 IPC since

throughput is dictated by the result bus bottleneck (greater than 2 IPC is possible because

not all instructions write a destination register). The hierarchical model offloads much of

the register write traffic to local result buses, and interestingly, having only 2 global result

buses for a 128-instruction or 256-instruction window is a reasonable cost-performance

design point.

One can interpret this trend another way: for the same level of performance, the hier-

archical model requires fewer global result buses than the non-hierarchical model. With-

out hierarchy, doubling the number of result buses from 2 to 4 eliminates a significant

bottleneck and performance sufficiently increases. But a similar effect can be achieved

with fewer result buses if hierarchy is exploited. For example,go has nearly identical per-

formance with “4 buses (non-hier)” and “2 buses (hier)”.

Performance with unconstrained result bus bandwidth is not explicitly shown in the

graphs of Figures 5-39 through 5-45, however, the IPCs for “6 buses (hier)” are essentially

the same as the unconstrained IPCs reported in Section 5.2.2. Without hierarchy, increas-

ing the number of result buses from 4 to 6 achieves nearly the same performance as uncon-

strained bandwidth. The only notable exception isjpeg, for which even “6 buses
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(non-hier)” is not enough to achieve the performance of unconstrained bandwidth. With

hierarchy, only 4 global result buses are needed to approach the performance of uncon-

strained bandwidth. Minor differences occur only in the 256 window configurations for

jpeg, perl, andvortex. These minor differences are diminished with “6 buses (hier)”.

Next, I discusswindow sizeand trace lengthand their relation to global result bus

bandwidth. The benchmarkgcc is used as a representative example. Its sensitivity to result

bus bandwidth is shown in Figure 5-46. The bottom and top parts of each bar show perfor-

mance improvement as bandwidth is doubled from 2 to 4 and from 4 to 6, respectively.

• Window size- Larger windows are more sensitive to global result bus bandwidth. In

Figure 5-46, the performance difference between “2 buses (hier)” and “4 buses (hier)”

increases from 11% to 22% as the number of PEs is doubled from16/8/2 to

16/16/2 .

• Trace length- Figure 5-46 clearly shows length-32 traces reduce sensitivity to global

result bus bandwidth. The total bar height for configuration32/4/4 is half that of the

equivalent length-16 trace processor16/8/2 . A trace length of 32 increases the ratio

of local registers to global registers and, consequently, reduces global communication.

Likewise,32/8/4 is less sensitive to global result bus bandwidth than the equivalent

length-16 trace processor16/16/2 . However, 32/8/4 is more sensitive than

32/4/4  because it has a larger instruction window.
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Figure 5-39: Global result bus experiments (gcc).

Figure 5-40: Global result bus experiments (go).
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Figure 5-41: Global result bus experiments (jpeg).

Figure 5-42: Global result bus experiments (li ).
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Figure 5-43: Global result bus experiments (m88ksim).

Figure 5-44: Global result bus experiments (perl).
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Figure 5-45: Global result bus experiments (vortex).

Figure 5-46: Global result bus sensitivity (gcc).
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5.4.2  Register communication latency

I observed in Section 5.2.4 that operand bypass delay increases significantly with

issue width and may become a cycle time limiter. There are two possible ways of dealing

with bypass delay. Cycle time can be extended to accommodate the delay or, instead, we

may opt for a short clock cycle and one or more cycles to perform operand bypassing.

Trace processors use the latter approach. However, hierarchy is exploited to reduce

the number of values that actually incur the one or more cycles of communication delay.

This section first evaluates the efficacy of hierarchy in reducing performance penalties due

to operand bypass latency. I arrive at a “rule-of-thumb” number for estimating the IPC

decrease caused by global bypass latency. Finally, I measure the sensitivity of four trace

processor configurations to global bypass latency; latency is varied from one to three

cycles to essentially model progressively longer chip crossings and shorter clock cycles.

The four trace processor configurations are the same used in the previous section (i.e. two

window sizes and two trace lengths); also, global result bus bandwidth is unconstrained in

order to isolate the effect of latency.

The first graph in each of Figures 5-47 through 5-53 shows performance as a function

of operand bypass latency. There are two latencies, local bypass latency and global bypass

latency. Each bar in the graph is labeled with the pair <local latency>/<global latency>. A

latency of 0 means result bypass is performed in the same cycle that the result is com-

puted, i.e. data dependent instructions execute in back-to-back cycles as in Figure 3-7.

To quantify the efficacy of hierarchy, consider the two bars labeled “1/1” and “0/1”.

The bar “1/1” corresponds to a non-hierarchical model, i.e. values are uniformly penalized



197

one full cycle for bypass. The “0/1” bar is a hierarchical model, i.e. only global values are

penalized one full cycle for bypass. The performance decrease with respect to “0/0” for

each of “1/1” and “0/1” is plotted in the second graph of Figures 5-47 through 5-53. Penal-

izing all values (“1/1”) results in a 20% to 35% decrease in IPC, depending on the bench-

mark. Hierarchy (“0/1”) is quite effective in reducing this performance loss by more than

half (the few exceptions are the16/16/2 data forli andvortex, but there is still a notice-

able improvement). As a rule-of-thumb, a global bypass latency of 1 cycle decreases per-

formance by about 10% for length-16 trace processors and 5% for length-32 trace

processors.

The third graph in each of Figures 5-47 through 5-53 measures sensitivity to global

bypass latency. Local bypass latency is 0 and global bypass latency is varied from 0 to 3

cycles. The graph plots decrease in IPC relative to 0 global bypass latency. Three general

trends are evident.

