
A Case for a Software-Managed Reconfigurable
Branch Predictor

Muawya Al-Otoom

Intel Corporation

muawya.m.al-otoom@intel.com

Rami Sheikh, Eric Rotenberg

North Carolina State University

rmalshei@ncsu.edu, ericro@ncsu.edu

ABSTRACT
Workloads present diverse performance challenges.

Consequently, many proposed microarchitecture techniques apply

to only a subset of applications. This limits their appeal, as the

added resources tend to be unused by the remaining applications.

Designing reconfigurable hardware is one way to tackle this issue.

In this paper, we propose EXACT-S, a software-managed

reconfigurable branch predictor that targets workloads with hard-

to-predict load-dependent branches encountered in the context of

sequencing arrays and linked-lists. EXACT-S is inspired by the

previous EXACT predictor and targets its limitations. EXACT is

indexed by branches’ load addresses and actively updated by

stores. With EXACT-S, the idea is to have a light-weight run-time

layer to convey key information directly to the fetch unit that it

can use to generate branches’ load addresses in a timely manner.

This approach is more accurate because it uses branches’ load

addresses directly rather than prior branches’ load addresses.

Moreover, with regard to active updates, there is no need for a

large table to convert store addresses to predictor indices because

of the direct indexing strategy. As a result, EXACT-S is simpler,

less expensive and more accurate than EXACT. For applications

that suffer poor prediction accuracies due to load-dependent

branches, EXACT-S removes up to 50% of their mispredictions.

For all other applications, the proposed reconfigurable predictor

relinquishes EXACT-S storage to the base L-TAGE predictor,

thus achieving the same prediction accuracy as a similarly-sized

fixed L-TAGE predictor.

1. INTRODUCTION

High performance processors have matured to the point that it is

rare nowadays to conceive of a single microarchitecture technique

that will speed up all applications. All of the “low hanging fruits”

– techniques that target fairly universal behavior – have been

implemented, and are being scaled out (e.g., OOO execution).

Now, different applications have specific behaviors that can only

be effectively addressed by targeted solutions.

This situation has hindered microarchitecture research. Solutions

tend to benefit a subset of applications, usually yielding the

proposed hardware unused by the remaining applications. This

makes it difficult to justify their inclusion in a commercial

processor, stifling innovation.

One way to address this issue is by using reconfigurable hardware

that releases the unused resource to be allocated in a way that

benefits the remaining workloads. As an example, we propose a

reconfigurable branch predictor that targets branches that traverse

large data structures. This class of branch has been shown to

trouble even sophisticated branch predictors [1] but is not present

in all workloads.

In a conventional branch predictor, the predictor index is based on

local or global branch history patterns. The patterns used to

predict different instances of the branch are often the same [1]. In

the context of data structure traversal, this means that different

instances of the branch, corresponding to different elements of the

data structure are likely to end up sharing entries in the predictor

table. Unfortunately, if instances sharing an entry have different

outcomes, they will be mispredicted. Note that this sharing

behavior is a result of the context used to predict branches, not

limited storage.

To fix this problem, the recently proposed auxiliary predictor,

EXACT [1], combines the branch PC with the address of the

element being tested to provide a unique branch ID. More

formally, prior work defined the ID of a branch instance to be the

program counter (PC) of the branch hashed together with the

address of the load that the branch depends on [1]:

ID = hash(branch’s PC, branch’s load address)

Ideally, the index of the branch instance is its ID (truncated to the

number of index bits). Unfortunately, the ideal indexing strategy

described above is difficult to achieve in practice, because the

load that a branch depends on is unlikely to have generated its

address before the branch is fetched. To deal with this problem,

the authors of EXACT proposed indexing the predictor with a

prior, retired branch’s ID some fixed distance away (they used the

21st branch away in their final experiments) instead of the current

branch’s ID, which is unavailable. Using a proxy branch to predict

the current branch works reasonably well due to repetition in the

global sequence of branches and their IDs. Unfortunately, there

are key drawbacks of EXACT’s indirect indexing strategy:

1- Squandering accuracy potential: The accuracy of indexing with

the current branch’s ID is impressive, but at best indexing with a

prior branch’s ID achieves half of this potential and sometimes

less [1]. Using a prior branch’s ID as a proxy for the current

branch’s ID is a subtle form of load address prediction (predicting

the current branch’s load address from a prior branch’s load

address), and is imperfect.

