
Rationale for a 3D Heterogeneous Multi-core
Processor

Eric Rotenberg, Brandon H. Dwiel, Elliott Forbes, Zhenqian Zhang, Randy Widialaksono,
Rangeen Basu Roy Chowdhury, Nyunyi Tshibangu, Steve Lipa, W. Rhett Davis, Paul D. Franzon

Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, North Carolina 27695

ericro@ncsu.edu

Abstract—

Single-ISA heterogeneous multi-core processors are com-
prised of multiple core types that are functionally equivalent
but microarchitecturally diverse. This paradigm has gained a lot
of attention as a way to optimize performance and energy. As
the instruction-level behavior of the currently executing program
varies, it is migrated to the most efficient core type for that
behavior.

This paper makes a case for implementing a heterogeneous
multi-core processor via 3D die stacking. The case is framed
from three angles: product strategy, architecture, and phys-
ical design. Product strategy: Die stacking enables plug-and-
play composition of heterogeneous processors from homogeneous
designs, a more efficient product customization strategy than
fabricating dedicated 2D heterogeneous processors. Architecture:
Frequent thread migrations substantially increase the benefits
of microarchitectural diversity, but only if migration can be
done with very low overhead. Thus, fast transfer of architectural
state and uninterrupted access to accumulated microarchitectural
state are essential. Physical design: Exchanging/referencing state
between cores with low latency requires many new wires that
must also be as short as possible, introducing intense physical
design pressures and tradeoffs in a 2D layout that are diminished
in a 3D layout.

We are currently researching applications and fabricating
prototypes of “H3”, a 3D heterogeneous multi-core processor.
H3’s salient features include: two core types for optimizing
latency and energy; a power management unit (PMU) that
schedules migrations; fast thread migration (FTM) and cache-
core decoupling (CCD) via face-to-face, microbump based buses;
face-to-back, through-silicon-via (TSV) based buses connecting
the core stacks to stacked L2 DRAM cache. The H3 project
spans applications, processor architecture, circuits, logic and
physical design/verification, design automation, fabrication and
post-silicon validation. There are close interactions among all
elements, both in terms of executing the project and in empirically
justifying 3D-enabled heterogeneity. Thus, H3 is illustrative of
the multi-disciplinary mission of this conference proceedings, the
International Conference on Computer Design.

I. INTRODUCTION

A single-ISA heterogeneous multi-core processor (HMP)
is comprised of multiple core types, that are functionally
equivalent but microarchitecturally diverse. Core types may
differ in their fetch and issue widths, pipeline depth, issue
policy (in-order vs. out-of-order (OOO) issue), sizes of ILP-
extracting resources (reorder buffer/physical register file, issue

queue, load and store queues, etc.), predictors, caches, and
frequency.

Microarchitectural diversity provides new performance and
power levers. Different programs or phases within a pro-
gram differ in the amount and distribution of instruction-
level parallelism (ILP), and the frequency and distribution of
performance-degrading events such as branch mispredictions
and cache misses. In a HMP, as the instruction-level behavior
of the currently executing program varies, the program is
migrated to the core type best suited to the new behavior as
judged by a figure of merit.

Much of the HMP literature focuses on two or several
core types with not-so-subtle contrasts in their peak perfor-
mance and energy efficiency, for example, a big OOO core
and a little in-order core, or some other fast/slow hybrid.
The objective is to either minimize energy consumption of
a single thread while minimizing latency impact [14], [20]
or maximize throughput/watt/area of multiprogrammed, multi-
threaded workloads [4], [8], [13], [16], [26]–[29], [31]. For
the single-thread case, the thread is migrated to the little core
for phases that derive negligible performance benefit from the
big core (phases with low ILP, frequent mispredictions, and/or
frequent last-level cache misses). Thus, energy consumption is
reduced, with only a mild slowdown compared to always run-
ning on the big core. For the multiple-thread case, the threads
are analyzed and ranked from lowest to highest performance-
sensitivity across core types. Threads with highest sensitivity
are given priority for the big core type and vice versa,
achieving the highest throughput for the chip’s power and area
budget.

Other HMP proposals consider more core types with no
fixed performance ranking among them: different program
phases achieve their highest performance on different core
types [7], [15], [23], [24]. In recent work, the objective is
to accelerate a single thread by migrating it to the highest-
performing core type for the current phase [25].

In this paper, we make a case for implementing HMPs
using 3D die stacking. Section II frames the case from three
angles:

• Product strategy – plug-and-play composition of many
HMPs from a small portfolio of single-core-type chips.



• Architecture – some applications of microarchitectural
diversity are significantly enhanced when frequent
migrations can be done with very low overhead.

• Physical design – 3D die stacking alleviates 2D phys-
ical design challenges when attempting to implement
low-overhead migration mechanisms.

Section III provides an overview of our H3 project, which
involves research, design and fabrication of a 3D HMP.

II. RATIONALE

A. Product Motivation: Plug-and-play Customization

3D integration is still a relatively immature technology.
Challenges remain, such as how to independently test chips
without fabricating the 3D stack (which would drive up cost),
how to cool sandwiched die, and so forth.

Nonetheless, it is incumbent on the community to antic-
ipate what 3D integration enables assuming it matures as a
technology. We believe there is excellent potential for design-
ing families of plug-and-play chips, united through standard
placements of through-silicon-via (TSV) and microbump based
taps, that can be used to efficiently compose customized
products for different applications and market segments.

In the case of HMPs, we advocate a product customization
strategy whereby many different HMPs are composed from
a smaller portfolio of homogeneous multi-core chips. For
example, with five different plug-and-play core types, one can
compose ten different two-core-type HMPs, ten different three-
core-type HMPs, five different four-core-type HMPs, and one
five-core-type HMP.

Without 3D plug-and-play, achieving the same number
of customized solutions requires 26 dedicated chip designs
instead of just five. Moreover, 3D plug-and-play mitigates risk
by decoupling core design teams and tapeout schedules. A late
or canceled core type does not sink other products. In fact,
staggering the core types may be beneficial in that it enables
releasing new products more frequently.

B. Architecture Motivation: The Importance of Low-Overhead
Thread Migration

This section is divided into three subsections. In the first
subsection, we show that the potential benefit of an HMP
is greater with fine-grain thread migration than with coarse-
grain thread migration. This assumes, however, that there is
no migration overhead. In the second subsection, we discuss
sources of migration overhead, and microarchitectural mech-
anisms to eliminate them. Finally, in the third subsection,
we show that fine-grain thread migration is very sensitive
to migration overhead, underscoring the importance of low-
overhead migration.

These factors are evaluated for an HMP with two comple-
mentary core types: a big, high-performance OOO core and
a little, low-power in-order core [10], [20]. A single thread is
migrated between the two cores, with the goal of maximizing
utilization of the little core (to extract the most energy savings)
while achieving close to the performance of the big core
(within a certain percentage) [14], [20].

0

0.2

0.4

0.6

0.8

1

100 1K 10K 100K

L
it

tl
e 

C
o

re
 u

ti
li

za
ti

o
n

migration interval

astar bzip2 gcc go h264ref hmmer

lbm libquantum mcf milc namd omnetpp

perlbench povray sjeng soplex sphinx3 xalancbmk

Fig. 1. Little core utilization vs. migration interval (for 5% performance
degradation compared to always executing on big core).

1) Fine-Grain Thread Migration: We begin with an ideal
experiment to get an upper bound on little-core utilization
at different migration intervals. The migration interval is the
minimum number of retired instructions for which the thread
must remain on the current core, before migrating to the other
core if it is deemed beneficial to do so. The experiment is ideal
in two respects:

• Oracle migration schedule: The migration schedule –
points at which the thread switches cores – is de-
termined using oracle knowledge. The benchmark is
executed on both cores, to determine the number of
cycles to retire each interval on both cores. Thus, the
slowdown of the little core relative to the big core
is known a priori for all intervals. Then, all intervals
are ranked from least slowdown to most slowdown,
and intervals are scheduled on the little core in rank-
order until the overall benchmark slowdown is 5%.
The goal of this experiment is to understand the
effect of switching granularity unclouded by artifacts
of the core scheduling algorithm. Many researchers
are exploring core scheduling for HMPs [4], [8], [13],
[16], [20], [25]–[29], [31], [34].

• Zero-overhead migration: Switching to the other core
incurs no pipeline drain/refill penalty, no time to
migrate execution, and no after-effects such as cold
misses/mispredictions. We will explain these over-
heads in more detail in the next subsection.

For each benchmark, we simulate the highest-weight 100
million instruction SimPoint [30] after a 10 million instruction
warm-up period.

Figure 1 shows little core utilization for different migration
intervals while still achieving within 5% the performance of
exclusively executing on the big core. In general, little core
utilization increases as the migration interval decreases, due
to the ability to exploit shorter intervals during which the
little core performs close to the big core. But what is most
interesting is that the trend is more prominent as the intervals
get shorter. Utilization increases only modestly from the 100K
to the 10K migration intervals, noticeably from 10K to 1K,
and significantly from 1K to 100.