1. Performance decreases nearly linearly with global bypass latency. This trend has seri-

ous implications -- there is no reprieve, i.e. no tapering-off effect with longer latency.

2. Length-32 trace processors are noticeably less sensitive to global bypass latency than

equivalent length-16 trace processors, because length-32 traces reduce global commu-

nication more than length-16 traces (for an equal size window).

3. Somewhat surprisingly, larger instruction windows (256) are more sensitive to global

bypass latency than smaller windows (128). One would have expected greater

“latency-tolerance” with more hardware parallelism.
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Figure 5-47: Global bypass latency experiments (gcc).

GCC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

16/8/2 32/4/4 16/16/2 32/8/4

trace processor configuration

IP
C

0/0
0/1
0/2
0/3
1/1

GCC

-25%

-20%

-15%

-10%

-5%

0%

16/8/2 32/4/4 16/16/2 32/8/4

trace processor configuration

IP
C

 d
el

ta
 r

el
at

iv
e 

to
 0

/0

1/1
0/1

GCC

-25%

-20%

-15%

-10%

-5%

0%

lat=0 lat=1 lat=2 lat=3

global latency

IP
C

 d
el

ta
 r

el
at

iv
e 

to
 la

t=
0

32/4/4
32/8/4
16/8/2
16/16/2



199

Figure 5-48: Global bypass latency experiments (go).
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Figure 5-49: Global bypass latency experiments (jpeg).
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Figure 5-50: Global bypass latency experiments (li ).
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Figure 5-51: Global bypass latency experiments (m88ksim).
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Figure 5-52: Global bypass latency experiments (perl).
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Figure 5-53: Global bypass latency experiments (vortex).
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5.4.3  Global register file size

The trace processor’s centralized global register file is smaller than the register file in

an otherwise equivalent superscalar processor. The global register file stores only global

values and local values are managed by distributed local register files.

The graphs in Figure 5-54 quantify the reduction in register file size. Two equivalent

trace processor configurations are considered, one with a trace length of 16

(TP-128-16(16/8/2) ) and the other with a trace length of 32

(TP-128-16(32/4/4) ). For each configuration, there are two graphs; the first corre-

sponds to a trace processor that exploits register hierarchy (“hier”) and the second corre-

sponds to a trace processor that does not exploit hierarchy (“non-hier”), i.e. all values are

managed by the global register file. IPC is plotted as a function of the number of global

registers. I start with 64 global registers and add registers in increments of 16. Perfor-

mance with an unlimited number of global registers is also indicated.

The16/8/2 configuration with hierarchy requires only 80 global registers to achieve

the same performance as unlimited registers. Without hierarchy, however, the same pro-

cessor requires at least 96 physical registers and possibly 112 or more.

The number of global registers is reduced even further with length-32 traces (assum-

ing the same window size). The32/4/4 configuration requires only 64 global registers to

achieve the same performance as unlimited registers, although potentially fewer than that

are required; I did not experiment with fewer than 64 registers.
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F
igure 5-54: Im

plications of hierarchy and trace length on global register file size.
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5.5  Floating-point performance

As mentioned in this chapter’s introduction, full results for floating-point benchmarks

were omitted primarily because their relatively regular control flow and parallelism make

them amenable to a range of well-established ILP techniques, such as vector processing

and software pipelining. Nevertheless, the primary performance results, as presented ear-

lier in Section 5.2.3 for integer benchmarks, are given for floating point benchmarks in

Figures 5-55 through 5-62. The graphs show IPC for both superscalar and trace processors

(the trace processors require 1 cycle to bypass global operands).

Several related trends can be observed in floating-point benchmarks that distinguish

them from integer benchmarks. Except fortomcatvandwave5, the trace processor curves

are flatter than observed for integer benchmarks and, moreover, trace processors approach

the performance of superscalar processors with the same window size. Flatter curves indi-

cate less sensitivity to PE issue width, yet IPC increases substantially with more PEs, in

almost the same manner that increasing superscalar window size increases IPC. For both

these reasons, I conclude that parallelism is more evenly distributed among PEs for the

floating-point benchmarks, so distributing the superscalar instruction window and parti-

tioning issue bandwidth has less performance impact than shown previously. There is suf-

ficient and evenly distributed parallelism such thattotal window sizeand aggregate

hardware throughput(e.g. data cache bandwidth) are the primary performance limiters in

floating-point benchmarks, not the distinction between distributed and centralized

resources.
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Another result, not explicitly shown in this section for brevity, is that floating-point

benchmarks are less sensitive to global bypass latency than integer benchmarks. This was

also observed in multiscalar processors [].

Figure 5-55: Superscalar vs. trace processors with partial bypasses (applu).
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Figure 5-56: Superscalar vs. trace processors with partial bypasses (apsi).

Figure 5-57: Superscalar vs. trace processors with partial bypasses (fpppp).
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Figure 5-58: Superscalar vs. trace processors with partial bypasses (mgrid).

Figure 5-59: Superscalar vs. trace processors with partial bypasses (su2cor).
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Figure 5-60: Superscalar vs. trace processors with partial bypasses (swim).

Figure 5-61: Superscalar vs. trace processors with partial bypasses (tomcatv).
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Figure 5-62: Superscalar vs. trace processors with partial bypasses (wave5).
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5.6.2  High bandwidth instruction execution

In most cases, the trace processor requires 2 or 4 times theaggregateissue bandwidth

and/or window size to achieve the same IPC performance as a centralized (but otherwise

equivalent) processor. This is due to 1) distribution effects such asless flexible scheduling,

window fragmentation, anddiscrete window management(scheduling is the dominant fac-

tor in larger instruction windows) and 2)partial operand bypassesin the form of an extra

cycle to communicate global register operands.