2- Redundant predictor entries: It was found that some recent

global branch history bits need to be included in the index of

certain branches [1]. This is because a prior branch may lead to

multiple alternative downstream branches along different control-

flow paths. Using only the prior branch’s ID causes the alternative

branches to have the same index and share a predictor entry.

Including history ensures the alternative branches have dedicated

predictor entries but also creates redundant entries if some history

bits do not influence the alternatives. Redundant entries increase

pressure on the available storage. As a result, a larger predictor is

needed than if the current branch’s ID were used to index the

predictor.

3- Cost and complexity of “Active Updates”: A store to an

element of a data structure may cause its corresponding branch

outcome to flip when it is next encountered. With conventional

passive updates, a misprediction is suffered before the predictor is

mailto:muawya.m.al-otoom@intel.com
mailto:rmalshei@ncsu.edu
mailto:ericro@ncsu.edu

retrained. On the other hand, EXACT is unique in that stores

update the predictor (referred to as “active updates”) [1]. An

unfortunate but necessary side-effect of the indirect indexing

strategy is that a branch’s index into the predictor cannot be

inferred from the load address on which it depends. This leads to a

complex and storage-intensive active update unit: a large table is

needed to convert store addresses to the predictor indices that

must be updated. The dedicated storage can be reduced by

virtualizing the large table in memory, but the virtualized table

occupies cache space and is complex to manage.

In this paper, we propose the EXACT-S predictor. EXACT-S has

two unique aspects. First, it is reconfigurable. Workloads that

suffer poor branch prediction accuracies due to traversing data

structures will benefit from EXACT-S’s unique ID-based

indexing. For all other workloads, EXACT-S resources are

diverted to the base predictor, so that its resources benefit all

workloads.

Second, it is software-managed. A light-weight run-time layer

conveys key information directly to the fetch unit that it can use to

generate branches’ load addresses in a timely manner. Thus, the

auxiliary predictor can be indexed directly with the current

branch’s ID. This allows for eliminating the limitations of

EXACT [1] discussed above. First, EXACT-S is more accurate

because it uses branches’ IDs directly rather than prior branches’

IDs. Second, the direct indexing strategy translates to zero

redundancy in the predictor. Third, active updates are simple and

inexpensive because there is no need for a large table to convert

store addresses to predictor indices since the affected branch’s

index can be inferred from the store address.

Since EXACT-S is under software control, there is no need for a

hardware chooser to learn which branches should be predicted

using the ID-based indexing vs. the history-based indexing. This

eliminates both hardware (reducing complexity, cost and power)

and training time (performance overhead) with respect to

EXACT.

Applying EXACT-S to SPEC2K integer benchmarks revealed two

perfect candidates that benefited from the unique ID-based

indexing, namely gzip and twolf, where 33% and 50% of

mispredictions are removed, respectively (compared to a

similarly-sized L-TAGE predictor). For other applications, the

unused predictor storage is absorbed by the default predictor via

our reconfigurable design: the reconfigured predictor shows

similar accuracy to a similarly-sized fixed L-TAGE predictor.

2. EXACT versus EXACT-S

In this section, we first review the operation of the original

EXACT predictor (Section 2.1) and then provide an overview of

the proposed EXACT-S, its operation, and its simplifications with

respect to EXACT (Section 2.2).

2.1 Background on EXACT

Figure 1 shows a high level view of EXACT [1]. Instruction fetch

is directed by a hybrid predictor, comprised of a default history-

based predictor, an auxiliary predictor indexed by ID called the

explicit predictor, and a chooser. As branches retire from the

processor, their IDs are deduced from producer loads that retired

before them (ID Gen) and the IDs are pushed into the Global

Branch Queue (GBQ). As alluded to previously, the explicit

predictor predicts the current branch using the ID of a retired

branch a fixed distance away. This indirect indexing strategy is

facilitated by the GBQ (see label 1). The explicit predictor is both

passively updated (branches’ outcomes are recorded as they retire,

see label 2) and actively updated. When a store retires from the

processor, its address and value are converted by an active update

unit into updates of the explicit predictor (see label 3).

