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for Timely, Non-Speculative Branching

Rami Sheikh, Member, IEEE, James Tuck, Member, IEEE, and Eric Rotenberg, Senior Member, IEEE

Abstract—Mobile and PC/server class processor companies continue to roll out flagship core microarchitectures that are faster
than their predecessors. Meanwhile placing more cores on a chip coupled with constant supply voltage puts per-core energy
consumption at a premium. Hence, the challenge is to find future microarchitecture optimizations that not only increase performance
but also conserve energy. Eliminating branch mispredictions—which waste both time and energy—is valuable in this respect. In

this paper, we explore the control-flow landscape by characterizing mispredictions in four benchmark suites. We find that a third of
mispredictions-per-1K-instructions (MPKI) come from what we call separable branches: branches with large control-dependent regions
(not suitable for if-conversion), whose backward slices do not depend on their control-dependent instructions or have only a short
dependence. We propose control-flow decoupling (CFD) to eradicate mispredictions of separable branches. The idea is to separate
the loop containing the branch into two loops: the first contains only the branch’s predicate computation and the second contains

the branch and its control-dependent instructions. The first loop communicates branch outcomes to the second loop through an
architectural queue. Microarchitecturally, the queue resides in the fetch unit to drive timely, non-speculative branching. On a
microarchitecture configured similar to Intel's Sandy Bridge core, CFD increases performance by up to 55 percent, and reduces
energy consumption by up to 49 percent (for CFD regions). Moreover, for some applications, CFD is a necessary catalyst for future
complexity-effective large-window architectures to tolerate memory latency.

Index Terms—Microarchitecture, software/hardware codesign, branch prediction, predication, pre-execution, separable branches, isa

extensions, instruction level parallelism

1 INTRODUCTION
GOOD single-thread performance is important for both
serial and parallel applications, and provides a degree
of independence from fickle parallelism. This is why, even
as the number of cores in a multi-core processor scales,
processor companies continue to roll out flagship core
microarchitectures that are faster than their predecessors.
Meanwhile placing more cores on a chip coupled with
stalled supply voltage scaling puts per-core energy con-
sumption at a premium. Thus, the challenge is to find future
microarchitecture optimizations that not only increase per-
formance but also conserve energy.

Eliminating branch mispredictions is valuable in this
respect. Mispredictions waste both time and energy,
firstly, by fetching and executing wrong-path instruc-
tions and, secondly, by repairing state before resuming
on the correct path. Fig. 1la shows instructions-per-cycle
(IPC) for several applications with hard-to-predict bran-
ches. The first bar is for our baseline core (refer to
Fig. 17a in Section 6) with a state-of-art branch predictor
(ISL-TAGE [31], [32]) and the second bar is for the same
core with perfect branch prediction. The percentage IPC
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improvement with perfect branch prediction is shown
above the application bars. Speedups with perfect branch
prediction range from 1.05 to 2.16. Perfect branch predic-
tion reduces energy consumption by 4 to 64 percent
compared to real branch prediction (Fig. 1b).

Some of these applications also suffer frequent last-level
cache misses. Complexity-effective large-window process-
ors can tolerate long-latency misses and exploit memory-
level parallelism (MLP) with small cycle-critical structures
[25], [36]. Their ability to form an effective large window is
degraded, however, when a mispredicted branch depends
on one of the misses [36]. Fig. 2a shows the breakdown of
mispredicted branches with respect to the furthest memory
hierarchy level feeding them: L1 cache (L1), L2 cache (L2),
L3 cache (L3) or main memory (MEM). (NoData represents
branch mispredictions that are not memory-dependent.)
The further away the memory level that feeds the branch,
the longer it takes to resolve, and in the case of a mispre-
diction, the more costly the misprediction is. Thus, as the
fraction of mispredictions fed by L2, L3 and main memory
increases, higher branch prediction accuracy becomes
more critical to miss tolerance. This is evident in Fig. 2b,
which shows how the IPC of astar' scales with window
size. Without perfect branch prediction, IPC does not scale
with window size: miss-dependent branch mispredictions
prevent a large window from performing its function of
latency tolerance. Conversely, eradicating mispredictions
acts as a catalyst for latency tolerance. IPC scales with win-
dow size in this case.

1. We simulate region #1 with the reference input Rivers. Refer to the
skip distances in Table 3 in Section 7.

0018-9340 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SHEIKH ET AL.: CONTROL-FLOW DECOUPLING: AN APPROACH FOR TIMELY, NON-SPECULATIVE BRANCHING 2183
M baseline W baseline + perfect prediction
35 9
6% 15% 30% branch slice +
3 13% - Push_BQ
2.5 62% D(—: loop branch
i 66% ~N
o 2 116% 5% branch slice + H Branch Queue (8Q)
& branch EEEENEEEEENE
15 g% F]
1 56% 344. %
05 13% 11% § Branch_on_BQ
0 II
control-
‘;&7’ *@’ ‘;}:"\ %%") S &c? & & ° e b"\ \\ '130 0&0 dependent
@ & & & & o ° & + & ) N
@:3{- ) \os:st- \QS‘ @é '»\& \)“g-, & Qz"d OQ\Q, o‘?\z & i}(\,& instructions control-
Q7 Q7 &GN ‘\\QQ S < ° dependent
‘;@‘ ,_v‘@‘ P P © & instructions
> > o
(a) IPC
1.0 0.94 0.96

0.87 %91 0.89
0.80
°|" 0.70 | |
D O &

Normalized Energy
© o 9o 00 9o o
O R N W s U O
o
Y —
N
I
o
I
o
,‘9 _u-
&)
W_w
()
°/_u|

N ® PRI
LI LA < F' &
&S & 0“\ ,c° °° RSP
»F P o & &F $ &% RO R Y
& & F F N $ & L R &
¥ S S S S <
P
> > Fa

(b) Energy of perfect branch prediction relative to real branch prediction

Fig. 1. Impact of perfect branch prediction.

We first explore the current control-flow landscape by
characterizing mispredictions in four benchmark suites
using a state-of-art predictor. In particular, we classify the
control-dependent (CD) regions guarded by hard-to-
predict branches. About a third of mispredictions-per-1K-
instructions (MPKI) come from branches with small con-
trol-dependent regions, e.g., hammocks. If-conversion
using conditional moves, a commonly available predica-
tion primitive in commercial instruction-set architectures
(ISA), is generally profitable for this class [2].

We discover that another third of MPKI comes from what
we call separable branches. A separable branch has two qual-
ities. First, the branch has a large control-dependent region,
not suitable for if-conversion. Second, the branch does not
depend on its own control-dependent instructions via a
loop-carried data dependence (totally separable), or has only
a short loop-carried dependence with its control-dependent
instructions (partially separable).

For a totally separable branch, the branch’s predicate
computation is totally independent of the branch and its
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Fig. 2. Effect of branch mispredictions on memory latency tolerance.

loop branch
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(a) Original loop

loop branch

(b) CFD loops

Fig. 3. High-level view of the CFD transformation.

control-dependent region. This suggests “vectorizing” the
control-flow: first generate a vector of predicates and then
use this vector to drive fetching or skipping successive
dynamic instances of the control-dependent region. This is
the essence of our proposed technique, control-flow decou-
pling (CFD), for eradicating mispredictions of separable
branches. The loop containing the branch is separated into
two loops. A first loop contains only the branch slice (i.e.,
instructions needed to compute the branch’s predicate).
This loop generates branch outcomes. A second loop con-
tains the branch and its control-dependent instructions.
This loop consumes branch outcomes. The first loop com-
municates branch outcomes to the second loop through an
architectural queue, specified in the ISA and managed by
push and pop instructions. At the microarchitecture level,
the queue resides in the fetch unit to facilitate timely, non-
speculative branching. Fig. 3a shows a high-level view of a
totally separable branch within a loop. Fig. 3b shows the
loop transformed for CFD.

Partially separable branches can also be handled. In this
case, the branch’s predicate computation depends on some
of its control-dependent instructions. This means a copy of
the branch and the specific control-dependent instructions
must be included in the first loop. Fortunately, this copy of
the branch can be profitably removed by if-conversion due
to few control-dependent instructions.

The novel idea of CFD targets two problems:

Problem #1. There is insufficient fetch separation between the
branch’s backward slice (i.e., its predicate computation) and
the branch. The branch is fetched very soon after its slice,
hence, it is very unlikely that the slice has executed by the
time the branch is fetched. The only recourse to avoid stall-
ing the fetch unit is to predict the branch. This problem is
illustrated in Fig. 4a, where three loop iterations are shown:
iteration-a (slice-a, branch-a), iteration-b (slice-b, branch-
b), and iteration-c (slice-c, branch-c). Note that each
branch is followed by its control-dependent instructions. As
shown, the branch is fetched immediately after its slice and
before the slice has executed.
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Fig. 4. Problems addressed by CFD.

CFD addresses this problem by separating the loop contain-
ing the branch into two loops: the first loop contains only the
branch slice and the second loop contains the branch and its
control-dependent instructions. This way, an instance of the
branch slice is separated from its corresponding branch by
other instances of the branch slice. This provides sufficient
fetch separation so that the branch slice can execute before the
branch is fetched (generating timely predicates). This is illus-
trated in Fig. 4c (@).

Problem #2. Conventional processors lack support to execute
branches in the fetch unit. As shown in Fig. 4b, the slice and
branch  communicate through general-purpose registers
(GPRs), which reside in the execution unit, so the branch must
still be predicted, even if sufficient fetch separation is intro-
duced between the branch slice and the branch. Exploiting the
timely predicates, to execute the branch in the fetch stage,
requires new ISA and hardware support. CFD links the slice to
the branch through an architectural queue instead of GPRs,
and the hardware implementation of the queue resides in the
fetch unit. With fetch separation and explicit predicate commu-
nication, CFD effectively executes branches in the fetch stage.
This is illustrated in Fig. 4c (@).

This paper makes the following main contributions:

1) CFD [33], [34]. A software/hardware collaboration
technique that exploits branch separability with low
complexity and high efficacy. The loop containing
the separable branch is split into two loops (software):

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.8, AUGUST 2015

Example of a separable branch

for (i=0; i <LARGE; it++) {
if (a[i]) { // separable branch

}
!

Example of a separable loop-branch

for (i=0; i < LARGE; it+) {
for (j = 0; j <alil; j++) { // separable loop-branch

.
}

Fig. 5. Separable branch versus separable loop-branch.

the first contains only the branch’s predicate compu-
tation and the second contains the branch and its
control-dependent instructions. The first loop com-
municates branch outcomes to the second loop
through an architectural queue (ISA). Microarchitec-
turally, the queue resides in the fetch unit to drive
timely, non-speculative branching (hardware).

2)  CFD enhancements. We propose three enhancements
for CFD.

— The first enhancement is a bulk-pop mechanism
for removing excess pushes by CFD'’s first loop.
This support is useful when CFD’s first loop
cannot evaluate early exit conditions present in
the original loop.

— The second enhancement, the value queue (VQ),
reduces instruction duplication when a value is
needed in both the first and second loops.