The relative complexity of a single PE is always less than that of a superscalar proces-

sor, however, and trace processor cycle time is more-or-less sensitive to single PE com-

plexity. Stated another way, trace processor complexity increases relatively slowly as more

PEs are added, whereas superscalar complexity is fairly sensitive to additional hardware

parallelism -- especially additional issue bandwidth. Overall,trace processors outperform

aggressive superscalar counterparts because the trace processor microarchitecture

enables both high ILP and a fast clock.
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Chapter 6

Evaluation of Speculation

This chapter evaluates the trace processor’s advanced data and control speculation

mechanisms. I begin with an analysis of data speculation techniques in Section 6.1: mem-

ory dependence speculation, live-in register prediction and speculation, and selective

recovery. This is followed by an evaluation of the trace processor’s novel control flow

management techniques.

6.1  Data speculation

The trace processor performs two types of data speculation. Memory dependence

speculation addresses the problem of ambiguous data dependences in large instruction

windows. Live-in value prediction is the second form of data speculation. The relative

importance of speculating inter-trace data dependences increases in trace processors

because of the longer latency to communicate these values among PEs.

The following subsections evaluate the effectiveness of speculative disambiguation

and live-in prediction. Implicit in this evaluation is the supporting data speculation mecha-

nism, selective recovery. Measurements of the frequency and causes of selective re-issu-

ing, and a comparison of selective and full squashing, are also provided.
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6.1.1  Memory dependence speculation

Three memory disambiguation models are compared in this section:oracle, spec, and

non-spec.

• oracle: This model implements oracle memory disambiguation. All load and store

addresses are known prior to being computed, therefore, memory dependences are

never ambiguous.Oracle represents an upper bound on memory disambiguation per-

formance and is not a real hardware mechanism.

• spec: This is the trace processor’s speculative memory disambiguation model,

described in Section 3.3.2.

• non-spec: This model implements a conventional, non-speculative memory disambigu-

ation mechanism. Loads wait for all prior store addresses to be computed and non-spec-

ulative. When this condition is met, if there are any dependences with prior stores, the

dependent loads wait for the respective stores to complete (a store need only issue to a

cache/ARB port to be considered complete).

The evaluation is limited in scope. Firstly, there are potentially other speculative

mechanisms with which to compare. Some mechanisms may perform equally well without

the need for selective recovery, in particular, mechanisms that explicitly predict memory

dependences [63]. Secondly, modifications to my memory dependence speculation tech-

nique might obviate the need for selective recovery. For example, I have not investigated a

combination ofnon-specandspecin which stores issue to a cache/ARB port as soon as
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their addresses are available (even without data), causing dependent loads to synchronize

and avoid disambiguation squashes. Nevertheless, the study does demonstrate the effec-

tiveness of trace processor memory dependence speculation.

Figure 6-1 shows the performance of the three disambiguation models for

TP-128-32(16/8/4) , with 4 global result buses, a global bypass latency of 1 cycle,

and all other parameters configured as described in Section 4.2.Oracleperforms 11% bet-

ter thannon-spec, on average. Disambiguation does not appear to be a serious problem for

compress, jpeg, and m88ksim, since the performance difference betweenoracle and

non-specis no more than 4%. Of the remaining five benchmarks, four of them show a per-

formance gain on the order of 10% to 15% withoracledisambiguation. Finally, disambig-

uation is a significant performance factor forperl, which shows a 34% performance

difference betweennon-spec andoracle disambiguation.

Thespecmodel performs nearly as well asoracledisambiguation. The IPC forspecis

on average 2% lower than the IPC fororacle. Only in m88ksimdoesspecperform slightly

worse thannon-spec, but overall there is not a large IPC delta among the three models.

The small difference in performance betweenspecand oracle is due to 1) the one

cycle penalty for re-issuing incorrectly speculated loads and 2) increased resource usage

by incorrectly speculated loads and their dependent instructions. The one cycle penalty

represents the latency to snoop a prior dependent store (misprediction detection latency).
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Figure 6-1: Performance of memory dependence speculation.
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bypass latency because global values must still be communicated for 1) validating live-in

predictions and 2) writing to the global register file.

A comparison ofno VP andreal VP reveals the following observations.

• For half of the benchmarks (gcc, li , perl, andvortex), live-in prediction recovers most

of the performance lost due to the 1 cycle global bypass latency. That is, a processor

with 1 cycle bypass and live-in prediction performs as well as a non-speculating pro-

cessor with 0 cycle bypass. Likewise, a 2 cycle bypass with live-in prediction performs

as well as 1 cycle bypass without live-in prediction, and so on.

These benchmarks have live-in prediction accuracies between 50% and 75%, as shown

in Figure 6-9 (“correct, confident”).

• For one of the benchmarks,m88ksim, live-in value prediction does much more than

recover the performance loss due to global communication latency. The live-in registers

of m88ksimare correctly predicted nearly 90% of the time, as shown in Figure 6-9

(“correct, confident”).

• Two of the benchmarks (go and jpeg) are virtually unaffected by live-in prediction.

Live-in prediction accuracy is only about 25% for these benchmarks.

The first observation is encouraging. The trace processor reduces complexity by dis-

tributing resources, unfortunately at the expense of about 10% IPC due to global commu-

nication (Section 5.4.2). Value prediction recovers this performance loss.
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Figure 6-2: Live-in value prediction performance (gcc).

Figure 6-3: Live-in value prediction performance (go).
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Figure 6-4: Live-in value prediction performance (jpeg).