2) Sources of Migration Overhead and Mechanisms to
Eliminate Them: There are three sources of migration over-
head:



• Drain and refill pipeline: Before the thread’s architec-
tural register state can be transferred to the destination
core, the source core needs to make a clean stop by
flushing the pipeline or stopping instruction fetch and
waiting for the pipeline to drain. Moreover, when the
thread resumes on the destination core, there is a
ramp-up penalty as the pipeline is refilled. Flushing
or draining the pipeline and then refilling it, is tanta-
mount to a branch misprediction. Thus, the overhead
is similar to the penalty for a branch misprediction.

• Transfer architectural register state: The thread’s ar-
chitectural register state needs to be transferred from
the source core to the destination core. Architectural
register state includes all register state defined in the
instruction-set architecture (ISA), including general-
purpose integer, floating-point, and SIMD registers,
the program counter, etc. Conventionally, the transfer
is done by two software handlers communicating
through memory: one on the source core to store
architectural register state to memory and another
on the destination core to load architectural register
state from memory. The two handlers synchronize
using, for example, a software lock. The overheads
are three-fold. First, there is the overhead of executing
stores, loads and other instructions in the handlers.
Second, both handlers’ memory operations inevitably
miss in the respective private L1 caches because the
memory blocks for saving/restoring registers ping-
pong between the cores. Third, using a software lock
to synchronize the handlers is also inefficient.

• Migration-induced misses and mispredictions: Migra-
tion causes extra cache misses and branch mispredic-
tions. An extra cache miss is incurred if, after mi-
grating, the thread re-references a block that is in the
previous cache but not in the current cache. In general,
extra misses and mispredictions occur because there
are training gaps while the thread is executing on the
other core, another thread may evict blocks/counters
while the thread is executing on the other core, and
stores on the other core cause invalidations.

Figure 2 shows the results of an experiment in which the
program is executed for 10 million instructions on a core and
then migrated to another core with cold caches and predictors,
where it executes for another 10 million instructions. The graph
shows the number of extra cache misses, branch mispredic-
tions, and cycles, compared to not migrating, i.e., executing
all 20 million instructions on the first core. The two cores
are identical and they each have private L1 and L2 caches and
share the L3 cache. Although the L3 cache is shared, additional
L3 misses can occur after migrating if the requested block is
dirty in the first core’s cache and must first be flushed to the L3
cache before being returned to the second core. Benchmarks
like perlbench, hmmer and libquantum incur relatively many
extra cache misses, yet the increase in cycles is modest. On
the other hand, mcf, omnetpp and xalancbmk incur relatively
few extra cache misses, yet the increase in cycles is significant.
The difference is in how well the benchmarks tolerate misses,
i.e., the amount of ILP, amount of MLP, and the number of
branch mispredictions that depend on cache misses.

0

200

400

600

800

1000

1200

0

10

20

30

40

50

60

70

cy
cl

es
 (

th
o

u
sa

n
d

s)

n
u

m
b
er

 o
f 

ev
en

ts
 (

th
o

u
sa

n
d

s)

I$ Misses D$ Misses L2 Misses L3 Misses Mispredictions Cycles

Fig. 2. Extra misses, mispredictions, and cycles due to the first migration.

We are currently researching microarchitectural mecha-
nisms to minimize migration overhead, including evaluating
and comparing 2D and 3D physical designs of these mecha-
nisms. Two of these mechanisms are Fast Thread Migration
(FTM) and Cache-Core Decoupling (CCD).

FTM addresses the second overhead, transferring architec-
tural register state. As shown in Figure 3a, FTM is a massively-
parallel swap of all bits of the two cores’ Architectural Register
Files (ARF). This all but eliminates the second overhead.

Figure 3a depicts the classic OOO microarchitecture style,
with its separate register files for committed state (ARF) and
speculative state (Reorder Buffer (ROB)). The more contem-
porary OOO microarchitecture style holds both committed and
speculative state in a unified Physical Register File (PRF).
FTM is more challenging for this style because (1) the
committed state is strewn throughout the PRF and (2) the
PRFs are different in size, just as the ROBs are different in
size. A parallel PRF-to-PRF copy works from the smaller to
larger PRF but not the other way around (and also requires
copying the mapping table). We are currently researching ways
to implement FTM for the PRF style of microarchitecture.

ARF ARF

ROB

ROB

Massively Parallel ARF Swap

(a) Fast Thread Migration (FTM).

IF

MEM

I-Cache
I-Cache

D-Cache
D-Cache

IF

MEM

(b) Cache-Core Decou-
pling (CCD).

Fig. 3. Microarchitectural mechanisms for low migration overhead.

CCD addresses the third overhead, migration-induced
misses. With CCD, when a thread migrates, it switches cores
but not L1 caches. As shown in Figure 3b, each core can access
the other core’s L1 instruction and data caches. Therefore, as
a thread migrates between cores, it keeps using the same I-
cache and D-cache, thereby completely eliminating migration-
induced misses.

Another key aspect of CCD is that it enables separately
customizing the L1 caches and the pipeline to a program. This
is a valuable specialization feature, since the best cache choice
is closely linked to temporal and spatial locality, whereas



the best pipeline choice is closely linked to the amount and
distribution of instruction-level parallelism.

Moreover, CCD supports multiple modes of operation.
Cores can be configured to use their own caches as usual.
A thread can be mapped to the best core, L1 I-cache, and L1
D-cache for its entire execution. A thread can frequently hop
between cores while using the same L1 caches throughout;
or, in an occasional twist, it can start using different caches if
they are better in the long-run after a major phase change. In a
different vein, a thread may choose to stay on the same core for
a long time, but frequently switch caches. For example, this
is useful for splitting a thread’s working set across multiple
L1 caches if it exceeds either L1 cache, using intelligent
“migration” algorithms specifically designed for such working
set splitting [21].

Depending on the microarchitecture implementation and
physical design, accessing the other core’s caches may be
slower and may have variable latency (e.g., asynchronous
interfaces). We expect 3D stacking can help overcome physical
design challenges facing planar designs of both FTM and
CCD. An initial investigation of physical design aspects is
presented in Section II-C. This research is on-going as part
of the H3 project.

3) Sensitivity of Fine-grain Thread Migration to Migration
Overhead: Previously, we demonstrated the value of fine-
grain thread migration assuming no migration overhead. In
this subsection, we measure the sensitivity of fine-grain thread
migration to migration overhead. This study requires a detailed
cycle-level simulator of the HMP with configurable migration
options. For transferring architectural register state, our simu-
lator can model both software thread migration and FTM. For
isolating the effect of migration-induced misses, our simulator
can disable or enable CCD. In this study, CCD is only applied
to private caches, and not to branch predictors.

Our in-house multi-core simulator can model heteroge-
neous OOO superscalar cores and an in-order scalar core, a ro-
bust memory hierarchy (L1-L3 caches, stream prefetchers and
victim caches at any level), a configurable-topology network-
on-chip, and a power management unit (PMU) (orchestrates
migrations). The ISA is MIPS64. The simulator is faithful to
how processors execute programs: cores execute-at-execute (so
wrong-path fetching, wrong values, etc., are modeled), and the
memory hierachy, network-on-chip, and PMU are event-driven
for faithful modeling of latency and bandwidth.

The simulated HMP configuration is described in Table I.
There are two core types of the big/little variety, with param-
eters as shown. Each core has private L1 and L2 caches and
they share an L3 cache. Private caches are kept coherent by
the L3 cache directory which implements the MESI protocol.

Migrations happen at least 1,000 instructions apart and
are directed by a schedule generated offline that maximizes
the little core utilization while allowing no more than 5%
performance degradation with respect to the big core. The
schedule was generated assuming no migration overhead,
hence, the observed performance degradation may be greater
than 5%. The PMU references the offline schedule to notify
the cores when to stop and start execution, using interrupt
packets sent over the network-on-chip. When a core receives
an interrupt packet, it immediately flushes the pipeline and

TABLE I. SIMULATOR CONFIGURATION

OOO In-Order
Frequency 1 GHz 1 GHz

Frontend Width 2 1
Issue Width 2 1

Depth 13 5
IQ Size (int/fp) 32/28 -

PRF Size (int/fp) 128/128 -
LQ/SQ Size 32/16 -
ROB Size 128 -

L1 I-Cache private, 32 KB, 8-way, 64 B block, 1 cycle, prefetch:yes
L1 D-Cache private, 32 KB, 8-way, 64 B block, 1 cycle, prefetch:yes

L2 Cache private, 256 KB, 8-way, 64 B block, 11 cycles, prefetch:yes
L3 Cache shared, 4 MB, 16-way, 64 B block, 40 cycles, prefetch:no

Coherence Protocol MESI
DRAM 200 cycles

jumps to a software handler. For software thread migration, the
handler either writes or reads the architectural register state to
or from a cacheable memory location, depending on whether
execution is stopping or starting, respectively. FTM instantly
transfers the architectural register state to/from the other core
instead of executing the software handler. Hence, the overhead
for FTM is confined to just the PMU packet delays and pipeline
drain/refill penalty due to stopping/restarting execution.