Figure 1. High-level view of EXACT.

Two mechanisms are required for active updates: 1) converting

the store address into a predictor index to be updated, and 2)

converting the store value into a branch outcome.

Address-to-index conversion would be straightforward if the

index was based on the branch’s ID: the index would be the store

address hashed with the branch’s PC. To obtain the branch’s PC,

EXACT learns which static stores affect which static branches by

training a small store-PC-to-branch-PC conversion table (Figure

1).

Unfortunately, the branch’s index is based on some other branch’s

ID. This means its index cannot be determined from the store

address directly. Instead, a large address-to-index conversion table

is required. The table records, for each address, the explicit

predictor’s indices corresponding to branches that depend on that

address.

Converting the store value to a branch outcome is achieved by the

value-to-outcome conversion table (Figure 1), which is a compact

reuse table that remembers for each static branch two ranges of

load values, one range that causes it to be taken and the other that

causes it to be not-taken. We call this table the Range Reuse Table

(RRT). The inputs to this table are the branch’s PC (produced by

the store-PC-to-branch-PC conversion) and the store value.

The store-PC-to-branch-PC and value-to-outcome conversion

tables are small in size since they record static branch information

unlike the address-to-index conversion table that records

information about dynamic branches.

The amount of dedicated storage required for the address-to-index

conversion table is reduced by virtualizing it [3]. The idea is to

implement a small level one (L1) version of the component in

dedicated storage, backed by a full version in physical memory

which can then be transparently cached in higher levels of the

general-purpose memory hierarchy (e.g., L2 cache). A potential

drawback of virtualization is that it significantly increases the

worst-case latency for performing a single active update. Latency

is not an issue for the active update unit, however, because most

benchmarks are tolerant of 400+ cycles of latency to perform

L2$

Processor Pipeline
Fetch Retire

Explicit

Predictor

ID Gen

Default

Predictor

past ID for predicting current branch

passive updates

stores

active updates

Active Update Unit

1

2

3

GBQ

(Global Branch Queue)

address-to-index

conversion table

value-to-outcome

conversion table

address

value

pred-index

T/N

store-PC-to-branch-

PC conversion table

store

PC
branch

PCChooser

virtualized

storage for the

address-to-index

conversion table

active updates, due to the long distances between stores and

reencounters with branches that they update. Virtualization of the

address-to-index conversion table is depicted in Figure 1.

2.2 Overview of EXACT-S

Figure 2 shows a high-level view of EXACT-S. EXACT-S has the

same high-level structure as EXACT but is simpler.

EXACT-S exploits software intervention to make the indexing

strategy both more accurate and more efficient. In most of the

applications that benefit from EXACT, many of the data

structures tested by branches are arrays and to a lesser extent

linked-lists (which EXACT-S handles as logical arrays as will be

discussed in a later section). The fetch unit in EXACT-S features

two special, software-managed registers, base register and offset

register, which enable the fetch unit to calculate the addresses of

array elements as the branches that test them are fetched. This

way, a branch’s ID is known when the branch is fetched, so that

the explicit predictor can be indexed directly by the current branch

ID.

Figure 2. High-level view of EXACT-S.

A light-weight run-time layer allocates the base register and offset

register for the static branch that tests elements of an array.

Software writes the base address of the array into the base

register, increments/decrements the offset register, and signals

when to index the explicit predictor for a dynamic instance of the

static branch. The index is the sum of the base and offset registers,

hashed with the branch’s PC to form the ID, as shown in Figure 2.

One approach to enable software to manage the fetch unit is to

modify the instruction-set architecture (ISA): (1) add new

instructions to write the base and offset registers, and (2) add a bit

to conditional branch opcodes to signal whether a static branch

should use the explicit predictor or default predictor. There are

two drawbacks to this approach. First, it requires changing the

ISA which may not be an option. Second, this approach will

increase the dynamic instruction count of programs modified to

use EXACT-S, reducing the performance gain of EXACT-S.