— The third enhancement, the trip-count queue
(TQ), allows CFD to be applied to separable
loop-branches. Fig. 5 shows the difference
between a separable branch and a separable
loop-branch. Whereas, a separable branch corre-
sponds to an if-statement within a loop, a separa-
ble loop-branch corresponds to a loop-statement
within a loop. Each instance of the loop-state-
ment has a unique iteration count, or “trip-
count”, which is a[i] in the example shown. The
data-dependent trip-count, a[i], causes the
branch predictor to have trouble predicting
when the separable loop-branch exits. The archi-
tectural TQ, and modifications to the processor’s
fetch unit to exploit it, facilitate timely, non-spec-
ulative looping. To apply CFED to the separable
loop-branch: the outer loop is duplicated as
before; the first copy of the outer loop generates
trip-counts and pushes them onto the TQ; the
second copy of the outer loop pops trip-counts
from the TQ, and each trip-count is used by the
fetch unit to fetch the exact number of iterations
of the loop-statement.

3) DFD. We propose data-flow decoupling (DFD), a
lower-overhead derivative of CFD. Instead of elimi-
nating mispredictions outright, DFD prefetches the
misses that feed the mispredictions, thus resolving
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the mispredictions earlier since the loads that feed
them will hit in the cache.

CFD can be applied either manually by the programmer
or automatically by the compiler. We implemented and
described a gcc compiler pass for CFD in our earlier work
[33], [34], and demonstrated comparable performance to
manual CFD for totally separable branches. Due to limited
space, however, we do not discuss our compiler pass in this
paper, and all experimental results are based on CFD
applied manually. Similarly, several other contributions
have been omitted, including but not limited to: extending
CFD to support complex scenarios (e.g., multi-level decou-
pling) [33], applying if-conversion to hammocks [33], [34],
and using vector operations to eliminate inseparable
branches [33].

On a microarchitecture configured similar to Intel’s
Sandy Bridge core, CFD increases performance by up to
55 percent and reduces energy consumption by up to
49 percent. For hard-to-predict branches that traverse large
data structures that suffer many cache misses, CFD acts as
the necessary catalyst for future large-window architectures
to tolerate these misses. DFD increases performance by up
to 60 percent and reduces energy consumption by up to
25 percent. On the whole, however, CFD is superior to
DEFD for two reasons. First, DFD only applies to a subset of
the CFD-class applications. Second, as window size is
increased, CFD gains scale much better than DFD gains. We
conclude that attempting to speed the resolution of mispre-
dicted branches does not compete with eliminating them
altogether.

The paper is organized as follows. In Section 2, we dis-
cuss our methodology and classification of control-flow in a
wide range of applications. In Section 3, we present the ISA,
hardware, and software aspects of basic CFD. Section 4 cov-
ers the three CFD enhancements, bulk-pop, VQ, and TQ.
Section 5 covers DFD. In Section 6, we describe our evalua-
tion framework and baseline selection process. In Section 7,
we present an evaluation of the proposed techniques. In
Section 8, we discuss prior related work. We conclude the
paper in Section 9.

2 METHODOLOGY AND CONTROL-FLOW
CLASSIFICATION

The goal of the control-flow classification is first and fore-
most discovery: to gain insight into the nature of difficult
branches’ control-dependent regions, as this factor influen-
ces the solutions that will be needed, both old and new.
Accordingly we cast a wide net to expose as many control-
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flow idioms as possible: (1) we use four benchmark suites
comprised of over 80 applications, and (2) for the purposes
of this comprehensive branch study, each application is run
to completion leveraging a PIN-based branch profiling tool.

2.1 Methodology

We use four benchmark suites: SPEC2006 [37] (engineering,
scientific, and other workstation type benchmarks), NU-
MineBench-3.0 [26] (data mining), BioBench [1] (bioinformat-
ics), and cBench-1.1 [10] (embedded). All benchmarks? are
compiled for x86 using gcc with optimization level -O3 and
run to completion using PIN [22]. We wrote a pintool that
instantiates a state-of-art branch predictor (winner of CBP3,
the third Championship Branch Prediction: 64KB ISL-TAGE
[31]) that is used to collect detailed information for every
static branch.

Different benchmarks have different dynamic instruction
counts. In the misprediction contribution pie charts that fol-
low, we weigh each benchmark equally by using its MPKI
instead of its total number of mispredictions. Effectively we
consider the average one-thousand-instruction interval of
each benchmark.

Fig. 6a shows the relative misprediction contributions of
the four benchmark suites. Every benchmark of every suite
is included,® and, as just mentioned, each benchmark is allo-
cated a slice proportional to its MPKI. We further refine the
breakdown of each benchmark suite slice into targeted ver-
sus excluded, shown in Fig. 6b. The excluded slice contains
(1) benchmarks with misprediction rates less than 2 percent,
and (2) benchmarks that we could not run in our detailed
timing simulator introduced later (due to gcc Alpha cross-
compiler problems). The targeted slice contains the remain-
ing benchmarks. This work focuses on the targeted slices
which, according to Fig. 6b, contribute almost 78 percent of
cumulative MPKI in the four benchmark suites. Table 1 lists
the targeted benchmarks along with their MPKIs.

2.2 Control-Flow Classification
We inspected branches in the targeted benchmarks, and cat-
egorized them into the following four classes:

2. For benchmarks with multiple ref inputs, we profiled then classi-
fied all inputs into groups based on the control-flow patterns exposed.
One input is selected from each group in order to cover all observed
patterns. For example, for bzip2 we select the ref inputs input.source and
chicken.

3. A benchmark that is present in multiple suites is included once.
For example, hmmer appears in BioBench and SPEC2006. In both bench-
mark suites, the same hard-to-predict branches are exposed, thus, only
one instance of hmmer is included.
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TABLE 1
Targeted Applications
Benchmark Suite Application MPKI Benchmark Suite Application MPKI
astar (BigLakes) 10.11 gsm 2.10
astar (Rivers) 25.98 jpeg-compr 8.17
bzip2 (chicken) 4.40 jpeg-decompr 2.41
bzip2 (input.source) 8.16 cBench quick-sort 4.64
gobmk 717 tiff-2-bw 542
SPEC2006 gromacs 1.13 tiff-median 3.60
mcf 9.06 clustalw 4.25
namd 1.17 BioBench fasta 16.90
sjeng 5.15 hmmer 12.32
soplex (pds) 6.14
soplex (ref) 2.25 MineBench eclat 10.19

Hammock. Branches with small, simple control-depen-
dent regions. Such branches will be if-converted. From
what we can tell, the gcc compiler did not if-convert these
branches because they guard stores.

Separable. Branches with large, complex control-depen-
dent regions, where the branch’s backward slice (predicate
computation) is either totally separable or partially separable
from the branch and its control-dependent instructions. The
backward slice is totally separable if it does not contain any of
the branch’s control-dependent instructions. An example
from soplex is shown in Fig. 7a. The branch of interest is at
line 3. (This example will be discussed in depth in Section
3.1.) Total separability allows all iterations of the backward
slice to be hoisted outside the loop containing the branch,
conceptually vectorizing the predicate computation. This is
what control-flow decoupling does. The backward slice is
partially separable if it contains very few of the branch’s con-
trol-dependent instructions. An example from astar is
shown in Fig. 7b. The branch of interest is at line 2 and the
control-dependent statement in the branch’s backward slice
is at line 3. In this case, the backward slice also contains the
branch itself, since the branch guards the few control-
dependent instructions in the slice. All iterations of the

1 for(...){
2 x = test[i];
3 if (x < -theeps) {
4 x *=x/ penalty ptr[i];
5 x *=plil;
6 if (x > best) {
7 best = x;
8 selld = thesolver->id(i);
9 }
10 }
11 |3}
(a) Totally separable branch (from SO-
PLEX)
for (... ){

if (blarp[j]->nblar[i]->fillnum != regfillnum) {
blarp[j]->nblar[i]->fillnum=regfillnum;
blarp[j]->nblar[i]->waydist=filltact;
flend |= (blarp[j]->nblar[i]==rend);
b2arp.add(blarp[j]->nblar(i]);
}
¥

(b) Partially separable branch (from ASTAR)

0NN W~

Fig. 7. Separable branches.

backward slice can still be hoisted but it contains a copy of
the branch, therefore, the backward slice is if-converted.
Control-flow decoupling will be applied to totally and par-
tially separable branches.

Inseparable. Branches with large, complex control-depen-
dent regions, where the branch’s backward slice contains
too many of the branch’s control-dependent instructions.
An inseparable branch differs from a partially separable
branch, in that it is not profitable (or in some cases not pos-
sible) to if-convert its backward slice. This type of branch is
very serial in nature: the branch is frequently mispredicted
and it depends on many of the instructions that it guards.
CFD can not be applied to this class of branches. In our
previous work, we proposed using vector operations to
eradicate the mispredictions of some of the inseparable
branches [33].

Not analyzed. Branches we did not analyze, i.e., branches
with small contributions to total mispredictions.

Fig. 6¢ breaks down the targeted mispredictions of Fig. 6b
into these four classes. 41.4 percent of the targeted mispredic-
tions can be handled using CFD. 26.5 percent of the targeted
mispredictions can be handled using if-conversion. That
CFD covers the largest percentage of MPKI after applying a
sophisticated branch predictor, provides a compelling case
for its software, architecture, and microarchitecture support.
Its applicability is on par with if-conversion, a commercially
mainstream technique that also combines software, architec-
ture, and microarchitecture. In addition to comparable MPKI
coverage, CFD and if-conversion apply to comparable num-
bers of benchmarks and static branches [33].

3 CONTROL-FLOW DECOUPLING

Fig. 3a shows a high-level view of a totally separable
branch within a loop. Branch slice computes the branch’s
predicate. Depending on the predicate, the branch is taken
or not-taken, causing its control-dependent instructions to
be skipped or executed, respectively. In this example, none
of the branch’s control-dependent instructions are in its
backward slice, i.e., there isn’t a loop-carried data depen-
dency between any of the control-dependent instructions
and the branch. A partially separable branch would look
similar, except a small number of its control-dependent
instructions would be in the branch slice; this would
appear as a backward dataflow edge from these instruc-
tions to the branch slice.
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Fig. 3b shows the loop transformed for CFD. The loop is
separated into two loops, each with the same trip-count as
the original. The first loop has just the branch slice. It pushes
predicates onto an architectural branch queue (BQ) using a
new instruction, Push_BQ. The second loop has the control-
dependent instructions. They are guarded by a new instruc-
tion, Branch on BQ. This instruction pops predicates
from BQ and the predicates control whether or not the
branch is taken.

Hoisting all iterations of the branch slice creates suffi-
cient fetch separation between a dynamic instance of the
branch and its producer instruction, ensuring that the pro-
ducer executes before the branch is fetched. Additionally, to
actually exploit the now timely predicates, they must be
communicated to the branch in the fetch stage of the pipe-
line so that the branch can be resolved at that time. Commu-
nicating through the existing source registers would not
resolve the branch in the fetch stage. This is why we archi-
tect the BQ predicate communication medium and why,
microarchitecturally, it resides in the fetch unit.

While this work assumes an OOO processor for evalua-
tion purposes, please note that in-order and OOO process-
ors both suffer branch penalties due to the fetch-to-execute
delay of branches. We want to resolve branches in the fetch
stage (so fetching is not disrupted) but they resolve in the
execute stage, unless correctly predicted. Thus, the problem
with branches stems from pipelining in general. OOO exe-
cution merely increases the pipeline’s speculation depth
(via buffering in the scheduler) so that, far from being a
solution to the branch problem, OOO execution actually
makes the branch problem more acute.