Figure 6-5: Live-in value prediction performance (li ).
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Figure 6-6: Live-in value prediction performance (m88ksim).

Figure 6-7: Live-in value prediction performance (perl).
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Figure 6-8: Live-in value prediction performance (vortex).

Figure 6-9: Live-in prediction accuracies.
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6.1.3  Selective recovery

In this section, data misspeculation results are presented for thereal VP model

(defined in the previous section). Figure 6-10 shows the fraction of retired dynamic

instructions that re-issue at least once. Three different graphs are shown. In the first graph,

only memory dependence speculation is applied (“loads only”). In the second graph, only

live-in prediction is applied (“live-ins only”), in which caseoracledisambiguation is used.

Finally, in the third graph, both types of data speculation are applied. Each graph shows

the fraction of instructions that re-issue at least once. The bars are further broken down

into 1) incorrectly disambiguated loads (labeled “disam”), i.e., loads that re-issue because

they violated a memory dependence, 2) instructions that issued with an incorrect live-in

prediction (labeled “live-in”), and 3) all other dependent instructions that re-issue (labeled

“dep”).

Referring to the first and second graphs in Figure 6-10, overall, there does not appear

to be much difference in re-issue rate with speculative loads or live-in prediction. In either

graph, usually fewer than 2% of instructions are incorrectly disambiguated loads or live-in

mispredictions, respectively, and usually fewer than 6% of all retired instructions re-issue.

Referring to the third graph (“full data speculation”), on average, 10% of all retired

instructions re-issue at least once. The majority are incorrect-data dependent instructions.

Figure 6-11 shows the number of times instructions issue while they are in the win-

dow (using full data speculation). Most instructions (85% - 93%) issue only once. A mod-

erate fraction of instructions issue twice (5% - 12%). Instructions rarely issue three or

more times.
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Figure 6-10: Fraction of retired dynamic instructions that issue more than once.
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Figure 6-11: Number of times an instruction issues while in the window.
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Figure 6-12: Selective versus complete squashing due to data misspeculation.

data speculation: loads only

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

comp gcc go jpeg li m88k perl vortex

IP
C

complete
selective

data speculation: live-ins only

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

comp gcc go jpeg li m88k perl vortex

IP
C

complete
selective

full data speculation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

comp gcc go jpeg li m88k perl vortex

IP
C

complete
selective



227

6.2  Control independence

Control independence is a promising technique for overcoming the branch mispredic-

tion bottleneck. Trace processors can exploit hierarchy to manage the complexity of

implementing control independence. This section evaluates the effectiveness of trace pro-

cessor control independence mechanisms in reducing branch misprediction penalties.

A trace processor with length-32 traces, 16 PEs, and 4-way issue per PE (i.e.

TP-512-64(32/16/4) ) is simulated in anticipation of future large instruction win-

dows, for which control independence techniques are likely to be more relevant. There are

8 global result buses and global bypass latency is 1 cycle. All other trace processor param-

eters are configured as described in Section 4.2.

Two sets of experiments are presented. The first set focuses on the impact of FGCI

and CGCItrace selectionin a trace processor without control independence mechanisms.

This is required to isolate the effects of trace selection on trace cache performance, trace

predictor performance, and PE utilization. The second set evaluates the performance of

control independence.

6.2.1  Performance impact of trace selection

Default trace selection terminates traces at a maximum length of 32 instructions or at

any jump indirect, call indirect, or return instruction. Thentb trace selection terminates

traces at predicted not-taken backward branches, andfg denotes FGCI trace selection. The

selection-only experiments are prefixed withbaseto indicate no control independence,

and are followed by the trace selection algorithm(s) used. Default trace selection is always



228

in effect and, therefore, is not explicitly specified. The four experiments are:base,

base(ntb), base(fg), andbase(fg,ntb).

Performance results in instructions per cycle (IPC) are tabulated in Table 6-1 (“No

Control Independence”). Also, the performance improvement with respect tobase is

graphed in Figure 6-13. Additional selection constraints (fg, ntb) tend to affect basic per-

formance adversely. To help understand why, Table 6-2 shows the impact of selection on

trace length, trace mispredictions, and trace cache misses (the latter two are given as

misses per 1000 instructions and as a rate).

Additional selection constraints always decreases average trace length, and from

Table 6-2, this almost always increases trace mispredictions per 1000 instructions. The

trace predictor uses a path history of traces, and reducing the lengths of traces effectively

reduces the amount of implicit branch history. Also,synchronizingtrace selection among

many disjoint paths -- in nested hammocks (fg) or after exiting a loop (ntb) -- reduces the

number of unique traces significantly. Yet it is this uniqueness that provides a very distinct

context for making predictions [84].

Reducing the average trace length also results in a waste of issue buffers in the PEs,

effectively making the instruction window smaller. The only positive effect is on trace

cache performance, but the benefit is generally overshadowed by costlier trace mispredic-

tions.

Thebase(ntb)model improves performance slightly for three of the five benchmarks,

but for compressandli , performance degrades by 5% and 10%, respectively. The effect is

pronounced inli because trace length drops by 25%, double what other benchmarks expe-
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rience. Thebase(fg)model degrades performance between 2% and 3% for four of five

benchmarks.

Figure 6-13: Performance impact of trace selection.

Table 6-1: Performance in instructions per cycle (IPC).