Therefore, we propose managing the fetch unit with shadow code.

We use the term “shadow” because the light-weight run-time

layer creates a correspondence between selected instructions in

the original program and shadow-instructions in the shadow code.

That is, each shadow-instruction shadows a particular instruction

in the original program. Each shadow-instruction is tagged with

the PC of the instruction that it shadows. When the instruction is

fetched, the shadow-instruction that shadows it is triggered via the

PC.

Typically, key instructions that are shadowed by shadow-

instructions include: (1) the instruction that generates the base

address of an array, (2) any instruction that is convenient for

signaling when to increment the offset and by what positive or

negative value, and (3) the static branch that tests elements of the

array. For example, consider a loop that iterates over an array. The

instruction prior to the loop that generates the base address of the

array is shadowed by a shadow-instruction in the shadow code

called the seed shadow-instruction. The seed shadow-instruction

writes the base address into the base register in the fetch unit. An

arbitrary instruction prior to the loop is shadowed by a shadow-

instruction to initialize the offset register. A convenient

instruction within the loop is shadowed by a shadow-instruction

that increments/decrements the offset register by a certain stride.

Finally, a branch within the loop that tests elements of the array is

shadowed by a shadow-instruction which signals that the branch

should be predicted with the explicit predictor. The load address

feeding the branch is computed using the base and offset registers.

The seed shadow-instruction is special in that it involves

communication between the general-purpose register file and the

fetch unit’s base register (to write a value into the base register).

The seed shadow-instruction records the physical register number

allocated to the destination of the instruction that it shadows. This

way, when the instruction executes, its result (the base address)

can be obtained from the function unit’s result bus. (Note that the

hardware support for this is present in most modern processors as

the datapath for sending indirect-branch targets from the

execution engine to the fetch unit.) Moreover, there is a ready bit

associated with the base register in the fetch unit. The ready bit is

reset when the seed shadow-instruction is initially triggered and

set when the shadowed instruction executes. If a branch is fetched

that needs to index the explicit predictor, but the base register is

not yet ready, then the branch is predicted by the default predictor.

In addition to the accuracy benefits that come with software-

controlled indexing, a number of complex and expensive

mechanisms are made obsolete:

1. Note that EXACT-S does not require a chooser (contrast Figure

1 with Figure 2). The shadow code, and the readiness of the base

register, controls selection of the explicit predictor or default

predictor.

2. EXACT-S does not require the complex post-retirement ID

generation unit for propagating loads’ addresses to their

dependent branches. IDs generated in the fetch unit obviate the

need for this complex hardware.

3. Since the current branch’s ID is used to index into the explicit

predictor, there is no need for an address-to-index conversion

table in the active update unit. As shown in Figure 2, the active

update unit simply hashes the store address with the branch PC to

determine the index of the branch that must be updated. Only the

small store-PC-to-branch-PC and value-to-outcome tables remain.

As an alternative to using hardware to train these tables, they are

pre-loaded with information generated by the light-weight run-

time layer.

While we focused on arrays in the description above, it is possible

to target EXACT-S for stable linked-lists as well, as we discuss in

Section 3. Essentially, they can be treated as logical arrays in a

process called “array-ification”.

Processor Pipeline
Fetch Retire

Reconfigurable

Explicit

Predictor

Base

Predictor

pred-index =

hash([base+ offset], PC)

passive updates

stores

active updates

Active Update

Unit

1

2

3

value-to-outcome

conversion table

address

value

pred-index

T/N

store-PC-to-branch-

PC conversion table

store

PC

branch

PC

+
Software-Managed

Registers

base reg offset reg

Shadow-Code

Table

+

+

branch

PC

3. EXACT-S IMPLEMENTATION

3.1 Shadow Code and the Shadow-Code Table

Shadow code is conveyed from software to hardware without

changing the ISA, as follows:

 The shadow code is made a part of the data segment of the

program binary. This allows for user-level loads to read bytes

of the shadow code.