For a partially separable branch, the first loop would not
only have (1) the branch slice and Push_BQ instruction, but
also (2) the branch and just those control-dependent instruc-
tions that feed back to the branch slice. The branch is then
removed by if-conversion, using conditional moves to pred-
icate the control-dependent instructions. CFD is still profit-
able in this case because the subsetted control-dependent
region is small and simple (otherwise the branch would be
classed as inseparable).

CFD is a software-hardware collaboration. Next, we dis-
cuss ISA, software, and hardware.

3.1 ISA Support and Benchmark Example

ISA support includes (1) an architectural specification of the
BQ (size, contents of each entry, and length register), (2)
two primary instructions, Push BQ and Branch on BQ,
and (3) instructions for saving/restoring the BQ to/from
memory on context switches.

The architectural specification of the BQ is as follows.
First, the BQ has a specific size. BQ size has implications for
software. These are discussed in the next section. Second,
each BQ entry contains a single flag indicating taken/not-
taken (the predicate). Other, microarchitectural state may be
included in each entry of the BQ’s physical counterpart, but
this state is not specified in the ISA, i.e., it is not architectural
state. Therefore, it is not visible to software and is purely
design-specific. The microarchitect is free to include addi-
tional state to work within the context of a particular pipe-
line. For example, we include other, microarchitectural state
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Original Loop
1 for(...){
2 x = test[i];
3 if (x < -theeps) { // hard-to-predict branch
4 X *=x / penalty_ptr[i];
5 x %= plil;
6 if (x > best) { // predictable branch
7 best = x;
8 selld = thesolver->id(i);
9 }
10 }
11 }
Decoupled Loops
First Loop
1 for (...){
2 x = test[i];
3 pred = (x < -theeps); // the predicate is computed
4 Push_BQ(pred); /I then pushed onto the BQ
5 }
Second Loop
6 for(...){
7 Branch_on_BQ{ // pop the predicate
8 x = test[i];
9 x *=x / penalty_ptr[i];
10 x %= plil;
11 if (x > best) {
12 best = x;
13 selld = thesolver->id(i);
14 }
15 }
16 }

Fig. 8. SOPLEX source code.

in Section 3.3. Third, a length register indicates the BQ occu-
pancy. Architecting only a length register has the advantage
of leaving low-level management concerns to the micro-
architect. For example, the BQ could be implemented as a
circular buffer (uses head and tail pointers) or a shifting
buffer (pop shifts all entries to the left and push inserts at
index ‘length’ prior to incrementing ‘length’, thus, ‘BQ[0]" is
always the head entry and ‘BQ[length-1]" is the tail entry).
Thus, at the ISA level, the BQ head and tail are not specified
as architectural registers: they pertain to the first and last
predicates in the BQ, not their BQ indices (which are imple-
mentation-dependent and not visible to software).

The Push BQ instruction has a single source register
specifier to reference a general-purpose register. If the regis-
ter contains zero (non-zero), Push_BQ pushes a 0 (1). Bran-
ch on BQ is a new conditional branch instruction.
Branch_on_BQ specifies its taken-target like other condi-
tional branches, via a PC-relative offset. It does not have
any explicit source register specifiers, however. Instead, it
pops its predicate from the BQ and branches or doesn’t
branch, accordingly.

The ISA specifies key ordering rules for pushes and pops,
that software must abide by. First, a push must precede its
corresponding pop. Second, N consecutive pushes must be
followed by exactly N consecutive pops in the same order
as their corresponding pushes. Third, N cannot exceed the
BQ size.

Fig. 8 shows a real example from the benchmark soplex.
Referring to the original code: The loop compares each ele-
ment of array test[] to variable theeps. The hard-to-predict
branch is at line 3 and its control-dependent instructions are
at lines 4-9. Neither the array nor the variable is updated
inside the control-dependent region, thus, this is a totally
separable branch. This branch contributes 31 percent of the
benchmark’s mispredictions (for ref input). Decoupling
the loop is fairly straightforward. The first loop computes
predicates (lines 2-3) and pushes them onto the BQ (line 4).
The second loop pops predicates from the BQ and condi-
tionally executes the control-dependent instructions, accor-
dingly (line 7).
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Finally, the ISA defines two instructions, Save BQ and
Restore_BQ, to save and restore the BQ state (queue con-
tents and length register) to and from memory. These
instructions are required for context-switches. Both
Save_ BQ and Restore BQ specify the first address of a
chunk of memory large enough to hold the length register
plus ‘size” predicates. For example, if ‘size’ is 128, the chunk
of memory is 17 bytes: 1 byte for the length register plus
16 bytes for the maximum number of predicates. The first
address is specified using a simple addressing mode, such
as displacement mode, similar to a load or store instruction.
A page fault on any address within the chunk of memory is
not prohibited by the ISA. The operating system must either
correctly handle this scenario in the context-switch handler
or avoid it (e.g., pin the page in physical memory). Save BQ
saves the length register first followed by all predicates
between the BQ’s head and tail. Restore BQ restores the
length register and ‘length’ predicates into the BQ. Note
that, when the BQ is restored, if it is implemented as a circu-
lar buffer with head and tail pointers (at the microarchitec-
ture level), the head and tail pointers are reset to 0 and
length-1, respectively, and the saved BQ contents are
restored to this range of entries. In fact, the head and tail
pointers can be reset arbitrarily, as long as there are ‘length’
entries between them and these entries are restored from
the saved state. This observation is further assurance that
only the length register needs to be specified in the ISA.

Adding any new ISA feature, not just CFD, has side-
effects. Next, we discuss CFD in the context of three com-
mon side-effects of any new ISA feature: impact on future
processor generations (obsolescence), impact on security,
and impact of having more architectural state (e.g., on
simultaneous multithreading (SMT)).

Obsolescence. An ISA enhancement must be carefully
specified, so that its future obsolescence does not impede
microarchitects of future generation processors. Accord-
ingly, CFD is architected as an optional and scalable co-pro-
cessor extension.

1)  Optional. Inspired by configurability of co-processors
in the MIPS ISA—which specifies optional co-pro-
cessors 1 (floating-point unit) and higher (accelera-
tors)—BQ state and instructions can be encapsulated
as an optional co-processor ISA extension. Thus,
future implementations are not bound by the new
BQ co-processor ISA. Codes compiled for CFD must
be recompiled for processors that do not implement
the BQ co-processor ISA, but this is no different than
the precedent set by MIPS" flexible co-processor
specification.

2)  Scalable. The BQ co-processor ISA can specify a BQ
size of N: a machine-dependent parameter, thus
allowing scalability to different processor window
sizes.

Security. CFD, like any new architectural feature, comes
with the possibility of new attacks. Many attacks exploit
input sequences that are not properly handled by the pro-
gram (buffer overflows), latent bugs, and so forth. CFD
does not change the fact that poorly specified programs
(e.g., no bounds checks) or incorrect programs are more vul-
nerable than well-specified, correct programs. Perhaps, the
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push/pop ordering rules add another layer of program-
ming complexity that increases the chance of writing an
incorrect program. It is beyond the scope of this paper to
conceive of (1) specific scenarios of a rarely exercised, if not
masked, push/pop ordering violation, and (2) specific
exploits of these scenarios by an attacker. We leave this
research agenda as future work.

Impact of having more architectural state. CFD introduces
new architectural state, namely BQ, TQ and VQ (last two
are introduced in Section 4). One impact of more architec-
tural state is longer latency for a context-switch. Processors
with simultaneous multi-threading are further impacted
because there is more architectural state that needs to be
replicated for simultaneous threads.

3.2 Software Side

For efficiency, the trip-counts of the first and second loops
should not exceed the BQ size. This is a matter of perfor-
mance, not correctness, because software can choose to
spill/fill the BQ to/from memory. In practice, this is an
important issue because many of the CFD-class loops iterate
thousands of times whereas we specify a BQ size of 128 in
this work. We explored multiple solutions but the most
straightforward one is loop strip mining [41], where a sin-
gly-nested loop is transformed into a doubly-nested one.
The outer loop steps through the index set in chunks (of BQ
size), and the inner loop steps through each chunk. Then,
CFD is applied to the inner loop.

CFD can be applied either manually by the programmer
or automatically by the compiler. We implemented and
described a gcc compiler pass for CFD in our earlier work
[33], [34], and demonstrated comparable performance to
manual CFD for totally separable branches. Due to limited
space, however, we do not discuss our compiler pass in this
paper, and all experimental results are based on CFD
applied manually.

Applying CFD generally leads to some instruction over-
head, even though the original loop body is partitioned
between the first and second loops. For example: some val-
ues may be needed in both loops (values consumed by both
the branch’s slice and the branch’s control-dependent
region); the looping instructions are duplicated; if-convert-
ing the branch slice, in the case of a partially separable
branch, increases instruction count. Thus, CFD introduces a
tradeoff between reducing the number of misspeculated
instructions (instructions after mispredicted branches that
are fetched and executed, but not ultimately retired) and
increasing the number of retired instructions (due to CFD
overheads). Whether or not CFD is profitable for a particu-
lar separable branch, depends on the misprediction rate and
penalty of the branch and the overhead of applying CFD to
it. Accordingly, the programmer or compiler must apply
the CFD transformation judiciously, leveraging static analy-
sis of the overhead of the CFD-transformed loop, features of
the target microarchictecture (e.g., branch predictor or some
published proxy), accurate profiling of the branch (mispre-
diction rate and penalty), and iterative compilation [5].

3.3 Hardware Side
This section describes microarchitecture support for CFD.
The BQ naturally resides in the instruction fetch unit. In our
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Fig. 9. Fields of a BQ entry.

design, the BQ is implemented as a circular buffer with
post-incremented head and tail pointers. In addition to the
software-visible predicate bit, each BQ entry has the follow-
ing microarchitectural state: pushed bit, popped bit, and
checkpoint id. The four fields of a BQ entry are shown in
Fig. 9. Note that the pushed bit is necessary for CFD to func-
tion correctly in a pipelined processor. Meanwhile, the
popped bit and checkpoint id are only needed to support
speculation on a “late push” (pipelining implied), which
will be defined and explained shortly.

For a correctly written program, a Push BQ (push)
instruction is guaranteed to be fetched before its corre-
sponding Branch_on_BQ (pop) instruction. Because of pipe-
lining, however, the push might not execute before the pop
is fetched, referred to as a late push. We explain BQ opera-
tion separately for the two possible scenarios: early push
and late push.

3.3.1 Early Push

The early push scenario is depicted in Fig. 10a. When the
push instruction is fetched, it is allocated the entry at the
BQ tail. It initializes its entry by clearing the pushed and
popped bits. The push instruction keeps its BQ index with it
as it flows down the pipeline. When the push finally exe-
cutes, it checks the popped bit in its BQ entry. It sees that
the popped bit is still unset. This means the scenario is early
push, i.e., the push executed before its pop counterpart was
fetched. Accordingly, the push writes the predicate into its
BQ entry and sets the pushed bit to signal this fact. Later,

PUSH BQ POP BQ
[] Fetch ALLOCATE BQ entry (tail)
Execute ACCESS my BQ entry:
if (popped == true) {
verify predicted predicate
if misp. recover early

}

push predicate

pushed = true
©
£ Fetch _ ACCESS BQ entry (head):
I if (pushed == true) { //hit

use pushed predicate
}
else |

use branch predictor

//miss
record predicted predicate
popped = true

}
Rename if (miss) (

take checkpoint
v )

record chkpt_id in BQ
(a) Early push (common)

for use by late push

Fig. 10. BQ operations.