No Control Independence Control Independence

base base(ntb) base(fg) base(fg,ntb) RET MLB-RET FG FG + MLB-RET

gcc 4.44 4.51 4.34 4.36 4.68 4.78 4.51 4.73

go 3.17 3.20 3.07 3.10 3.73 3.81 3.15 3.65

comp 2.02 1.92 1.96 1.92 2.48 2.43 2.43 2.31

jpeg 7.12 7.24 6.96 6.96 7.21 7.33 8.79 8.89

li 4.72 4.31 4.72 4.34 5.23 4.83 4.79 4.84
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6.2.2  Performance of control independence

In this section, I evaluate the performance of four control independence models:

• RET: coarse-grain only, using theRET heuristic.

• MLB-RET: coarse-grain only, using theMLB-RET heuristic.

• FG: fine-grain only.

• FG + MLB-RET: fine-grain and coarse-grain using theMLB-RET heuristic.

Table 6-1 (“Control Independence”) and Figure 6-14 (performance improvement over

base) show that control independence improves performance substantially. Coarse-grain

control independence performs uniformly well across the benchmarks, with the exception

Table 6-2: Impact of trace selection on trace length, mispredictions, and misses.

gcc go compress jpeg li

base

avg. trace length 24.0 27.2 24.9 31.1 19.7

trace misp. rate 4.2 (10.1%) 7.3 (19.9%) 10.6 (26.3%) 3.1 (9.5%) 4.8 (9.4%)

trace $ miss rate 4.7 (11.2%) 10.2 (27.7%) 0.0 (0.0%) 0.3 (1.1%) 0.0 (0.0%)

base(ntb)

avg. trace length 21.6 24.4 21.6 30.1 14.7

trace misp. rate 4.3 (9.3%) 7.4 (18.1%) 11.2 (24.2%) 3.0 (9.0%) 6.0 (8.8%)

trace $ miss rate 4.1 (8.8%) 9.7 (23.7%) 0.0 (0.0%) 0.3 (0.9%) 0.0 (0.0%)

base(fg)

avg. trace length 21.8 23.9 24.6 28.9 18.9

trace misp. rate 4.4 (9.7%) 8.1 (19.2%) 10.8 (26.5%) 3.8 (11.0%) 4.9 (9.2%)

trace $ miss rate 4.0 (8.8%) 9.4 (22.4%) 0.0 (0.0%) 0.2 (0.7%) 0.0 (0.0%)

base(fg,ntb)

avg. trace length 19.7 21.6 21.2 28.1 14.2

trace misp. rate 4.7 (9.2%) 8.3 (17.9%) 10.9 (23.2%) 3.9 (10.8%) 6.0 (8.6%)

trace $ miss rate 3.6 (7.2%) 9.0 (19.4%) 0.0 (0.0%) 0.2 (0.7%) 0.0 (0.0%)
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of jpeg. TheRETmodel improves performance by about 5% forgcc, nearly 10% forli ,

and about 20% forcompressandgo. Going fromRETto MLB-RETimproves performance

moderately forgcc andgo, due to greater misprediction coverage and establishing more

precise control independent points for backward branches. The improvement is perhaps

moderate due to overlapping coverage between the two kinds of global re-convergent

points. Forli , MLB-RETdrops performance with respect toRET, an artifact ofntb trace

selection.

To give insight into the performance of FGCI, conditional branch statistics are shown

in Table 6-3. Branches are classified into those that can be captured by FGCI, all other for-

ward branches, and backward branches. FGCI branches are further divided into those

whose regions fit (<=32) or do not fit (>32) in a trace; note that a trace length of 32 can

capture almost all FGCI-type branches. The fraction of dynamic branches and mispredic-

tions are given for each class.

FGCI branches account for 23% to 41% of all branches, and over 60% of all mispre-

dictions, incompressand jpeg. This explains why the modelFG performs very well on

these benchmarks, namely a 20% to 25% performance improvement.

FGCI branches account for 24% of all mispredictions ingo, yetFG actually degrades

performance by less than 1%. Looking further into the misprediction behavior ofgo, I

have noticed that FGCI has large potential in some frequently executed code (e.g. the

“addlist” function), but that neighboring mispredictions not covered by FGCI nullify this

potential; combined with the minor adverse effects offg trace selection, the result is no
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gain. In contrast, theMLB-RETmodel performs well by capturingclustersof mispredic-

tions in these same code regions.

Returning to Table 6-3,gcc, go, jpeg,andli have large FGCI regions (13 to 40 instruc-

tions) with many conditional branches enclosed (3 to 4). The average dynamic region size

of FGCI branches is from 1 to 8 instructions smaller than the corresponding static code

region.

Backward branches account for a large fraction of mispredictions, 20% for four of the

benchmarks and 60% forli . Unfortunately forli , applyingntb trace selection -- so the

MLB-RETheuristic can cover these mispredictions -- also worsens the prediction accuracy

of the backward branches. WhileMLB-RETperforms only slightly better thanbase,it

improves performance by 10% overbase(ntb)-- i.e. CGCI is being exploited, if only to

break even withbase.

In summary, using FGCI and CGCI techniques together achieves the best perfor-

mance improvement on average: 13% (FG + MLB-RET). Clearly, some techniques work

better than others depending on the benchmark, perhaps suggesting the need for adaptive

trace selection. Using the best-performing technique for each benchmark, control indepen-

dence achieves an average improvement of 17%.
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Figure 6-14: Performance of control independence.
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6.3  Summary of speculation

The trace processor uses data speculation to mitigate two types of data dependences.