We simulate the SPEC CPU2006 benchmarks [2] compiled
for MIPS64 by executing 10 million instructions of warm-up
followed by 100 million instructions of measured execution
starting from the same SimPoints mentioned previously. Every
benchmark is single-threaded and runs alone on the HMP.
Therefore, when CCD is disabled and the thread migrates off of
a core, the abondoned core’s caches and predictors retain their
previous state for when the thread returns, with the exception
of cache blocks invalidated by stores from the other core since
the last migration (MESI coherence).

Figure 4 shows the number of misses in each cache level for
fine-grain thread migration normalized to no-migration (always
executing on the big core). Software migration not only suffers
from stale caches when the thread returns to a core, but, in
addition, memory blocks used to communicate architectural
register state (1) ping-pong between the caches and (2) evict
other blocks. Software+CCD may still incur extra misses due
to the latter effect. For FTM, extra misses are due to stale
caches only. If there are any extra misses for FTM+CCD,
they must be due to secondary effects, like small variations
in speculative execution ordering.

On average, Software migration more than doubles the
number of L1 misses (Figure 4a). Using CCD or FTM brings
the average down to just a 25% increase, and using both
together actually reduces the number of misses by 16%1.
Similar trends are observed for L2 misses (Figure 4b). Because
both cores access the same L3 cache, any increase in L3 misses
is not due to the L3 cache being stale per se. Rather, they
are coherence misses caused by requesting a block that is
dirty in the other core’s private caches. The L3 cannot service
the request until the block has been updated in the L3 and,
in the case of a write request, evicted in the other cache.
Hence, this scenario is counted as a miss because (1) the
request takes longer to service than an L3 hit and (2) these

1This reduction is an artifact of how misses were counted. We count
allocations caused by speculative loads, some of which are not retired. The big
core has deeper speculation, hence, this effect is more pronounced for always
executing on the big core compared to spending some time on the little core.



0

1

2

3

4

5

m
is

s
e
s
 n

o
rm

a
li

z
e
d

 t
o
 O

O
O

Software Software+CCD FTM FTM+CCD

5.9 8.6

(a) Additional L1 misses.

0

1

2

3

4

5

m
is

s
e
s
 n

o
rm

a
li

z
e
d
 t

o
 O

O
O

Software Software+CCD FTM FTM+CCD

5.6 5.0 11.4 14.8 5.1

(b) Additional L2 misses.

0

5

10

15

20

m
is

s
e
s
 n

o
rm

a
li

z
e
d
 t

o
 O

O
O

Software Software+CCD FTM FTM+CCD

2342 32 261 98

(c) Additional L3 misses.

Fig. 4. Factor of increase in cache misses, of fine-grain thread migration
relative to no-migration.

coherence misses are migration-induced. Furthermore, if the
same block is referenced again after the thread returns to the
original core, the access could miss if the block was evicted
by the L3 or if the access wishes to write and the block no
longer has sufficient privilege to be modified. Figure 4c reflects
these extra misses. While there is a staggering increase in
L3 misses for Software migration and FTM (23x and 11x,
respectively), Software+CCD and FTM+CCD are unaffected
by these coherence misses.

Figure 5 compares the performance of fine-grain thread
migration to the performance of the big core. Also shown
is the performance of the little core relative to the big core.
The performance target of 5% degradation is marked with the
horizontal dotted line. Software migration performs similarly
to running exclusively on the little core, with a mean slowdown
of 35%. This says that migration overheads cancel any benefit
of executing on the big core. CCD significantly improves
performance for all benchmarks, performing twice as well
for go and reaching the 5% degradation target for mcf, but
the mean falls short at 11% degradation. FTM alone does
not perform as well as CCD, with a mean degradation of
22%. Combining CCD with FTM, however, completely masks
migration overheads for six benchmarks and yields a mean

degradation of 7%. The remaining 2% is due to the pipeline
drain/refill penalty and not decoupling other stateful structures
(e.g., branch predictor).

To translate the little core utilization into energy savings,
Figure 6 shows the total energy of fine-grain thread migration
normalized to the big core. Also shown is energy of the little
core relative to the big core. Little core utilization, when
using migration, is plotted on the right axis and in the solid
line. Energy values were generated by feeding detailed activity
counts from the simulator to the McPAT tool [17]. Total energy
was calculated for 45nm technology and includes leakage and
dynamic components for both cores and all three levels of
cache but excludes energy consumed by the CCD and FTM
logic. Cores and caches are ideally power-gated when not in
use. That is, cores and caches only consume power while
they are assigned to a thread. This is realistic for the cases
without migration and the cases with CCD because the cores
and caches being powered off need not preserve state between
migrations. However, these results are optimistic for the two
migration cases without CCD (Software and FTM) because the
cache not in use cannot be completely powered off without
losing the state of the cache. The figure shows how more
energy is saved as the little core utilization increases, regardless
of the low-overhead migration techniques used. Benchmarks
like hmmer and lbm spend less than 5% of their time on
the little core but still reap 9% and 4% energy savings with
FTM+CCD. On the other end, omnetpp spends 62% of its
time on the little core and saves 47% energy for only a
5% hit to performance. The mean energy savings is 29% for
Software+CCD, 23% for FTM, and 31% for FTM+CCD.

Figure 7 provides the lynchpin argument with respect to
fine-grain thread migration and low-overhead migration tech-
niques. It shows (a) average normalized performance and (b)
average normalized energy, for 1K (fine-grain), 10K (coarse-
grain) and 100K (very coarse-grain) migration intervals and
the baseline migration scheme compared to low-overhead mi-
gration. The best scheme overall, both performance-wise and
energy-wise, is FTM+CCD @ 1K: 31% energy savings with
only 7% slowdown. Software migration has better performance
and energy at 10K than at 1K due to its high migration
overhead. But in compromising the migration frequency, it
underperforms the overall winner: 21% energy savings with
14% slowdown. Even at 100K Software migration cannot meet
the 5% degradation target.

C. Physical-Design Motivation: Achieving Low-Overhead
Thread Migration

The low-overhead migration mechanisms discussed in the
previous section require many additional wires and extra logic
(muxes). It is also important for these wires to be as short
as possible to minimize their latency. In this section, we
explore the pressure that these two requirements exert on a 2D
layout of FTM, and project the extent to which a 3D layout
reduces the pressure. In particular, we explore tradeoffs among
routability, area and latency.

1) Experimental Framework: For our experiments, we ex-
tract a partial core from the FabScalar RTL [7]. The RTL
includes the PRF and execution lanes (Register Read stage,
function units, and Writeback stage including bypasses). This



0

0.2

0.4

0.6

0.8

1

1.2
n

o
rm

al
iz

ed
 t

o
 b

ig
 c

o
re

Little Core Software Software+CCD FTM FTM+CCD

Fig. 5. Performance normalized to the big core.

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

n
o

rm
al

iz
ed

 t
o

 b
ig

 c
o

re
 

Little Core Software Software+CCD FTM FTM+CCD Utilization

Fig. 6. Total energy normalized to the big core (left axis) and little core utilization (right axis).

0

0.2

0.4

0.6

0.8

1

1.2

1,000 10,000 100,000

n
o

rm
al

iz
ed

 t
o

 b
ig

 c
o

re

migration interval

Software FTM+CCD

(a) Normalized performance.

0

0.2

0.4

0.6

0.8

1

1.2

1,000 10,000 100,000

n
o

rm
al

iz
ed

 t
o

 b
ig

 c
o

re

migration interval

Software FTM+CCD

(b) Normalized energy.

Fig. 7. Performance and energy normalized to the big core for different
migration intervals.

represents only the logic that influences the cycle time of the
PRF. Eliminating extraneous logic reduces the time needed for
synthesis, placement and routing (SPR), which is important as
we sweep through many placement densities for three differ-
ent PRF designs (no FTM, 2D FTM, 3D FTM). Moreover,
focusing on just the PRF-related stages yields more consistent
results. FabScalar currently has pipeline stage imbalances that
give SPR considerable leeway on the delay of some stages.
This leeway masks some of the effects that we measure, causes
arbitrary variations across different SPR runs, etc.

With the RTL of this partial core as a starting point, we
consider the following three designs. Please refer to Figure 8
for simplified depictions of these designs. (We refer to the
partial core simply as “core” from now on.)

• 2D baseline: This is a 2D layout of two instances
of the core without FTM. Figure 8a depicts one
of the cores (the other core is not shown as there
is no connectivity between the cores). The core is
represented with a gray substrate. On the substrate is
a PRF, in blue, and three example function units, in
yellow. Two bitcells of the PRF are highlighted in teal.
Since each function unit reads from the PRF in its
Register Read stage, there are red wires drawn from
each bitcell to each function unit.