2189

the pop instruction is fetched. It is allocated the entry at the
BQ head, which by the ISA ordering rules must be the same
entry as its push counterpart. It checks the pushed bit. It
sees that the pushed bit is set, therefore, it knows to use the
predicate that was pushed earlier. The pop executes right
away, either branching or not branching according to the
predicate.

3.3.2 Late Push

The late push scenario is depicted in Fig. 10b. In this sce-
nario, the pop is fetched before the push executes. As
before, when the pop is fetched, it checks the pushed bit to
see if the push executed. In this case the pushed bit is still
unset so the pop knows that a predicate is not available.
There are two options: (1) stall the fetch unit until the push
executes, or (2) predict the predicate using the branch
predictor. Our design implements option 2 which we call a
speculative pop. When the speculative pop reaches the
rename stage, a checkpoint is taken. (This is on top of
the baseline core’s branch checkpointing policy, which we
thoroughly explore in Section 6.) Unlike conventional
branches, the speculative pop cannot confirm its predic-
tion—this task rests with the late push instruction. There-
fore, the speculative pop writes its predicted predicate and
checkpoint id into its BQ entry, and signals this fact by set-
ting the popped bit. This information will be referenced by
the late push to confirm/disconfirm the prediction and initi-
ate recovery if needed. When the push finally executes, it
notices that the popped bit is set in its BQ entry, signifying a
late push. The push compares its predicate with the pre-
dicted one in the BQ entry. If they don’t match, the push ini-
tiates recovery actions using the checkpoint id that was
placed there by the speculative pop. Finally, the push writes
the predicate into its BQ entry and sets the pushed bit.
Empirically, late pushes are very rare in our CFD-modi-
fied benchmarks, less than 0.1 percent of pops (one per
thousand). When fully utilized by software, a 128-entry BQ
separates a push and its corresponding pop by 127 interven-
ing pushes. This typically corresponds to a push/pop sepa-
ration of several hundreds of instructions, providing ample
time for a push to execute before its pop counterpart is
fetched. The late push scenario can also be viewed as a BQ

PUSH BQ POP BQ

[] Fetch  ALLOCATE BQ entry (tail)

Fetch ACCESS BQ entry (head):

if (pushed == true) { //hit
use pushed predicate

}

else {
use branch predictor
record predicted predicate
popped = true

//miss

Rename [if (miss) {
take checkpoint
record chkpt_id in BQ

for use by late push

Time

}

Execute ACCESS my BQ entry:
if (popped == true) {
verify predicted predicate
if misp. recover early
}

push predicate
pushed = true

(b) Late push (uncommon)
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miss, because at the time of fetching the pop instruction, the
predicate was not available in the BQ. In the remainder of
this paper, we will use the term BQ miss exclusively.

3.3.3 BQ Length

The BQ length (occupancy) is the sum of two components.
First, net push ctr, which represents the net difference
between the number of pushes and pops retired from the
core up to this point in the program’s execution. The ISA
push/pop ordering rules guarantee this count will always
be greater than or equal to zero and less than or equal to BQ
size. This counter is incremented when a push retires and
decremented when a pop retires. Second, pending -
push_ctr, which represents the number of pushes in-flight
in the window, i.e., the number of fetched but not yet retired
pushes. It is incremented when a push is fetched, decre-
mented when a push is retired (because it now counts
against net_push_ctr), and possibly adjusted when a mis-
predicted branch resolves (see next section).

BQ length must be tracked in order to detect the BQ stall
condition. In particular, if BQ length is equal to BQ size and
the fetch unit fetches a push instruction, the fetch unit must
stall. Note that the stall condition is guaranteed to pass for a
bug-free program. The ISA push/pop ordering rules guar-
antee that there are BQ size in-flight pop instructions prior
to the stalled push. The first one of these pops to retire will
unstall the stalled push.

3.3.4 BQ Recovery

The core may need to roll back to a branch checkpoint, in
the case of a mispredicted branch, or the committed state,
in the case of an exception. In either case, the BQ itself needs
to be repaired.

e Preparing for misprediction recovery. Each branch
checkpoint is augmented with a snapshot of the BQ
head, tail, and mark pointers (the mark pointer is
introduced in Section 4.1).

e  Preparing for exception recovery. Committed versions
of the BQ head, tail, and mark pointers are
maintained.

When there is a roll-back, the BQ head, tail, and mark
pointers are restored from the referenced checkpoint (on a
misprediction) or their committed versions (on an excep-
tion), and all popped bits between the restored head and
tail are cleared. Moreover, pending push ctr (the second
component of BQ length) is reduced by the number of
entries between the tail pointers before and after recovery
(this corresponds to the number of squashed push
instructions).

3.3.5 Branch Target Buffer (BTB)

Like all other branch types, Branch_on_BQ is cached in the
fetch unit’s Branch Target Buffer so that there is no penalty
for a taken Branch_on_BQ as long as the BTB hits. The BTB’s
role is to detect branches and provide their taken-targets, in
the same cycle that they are being fetched from the instruc-
tion cache. This information is combined with the taken/
not-taken prediction (normal conditional branch) or the
popped predicate (Branch_on_BQ) to select either the
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sequential or taken target. As with other branches, a BTB
miss for a taken Branch_on_BQ results in a 1-cycle misfetch
penalty (detected in next cycle). Predicates for potential
Branch_on_BQ instructions in the current fetch bundle are
obtained from the BQ in parallel with the BTB access,
because these predicates are always at consecutive entries
starting at the BQ head.

4 CONTROL-FLOW DECOUPLING ENHANCEMENTS

This section discusses three enhancements to CFD.

The first enhancement, comprised of the Mark and For-
ward instructions, is a bulk-pop mechanism for removing
excess pushes by CFD’s first loop. This support is useful
when CFD'’s first loop cannot evaluate early exit conditions
present in the original loop.

The second enhancement, the value queue, reduces
instruction duplication when a value is needed in both the
first and second loops.

The third enhancement, the Trip-count Queue, allows
CFD to be applied to separable loop-branches.

Note that the first and third enhancements have not been
published elsewhere, including the earlier version of this
work [34]. The second enhancement (value queue) appeared
in the earlier version of this work, but we expand its cover-
age with a description of ISA support and a benchmark
example (ISA and software sides) and an in-depth illustra-
tion of its implementation in the rename stage of a supersca-
lar processor (hardware side).

4.1 Support for Nested Breaks: Mark and Forward
Instructions

Two new instructions are introduced, namely: Mark, and
Forward. The Mark instruction has no register specifiers,
and is used to mark the BQ tail entry. Similarly, the Forward
instruction has no register specifiers, and is used to bulk-pop
the BQ through to the most recently marked entry. (On a
bulk-pop, the length register is decremented by the number
of popped entries.) Multiple consecutive Mark instructions
are allowed. A Forward instruction merely uses the last
Mark. In a CFD-transformed loop, the second loop may
have a smaller trip-count than the first loop, due to the origi-
nal loop having an early exit condition that could not be
evaluated in the first loop.* Excess pushes from the first
loop must be forcibly bulk-popped when the second loop
exits early. This is achieved by inserting a Mark instruction
and a Forward instruction immediately before and after the
second loop, respectively. This will be demonstrated in the
detailed case study of astar in Section 7.2.

4.2 Reducing Instruction Overhead: Value Queue

In some CFD-transformed loops, we observed that values
used to compute the predicate in the first loop are used
again, thus recomputed, inside the control-dependent
region in the second loop. A simple way to avoid duplica-
tion is to communicate values from the first loop to the sec-
ond loop using an architectural value queue and VQ push/
pop instructions. We call this optimization CFD+.

4. Typically, this scenario happens when the control-dependent
region contains an early exit.
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Decoupled Loops
First Loop
1 for (...){
2 x = test[i];
3 Push_VO(x); // the value is pushed onto the VQ
4 pred = (x < -theeps); // the predicate is computed
5 Push_BQ(pred); /I then pushed onto the BQ
6 i
Second Loop
7 for (...){
8 x=Pop_VQ; /I pop the value
9 Branch_on_BQ¢{ // pop the predicate
10 X *=x / penalty_ptr[i];
11 x*= plil:
12 if (x > best) {
13 best = x;
14 selld = thesolver->id(i);
15 }
16 }
17 )

Fig. 11. Original SOPLEX example, augmented with use of the VQ.

4.2.1 ISA Support and Benchmark Example

ISA support includes (1) specification of the value queue
(contents, length register, push/pop ordering rules), (2) two
primary instructions for managing the VQ, Push_VQ and
Pop_VQ, and (3) context-switch support, Save VQ and
Restore VQ.

The VQ is similar to the BQ except that, instead of each
entry containing a single predicate bit, each entry contains a
32-bit value. The VQ length register is analogous to the BQ
length register. The VQ uses the same push/pop ordering
rules as before.

Push_VQ has a single source register, which contains the
value to be pushed at the tail of the VQ. It does not have an
explicit destination register, but it does have an implicit
one: the tail entry of the VQ. Pop_VQ has a single destina-
tion register, which is where the popped value will be writ-
ten. It does not have an explicit source register, rather, its
source register is implicit: the head entry of the VQ, which
contains the value to be popped.

Save VQ and Restore VQ have the same behavior as
Save_BQ and Restore_BQ, respectively.

An example of using the VQ is shown in Fig. 11. It is the
same example from soplex, shown previously in Fig. 8,
except that it is augmented to communicate the value of x =
test[i] via the VQ since it is used by both the branch’s slice
and the branch’s control-dependent region.

4.2.2 Hardware Side

An interesting trick to leverage existing instruction issue
and register communication machinery in a superscalar
core, is to map the architectural value queue onto the physi-
cal register file. This is facilitated by the VQ renamer in the
rename stage. The VQ renamer is a circular buffer with
post-incremented head and tail pointers. Its entries contain
physical register mappings instead of values. The mappings
indicate where the values are in the physical register file. At
rename, a VQ push is allocated a destination physical regis-
ter from the freelist. Its mapping is pushed at the tail of the
VQ renamer. A VQ pop references the head of the VQ
renamer to obtain its source physical register mapping. The
queue semantics ensure the pop links to its corresponding
push through its mapping. In this way, after renaming, VQ
pushes and pops synchronize in the issue queue and com-
municate values in the execution lanes the same way as
other producer-consumer pairs. The physical registers allo-
cated to push instructions are freed when the pops that ref-
erence them retire.
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Just like the BQ, the VQ renamer state is repaired on a
misprediction or exception. Note that nothing special needs
to be done to free the physical registers of squashed VQ
push instructions. Existing freelist recovery takes care of
freeing physical registers of all squashed register-producing
instructions.