Ambiguous memory dependences impact performance moderately, on average about 10%

-- the difference between conventional, conservative disambiguation and oracle disambig-

uation. Speculative disambiguation in a medium-sized trace processor removes nearly

entirely the disambiguation problem. And live-in register prediction is introduced: the rel-

ative importance of speculating inter-trace data dependences increases in trace processors

because of the longer latency to communicate these values among PEs. I simulated the

Table 6-3: Conditional branch statistics.

gcc go compress jpeg li

FGCI

branches

<= 32
frac. br. 21.4% 24.5% 40.8% 22.5% 10.0%

frac. misp. 20.3% 24.4% 63.1% 60.6% 3.0%

> 32
frac. br. 1.9% 2.6% 0.1% 2.0% 0.0%

frac. misp. 1.3% 2.7% 0.0% 1.9% 0.0%

misp. rate 2.8% 8.7% 14.6% 14.8% 1.0%

dyn. region size 11.3 13.8 4.3 31.9 13.2

stat. region size 12.9 16.4 5.7 40.2 16.3

# cond. br. in reg. 3.2 2.6 1.6 4.3 3.8

other
forward
branches

frac. br. 58.3% 52.8% 23.6% 24.8% 63.2%

frac. misp. 55.8% 51.8% 17.8% 15.8% 36.1%

misp. rate 2.9% 8.5% 7.1% 3.7% 1.9%

backward
branches

frac. br. 18.4% 20.1% 35.5% 50.7% 26.7%

frac. misp. 22.6% 21.1% 19.1% 21.7% 60.9%

misp. rate 3.8% 9.1% 5.1% 2.5% 7.4%

overall branch misp. rate 3.1% 8.7% 9.4% 5.8% 3.3%

overall branch misp. per 1000 instr. 4.7 10.4 13.5 3.8 5.1
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effect of progressively clocking the PE faster by adding cycles to the global operand

bypass latency, and made two observations. Value prediction in most cases does not signif-

icantly reduce thesensitivityto global bypass latency. But in many cases, the performance

lost due to adding one extra bypass cycle is recovered by live-in prediction.

An aggressive, but relatively transparent, selective recovery model provides important

data speculation support. About 10% of all retired instructions re-issue at least once dur-

ing their lifetime in the window. “Sources” of misspeculation -- incorrectly disambiguated

loads and instructions that issue with incorrect live-in predictions -- each represent only

10%-20% of all re-issued instructions, and the remaining 80%-90% are incorrect-data

dependent instructions. On average, selectively re-issuing incorrect-data dependent

instructions improves performance by nearly 20% over complete squashing.

Trace processors exploit control flow hierarchy and existing data speculation support

(selective recovery) to manage the complexity of implementing control independence. The

proposed control independence techniques improve trace processor performance by as

much as 25%.



236

Chapter 7

Conclusion

In this thesis, I explored the trace processor microarchitecture, a processor organized

entirely aroundtraces-- dynamic instruction sequences, 16 to 32 instructions in length,

which embed any number of taken or not-taken branch instructions. The trace processor

searches far ahead into the program for instructions that may execute in parallel, thus

exposing parallelism in apparently-serial programs. Constructing the large “instruction

window” for exposing parallelism is normally complex, but trace processors use hierarchy

to manage this complexity. Traces provide the hierarchy. Rather than work at the granular-

ity of individual instructions, the processor efficiently sequences through the program at

the higher level of traces and allocates trace-sized units of work to distributed processing

elements (PEs). The trace-based approach overcomes basic inefficiencies of managing

fetch and execution resources on an individual instruction basis.

The trace processor also uses aggressive speculation to partially alleviate the effects

of data and control dependences. Dependences limit the amount of exploitable parallelism

and, consequently, the peak bandwidth of the processor is often underutilized. Inter-trace

data dependences are predicted to enhance parallel execution of traces among distributed

PEs. Predicting inter-trace values is particularly relevant because these values are commu-
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nicated globally, which can be slow. Ambiguous memory dependences are quickly

resolved by issuing loads speculatively. The penalty of mispredicted branches (control

dependences) is reduced by selectively preserving traces after a mispredicted branch that

are control independent of the branch.

7.1  Overall results

I have demonstrated that the trace processor is a good microarchitecture for imple-

menting wide-issue machines. Three key points support this conclusion.

1. Trace processors are an evolutionary extension of superscalar processors.

Trace processors do not require instruction set architecture changes and, consequently,

they maintainbinary compatibility. Binary compatibility is arguably a major reason for

the success of dynamic superscalar processors because it enables new processor gener-

ations to run existing software.

Trace processors also retain asingle flow of control. Wide instruction fetching enables

instruction dependences to be established quickly and, likewise, instructions to be

scheduled quickly. This approach isrobust in that it performs well over a range of

applications, e.g., applications with either irregular (integer programs) or regular (float-

ing-point programs) parallelism. And it does not rely on sophisticated and potentially

less-robust multithreading or VLIW compilers to accurately schedule instruction fetch-

ing from multiple, disjoint points in the program.
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2. Trace processors demonstrate better overall performance than conventional supersca-

lar counterparts.

Distributing resources results in less scheduling flexibility and non-uniform operand

bypassing, both of which reduce the average number of instructions executed per cycle.

But the cycle time of a distributed processor is sensitive tosingle PE complexityand not

the entire processor, which gives the trace processor an overall performance advantage

over conventional superscalar processors. Overall, trace processors outperform aggres-

sive superscalar counterparts because the trace processor microarchitecture enables

both high ILP and a fast clock.

3. The trace processor organization naturally supports aggressive speculation.

The contiguous instruction window enables aggressive, but relatively transparent,

selective recovery from data misspeculation. Control flow hierarchy and existing data

speculation support are leveraged to manage the complexity of exploiting control inde-

pendence.