• 2D FTM: This is a 2D layout of two instances of
the core with FTM. Figure 8b shows how the layouts
of the two cores can be mirrored, with their PRFs



(a) 2D baseline (only one of two cores shown). (b) 2D FTM. (c) 3D FTM.

Fig. 8. Depictions of 2D and 3D layouts of fast thread migration (best viewed in color).

placed close together at the center of the die. The
diagram also depicts the per-bitcell wiring required
for swapping the PRFs. The extra wires increase the
already congested area near the bitcells.

• 3D FTM: This is a projected 3D layout of two
instances of the core, one on each tier, with FTM.
This design is depicted in Figure 8c. For clarity, the
top substrate is removed and the top PRF and function
units are made transparent. For FTM, the PRFs are
connected by face-to-face vias (defined in Section III),
shown in white. We expect the congestion of 3D FTM
to fall somewhere between 2D baseline and 2D FTM.

We are in the early stages of getting access to and
implementing physical designs with a commercial 65nm 3D
kit. Consequently, 3D FTM is a 3D projection, based on 2D
placement and routing of the cores with routing obstructions
that model the face-to-face vias connecting the two PRFs.

We modeled the routing blockages of face-to-face vias as
follows.

First, we added a new D flip-flop to the LEF (geometry)
file of the standard cell library. It is derived from an existing
D flip-flop. Its length is increased by two times (2x) the
diameter and pitch of a face-to-face via (coincidentally, it
turns out that the standard cell height already matches the
via diameter). The diameter and pitch were obtained from
a Tezzaron whitepaper [11] (see “bond points”). There are
two vias per bitcell, to account for the incoming and outgoing
bitcell values. The new flip-flop is about three times as long
as the original flip-flop. The description of the new flip-flop
also includes metal layer obstructions (wiring blockages) on
all metal layers above the extended area of the flip-flop. Thus,
when the new flip-flop is used for the PRFs, the routing
algorithm steers clear of a vertical column through all metal
layers down to each bitcell.

Second, the synthesized netlist is adjusted before placement
and routing. All PRF flip-flops are replaced with instances of
the new flip-flop. Since we expect the connected bitcells to be
placed directly above and below each other, the obstructions
account for the routing that would be generated by a 3D
CAD flow or inserted by the physical designer. So one final
modification to the synthesized netlist is to remove the FTM
connections between the PRFs – this keeps the muxes and
bitcells intact, but eliminates the duplicate wiring that has been
accounted for in the obstructions.

3D FTM is a conservative model in two respects. First,
it may not be necessary to obstruct all metal layers. Each
face-to-face bond point can be placed on the top-most metal
layer, freeing the router to complete connections to flip-flops
underneath. Second, the diameter and pitch of the face-to-face
vias are for a 130nm process [11]. They may be smaller in the
65nm process.

RTL is synthesized to the FreePDK 45nm standard cell
library [32] using Synopsys Design Compiler version E-
2010.12-SP2. All three designs are placed and routed using
Cadence Encounter RTL-to-GDSII System 9.11.

2) Results: To estimate the physical design impact, we
perform an automated place-and-route of the three designs.
The only placement constraint, that we applied, is that each
core must stay within a bounding box on one half of the die.
Wiring congestion can be inferred from these routed designs by
counting the number overflowed gcells. Gcells define a region
of routing within the total design, and consist of a number
of routing tracks. When global routing must pass through a
gcell, the number of used tracks within that gcell is augmented
by one. Once global routing is completed, a gcell with more
signals routed through it than its capacity is considered an
overflow.

For each design, we vary the standard cell placement den-
sity from 80% to 30% and measure the number of overflows,
area, and latency of the PRF-to-PRF value exchange (for 2D
FTM and 3D FTM).

The graph in Figure 9 shows overflows (y-axis) as a
function of area (x-axis). Each point is labeled with the
placement density used for that point. As one would expect,
increasing density decreases area but increases overflows. If
confined to a 2D layout, congestion is drastically increased
when the PRFs are connected, evident in the large increase in
overflows from 2D baseline to 2D FTM for a given area. This
substantial increase in congestion may lead to a difficult-to-
route and/or lower frequency design at best, or an unroutable
design at worst. The graph also confirms our hypothesis that
3D FTM should fall between 2D baseline and 2D FTM. In
fact, we see that 3D FTM is always better (fewer overflows)
than 2D FTM for a given area.

The graph in Figure 10 factors latency into the tradeoff
analysis for the two FTM designs. The graph re-plots overflows
on the primary y-axis with solid lines, and superimposes the
latency of the PRF-to-PRF value exchange on the secondary
y-axis with dashed lines. The latency of 2D FTM is measured
directly from the post-routed netlist. The latency of 3D FTM



30%40%50%60%70%80%
30%40%

50%

60%

70%

80%

30%

40%

50%

60%
70%80%

0

200

400

600

800

1000

1200

5.0E+5 1.0E+6 1.5E+6 2.0E+6 2.5E+6

o
v
er

fl
o
w

s 
(t

h
o

u
sa

n
d

s)

area (sq. microns)

2D baseline 3D FTM 2D FTM

Fig. 9. Routing overflows due to placement density and PRF connectivity.

0

0.5

1

1.5

2

2.5

0

200

400

600

800

1000

1200

5.0E+5 1.0E+6 1.5E+6 2.0E+6 2.5E+6

la
te

n
cy

 (
n
s)

o
v

er
fl

o
w

s 
(t

h
o

u
sa

n
d

s)

area (sq. microns)

3D FTM Overflows 2D FTM Overflows 3D FTM Latency 2D FTM Latency

Fig. 10. PRF-to-PRF swap latency.

is constant and is assumed to be the lowest latency of 2D
FTM (at its most dense point, where wires are shortest). We
reason that the latency is not only low, but also independent
of density, because every flip-flop is directly above or below
its counterpart. In contrast, the latency of 2D FTM is very
sensitive to density. Thus, the 2D layout suffers from a difficult
tradeoff: either increase density to reduce latency, and pay
the price in terms of lower routability and more physical
design effort, or decrease density and pay in terms of higher
latency. The 3D layout does not pose this tradeoff: density can
be decreased for a more routable design, with no impact on
latency.

As a final comment, exchanging or referencing state be-
tween cores introduces floorplanning challenges in a 2D de-
sign. A 2D design requires the structures holding the state to
be exchanged or externally referenced, to be near one edge of
each core. This placement may not be optimal for performance
and energy of the core. That is, intra-core and inter-core
floorplanning may have competing interests. Moreover, as
additional structures are considered for inter-core exchange or
referencing, it may not be feasible to locate all of them at one
edge. With 3D die stacking, structures can be placed anywhere
within the core as long as their counterparts are directly above
or below. This satisfies both intra-core and inter-core interests
and allows multiple structures to be exchanged or referenced
between cores.

III. H3 PROJECT

We first describe the H3 architecture used for research and
design space exploration. Then, we describe two tapeouts:

1) Tapeout 1: This is a 2D IC, the main purpose of which
is testing and debugging the dual core types, FTM
logic, and CCD logic.

2) Tapeout 2: This is a planned 3D IC, with the two
core types laid out on different tiers, FTM and CCD
reimplemented in the 3D process, and a stacked
DRAM cache.

A. H3 Architecture

1) Tiers: At the heart of the H3 architecture are the two
tightly-coupled core types, shown in Figure 11a. The bottom
chip, shown in red, is a homogeneous multi-core of Core Type
1, the high-performance core type. The top chip, shown in blue,
is a homogeneous multi-core of Core Type 2, the low-power
core type.

The figure also highlights the finer details of the physical
implementation of the two tiers. The transistor and metal layers
for each chip are indicated with darker shading compared
to the bulk silicon (dark red and blue, respectively). The
transistor/metal side is the chip’s “face” and the other side
is the chip’s “back”. The two core types are tightly coupled
by virtue of bonding the chips “face-to-face”. This orientation
places the two chips’ metal layers in direct contact, effectively
sharing a twice-deep metal stack. This allows for low latency,
high bandwidth interconnect between the two core types.
We call the modules that control face-to-face interconnect
structures, F2F modules. There are F2F modules for fast thread
migration (FTM) and cache-core decoupling (CCD).

All tiers in the 3D stack have through-silicon-vias (TSVs):
metal conduits that connect a chip’s face and back. This allows
for electrically connecting two chips that are stacked back-to-
back (this orientation will be shown in subsequent figures) or
face-to-back. Notice how the TSVs of the bottom-most tier do
not fully extend to the chip’s back. Only intermediate tiers are
thinned such that the TSVs are usable.

In the generalized H3 architecture, we can repeat this two-
tier structure. This is illustrated in Figure 11b. Repetitions
of the two-tier structure are stacked back-to-back, connecting
through TSVs.