 The Shadow-Code Table is memory-mapped, making it

possible to initialize its contents via user-level stores.

Typically, a given machine comes with a machine manual

that specifies its memory-mapped registers.

 Initialization code is added to the beginning of the program,

that uses pairs of loads and stores to copy the bytes of

shadow code from the data segment (loads) to the Shadow-

Code Table (stores).

 If the run-time layer would like to use more shadow-

instructions than there is space in the Shadow-Code Table,

the table can be explicitly managed even after the

initialization stage. Bytes of shadow code can be loaded from

the data segment and stored into the Shadow-Code Table as

different shadow-instructions become needed.

There is a one-to-one correspondence between selected

instructions in the program and shadow-instructions in the shadow

code. That is, each shadow-instruction shadows a particular

instruction in the program. Each shadow-instruction has a PC field

containing the PC of the instruction that it shadows. When the

instruction is fetched, the shadow-instruction that shadows it is

triggered via the PC. This process is explained next.

In parallel with fetching instructions from the instruction cache,

the PCs of all instructions in the fetch bundle are searched in the

Shadow-Code Table. If a PC hits, then the matching shadow-

instruction is read from the Shadow-Code Table and executed

within the fetch unit. Shadow-instructions write, update, or read

the software-managed registers in the fetch unit.

If a branch hits in the Shadow-Code Table, it will be predicted by

the explicit predictor instead of the default predictor. This means

that the Shadow-Code Table assumes the role of the chooser as

shown in Figure 2.

3.2 Software-Managed Registers in the Fetch

Unit

Figure 3 shows the fields of the two software-managed registers in

the fetch unit read and written by the shadow code.

Figure 3. The fetch unit registers read and written by the

shadow code.

3.2.1 Base Register

The base register is used for conveying the base address of a data

structure that is being traversed, such as an array or linked-list, to

the fetch unit. There are two fields in a base register: base and

shift amount. Base contains the base address. Shift amount is used

by software for effectively modeling linked-lists as arrays in the

explicit predictor, a process we refer to as “array-ifying” the

linked-list. Array-ification is discussed below. Figure 3 also

shows a ready bit associated with the base register. The ready bit

is not visible to software, i.e., it is purely microarchitectural. It

will be explained when we discuss the shadow-instruction type

that writes base registers.

To array-ify a linked-list, the address of its head node is

considered the base address and subsequent nodes are considered

to be at contiguous addresses with a stride of 1 (even though they

are at arbitrary addresses). Thus, when sequencing a linked-list,

dynamic branches that test its elements index a contiguous range

of entries in the explicit predictor.

Basic array-ification, as described above, may cause different

linked-lists to conflict in the explicit predictor because it is

possible for their contiguous ranges to overlap. Whether or not

two array-ified linked-lists conflict in the explicit predictor

depends on their base addresses and sizes. True arrays cannot

conflict in this way because they are laid out contiguously in

memory; true arrays can only conflict in the explicit predictor due

to its limited size.

The shift amount field is used by software to reduce conflicts

between array-ified linked-lists. The shift amount field specifies

an amount by which the base address should be shifted to the left

when forming an index into the explicit predictor. Effectively, this

provides a dedicated region for the linked-list within the explicit

predictor as long as the number of elements is less than

2(shift amount).

3.2.2 Offset Register

The fields of the offset register are designed with loops in mind,

in particular, loops that iterate over and test the contents of data

structures such as arrays and linked-lists. An offset register has

three fields: offset, trip-count, and stride. The offset field generally

corresponds to the loop induction variable. The trip-count is the

number of times to iterate. The stride is the stride between

elements that are accessed consecutively. It is a signed integer.

Thus, the offset register has two uses. First, the address of an

element being tested can be calculated by adding offset*stride to

the base address contained in a base register. Second, offset can be

compared to trip-count to predict the loop branch: taken if they

are not equal and not-taken if they are equal.