Fig. 12 illustrates the operation of the VQ renamer in the
rename stage of the pipeline, and how it results in leverag-
ing the existing OOO backend (Issue Queue and Physical
Register File) as-is. We begin with an example pseudo-
assembly code fragment in Fig. 12a of a CFD-transformed
loop, with only a few germane instructions shown. The first
loop features an add instruction whose result is pushed
onto the VQ. We include the add instruction to provide a
refresher on how conventional instructions are renamed,
and to supply a value to be pushed. The second loop fea-
tures a pop instruction.

Assuming just two iterations of both loops, Fig. 12d steps
through renaming of two instances of the add and push
instructions (first loop) followed by two instances of the
pop instruction (second loop). The pre-existing renaming
structures are the Freelist and Rename Map Table (RMT).
The Freelist is the list of physical registers that are currently
free, i.e.,, not allocated to any in-flight instructions or the
committed register state. The RMT contains the most recent
mappings of logical registers, r0-r31 (assumes the ISA speci-
fies 32 logical registers), to physical registers, p0-p99 (the
example assumes 100 physical registers in the Physical Reg-
ister File). Note that the pre-existing Active List (a.k.a. Reor-
der Buffer) and Architectural Map Table (AMT), which
manage the committing and freeing of physical registers,
are not shown, as they operate at the retirement stage with
no changes. The only new component, added to the rename
stage, is the VQ renamer. Its role is to map the architectural
VQ onto the physical register file.

The first add instruction renames its source logical
register using the corresponding mapping in the RMT
(source r5 renamed to p67). Its destination logical regis-
ter is renamed by popping a free physical register from
the Freelist, and updating the corresponding mapping in
the RMT so that its future dependent instructions link to
it (destination r5 renamed to p99). The only change to
the renaming algorithm is in the handling of the implicit
VQ operands of the Push_ VQ and Pop_VQ instructions:
instead of updating or referencing the RMT (respec-
tively), the VQ renamer is updated or referenced for
these operands. The first Push_VQ instruction renames
its source logical register as usual, by referencing the
RMT (source r5 renamed to p99, thereby linking to the
add instruction). For its implied destination logical regis-
ter, the VQ tail, it is allocated a free physical register
(p2) from the Freelist, as usual, but this mapping is writ-
ten to the VQ renamer (destination ‘VQ tail’ renamed to
p2, then VQ tail is incremented) instead of to the RMT.
The first Pop_VQ instruction renames its destination log-
ical register as usual, by popping a free physical register
from the Freelist and updating the corresponding map-
ping in the RMT (destination r5 renamed to p51). How-
ever, its implied source logical register, the VQ head, is
renamed by referencing the head entry of the VQ
renamer instead of the RMT (source ‘VQ head’ renamed



2192

LOOPL: ... Issue Queue (000)
Add r5,r5,#1
Push VQ r5 5: Pop VQ p51,p2
: Push VQ p7Jp35
Branch LOOP1

: Push VQ p2\p99

LOOP2: ...
s 6: Pop VO p22,p7
Pop_VQ r5
Branch LOOP2
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Fig. 12. lllustration of the VQ renamer and how it maps the architectural VQ onto the Physical Register File.

to p2, then VQ head is incremented). Notice how the
first pop is linked to the first push, via p2, even though
there was a second intervening push, which is exactly
the desired FIFO queue operation. The second pop is
also correctly linked to the second push, via p7.

Finally, linking each push to its corresponding pop via
a physical register results in an unmodified backend.
Instructions appear arbitrarily ordered in the Issue Queue
(scheduler) as instructions issue out-of-order based only
on true data dependencies. This is true for the push and
pop instructions, too. Correct, serial issuing of producers
and consumers is facilitated by their physical register
linkages, highlighted with arrows in Fig. 12b. Actual com-
munication of a value between a push and its correspond-
ing pop happens via the Physical Register File, depicted
in Fig. 12c. The alternative to our VQ renamer strategy, is
to implement a literal value-based VQ separate from the
Physical Register File in the backend. This would mean
that execution lanes would need to reference either the
Physical Register File or the VQ, having ports to both
resources, extra MUXes to select either resource, extra

bypasses for the VQ, and so forth. Moreover, the Issue
Queue’s wakeup logic would be heterogeneous, requiring
separate wakeup machinery for physical register oper-
ands and VQ operands. With just a VQ renamer in the
rename stage, we avoid all of this complexity in
the already-complex, cycle-time-critical backend of the
pipeline.

Save_VQ and Restore VQ are handled as macro-instruc-
tions. The decode stage cracks Save VQ into multiple pairs
of Pop_VQ and store instructions, as many as ‘VQ length’. It
also generates a store of the VQ length register to memory.
Likewise, Restore_VQ is cracked into ‘VQ length’ pairs of
load and Push_VQ instructions, after first restoring the VQ
length register from memory.

4.3 Exploiting Separable Loop-Branches:
Trip-Count Queue

Even with aggressive loop-branch predictors, some loop-

branches remain hard-to-predict and contribute a noticeable

fraction of mispredictions. Typically, loop-branches are
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Fig. 13. A generalization of the separability property.

hard-to-predict when they have irregular trip-counts by vir-
tue of the trip-count being data-dependent. Moreover, these
hard-to-predict loop-branches become top misprediction
contributors when: (1) they have short trip-counts, and (2)
they are revisited frequently, e.g., the loop is inside another
loop that iterates a lot. We observed some cases where the
data-dependent trip-count does not depend on the loop
body, ie., the loop-branch’s control-dependent region,
therefore, the trip-count computation is separable from the
loop-branch and the loop body.

A generalization of the separability property for regular
and loop branches is shown in Fig. 13. In both cases,
the separable branch/loop-branch is inside of an outer
loop. Both cases have a control-dependent region, just of a
different nature (forward region versus loop body). The
only distinction is predicate computation versus trip-count
computation.

CFD can be applied to separable loop-branches as
well. In this case, the trip-count computation is separated
from the loop-branch and loop body, and the trip-counts
are communicated through an architectural trip-count
queue. The TQ resides in the fetch unit to drive timely,
non-speculative branching. The CFD transformation
for regular branches and loop-branches is shown in
Figs. 13c and 13d, respectively.

In this section, we highlight how CFD can be extended to
support separable loop-branches.

4.3.1  ISA Support and Benchmark Example

ISA support includes (1) the trip-count queue and trip-
count register (TCR), and (2) three new instructions,
Push_TQ, Pop_TQ, and Branch_on_TCR. The TQ is similar
to the BQ except that, instead of each entry containing a sin-
gle predicate bit, each entry contains a single N-bit trip-
count. Push_TQ pushes a trip-count onto the TQ. Pop_TQ
pops a trip-count from the TQ and loads it into the TCR.
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Branch _on TCR tests the TCR to determine whether to con-
tinue or exit the loop. If TCR is not zero, Branch_on_TCR
decrements TCR and continues the loop. If TCR is zero,
Branch _on_TCR exits the loop.5

The same push-pop ordering rules are used for the TQ as
for the BQ.

Fig. 14 shows a real example from the benchmark astar.
Referring to the original code: the loop iterates over an array
of arrays of structures. The hard-to-predict loop-branch is at
line 3. Its trip-count is data-dependent and we observed it
ranges from 0 to 9 (i.e., short trip-count). Although it is
data-dependent, the dependence is with the outer loop and
not the loop it controls, therefore, this is a separable loop-
branch. This branch contributes 12 percent of the bench-
mark’s mispredictions (for BiglLakes input). Note that the
hard-to-predict loop-branch is inside the outer for loop
(line 1). Decoupling the trip-count computation is fairly
straightforward. The first loop computes the trip-counts
and pushes them onto the TQ (line 3). The second loop pops
the trip-counts from the TQ (line 7) and conditionally exe-
cutes the loop instructions (lines 9 through 16), accordingly,
using Branch_on_TCR.

4.3.2 Software Side

In this work, we specify a TQ size of 256, and we use loop
strip mining when decoupling a long-running outer loop.

4.3.3 Hardware Side

Just like the BQ, the TQ naturally resides in the instruction
fetch unit, and it is implemented as a circular buffer. In
addition to the software-visible N-bit trip-count, each TQ
entry has a pushed bit, shown in Fig. 15a. The TCR also
resides in the fetch unit. The TCR tracks how many itera-
tions are left before the loop exits. TCR is loaded with a new
trip-count when a Pop_TQ is fetched, and decremented
when a Branch_on_TCR is fetched.

Speculating on a TQ miss is more complicated compared
to speculating on a BQ miss. The complexity stems from the
fact that a single TQ entry corresponds to 2V instances of
Branch_on_TCR. The overhead of maintaining mispredic-
tion recovery information, e.g., checkpoint ids for every pre-
dicted Branch_on_TCR instruction, can be cumbersome. In
our design, we opt to stall the fetch unit on a TQ miss until
the Push_TQ executes.

TQ operation, length tracking, and recovery are identical
to that of the BQ. Repairing the TCR in the case of branch
mispredictions and exceptions requires augmenting each
checkpoint with a snapshot of the TCR and maintaining a
committed version of the TCR, respectively.

4.3.4  Support for Exceeding Maximum Trip-Count

If the programmer or compiler cannot guarantee that a
loop’s trip-count is always less than 2, then the TQ cannot
be used, unless we augment the ISA specification of the TQ
to handle the possibility of exceeding the maximum trip-
count. Accordingly, we propose the following changes to
support loops that may exceed the maximum trip-count:

5. Some ISAs like PowerPC [13] and 1A-64 [14] have registers similar
to TCR.
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Original Loop
1 for (j=0; j<blarp.elemqu; j++)
2 {
3 for (i=0; i< blarp[j]->nblar.elemqu; i++) // hard-to-predict loop-branch
4
5 if (blarp[j]->nblar[i]->fillnum!=regfillnum) {
6 blarp[j]->nblar[i]->fillnum=regfillnum;
7 blarp[j]->nblar[i]->waydist=filltact;
8 flend [= (blarp[j]->nblar[i]==rend);
9 b2arp.add(blarp[j]->nblarfi]);
10 }
11 }
12 }
Decoupled Loops
First Loop
1 for (j=0; j<blarp.elemqu; j++)
2
3 Push_TQ(blarp[j]->nblar.clemqu); // push trip-count onto the TQ
4 }
Second Loop
5 for (j=0; j<blarp.elemqu; j++)
6
7 Pop_TO(); // pop the trip-count
8 for (i=0; Branch_on_TCR; i++) // predict using trip-count
9 {
10 if (blarp[j]->nblar[i]->fillnum!=regfillnum) {
11 blarp[j]->nblar[i]->fillnum=regfillnum;
12 blarp[j]->nblar[i]->waydist=filltact;
13 flend |= (blarp[j]->nblar[i]==rend);
14 b2arp.add(blarp[j]->nblarfi]);
15 }
16 }
17 }
Fig. 14. ASTAR source code.
3
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(a) TQ entry (no overflow support) (b) TQ entry extended to support

overflow

Fig. 15. Fields of a TQ entry.

1) Each TQ entry is augmented with a software-visible
overflow bit, as shown in Fig. 15 b.

2) The Push_TQ instruction compares the trip-count
being pushed to 2V. If it is less than 27, it is written
into the TQ and the overflow bit is cleared. If it is not
less than 2%, it is not written into the TQ and the
overflow bit is set.

3) A special pop instruction is introduced, called
Pop_TQ_ and_Branch_on_Overflow. In addition to
popping the trip-count, the new instruction specifies
a target, via a PC-relative offset, to which control is
transferred if the overflow bit is set. Typically, the
target is an unmodified version of the loop.