3D integration enables stacking DRAM tiers on top of the
logic tiers, as shown in Figure 11c. (The top-most DRAM
tier does not need to be thinned as previously discussed for
the bottom-most logic tier.) The stacked DRAM is managed
as a shared level-2 (L2) cache for all cores on all tiers.
DRAM provides greater capacity than SRAM for the same
footprint, and 3D stacking makes possible lower latency, higher
bandwidth access than external DRAM.

There needs to be a route by which the entire 3D stack
can connect to the outside world. The interposer provides
this route. It is primarily interconnect and pads. Pads connect
to bumps for surface-mounting the stack on a printed circuit
board. A cutout in the board allows the logic tiers and heat
sink to rest below the surface-mount point.

2) Connecting Cores to the Shared L2 DRAM Cache:
To understand how cores are connected to the L2 cache, we
need to look at all of the major components on a generalized
multi-core tier. Figure 12a provides this view. Note that this is
not necessarily the ultimate floorplan, nor are the components
necessarily drawn to scale. The use of an 8x8 crossbar to
connect eight cores to eight L2 cache banks is inspired by
the OpenSPARC T2 [1], for which RTL is available. The
components already covered in this section are the cores and
F2F modules for FTM and CCD.

The components labeled crossbar, L2 bank controller, and
SDB exist in all multi-core tiers, but are only active in the



transistors and M0-M6 metal

bulk (not thinned for lowest tier)

Core Type 1 (high-performance)

Core Type 2 (low-power)
F2F interface (M6-to-M6 contacts)
transistors and M0-M6 metal

bulk (thinned)

through-silicon-via (TSV) based F2B buses

(a) Two tightly-coupled core types. (b) Repetition of two-
tier structure.

DRAM

DRAM

DRAM

interposer

heat sink

(c) With stacked DRAM.

Fig. 11. H3 architecture.

Core 0
F2F FTM
F2F CCD

8x8 
crossbar

SCB
L2 bank 

ctrl
SDB

Core 1
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 2
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 3
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 4
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 5
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 6
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

Core 7
F2F FTM
F2F CCD

SCB
L2 bank 

ctrl
SDB

8 core-side
crossbar ports

8 cache-side 
crossbar ports

Stacked Core Bus Stacked DRAM Bus

(a) Major components on a generalized multi-core tier. (b) Color key: Dark-gray: Components not used. Blue: TSV segment
of stacked core bus. Green: Non-TSV segment of stacked core bus.
Red: TSV segment of stacked DRAM bus.

Fig. 12. Connecting cores to the shared L2 DRAM cache.

tier closest to the stacked DRAM. Only one instance of these
components is actually needed. The two options we considered
are (1) replicate this logic and use only the top tier’s instance,
and (2) implement a dedicated tier. We opted for (1) as we
deemed it less costly for an academic prototyping project
despite redundant logic. We will return to these components
shortly.

The component labeled Stacked Core Bus (SCB), expands
the number of cores that can access the same core-side port
of the crossbar. In particular, it provides arbitration among
all cores in the same vertical slice, i.e., cores in the same
position across tiers. We propose a redundant, tandem arbi-
tration scheme so that no one tier is deemed the sole arbiter.
All instances of SCB in a vertical slice receive all request
signals, thus, each instance can locally infer the same winner
and update priorities identically. The winner then sends its
request packet to the core-side port of the crossbar via the

SCB. Buses for request and response packets span the vertical
slice. If there are only two multi-core tiers, as in Figure 11c,
then these logical buses have no TSV segments. If the two-tier
structure is replicated, as in Figure 11b, then the logical buses
have TSV segments.

The crossbar on the top multi-core tier routes request
packets from the eight core-side ports to the eight cache-side
ports, serializing packets destined from multiple core-side ports
to the same cache-side port. (The destination bank is based on
standard block address interleaving.) The same is done for
response packets in the reverse direction.

A DRAM bank is simply a collection of bytes. The role of
each L2 bank controller is to manage the bytes of its DRAM
bank as a cache. Similar to past work [18], data and metadata
(tags, LRU, etc.) for memory blocks are colocated in a DRAM
page. When the L2 bank controller receives a block request
from the crossbar, it determines which DRAM page the block



address maps to (i.e., the set index) and sends the appropriate
commands to the DRAM bank to reference that page. Both the
commands and the page’s payload are transferred over TSVs
connecting the top multi-core tier to the interposer, as shown in
Figure 11c. The Stacked DRAM Bus (SDB) is the component
that controls these TSVs.

B. Tapeout 1

This is a 2D test chip, the main purpose of which is testing
and debugging the dual core types, FTM logic, and CCD logic.
The test chip taped-out in May 2013 and is expected back from
the foundry in August 2013.

1) Dual Core Types and Debug Support: We used the
FabScalar toolset [6], [7] to automatically generate the syn-
thesizable RTL of the two core types. Both are OOO cores,
but Core Type 1 is 2-way superscalar and Core Type 2 is scalar
and has smaller ILP-extracting resources. Table II shows the
full configurations of the two core types.

We made two provisions for debugging the cores:

First, we inserted scan chains in Core Type 2 (the smaller
core). Scan chains provide fine-grain controllability and ob-
servability, single-step functionality for debugging, and the
ability to manually intervene and circumvent modules that rely
on SRAMs generated by a memory compiler – mainly the
caches and branch predictor. We consider SRAMs to be high-
risk aspects of the design.

Second, we also included a third, dedicated Debug Core
in the tapeout. It is the same as Core Type 1 (the larger core)
except that the L1 instruction and data caches are replaced with
small scratchpad memories synthesized to D flip-flops, and
scan chains were inserted to gain the rich debug support just
described. Execution on the Debug Core is launched by scan-
ning a microbenchmark into the scratchpads and architectural
registers. Similarly, results of the microbenchmark are scanned
out for verification and debug. Using scratchpads mitigates
significant risk, as the caches not only have many SRAM
macros but are also very complex overall, especially the L1
data cache which was retooled from the OpenSparc T2 [1].

2) L1 Caches: FabScalar-generated cores do not have L1
instruction and data caches, so these had to be designed
separately.

The L1 instruction cache was designed from scratch. This
was doable with limited resources because the I-cache is
considerably simpler than the D-cache and we had a reasonably
good starting point from another project [9].

The data cache for an OOO core is a very complex
machine, with many activities going on in parallel, not to

TABLE II. H3 CORE TYPES

Core Type 1 Core Type 2
Frontend Width 2 1

Issue Width 3 3
Depth 9 9

IQ Size 32 16
PRF Size 96 64

LQ/SQ Size 16/16 16/16
ROB Size 64 32

L1 I-Cache private, 4 KB, 1-way, 8 B block, 1 cycle, prefetch: no
L1 D-Cache private, 8 KB, 4-way, 16 B block, 2 cycle, prefetch: no

mention the cache basics. This is the first reason for retooling
the L1 data cache from the OpenSparc T2 [1]. The second
reason is that we want to leverage the OpenSparc T2 crossbar
and L2 cache design for the second tapeout.

Integrating the L1 data cache into the FabScalar cores was
non-trivial. One major design task was retooling the MHSRs
(miss handlers). The T2 features multithreaded in-order cores,
thus, the original data cache design provisioned one MHSR
per thread to exploit memory-level parallelism across threads.
This had to be adapted to a single thread with multiple in-
flight loads: per-thread MHSRs were tricked into serving as
per-load MHSRs. In hindsight, we are fortunate that the T2
is multithreaded. Another major design task was retiming the
core’s load/store execution lane (i.e., changing pipeline stage
boundaries) to match the pipeline stages of the T2’s data cache.
Another major design task was adding load miss and replay
functionality into the FabScalar cores, leveraging existing logic
for replaying disambiguation-stalled loads.

A nice artifact of the T2 design is that, memories that are to
be implemented in SRAM, are already partitioned in the RTL
into subarrays that are small enough to be reliably generated by
a memory compiler. We leveraged this aspect in the physical
design phase.

3) Fast Thread Migration (FTM): Swapping the two cores’
register files is an exercise in asynchronous logic design
because the two cores are in different clock domains. The basic
circuit for swapping two bits is shown in Figure 13. We defer
discussing the overall migration sequence until Section III-B5:
it involves an asynchronous handshaking protocol amongst the
four distributed units shown at the bottom of the figure. Let us
assume for now that the two cores have suspended execution
and the Swap Unit is in a state that reflects the suspension.
Because the cores are idle, they are not attempting to access
their register files. It is safe for the Swap Unit to assert
its “swap” control signal, which switches the clock inputs
of the flip-flops from using core clocks to using the Swap
Unit’s clock, “swap clock” (see star callouts in Figure 13).
One edge of swap clock executes the swap. Then, the Swap
Unit reapplies the core clocks to the flip-flops to prepare for
resuming execution.

4) Cache-core Decoupling (CCD): With CCD, a core has
the ability to access the other core’s L1 caches. There are two
timing issues with accessing an alternate cache.