7.2  Detailed results

7.2.1  Trace-level sequencing

The trace processor frontend provides high instruction fetch bandwidth with low

latency by predicting and caching sequences of multiple, possibly noncontiguous basic

blocks. My evaluation of trace-level sequencing yielded the following results.
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• The trace cache improves performance from 15% to 35% over an otherwise

equally-sophisticated, but contiguous multiple-block fetch mechanism.

• Longer traces improve trace prediction accuracy. For misprediction-bound benchmarks,

this factor contributes substantially to observed performance gains.

• A moderately large and associative trace cache performs as well as a perfect trace

cache.

• With a robustly-designed core instruction fetch unit, overall performance is relatively

insensitive to trace cache size and associativity. IPC varies no more than 10% over a

wide range of trace cache configurations.

• An instruction cache combined with an aggressive trace predictor can fetch any number

of contiguous basic blocks per cycle, yielding from 5% to 25% improvement over sin-

gle-block fetching. This instruction supply model is incompatible with trace processors

because traces are not cached and renamed as a unit. Nevertheless, it is an effective

design point for conventional superscalar processors and requires only a 2-way inter-

leaved instruction cache design.

7.2.2  Hierarchical instruction window

7.2.2.1  Distributing the instruction window

In most cases, the trace processor requires 2 or 4 times theaggregateissue bandwidth

and/or window size to achieve the same IPC performance as a centralized (but otherwise

equivalent) processor. This is due to 1) distribution effects such asless flexible scheduling,
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window fragmentation, anddiscrete window management(scheduling is the dominant fac-

tor in larger instruction windows) and 2)partial operand bypassesin the form of an extra

cycle to communicate global register operands.

The relative complexity of a single PE is always less than that of a superscalar proces-

sor, however, and trace processor cycle time is more-or-less sensitive to single PE com-

plexity. Stated another way, trace processor complexity increases relatively slowly as more

PEs are added, whereas superscalar complexity is fairly sensitive to additional hardware

parallelism -- especially additional issue bandwidth. Overall,trace processors outperform

aggressive superscalar counterparts because the trace processor microarchitecture

enables both high ILP and a fast clock.

7.2.2.2  Trace processor dimensions

I briefly explored the three trace processor dimensions, trace length, number of PEs,

PE issue width, with the following results.

• For length-16 traces, it is important to provide 2-way out-of-order issue per PE. Beyond

that, increasing the number of PEs is what derives the greatest performance benefit.

• For the same number of single-issue PEs, length-16 traces outperform length-32 traces,

in spite of the smaller overall instruction window of the length-16 trace processor. Load

imbalance is the primary cause, and doubling the per-PE issue bandwidth results in bet-

ter performance with length-32 traces.
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7.2.2.3  Hierarchical register model

The hierarchical division of registers is beneficial because fewer values are globally

communicated. The global register file size and write ports are reduced, fewer global

result buses are required, and fewer values incur the longer global bypass latency. In this

thesis, I quantified the aforementioned benefits and showed them to be quite substantial,

demonstrated that the benefits only increase with longer traces, and determined global

parameters that perform as well as unconstrained global resources.

7.2.3  Data speculation

The trace processor uses data speculation to mitigate two types of data dependences.

To handleambiguousdependences, I developed a novel memory dependence solution

based on the original address resolution buffer design. Speculative loads are tracked in the

PEs instead of the ARB in order to facilitate selective re-issuing of misspeculated loads.

Memory disambiguation has a moderate impact on performance, on average about 10% --

the difference between conventional, conservative disambiguation and oracle disambigua-

tion. Speculative disambiguation in a medium-sized trace processor removes nearly

entirely the disambiguation problem.

And live-in register prediction is introduced: the relative importance of speculating

inter-trace data dependences increases in trace processors because of the longer latency to

communicate these values among PEs. I simulated the effect of progressively clocking the

PE faster by adding cycles to the global operand bypass latency, and made two observa-

tions. Value prediction in most cases does not significantly reduce thesensitivityto global
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bypass latency. But in many cases, the performance lost due to adding one extra bypass

cycle is recovered by live-in prediction.

An aggressive, but relatively transparent, selective recovery model provides important

data speculation support. Sources of data misspeculation are incorrectly speculated loads,

incorrect live-in predictions, and incorrect-data dependent, control independent instruc-

tions. A variety of mispredictions may be active simultaneously and the interactions are

complicated, but all scenarios are correctly handled.

7.2.4  Control independence

Control independence is a promising technique for mitigating the branch mispredic-

tion bottleneck. Trace processors exploit hierarchy to manage the complexity of imple-

menting control independence, while maintaining the performance advantages of a

contiguous instruction window and a relatively accurate single flow of control. My control

independence ideas can be summarized as follows.

• A primary source of control independence complexity is the insertion and removal of

instructions at arbitrary points in the window. Fortunately, the hierarchical instruction

window of trace processors accommodates flexible control flow management. In the

case of fine-grain control independence (FGCI), control flow recovery is localized

within a single PE. In the case of coarse-grain control independence (CGCI), control

flow recovery involves multiple PEs, but treating traces as the fundamental unit of con-

trol flow results in efficient recovery actions.
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• Traces facilitate flexible control flow management but introduce a new problem:

trace-level re-convergence is not guaranteed despite re-convergence at the instruc-

tion-level. Novel FGCI and CGCI trace selection techniques were developed for ensur-

ing trace-level re-convergence.

• Trace processors exploit a variety of data speculation techniques and, therefore, already

incorporate high-performance, selective data recovery mechanisms. These mechanisms

are easily leveraged to selectively re-execute incorrect-data dependent, control indepen-

dent instructions.

The proposed control independence techniques improve trace processor performance

by as much as 25%.