5 DATA-FLOW DECOUPLING

In lieu of distancing branch-slices from branches, the first
loop can be leveraged to distance load instructions from
their dependents. Broadly, this is useful for overlapping
misses with each other and with computation. More specifi-
cally, it can be used as a lower-overhead alternative to CFD
for accelerating mispredicted branches that depend on
cache misses. Whereas CFD targets the mispredictions
directly, by removing them, one could instead prefetch the
misses that feed the mispredictions. This doesn’t eliminate
mispredictions but it speeds up resolving them as the loads

Original Loop

1 for (...){
2 index1=index-yoffset-1; //'8 instances of this body exist
3 if (waymapl[index1] i ) // hard-to-predict branch (outer predicate)
4 if (maparp[index1]==0) { // hard-to-predict branch (inner predicate)
5
6 ¥
7 3

DFD Loops

First Loop
1 for (...){
2 index1=index-yoffset-1; // 8 instances of this body exist
3 PREFETCH(waymap|index1].fillnum); 1/ prefetch the contents of waymap
4 PREFETCH(maparp[index1]); /1 prefetch the contents of maparp
5 H

Second Loop is the Original Loop

Fig. 16. DFD example (ASTAR).

that feed the branch will hit in the cache. We call the pre-
fetching application data-flow decoupling. We observed
that this can lead to lower overhead in the first loop, due to
no longer requiring if-converted control-dependent instruc-
tions (for partially separable branches), arbitrarily complex
predicate computation, and Push_BQ instructions. Mean-
while, the second loop is the original unmodified loop.

Fig. 16 shows an example from the benchmark astar. The
original loop contains two nested hard-to-predict branches
that are fed by data that frequently miss in the cache (lines 3
and 4). With DFD, we simply precede the original loop by
another loop that contains only the load affecting the
branch and the load’s address slice. This loop prefetches the
data and thus speeds up the misprediction resolution in the
original loop.

6 EVALUATION ENVIRONMENT

The microarchitecture presented in Section 3 is faithfully
modeled in a detailed execution-driven, execute-at-execute,
cycle-level simulator. The simulator runs Alpha ISA bina-
ries. Recall, in Section 2, we used x86 binaries to locate
hard-to-predict (easy-to-predict) branches, owing to our use
of PIN. Our collected data confirms that hard-to-predict
(easy-to-predict) branches in x86 binaries are hard-to-pre-
dict (easy-to-predict) in Alpha binaries. The predictability is
influenced far more by program structure than the ISA that
it gets mapped to.

Section 2 described the four benchmark suites used. All
benchmarks are compiled to the Alpha ISA using gcc with
-O3 level optimization. When applied, CFD and DFD mod-
ify the benchmark source. The modified benchmarks are
verified by compiling natively to the x86 host, running them
to completion, and verifying outputs (software queues are
used to emulate the CFD queues).

Energy is measured using McPAT [21], which we aug-
mented with energy accounting for the BQ (CFD, CFD+),
VQ renamer (CFD+) and TQ (CFD). Per-access energy for
the BQ, VQ renamer and TQ is obtained from CACTI [27]
tagless rams, and every read/write access is tracked during
execution.

The parameters of our baseline core are configured as
close as possible to those of Intel’s Sandy Bridge core [40].
The baseline core uses the state-of-art ISL-TAGE predictor
[31]. Additionally, in an effort to find the best-performing
baseline, we explored the design space of misprediction
recovery policies, including checkpoint policies (in-order
vs. O00 reclamation, with confidence estimator [15] versus
without) and number of checkpoints (from 0 to 64). We
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TABLE 2
Minimum Fetch-to-Execute Latency in Cycles
AMD ARM IBM INTEL
Bobcat Cortex A15 Power6 Pentium 4
Fetch-to- 13 15 13 20

Execute

confirmed that: (1) An aggressive policy (OoO reclamation,
confidence-guided checkpointing) performs best. (2) The
harmonic mean IPC, across all applications of all workloads,
levels off at eight checkpoints.

The fetch-to-execute pipeline depth is a critical parame-
ter as it factors into the branch misprediction penalty.
Table 2 shows the minimum fetch-to-execute latency (num-
ber of cycles) for modern processors from different vendors.
The latency ranges from 13 to 20 cycles [6], [7], [19], [20]. We
conservatively use 10 cycles for this parameter. We also per-
form a sensitivity study with this parameter in Section 7.1.

Fig. 17a shows the baseline core configuration. The
checkpoint management policy and number of checkpoints
remain unchanged throughout our evaluation, even for
studies that scale other window resources. Fig. 17b shows
detailed storage overhead for BQ, VQ renamer, and TQ.

7 RESULTS AND ANALYSIS

In this section, we apply and evaluate CFD and DFD. CFD is
evaluated for separable branches in Sections 7.1 and 7.2, and
for separable loop-branches in Section 7.4. When necessary,

Branch Prediction BP: 64KB ISL-TAGE predictor
- 16 tables: 1 bimodal, 15 partially-tagged. In addition to, IUM, SC, LP.

- History lengths: {0, 3, 8, 12, 17, 33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, 1930}

BTB: 4K entries, 4-way set-associative

RAS: 64 entries

Block size: 64B

Victim caches: each cache has a 16-entry FA victim cache

L1: split, 64KB each, 4-way set-associative, 1-cycle access latency

L2: unified, private for each core, 512KB, 8-way set-associative, 20-cycle access latency
- L2 stream prefetcher: 4 streams, each of depth 16

L3: unified, shared among cores, 8MB, 16-way set-associative, 40-cycle access latency

Memory: 200-cycle access latency

Memory Hierarchy

Fetch/lssue/Retire Width 4 instr./cycle

ROB/IQ/LDQ/STQ 168/54/64/36 (modeled after Sandy Bridge)

Fetch-to-Execute Latency |10-cycle

Physical RF 236

Checkpoints 8, 000 reclamation, confidence estimator (8K entries, 4-bit resetting counter, gshare index)

CFD « BQ: 96B (128 6-bit entries)
* VQ renamer: 128B (128 8-bit entries)
+ TQ: 160B (256 5-bit entries)

(a) Baseline core configuration

Branch Queue Queue: 96B (128 6-bit entries)

Per checkpoint:
Snapshot of head, tail, and mark pointers: 3 x 7-bit

Committed state:
Committed version of head, tail, and mark pointers: 3 x 7-bit

Length register (pending/net): 2 x 8-bit

Subtotal = 96B + (8 x (3 x 7-bit)) + (3 x 7-bit) + (2 x 8-bit)
=96B +25.625B = 121.625B

Queue: 128B (128 8-bit entries)

Per checkpoint:

Snapshot of head and tail pointers: 2 x 7-bit

Committed state:

Committed version of head and tail pointers: 2 x 7-bit

Subtotal = 128B + (8 x (2 x 7-bit)) + (2 x 7-bit)
=128B + 15.75B = 143.75B

Queue: 160B (256 5-bit entries)

Per checkpoint:

Snapshot of head and tail pointers: 2 x 8-bit

Snapshot of TCR: 4-bit

Committed state:

Committed version of head and tail pointers: 2 x 8-bit

Value Queue Renamer

Trip-count Queue
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TABLE 3

CFD(BQ) and DFD Application Skip Distances and Overheads

Application Skip (B) Overhead
CFD CFD+ DFD

astar(BigLakes #1) 11.61 1.86 - 1.31
astar(BigLakes #2) 53.99 1.10 - 1.36
astar(Rivers #1) 0.53 1.81 - 1.30
astar(Rivers #2) 164.0 1.11 - 1.34
bzip2(chicken) 0.11 1.02 1.01 -
bzip2(input.source) 0.25 1.27 1.16 -
eclat 7.10 1.28 1.12 -
gromacs 0.74 1.03 1.02 -
jpeg-compr 0.00 1.08 1.06 -
mcf 0.70 1.15 1.14 -
namd 2.17 1.01 - -
soplex(pds) 9.94 1.02 1.02 1.03
soplex(ref) 49.25 0.90 - 1.03
tiff-2-bw 0.00 1.00 - -
tiff-median 0.00 1.11 - -

we will distinguish between these two cases using “CFD
(BQ)” and “CFD(TQ)”, respectively. DFD is evaluated in
Section 7.3.

To evaluate the impact of our work on the top contribu-
tors of branch mispredictions in the targeted applications,
we identify the regions to be simulated as follows. Given
the set of top mispredicting branches and the functions in
which they reside, we fast-forward to the first occurrence of
the first encountered function of interest, warm up for 10 M
retired instructions, and then simulate for a certain number
of retired instructions. When simulating the unmodified
binary for the baseline, we simulate 100M retired instruc-
tions. When simulating binaries modified for CFD or DFD,
we simulate as many retired instructions as needed in order
to perform the same amount of work as 100 M retired
instructions of the unmodified binary.

Tables 3 and 4 show the fast-forward (skip) distances of
the applications and the overheads incurred by the modi-
fied binaries. Overhead is the factor by which retired
instruction count increases (e.g., 1.5 means 1.5 times) for the
same simulated region. In all cases except CFD’s soplex(ref),
the modified binaries are simulated for more than 100 M
retired instructions.

Speedup is calculated as: cyclespasciine/CYcleSmodificds
where cyclespaseiine 1S the number of cycles to simulate 100 M
instructions of the unmodified binary and cycles,ogifica 15
the number of cycles to simulate overhead factor x 100 M
instructions of the modified binary which corresponds to
the same simulated region. Effective IPC is calculated as:
INStructionSpaseline | CYCleSscheme, Where instructionspseiine 1S
the number of retired instructions of the unmodified binary

TABLE 4
CFD(TQ) Application Skip Distances and Overheads

Overall

f"m"”:‘edvefi"" Of TCR: 4'°“2 — Application Skip (B) Overhead
ength register X 9-bit
Subtotal : 1:83 : (2:;_;(7?; >=( l:-sl:‘i-(;;;-bit)) + ((2 x 8-bit) + 4-bit) + (2 x 9-bit) astar (Bl'gLakes) 53.99 1.05
Total = 450.125B astar (Rlvers) 164.0 105
(b) Detailed storage overheads for BQ, VQ renamer, and TQ bZiPZ (chicken) 177.0 1.0
bzip2 (input.source) 49.56 1.0

Fig. 17. Baseline configuration and CFD storage overheads.
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TABLE 5

Details of Modified Code for the CFD(BQ) Applications

Application File name Function Time spent Loop Branch line Loop Communicate Promote
line strip values variables
mining
astar Way_.cpp makebound?2 20% (BigLakes) 57 62-63, 79-80 Y N Y
(region #1) 47% (Rivers) 96-97,113-114
130-131, 147-148
164-165, 181-182
RegWay _.cpp makebound?2 33% (BigLakes) 39 43 N N
(region #2) 12% (Rivers)
bzip2 compress.c generateMTF 30% (chicken) 207 214 Y Y N
Values
16% (input.source)
eclat eclat.cc get_intersect 46% 205 207,211 Y Y N
gromacs ns.c ns5_core 11% 1,503 1,507,1,508,1,510 N Y N
jpeg-compr jedctmgr.c forward_DCT 83% 231 251 N Y N
jephuf.c encode_m- 488 489
cu_AC first
encode mcu_ 662 663,686 N
AC_refine
mcf pbeampp.c primal bea mpp 39% 165 171 Y Y N
namd ComputeNon- ComputeNon- 5% 397 410 Y N N
bondedBase.h bondedUtil
soplex spxsteeppr.cc selectLeaveX 5% (pds) 291 295 Y Y Y
selectEnterX 17% (ref) 449 452 N
tiff-2-bw tif lzw.c LZWDecode 100% 377 411 N N N
tiff-median  tiffmedian.c create colorcell 100% 725 726 Y N N
TABLE 6
Details of Modified Code for the CFD(TQ) Applications
Application File name Function Time spent Loop Loop- Loop Communicate Promote
line branch strip values variables
line mining
astar RegWay _.cpp makebound?2 33% (BigLakes) 35 39 Y N N
12% (Rivers)
bzip2 decompress.c BZ2_decompress 17% (chicken) 474 474 N N N

15% (input.source)

and cyclesgneme is the number of cycles to simulate the
binary of the given scheme.