The first issue is that the core and alternate cache are
in different clock domains, hence, they are not synchronized.
One solution is to operate the core and cache asynchronously
and interface them with synchronizing queues (a globally-
asynchronous/locally-synchronous, or GALS, design). Another
solution is to switch the clock source of the cache to the
core that is accessing it, for synchronous operation. Each
L1 cache must have its own clock tree so that its clock
source can be independently switched. In addition, its clock
tree must be balanced with respect to the clock trees of
both cores so that it can operate synchronously with either
core. Cadence Encounter’s “clock grouping” feature enables
designers to generate multiple balanced clock trees for 2D
designs. Extending this capability to 3D designs is an open
design automation problem.



Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

swap

swap_clk

swap_clk

core_clk

wr_data

core_clk

wr_data

F2F bump F2F bumpF2F bumps

Swap 
Unit

asynchronous
handshakingGlobal

Migration 
Unit

Local
Migration 

Unit

Local
Migration 

Unit
coresFPGA

Fig. 13. The Swap Unit implements the one-cycle register file exchange.
An overall thread migration is orchestrated by the four units shown (GMU,
LMUs, Swap Unit).

The second issue is that the two cores may be designed to
operate at different frequencies, and the core with the higher
frequency may not be able to accommodate the other core’s
caches within its clock period. This is not an issue for the
GALS approach. For the synchronous approach, either the
frequency of the higher-frequency core must be decreased
(slowing down the whole core) or it must support a config-
urable hit latency (slowing down cache hits). Alternatively, we
can avoid both measures by placing a global constraint on L1
cache access times, whereby the access times of all L1 caches
must be less than the clock period of the higher-frequency
core.

CCD was implemented in our first tapeout to test the switch
logic from a functional standpoint. As such, our solution to the
two timing issues is very simple and suboptimal: we balanced
the clock trees of the two cores, and to test CCD, we will
apply the same clock source to both cores at a safe frequency.

CCD’s MUXes increase the access times of the core’s
own caches. We estimate the impact by synthesizing the two
cores with CCD for the data cache using FreePDK 45nm [32].
Results of this experiment are shown in Table III. To interpret
the results, note that the data cache access is divided into three
pipeline stages: generate and supply address to the data cache,
access the data cache and latch data and meta-data (tags, etc.),
compare tags and select data from either the data cache or
store queue. The CCD address and data muxes affect the first
and third stages, respectively. The first row of Table III shows
that the cycle time is unaffected by CCD owing to the fact that
neither the first nor third stage is the critical path. To gauge
the latency impact of the muxes, we examine the increase in
delays for the first and third stages: core-to-cache and cache-
to-core, respectively. Core-to-cache delay increased by 0.7%,
from 2.202 to 2.219 ns. Cache-to-core delay increased from
0.697 to 0.743 ns, or a 6.6% increase. The area of both cores
increased by only 0.03%.

The original motivation for CCD is to eliminate migration-
induced misses by always accessing the same cache even as the
thread switches cores. Full exploitation of CCD is much more
involved than this, however. In the broadest generalization,

the thread migration policy must choose the best core, L1
instruction cache, and L1 data cache for the next program
phase, factoring-in ILP, core frequency, cache hit times (in-
cluding overheads of synchronizing to the other core’s cache),
projections of future capacity and conflict miss rates, and
projections of migration-induced misses.

5) Power Management Unit (PMU): The role of the Power
Management Unit (PMU) is to initiate and coordinate thread
migrations. Our implementation of the PMU is distributed
among the four units shown at the bottom of Figure 13: the
Global Migration Unit (GMU), two Local Migration Units
(LMU) (one in each core), and the Swap Unit.

We use the term global migration to refer to a migration
that takes into account the activity of both cores. In our design,
both cores have embedded performance counters that are avail-
able off-chip. The GMU can query the performance counters
and use their values to gauge when to initiate migrations.
Global migrations can take place between two active cores
or between one active core and one inactive core. We did not
include a GMU in the test chip, opting instead to bring out
the performance counters and global migration signal to pads.
This gives us the freedom to implement a variety of global
migration policies that would not have been possible if the
GMU were on-chip.

A local migration is a migration that is initiated by the
thread itself, using a new instruction added to the instruction
set. A core executing this new instruction does not take into
account the activity of the other core, therefore, only one
thread can be running on the two cores if local migrations are
used. Despite this limitation, local migration also lends itself
to exploration since we can trigger migrations at key points in
a program’s execution by inserting the migration instruction
into the program binary.

To perform a global migration, the GMU signals both
LMUs and the Swap Unit. Each LMU interrupts its core to get
to a precise state. When the core is at a precise state, its LMU
signals the Swap Unit. The Swap Unit waits for both LMUs
to signal that their cores are precise. When this is the case, it
is safe to perform the swap. When the swap is complete, the
Swap Unit signals both LMUs to resume execution on their
cores and the GMU to resume monitoring.

When a core retires a local migration instruction, it gets
itself to a precise state and signals its LMU, which in turn
signals the Swap Unit. The Swap Unit can do the swap
immediately because both cores should now be idle (only one
active core to begin with). When the swap is complete, the
Swap Unit signals the other core to resume execution (the
original core remains suspended).

The handshaking among GMU, LMUs, and Swap Unit is
made more difficult by the fact that all of them are in different
clock domains (globally asynchronous logic). This requires

TABLE III. CCD OVERHEADS AFTER SYNTHESIS.

Without CCD With CCD Diff.
Cycle time (ns) 5.5 5.5 0 %

Max delay, core-to-cache (ns) 2.202 2.219 0.7 %
Max delay, cache-to-core (ns) 0.697 0.743 6.6 %

Area (µm2) 4,845,384 4,846,780 0.03 %



carefully architected synchronization logic. Our design uses
edge-detecting circuits and a protocol that coordinates this
exchange. All handshake signals pass through these synchro-
nization circuits.

6) Physical Design: An important lesson from this tapeout
is that I/O pads constrain the design. Pads are a severely
limited resource constrained by die area, packaging, and power
delivery. Many pads are dedicated to power delivery leaving
only a fraction for signal pads. Compounding the problem are
multiple independent experiments on the chip all competing
for pads. Even within an experiment, multiple components
compete for pads. A prominent example is the heterogeneous
pair experiment with its two cores, each having memory buses
to transfer blocks to/from their caches.

Therefore, nailing down the chip’s dimensions, the pack-
age, and the pad ring early in the design is vital. Only after
this step can pads be allocated to experiments and components
within them. It is also vital to be able to adapt an experiment
to changes in pad allocations.

To mitigate risk, we panned the option of sharing pads
among experiments and cores. Multiplexing presents a single
point of failure affecting all sharers.

The drawback of private pads is that there are fewer pads
available to each experiment and core. Tapeout 1 has 400
total pads. There are four experiments and each was allocated
100 pads. The experiments and pad breakdowns are shown in
Table IV.

The cores are the most affected, as they could each use
hundreds of signal pads in an ideal world. Instead, each core
in the heterogeneous pair experiment was allocated about 30
signal pads. The narrow bandwidth drastically increases the
block transfer latency resulting in an unusually high L1 miss
penalty.

Serializing/deserializing (SERDES) modules are used to
to squeeze a core’s logical I/Os into fewer physical pads.
The SERDES RTL is parameterized which allowed us to
easily adapt to changes in pad allocations. The off-chip FPGA
tester (Section III-B7) will use SERDES modules that mirror
those on the chip. The SERDES modules also synchronize
the communication between the chip and FPGA tester by
having the clocks forwarded to each other. Synchronization
is important for tolerating variations in off-chip wire delay
and also enables the L2 cache in the FPGA tester to run
asynchronously with respect to the cores.

Figure 14 shows physical design views of Tapeout 1. The
four experiments are shown with different colors in Figure 14a:
heterogeneous pair - green, debug core - blue, isolated F2F
bus - yellow, isolated F2B bus - red. Table V provides design
statistics for the tapeout. There are 56 memory macros. These
are evident as regular arrays in Figure 14a.

TABLE IV. TEST CHIP CONFIGURATIONS

Configuration Experiment Signal/Supply Pads
A Heterogeneous core pair 63/37
B Debug core 13/87
C Isolated F2F bus and validation circuits 62/38
D Isolated F2B bus and temperature sensors 49/51

There are ten clock domains (Table V). Three of these
are in the heterogeneous pair: two cores and F2F FTM.
Thus, the cores may operate asynchronously and with different
frequencies.

Table VI shows the amount of time to run the synthesized
netlist for the entire chip through the complete design flow
(15.5 hours). Obviously, this is after months of effort setting
up the complete design flow and getting it working all the
way through without errors. The overall physical design effort,
measured from unpacking libraries and IP to tapeout, took 5.5
months.

(a) Chip placement and pads. (b) Chip routed.

Fig. 14. Physical design views of Tapeout 1.

7) Post-silicon Validation: Development activities have
continued after the tapeout of the 2D test chip. These tasks
revolve around chip bring-up and test.