7.3  Future research

The trace processor has many aspects and this thesis by no means covers them com-

prehensively. In the following subsections I describe future avenues of research.

7.3.1  Trace selection

Trace selection is a key future research topic because it impacts the qualities of traces

and, therefore, all trace processor components: trace cache performance (tradeoffs

between hit rate and bandwidth per hit); trace predictor behavior; trace construction

latency; complexity (shifting complexity from PEs to global resources, and vice versa) and

performance of the hierarchical instruction window; behavior of inter-trace dependences
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(both scheduling and prediction); and control independence performance. Trace line size

in particular should be considered more carefully, and insightful measurements above and

beyond IPC should be provided to understand underlying behavior.

7.3.2  Hybrid multiscalar and trace processor models

Another promising area of research is comparing and contrasting multiscalar and

trace processors. Each has unique qualities that may improve the other. These qualities

often stem from the basic differences between tasks and traces, therefore, understanding

and articulating task/trace differences is an important future contribution. Then, the impor-

tant qualities of each may be combined to provide a better overall hybrid processor.

For example, it may be beneficial to 1) have variable-size tasks and distributed fetch

units in the PEs to locally construct tasks, and 2) predict all control flow through a task in

a single cycle using a trace predictor. Variable size tasks may expose control independence

better and increase the effective size of the window; local fetching achieves high fetch

bandwidth without a trace cache (although multiple flows of control increases reliance on

good task selection and intra-task scheduling); and predicting all control flow at once

establishes data dependences among instructions quickly without having to actually fetch

the instructions.

Another example is decoupling trace line size and PE window size. In this way, longer

traces may be used for improving various aspects of the trace processor without impacting

the processing element. This approach may complicate selective recovery, however.
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7.3.3  Control independence

Much remains to be explored and explained of trace processor control independence.

Important intermediate results and insights have been intentionally left out of the thesis

because the concepts are too many and too unrefined. Yet these insights are important for

understanding the behavior of control independence and improving the techniques for

exploiting it.

For example, exploration of other, more sophisticated CGCI heuristics holds the

potential for larger performance gains. Introducing other types of global re-convergent

points may increase control independence opportunity. The impact on trace length must be

minimized, however, since trace predictor performance and PE utilization are often

adversely affected by additional trace selection constraints. Further, with more frequent

trace-level re-convergent points in the instruction stream, more accurate heuristics will be

needed for pairing mispredicted branches with re-convergent points.

7.3.4  Live-in prediction

Live-in prediction is potentially a keyenablerfor distributing the instruction window,

clocking the chip very fast, and necessarily lengthening global latencies. But this aspect is

largely uninvestigated here. Because global communication is likely to become costlier,

trace selection that exposes predictable inter-trace dependences is an interesting area of

future research.
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7.3.5  Implementation studies

Low-level trace processor design issues have yet to be critically studied. A particu-

larly interesting area is advanced control and data speculation -- for example, tracking

speculative loads and detecting misspeculated loads, selective re-issuing, detailed control

independence mechanisms, etc.

7.3.6  SMT in trace processors

Simultaneous multithreading (SMT) [108,109] is an important emerging microarchi-

tectural technique. The basic idea is to run multiple threads (either from the same program

or different programs) on a processorat the same time. SMT leverages the fine-grain

scheduling flexibility and highly-parallel microarchitecture of wide-issue superscalar pro-

cessors. Often, there are phases of a single program that do not fully utilize the microar-

chitecture, so sharing the processor resources among multiple programs will increase

overall utilization. Improved utilization reduces the total time required to execute all pro-

gram threads, despite possibly slowing down single thread performance.

The two major advantages of SMT are as follows.

1. The fact that there are multiple, independent threads co-existing in the scheduling win-

dow is rather transparent to the dynamic scheduler because existing register renaming

techniques properly manage data dependences.

2. SMT manages resources at afine granularityand on acycle-by-cyclebasis. Scheduling

is extremely flexible and dynamic. In a given cycle, if a single program has a large

amount of instructions that may issue in parallel, that one program may use the peak
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bandwidth. In the next cycle, the same bandwidth may be partitioned equally among

many threads.

The first point is important because it means SMT can be implemented in a fairly straight-

forward manner, and in a way that leverages existing superscalar mechanisms. The second

point is important for two reasons. First, it suggests higher overall throughput is possible

than if a coarse-grain, symmetric multiprocessor (SMP) machine were used. Second, it

provides the impetus for building wider processors because a wide core does not have to

rely solely on instruction-level parallelism to be viable.

For all of these reasons, SMT is likely to be implemented in future microprocessors.

Therefore, it is important to think about SMT in trace processors. An obvious approach is

to time-share the trace processor frontend among threads (i.e. only one thread uses the

trace predictor/trace cache in a given cycle) and space-share the PEs among threads (each

thread occupies a certain number of PEs) [85]. There are several benefits to the trace pro-

cessor SMT approach. First, instruction fetch bandwidth has been identified as a major

bottleneck in SMT machines [109], and the trace cache naturally provides high fetch

bandwidth. Second, it is conceptually simpler to manage shared resources at the

trace-level (PEs) than at the instruction-level. In other words., all of the benefits of hierar-

chy (both instruction fetching and execution) transfer to SMT.

But there are two possible problem areas. The trace cache requires more storage than

a conventional instruction cache due to redundancy; this could become especially prob-

lematic if multiple threads share the trace cache (e.g., very high miss rates). Also, by
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coarsely space-sharing execution resources, the SMT advantage of fine-grain scheduling

flexibility is potentially diluted. Clearly, SMT in trace processors is an interesting future

research topic.
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