Tables 5 and 6 show detailed information about the mod-
ified source code, most importantly: (1) the affected
branches and (2) the fraction of time spent in the functions
containing these branches, as found by gprof-monitored
native execution.

7.1 CFD and CFD+

We manually apply then evaluate: CFD and CFD+. Fig. 18a
shows that CFD increases performance by up to 51 and 16
percent on average, while CFD+ increases performance by
up to 51 and 17 percent on average.® Fig. 18b shows that
CFD reduces energy consumption by up to 43 and 19 per-
cent on average, while CFD+ reduces energy consumption
by up to 43 and 21 percent on average.

6. The time spent in the functions of interest (shown in Table 5)
along with the presented speedups, can be used in Amdahl’s law
to estimate the speedup of the whole benchmark. For example, astar
(Rivers, region #1) is sped up by 34 percent (s = 1.34) in its CFD region
which accounts for 47 percent of its original execution time (f = 0.47);
thus, we estimate 14 percent (1.14) speedup overall.

Given the instruction overheads incurred by CFD, and
that it always delivers correct predicates, we compare its
performance to that of perfect branch prediction. Fig. 19
shows the effective IPC of four configurations: (1) baseline
(Base), (2) CFD+, (3) baseline while perfectly predicting the
separable branches (Base + PerfectCFD), and (4) baseline
with all branches perfectly predicted (Perfect Prediction).
Three distinct behaviors are observed:

e Group-1. CFD underperforms PerfectCFD for astar
(region #1), eclat, gromacs, tiff-2-bw, and tiff-median.

e  Group-2. CFD matches PerfectCFD for jpeg-compr,

mcf, namd, and soplex(pds).

e Group-3. CFD outperforms PerfectCFD for astar

(region #2), bzip2, and soplex(ref).

For most applications in Group-1, CFD underperforms
PerfectCFD due to its instruction overheads (shown in
Table 3). The only exception to this rule is tiff-2-bw. tiff-2-bw
is the only application where no loop decoupling was per-
formed. Instead, the branch predicate computation was
hoisted far ahead within the loop. Unfortunately, when the
predicate computation depends on an L1 cache miss, we
suffer a BQ miss due to insufficient fetch separation. As a
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Fig. 18. Performance and energy impact of CFD.

result, the application suffers a relatively high BQ miss rate
of 20 percent.” So, 20 percent of the branch instances must
be predicted, yielding less-than-perfect prediction.

For Group-2 applications, the CFD instruction overheads
are tolerated.

Group-3 applications demonstrate two, very interesting
side-effects of CFD. First, CFD can reduce instruction count
(compared to baseline) by reducing stack spills and fills.
This is the case for soplex(ref), in which the original loop con-
tains many variables whose live ranges overlap, increasing
pressure on architectural registers and resulting in many
stack spills/fills. CFD’s two loops reduce register contention
by virtue of some variables shifting exclusively to the first or
second loop, eliminating most of the stack spills/fills,
resulting in fewer retired instructions. Second, CFD posi-
tively impacts memory-level parallelism by increasing the
burstiness of cache misses. By virtue of splitting the original
loop into two loops (each loop is smaller than the original),
CFD enables more loop iterations to be in the instruction
window at any given time, which increases the likelihood of
having more concurrent cache misses. Instead of spreading
cache misses over N consecutive instruction windows, CFD
condenses the misses over M consecutive instruction win-
dows, where M < N. In other words, CFD reduces the total
number of miss clusters (from N, down to M) by increasing
the number of misses in a cluster. Performance is improved
because more misses are overlapped within a cluster. To
confirm this phenomenon, we studied the utilization of

7. All CFD-class applications, except tiff-2-bw, have a 99.9 percent
BQ hit rate.
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Fig. 20. L1 cache MHSR utilization histograms for ASTAR.

miss handling status registers (MHSRs) at all cache levels.
This phenomenon manifests in three ways: first, an increase
in the fraction of time when many MHSR entries are in use;
second, a decrease in the fraction of time when very few
MHSR entries are in use; third, an increase in the fraction of
time when zero MHSR entries are in use. Even though this
behavior is observed at all cache levels, it is much more
obvious in the MHSR utilization histograms of the L1 cache.
Fig. 20 shows the L1 cache MHSR utilization histograms for
astar (region #2), one of the applications in Group-3. Notice
how CFD+ exhibits a strong bimodal distribution in its his-
togram. Compared to the other cases without decoupling,
CFD+ shows a large fraction of time spent in the zero-utili-
zation bin and high-utilization bins (10 to 32), and low frac-
tion of time in the middle-utilization bins (1-9). This is
strong evidence of fewer, denser miss clusters.

Fig. 21a shows speedup with CFD as the minimum fetch-
to-execute latency is varied from five to 20 cycles. As
expected, CFD gains increase as the pipeline depth
increases. The baseline IPC worsens with increasing depth,
whereas CFD'’s eradication of mispredicted branches makes
IPC insensitive to pipeline depth. Thus, as is true with better
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branch prediction, CFD has the added benefit of exacting
performance gains from frequency scaling (i.e., deeper
pipelining).

To project the gains of CFD on future processor genera-
tions, we evaluate it under larger instruction windows.
Fig. 21b shows the projection of CFD gains on two addi-
tional configurations labeled in the graph with ROB size.®
The average performance improvement increases to
25 percent.

CFD-class branches inside loops that do not iterate a lot
are more likely to suffer BQ misses due to the insufficient
fetch separation between pushes and pops. The CFD-class
branches identified in this work are inside loops that iterate
a lot, making speculation on a BQ miss less critical. We eval-
uate CFD with and without speculation support. Fig. 21c
shows the effective IPC for three configurations: (1) Baseline
(Base), (2) CFD with speculation support (CFD (spec)), and
(3) CFD without speculation support (CFD (stall)). In all

8. [ROB, IQ, LDQ, STQ, PRF] are as follows for the two additional
configurations: [256, 82, 96, 54, 324] and [384, 122, 216, 82, 452]. Other
parameters match those of the baseline, shown in Fig. 17a in Section 6.
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Original Loop
1 for (...){
2 mdex]—mdex yoffset 1; //'8 instances of this body exist
3 if ! ) // hard-to-predict branch (outer predicate)
4 if (maparp[lndex1]==0) { // hard-to-predict branch (inner predicate)
5 bound2p[bound2}=index1;
6 bound2l++;
7 ‘waymap[index1].fillnum=fillnum; // loop-carried dependency
8 ‘waymap[index1].num=step;

9 if (index1==endindex) { // predictable branch (almost always T)
10 flend=true;
11 return bound2l;
12 }
13 }
14 }
Decoupled Loops
First Loop
1 for (...){
2 index1=index-yoffset-1;
3 pred = (waymap|index1].fillnum != fillnum); // the outer predicate is computed
4 Push_BQ(pred); // then pushed onto the BQ
5 )
6 Mark(); // mark the BQ tail pointer
Second Loop
7 for (...){
8 Branch_on_BQ! // pop the outer predicate
9 index1=index-yoffset-1;
10 output = waymap[index1].fillnum;
11 pred = (output != fillnum) & (maparp[index1] == 0); // evaluate the overall predicate
12 Push_BQ(pred); /I push the overall predicate
13 CMOV(output, fillnum, pred); // conditional move
14 waymapl[index1].fillnum = output; // always  store
15 if(index1 == local_endindex & pred) break; // return is replaced with a break

)
17 else Push_BQ(0); // needed since we always pop in the 3* loop

19 Forward(); // forward the current BQ head to the mark

Third Loop
20 for (...){

21 Branch_on_BQ{ // pop the overall predicate
22 index1=index-yoffset-1;

23 bound2p[bound2l}=index1;

24 bound2l++;

25 ‘waymap[index1].num=step;

26 if(index1==local_endindex){

27 flend=true;

28 return bound2l;

29 }

30 }

31 4

Fig. 22. ASTAR source code (region #1).

applications, except tiff-2-bw, there is no major performance
loss due to not speculating (i.e., stalling) on a BQ miss. Our
expectations are confirmed.

7.2 ASTAR Case Study

One of the most interesting cases we encountered in this
work is astar, in which CFD is applied to two regions: region
#1 and region #2. While both regions pose challenges, we
focus the following case study on region #1, as it exhibits
more challenging aspects. Fig. 22 shows astar’s original and
decoupled loops, for region #1. This region has three chal-
lenging features that require special care when decoupling
its loop. First, there are two nested hard-to-predict
branches, with the inner predicate depending on a memory
reference that is only safe if the outer predicate is true (lines
3 and 4 of original loop). Second, there is a short loop-car-
ried dependency between the outer predicate and one of its
control-dependent instructions (line 7 of original loop): this
is a partially separable branch. Third, the control-dependent
region contains an early return statement (line 11 of the
original loop).

These challenges are handled by CFD, as follows. First,
the nested conditions are handled by decoupling the original
loop into three loops. The first loop evaluates the outermost
condition. The second loop, guarded by the outermost condi-
tion, evaluates the combined condition. The third loop
guards the control-dependent instructions by the overall
condition. Second, the loop-carried dependency is handled
by hoisting and then if-converting the short loop-carried
dependency (shown in lines 10, 13 and 14 of the second loop;
line 10 is also needed to evaluate the combined predicate).
Finally, the return statement is handled by duplicating the
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Fig. 23. ASTAR: effective IPC as we scale the window size.

condition guarding the return in the second loop and replac-
ing the return statement with an early loop break. This work-
around introduces a problem: some of the predicates eagarly
pushed by the first loop will not be popped by the second
loop. This problem is resolved by using the Mark and For-
ward instructions introduced in Section 3.1. At the end of the
first loop, we mark the tail of the BQ (i.e., the entry following
the last predicate pushed by the first loop). At the end of
the second loop, we advance the head of the BQ to the previ-
ously marked location using the Forward instruction, which
ensures that all predicates pushed by the first loop are either
popped or skipped by the end of the second loop.
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Due to the high percentage of branch mispredictions
that are fed by the L2 cache, L3 cache, and main memory,
we expect a significant increase in performance gains
when we apply CFD to astar under large instruction win-
dows. Fig. 23 shows the effective IPC of the unmodified
binaries (Base), and the CFD binaries, as we scale the win-
dow size. Our expectations are confirmed for CFD. For
example, for the BigLakes input and region #2, the speedup
increases from 1.51 to 1.91 when window size is increased
from 168 to 640.