The chip will be wire-bonded to a package, and then the
package will be mated to a printed circuit board (PCB), called
a mezzanine, which can be inserted into the connector of a
Xilinx ML605 [3] FPGA board. Package and wire-bonding
constraints do not allow us to wire-bond all 400 pads to the
package. Only 100 pads can be wire-bonded. To support all
the experiments, we use one chip and package per experiment
and wire-bond only its pads to the package. So there are four
wire-bonded configurations, A–D, shown in Table IV. Due to
different interleavings of supply and signal pads across the
different configurations, four different mezzanine PCBs need
to be designed.

The FPGA will serve as the chip tester. For Configuration
A, a synthesizable testbench is currently being designed which
consists of three main modules:

• A serializer/deserializer pair and T2 L2 controller
which is used to handle memory requests from the
cores.

TABLE V. TAPEOUT 1 DESIGN STATISTICS.

Technology IBM 8RF (130 nm)
Dimensions 5.25mm x 5.25 mm

Area 27.6 mm2

Transistors 14.6 Million
Cells 1.1 Million
Nets 721 Thousand

Memory macros 56
Clock domains 10

TABLE VI. TAPEOUT 1 DESIGN EFFORT STATISTICS.

Tool time 15.5 hours
Backend design time 5.5 months



• A DDR3 memory controller, automatically generated
using the Xilinx Memory Interface Generator, which is
used to interface with the on-board memory DIMM.
Additional glue logic will then be used to reformat
memory requests from the cores and pass those re-
quests to the memory.

• The Global Migration Unit (GMU) (Section III-B5)
is part of the FPGA testbench to facilitate thread
migration policy research.

Additional testbenches will be written that serve the spe-
cific needs of each of the remaining configurations (Configura-
tions B through D). These include scan support for the debug
core, F2F and F2B control signal support, and so on.

In addition to developing the tester, we developed a com-
piler that will assist in writing targeted microbenchmarks. The
compiler parses a new programming language with syntax that
is a mix of assembly and high-level languages. The utility of
the language and compiler is in the very tightly controlled
code which it emits. The compiler does no optimizations on
the code and requires the programmer to allocate registers by
hand. However, the compiler does provide high-level language
constructs such as symbolic operators, loops and conditionals,
and generates very specific opcodes for those constructs. Other
features include the ability to easily mix data with the program
binary, control over which memory regions are used, and the
ability to target the exact format needed for the testbench,
including debug core scratchpad memories. The benefit of
this language and compiler is that they give the designer
the tools to either stress or avoid specific code sequences,
without encumbering that designer with hand-writing assembly
language.

C. Tapeout 2

The second tapeout is planned for December 2013. It will
use an IBM 65nm process for two logic chips. Both logic
chips will resemble the design illustrated in Figure 12a and
they differ in their core types. We intend to put multiple cores
on each chip. The exact number will depend on cost. In our
first tapeout, the entire chip was placed and routed together.
With more cores, a flat approach is untenable and we will
probably need to adjust our flow to be hierarchical and to use
hardened cores in the final chip-level place-and-route.

We will go through Tezzaron for the 3D die stacking.
Tezzaron bonds customer-provided logic chips and their pro-
prietery stacked DRAM. Details of the Tezzaron 65nm 3D
process are not yet available. For now, we are scouting designs
assuming a Tezzaron 130nm 3D process that NCSU has used
in previous 3D projects.

The new challenges with respect to our first tapeout include
reimplementing FTM and CCD in the 3D process and doing
our first-ever physical design of the uncore logic (SCB, SDB,
crossbar, L2 bank controller). 3D implementation adds new
physical design and tool flow challenges such as TSV keep-
outs.

IV. RELATED WORK

A. Migration Granularity and Overhead

The oracle study on migration granularity (Section II-B1)
corroborates the results of similar oracle studies [20], [24].
Najaf-abadi and Rotenberg [24] showed that speedups due to
switching between non-monotonic core types shoots upward
at very fine switching intervals, too fine to exploit except by
slipstreaming two instances of the thread to facilitate automatic
“lead changes”. Lukefahr et al. [20] also showed that reducing
the switching granularity yields higher utilization of a little
core type for a fixed slowdown target.

A whitepaper from ARM, describing their big.LITTLE
architecture, cites a 20,000-instruction overhead to migrate a
thread between core types [10]. This is evidence of the chal-
lenge and the opportunity facing fine-grain thread migration.
It also seems to point to a gap between academics’ optimism
in reducing overheads and the reality of complex systems. We
are guilty of this optimism. On the other hand, we are also
doing the legwork of physical design studies which we feel are
absolutely required to understand the challenges of hardware-
accelerated migration.

Motivated by a future of many-core processors that employ
short threads, frequent thread migrations, and so forth, Brown,
Porter and Tullsen [5] took a fundamental look at the problem
of low-overhead thread migration. In particular, they attempted
to identify the minimum amount of cache, prefetcher, and
predictor state to transfer to the destination core, to eliminate
as much of the post-migration penalty as possible.

Lukefahr et al. [20] proposed mechanisms to reduce or
eliminate the three migration overheads discussed in Sec-
tion II-B2. They arrived at a design that lies somewhere
between one and two cores: the big core and little core share
a frontend pipeline (including branch predictor structures and
instruction cache) and the data cache. These shared datapaths
eliminate migration-induced misses, but the opportunity costs
are that heterogeneity benefits do not extend to the caches and
predictors and the energy profile of the little core is closer
to that of the big core as compared to totally separate cores.
Architectural register state is transferred serially, and specula-
tively overlapped with draining of the source pipeline. Our 3D
layout makes it practical to implement an instant register file
swap and maintain uninterrupted access to microarchitectural
state, with whole cores.

B. 3D Microarchitecture

Homayoun et al. [12] proposed expanding the resources of
a core into an adjacent tier. In an overall multi-core processor,
resource reconfiguration yields a dynamically heterogeneous
multi-core processor. We share this work’s perspective that 3D
stacking is needed to have efficient physical access to many
structures in the core. It would be interesting to look at hybrids
between our 3D HMP and dynamic resource sizing.

Loh and his collaborators did seminal investigations of
spreading all structures of a core across multiple tiers [19].
In comparison, stacking planar cores is a more evolutionary
step.

Mysore et al. [22] proposed snap-on chips for accelerated
and unfettered introspection of software executing on the



processor. Snap-on chips is a provocative paradigm to deal
with the barriers in getting introspective techniques put into
processor designs: there are too many techniques to present
a united front; each is highly targeted and not generally
applicable; end users pay for the overheads without deriving
benefit, as introspection is only used by developers. We share
this work’s perspective of plug-and-play chips, but extend it
from niche developer functionality to end-user products.

C. Other H3 References

Zhang et al. [36] describe the design of a generalized face-
to-face bus with built-in self-test. Zhang and Franzon [35]
describe the design of a TSV-based face-to-back bus. The
latter bus uses a daisy-chain organization and collision-based
arbitration to support an arbitrary number of tiers. This is
a different design than the multiple-tap SCB described in
Section III. Tshibangu et al. [33] describe the design of a
controller for managing Tezzaron stacked DRAM as an L2
cache.

V. CONCLUSIONS AND FUTURE WORK

This paper discussed the rationale for implementing a
heterogeneous multi-core processor (HMP) via 3D stacking of
multiple core types. In terms of product strategy, 3D integration
enables composing many customized HMP solutions with a
smaller portfolio of homogeneous designs. In terms of quan-
tifiable benefits of a 3D HMP, we showed that fine-grain thread
migration, on the order of a thousand instructions, significantly
enhances the benefits of heterogeneity. This potential can
only be realized with low-overhead migration techniques such
as the ones explored in this paper: fast thread migration
(FTM) and cache-core decoupling (CCD). The challenge is in
the physical implementation of these dense interconnect and
switch designs. We gave a glimpse of this challenge through
2D place-and-route of FTM’s massively-parallel register file
swap at different placement densities, revealing the tradeoff
between routability and density/latency. Moreover, it is difficult
to conceive of feasible 2D layouts of FTM and CCD together,
without compromising their performance and/or intra-core
performance. 3D integration holds great promise for feasible
layouts of multiple low-overhead migration techniques. The
paper culminated in an overview of our multi-disciplinary H3
project, which involves research, design and fabrication of a
3D HMP.

In a big/little style HMP, low-overhead migration does its
best at the 1K migration interval: 31% energy savings with
only 7% slowdown compared to always running on the big
core. Conventional migration’s best results are at the 10K
migration interval because of its high migration overhead. By
compromising on migration frequency, however, it yields only
21% energy savings with 14% slowdown.

Much future work remains. As we work on the second tape-
out based on a commercial 3D process, we will reimplement
FTM and CCD in the 3D process. In turn, this will enable
us to systematically compare 2D and 3D physical designs
and investigate our hypotheses regarding the same. The paper
touched upon challenges that arise in globally asynchronous
designs such as H3, which presents questions on two fronts:
how to tightly couple diverse core types (different frequencies,

accessing two totally different cache configurations, etc.) and
how to avoid global clock distribution in separately fabricated
die. The trio of fine-grain thread migration, low-overhead
migration techniques, and implementable thread migration
algorithms for latency and energy reduction, must also be
explored.

ACKNOWLEDGMENTS

The H3 project is supported by a grant from Intel. The
authors would like to thank our Duke collaborators, Krish-
nendu Chakrabarty, Brandon Noia, and Sergej Deutsch, who
are researching 3D test issues in the H3 project and provided
scan-chain insertion scripts for the cores.

Forbes is supported by a synergistic NSF grant, CCF-
1218608, relating to design for competitive automated layout.
Chowdhury is supported by NSF grant CCF-1018517. Any
opinions, findings, and conclusions or recommendations ex-
pressed herein are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] OpenSPARC T2. Available: http://www.oracle.com/technetwork/
systems/opensparc/opensparc-t2-page-1446157.html.

[2] SPEC CPU2006 Benchmark Suite. Available: http://www.spec.org/
cpu2006/.

[3] Virtex-6 FPGA ML605 Evaluation Kit. Available: http://www.xilinx.
com/products/boards-and-kits/EK-V6-ML605-G.htm.

[4] Michela Becchi and Patrick Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures. Journal of Instruction-
Level Parallelism, 10:1–26, June 2008.

[5] Jeffery A. Brown, Leo Porter, and Dean M. Tullsen. Fast Thread
Migration via Cache Working Set Prediction. In Proceedings of the
17th Annual International Symposium on High Performance Computer
Architecture, HPCA-17, pages 193–204, February 2011.

[6] Niket K. Choudhary. FabScalar: Automating the Design of Superscalar
Processors. PhD thesis, North Carolina State University, May 2012.

[7] Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah, Hi-
ran Mayukh, Jayneel Gandhi, Brandon H. Dwiel, Sandeep Navada,
Hashem H. Najaf-abadi, and Eric Rotenberg. FabScalar: Composing
Synthesizable RTL Designs of Arbitrary Cores Within a Canonical
Superscalar Template. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA-38, pages 11–22, June
2011.

[8] Kenzo V. Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,
and Joel Emer. Scheduling Heterogeneous Multi-Cores through Per-
formance Impact Estimation (PIE). In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA-39, pages
213–224, June 2012.

[9] Brandon H. Dwiel, Niket K. Choudhary, and Eric Rotenberg. FPGA
Modeling of Diverse Superscalar Processors. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS ’12, April 2012.

[10] Peter Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. September 2011.

[11] Subhash Gupta, Mark Hilbert, Sangki Hong, and Robert Patti. Tech-
niques for Producing 3D ICs with High-Density Interconnect. In Pro-
ceedings of the 21st International VLSI/ULSI Multilevel Interconnection
Conference, VMIC-21, September 2004.

[12] Houman Homayoun, Vasileios Kontorinis, Amirali Shayan, Ta-Wei Lin,
and Dean M. Tullsen. Dynamically Heterogeneous Cores Through 3D
Resource Pooling. In Proceedings of the 18th Annual International
Symposium on High Performance Computer Architecture, HPCA-18,
February 2012.



[13] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias Scheduling in
Heterogeneous Multicore Architectures. In Proceedings of the 5th ACM
SIGOPS EuroSys Conference, EuroSys 2010, pages 125–138, April
2010.

[14] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-
Core Architectures: The Potential for Processor Power Reduction. In
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-36, December 2003.

[15] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core
Architecture Optimization for Heterogeneous Chip Multiprocessors. In
Proceedings of the 15th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT-15, pages 23–32, September
2006.

[16] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Keith I. Farkas. Single-ISA Heterogeneous Multi-
Core Architectures for Multithreaded Workload Performance. In Pro-
ceedings of the 31st Annual International Symposium on Computer
Architecture, ISCA-31, June 2004.

[17] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,
Dean M. Tullsen, and Norman P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for Multicore and
Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-42, pages 469–
480, December 2009.

[18] Gabriel H. Loh and Mark D. Hill. Efficiently Enabling Conventional
Block Sizes for Very Large Die-stacked DRAM Caches. In Proceedings
of the 44th Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO-44, pages 454–464, December 2011.

[19] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor Design in
Three-Dimensional Die-Stacking Technologies. IEEE Micro, 27(3):31–
48, May 2007.

[20] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M.
Sleiman, Ronald Dreslinski, Thomas F. Wenisch, and Scott Mahlke.
Composite Cores: Pushing Heterogeneity into a Core. In Proceedings
of the 45th Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO-45, pages 317–328, December 2012.

[21] Pierre Michaud. Exploiting the Cache Capacity of a Single-Chip
Multi-Core Processor with Execution Migration. In Proceedings of the
10th Annual International Symposium on High Performance Computer
Architecture, HPCA-10, pages 186–195, February 2004.

[22] Shashidhar Mysore, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin,
Kaustav Banerjee, and Timothy Sherwood. Introspective 3D Chips.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS-
XII, pages 264–273, October 2006.

[23] Hashem Hashemi Najaf-abadi, Niket K. Choudhary, and Eric Roten-
berg. Core-Selectability in Chip Multiprocessors. In IEEE/ACM 18th
International Conference on Parallel Architectures and Compilation
Techniques, PACT-18, pages 113–122, September 2009.

[24] Hashem Hashemi Najaf-abadi and Eric Rotenberg. Architectural Con-
testing. In IEEE 15th International Symposium on High Performance
Computer Architecture, HPCA-15, pages 189–200, February 2009.

[25] Sandeep Navada, Niket K. Choudhary, Salil V. Wadhavkar, and Eric
Rotenberg. A Unified View of Non-monotonic Core Selection and
Application Steering in Heterogeneous Chip Multiprocessors. In Pro-
ceedings of the 22nd International Conference on Parallel Architecture
and Compilation Techniques, PACT-22, September 2013.

[26] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, Sandip
Kundu, and Omer Khan. Performance Per Watt Benefits of Dynamic
Core Morphing in Asymmetric Multicores. In Proceedings of the
20th International Conference on Parallel Architecture and Compilation
Techniques, PACT-20, pages 121–130, October 2011.

[27] Juan C. Saez, Manuel Prieto, Alexandra Fedorova, and Sergey Blago-
durov. A Comprehensive Scheduler for Asymmetric Multicore Proces-
sors. In Proceedings of the 5th ACM SIGOPS EuroSys Conference,
EuroSys 2010, pages 139–152, April 2010.

[28] Lina Sawalha, Sonya Wolff, Monte P. Tull, and Ronald D. Barnes.
Phase-guided Scheduling on Single-ISA Heterogeneous Multicore Pro-
cessors. In Proceedings of the 14th Euromicro Conference on Digital
System Design, DSD 14, pages 736–745, September 2011.

[29] Daniel Shelepov, Alexandra Fedorova, Blagodurov Sergey, Juan Car-
los Saez Alcaide, Nestor Perez, Viren Kumar, Stacey Jeffery, and
Zhi Feng Huang. HASS: A Scheduler for Heterogeneous Multicore
Systems. Operating Systems Review, 43(2):66–75, April 2009.

[30] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically Characterizing Large Scale Program Behavior. In
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS-
X, pages 45–57, October 2002.

[31] Tyler Sondag, Viswanath Krishnamurthy, and Hridesh Rajan. Predictive
Thread-to-Core Assignment on a Heterogeneous Multi-core Processor.
In Proceedings of the Workshop on Programming Languages and
Operating Systems, PLOS ’07, October 2007.

[32] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred
Love, W. Rhett Davis, Paul D. Franzon, Michael Bucher, Sunil
Basavarajaiah, Julie Oh, and Ravi Jenkal. FreePDK: An Open-Source
Variation-Aware Design Kit. In Proceedings of the 2007 IEEE Inter-
national Conference on Microelectronic Systems Education, MSE ’07,
pages 173–174, June 2007.

[33] Nyunyi M. Tshibangu, Paul D. Franzon, Eric Rotenberg, and W. Rhett
Davis. Design of Controller for L2 Cache Mapped in Tezzaron
Stacked DRAM. In Proceedings of the International IEEE 3D Systems
Integration Conference, 3DIC, October 2013.

[34] Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker.
Scalable Thread Scheduling and Global Power Management for Het-
erogeneous Many-Core Architectures. In Proceedings of the 19th
International Conference on Parallel Architecture and Compilation
Techniques, PACT-19, pages 29–40, September 2010.

[35] Zhenqian Zhang and Paul D. Franzon. TSV-based, Modular and
Collision Detectable Face-to-back Shared Bus Design. In Proceedings
of the International IEEE 3D Systems Integration Conference, 3DIC,
October 2013.

[36] Zhenqian Zhang, Brandon Noia, Krishnendu Chakrabarty, and Paul D.
Franzon. Face-to-Face Bus Design with Built-in Self-Test in 3D
ICs. In Proceedings of the International IEEE 3D Systems Integration
Conference, 3DIC, October 2013.