7.3 DFD

We manually apply then evaluate DFD for CFD-class appli-
cations with high L2 and L3 MPKIs. Three applications
stand out in terms of misses: astar, soplex and mcf. Even
though mcf has high L1, L2 and L3 MPKIs, we did not apply
DEFD to it because the cache misses are encountered outside
the CFD region.

Fig. 24 compares the performance and energy impact
of CFD and DFD, for astar and soplex. Fig. 24a shows
that DFD increases performance by up to 60 percent.’
Fig. 24b shows that DFD reduces energy consumption by
up to 25 percent. Except for astar(BigLakes), CFD yields
higher speedups than DFD, although DFD performs
well. CFD is always significantly more energy-efficient
than DFD. Two factors contribute to DFD’s superior per-
formance gains in astar(BigLakes): (1) CFD suffers a

9. We observed at least two scenarios where DFD is profitable. In
some cases (e.g., soplex), the address stream is predictable but the
absence of an L1 prefetcher left room for improvement. DFD prefetches
the data to the L1 cache in this case. In other cases (e.g., astar), the
address stream is difficult to predict and can only be accurately identi-
fied through pre-execution, and DFD delivers that.
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Fig. 26. Performance impact of applying CFD and DFD simultaneously.

significantly higher instruction overhead compared to
DFD (1.86 versus 1.31, for region #1), and (2) DFD’s first
loop is even more compact than CFD’s first loop, allow-
ing DFD to have a more aggressive MLP effect. Fig. 25a
shows the L1 cache MHSR utilization histograms for
astar (BigLakes, region #2). While both CFD and DFD
exhibit bimodal distributions in their histograms, DFD’s
is more pronounced. Compared to CFD, DFD shows a
larger fraction of time spent in the zero-utilization bin
and the eleven highest utilization bins (22 to 32). This is
strong evidence of fewer, denser miss clusters in DFD.

We expect DFD to replace mispredictions that depend on
distant cache levels with mispredictions that depend on
nearby cache levels. Fig. 25b shows the breakdown of mis-
predicted branches with respect to the furthest memory
hierarchy level feeding them, for both baseline and DFD.
Fig. 25b confirms that DFD moves the branches’ data closer
to the core, relative to the baseline.

Interestingly, DFD and CFD can be applied simulta-
neously: DFD prefetches the data needed for computing the
predicates in CFD, allowing the CFD loops to execute faster.
Fig. 26 shows the performance improvement when apply-
ing DFD only, CFD only, and both.

7.4 Trip-Count Queue

We manually apply then evaluate CFD for separable loop-
branches. Fig. 27 shows that CFD(TQ) increases perfor-
mance by up to 5 percent, and reduces energy consumption
by up to 6 percent.

In Section 3, Fig. 14, we showed the original and
decoupled loop-branch of astar. After eliminating the loop-
branch’s mispredictions using CFD(TQ), the branch inside
the inner loop (line 10 in the second loop) stands out as the
main misprediction contributor. Fortunately, this branch is
separable and can be targeted with CFD(BQ). Fig. 28a
shows that CFD(BQ+TQ) increases performance by up to
55 percent. Fig. 28b shows that CFD(BQ+TQ) reduces
energy consumption by up to 49 percent. Interestingly,
when both techniques are applied, performance and energy
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gains are greater than the sum of the two techniques’ indi-
vidual gains.

8 RELATED WORK

There has been a lot of work on predication and branch pre-
execution. We focus on the most closely related work.

Various ingenious techniques for predication have been
proposed, such as: software predication [2], predication
using hyperblocks [24], dynamic hammock predication [18],
wish branches [17], dynamic predication based on fre-
quently executed paths [16], and predicate prediction [29],
to name a few. In this paper, predication (i.e., if-conversion)
is a key enabling mechanism for applying control-flow
decoupling to partially separable branches.

Control-flow decoupling resembles branch pre-execution
[8], [9], [11], [30], [42]. The key difference is that control-
flow decoupling preserves the simple sequencing model of
conventional superscalar processors: in-order instruction
fetching of a single thread. This is in contrast with pre-exe-
cution which requires thread contexts or cores, and a suite
of mechanisms for forking helper threads (careful timing,
value prediction, etc.) and coordinating them in relation to
the main thread. With control-flow decoupling, a simplified
microarchitecture stems from software/hardware collabo-
ration, simple ISA push/pop rules, and recognition that
multiple threads are not required for decoupling.

We now discuss several branch pre-execution solutions
in more detail.

Farcy et al. [11] identified backward slices of applicable
branches, and used a stride value predictor to provide live-
in values to the slices and in this way compute predictions
several loop iterations in advance. The technique requires a
value predictor and relies on live-in value predictability.
Control-flow decoupling does not require either.

Zilles and Sohi [42] proposed pre-executing backward
slices of hard-to-predict branches and frequently-missed
loads using speculative slices. Fork point selection, construc-
tion and speculative optimization of slices were done manu-
ally. Complex mechanisms are needed to carefully align
branch predictions generated by speculative slices with the
correct dynamic branch instances. Meanwhile, control-flow
decoupling’s push/pop alignment is far simpler, always
delivers correct predicates, and has been automated in the
compiler [33], [34].

Roth and Sohi [30] developed a profile-driven compiler
to extract data-driven threads (DDTs) to reduce branch and
load penalties. The threads are non-speculative and their
produced values can be integrated into the main thread via
register integration. Branches execute more quickly as a
result. Similarly, control-flow decoupling is non-speculative
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and automation is demonstrated in this paper. Control-flow
decoupling interacts directly with the fetch unit, eliminating
the entire branch penalty. It also does not have the micro-
architectural complexity of register integration. The closest
aspect is the VQ renamer, but the queue-based linking of
pushes and pops via physical register mappings is simpler,
moreover, it is an optional enhancement for CFD.

Chappell et al. [8] proposed simultaneous subordinate
microthreading (SSMT) as a general approach for leverag-
ing unused execution capacity to aid the main thread. Origi-
nally, programmer-crafted subordinate microthreads were
used to implement a large, virtualized two-level branch pre-
dictor. Subsequently, an automatic run-time microthread
construction mechanism was proposed for pre-executing
branches [9].

In the branch decoupled architecture (BDA), proposed
by Tyagi et al. [38], the fetch unit steers copies of the
branch slice to a dedicated core as the unmodified dynamic
instruction stream is fetched. Creating the pre-execution
slice as main thread instructions are being fetched provides
no additional fetch separation between the branch’s back-
ward slice and the branch, conflicting with more recent
evidence of the need to trigger helper threads further in
advance, e.g., Zilles and Sohi [42]. Without fetch separa-
tion, the branch must still be predicted and its resolution
may be marginally accelerated by a dedicated execution
backend for the slice.

Mahlke et al. [23] implemented a predicate register file in
the fetch stage, a critical advance in facilitating software
management of the fetch unit of pipelined processors. The
focus of the work, however, was compiler-synthesized
branch prediction: synthesizing computation to generate
predictions, writing these predictions into the fetch unit’s
predicate register file, and then having branches reference
the predicate registers as predictions. The synthesized com-
putation correlates on older register values because the
branch’s source values are not available by the time the
branch is fetched, hence, this is a form of branch prediction.
Mabhlke et al. alluded to the theoretical possibility of truly
resolving branches in the fetch unit, and August et al. [3]
further explored opportunities for such early-resolved
branches: cases where the existing predicate computation is
hoisted early enough for the consuming branch to resolve in
the fetch unit. These cases tend to exist in heavily if-con-
verted code such as hyperblocks as these large scheduling
regions yield more flexibility for code motion. Quinones
et al. [29] adapted the predicate register file for an OOO pro-
cessor, and in so doing resorted to moving it into the
rename stage so that it can be renamed. Thus, the renamed
predicate register file serves as an overriding branch predic-
tor for the branch predictor in the fetch unit. Control-flow
decoupling is innovative with respect to the above, in sev-
eral ways: (1) The BQ/TQ provide renaming implicitly by
allocating new entries at the tail. This allows for hoisting all
iterations of a branch’s backward slice ahead of the loop,
whereas it is unclear how this can be done with an indexed
predicate register file as the index is static. (2) Another
advantage is accessing the BTB (to detect Branch_on_BQ/
Branch on TQ instructions) and BQ/TQ in parallel,
because we always examine the head of the queue. In con-
trast, accessing a predicate register file requires accessing
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the BTB first, to get the branch’s register index, and then
accessing the predicate register file.

Decoupled access/execute architectures [4], [35] are
alternative implementations of OOO execution, and not a
technique for hiding the fetch-to-execute penalty of mispre-
dicted branches. DAE’s access and execute streams, which
execute on dual cores, each have a subset of the original pro-
gram’s branches. To keep them in sync on the same overall
control-flow path, they communicate branch outcomes to
each other through queues. However, each core still suffers
branch penalties for its subset of branches. Bird et al. took
DAE a step further and introduced a third core for execut-
ing all control-flow instructions, the control processor (CP).
CP directs instruction fetching for the other two cores (AP
and DP). CP depends on branch conditions calculated in the
DP, however. These loss-of-decoupling (LOD) events are
equivalent to exposing the fetch-to-execute branch penalty
in a modern superscalar processor.

The concept of loop decoupling has been applied in com-
pilers for parallelization. For instance, decoupled software
pipelining [12], [28], [39] parallelizes a loop by creating
decoupled copies of the loop on two or more cores that
cooperate to execute each iteration. All predicates in the
backward slices of instructions in the decoupled loops that
are not replicated must be communicated. However, predi-
cates are not sent directly to the instruction fetch unit of the
other core. Rather, the predicates are forwarded as values
through memory or high speed hardware queues and eval-
uated in the execution stage by a branch instruction.

9 CONCLUSION

In this paper, we explored the control-flow landscape by
characterizing branches with high misprediction contribu-
tions in four benchmark suites. We classified branches based
on the sizes of their control-dependent regions and the
nature of their backward slices (predicate computation), as
these two factors give insight into possible solutions. This
exercise uncovered an important class of high misprediction
contributors, called separable branches. A separable branch
has a large control-dependent region, too large for if-conver-
sion to be profitable, and its backward slice does not contain
any of the branch’s control-dependent instructions or con-
tains just a few. This makes it possible to separate all itera-
tions of the backward slice from all iterations of the branch
and its control-dependent region. CFD is a software/hard-
ware collaboration for exploiting separability with low com-
plexity and high efficacy. The loop containing the separable
branch is split into two loops (software): the first contains
only the branch’s predicate computation and the second con-
tains the branch and its control-dependent instructions. The
first loop communicates branch outcomes to the second loop
through an architectural queue (ISA). Microarchitecturally,
the queue resides in the fetch unit to drive timely, non-specu-
lative fetching or skipping of successive dynamic instances
of the control-dependent region (hardware).

Measurements of native execution of the four bench-
mark suites show separable branches are an important
class of branches, comparable to the class of branches for
which if-conversion is profitable both in terms of number
of static branches and MPKI contribution. CFD eradicates
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mispredictions of separable branches, yielding significant
time and energy savings for regions containing them.
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