3.3 Shadow-Instructions

Figure 4 shows the format of a shadow-instruction. The PC field

identifies the program instruction that is shadowed. The op-code

field is 3-bits wide, supporting up to 8 different types of shadow-

instructions. The last field is immediate/flag. This field allows the

shadow-instruction to use an immediate value. Alternatively,

some shadow-instructions use this field as a flag that controls

incrementing the offset register.

Figure 4. General format of a shadow-instruction.

Base Register

baseready

Offset Register

offsetshift amount trip-count stride

op-code immediate/flag

3-bits 13-bits

PC

16-bits

The shadow-instructions used in this paper are enumerated below:

3.3.1 seed shadow-instruction

The seed shadow-instruction shadows an instruction in the

program that generates base addresses of arrays or linked-lists.

The fields relevant to the seed shadow-instruction are: PC and op-

code

The seed shadow-instruction is the only one that cannot be

executed immediately in the fetch unit because it must wait for its

corresponding program instruction to execute. The seed shadow-

instruction is executed as follows. First, the ready bit of the base

register is cleared since the base address is not yet available.

(Branches that are directed to use the explicit predictor – see

regular-branch shadow-instruction – must use the default

predictor if they reference a not-ready base register.) At the same

time, its corresponding program instruction is annotated so that it

knows to communicate with the fetch unit when it reaches two

different pipeline stages: the rename stage and the writeback

stage. When the program instruction is renamed, it sends the

physical register tag of its destination register to the fetch unit.

The fetch unit writes the physical register tag into the base

register, in lieu of an actual value. When the program instruction

has executed and reaches the writeback stage, it communicates its

physical register tag and value to the fetch unit. The fetch unit

writes the value into the base register and sets the ready bit, only if

the physical register tag matches the one currently in the base

register (otherwise the value is simply discarded). The reason for

comparing physical register tags is to handle the scenario of a

second seed shadow-instruction reusing the base register before

the first seed shadow-instruction has had a chance to write it. At

this point, branches affiliated with the first seed shadow-

instruction have already been predicted without the benefit of

using the explicit predictor, moreover, the first seed shadow-

instruction should not interfere with the branches affiliated with

the second seed shadow-instruction that is now in progress. This

implementation is basically an application of Tomasulo’s

renaming algorithm [2].

3.3.2 init-offset shadow-instruction

This shadow-instruction initializes all three fields of the offset

register. It initializes the offset field to zero and the trip-count and

stride fields to specified values. Aside from PC and op-code, the

field relevant to the init-offset shadow-instruction is:

immediate/flag that specifies the trip-count and stride values.

3.3.3 loop-branch shadow-instruction

This shadow-instruction signals that the corresponding program

instruction is a loop branch, and it will generate a prediction by

comparing the offset and trip-count fields of the offset register. If

they match, it means that the loop branch will fall-through and the

prediction should be not-taken, otherwise, the prediction should

be taken. Executing this shadow-instruction will also

automatically increment the offset field of the offset register. The

fields relevant to the loop-branch shadow-instruction are: PC and

op-code.

3.3.4 regular-branch shadow-instruction

This shadow-instruction signals that the corresponding program

instruction is a branch, that should attempt to use the explicit

predictor. The index into the explicit predictor is calculated by

adding the base register (shifted for array-ified linked-lists) to the

offset register and combining with the PC, as follows:

hash{PC, ((base<<shift amount) + (offset*stride))}

The multiplication of the offset and stride can be performed by a

shift operation if the stride is constrained to be a power of two.

Alternatively, hardware can circumvent all three arithmetic

operations – the shift, multiply, and add – by microarchitecturally

extending the base/offset registers with an absolute address

register that is initialized to (base<<shift amount) and incremented

by stride.

Aside from PC and op-code, the field relevant to the regular-

branch shadow-instruction is: immediate/flag (if 1, increment

offset).

3.3.5 linked-list-store shadow-instruction

After array-ification, the index of a linked-list element is not

based on its address. Instead, it is based on the address of the head

element plus a virtual offset. This complicates active updates for

linked-list elements: the index cannot be inferred from the store

address. The software solution to this problem is to exploit

opportunities to perform the store in the context of a linked-list

traversal. If done in the context of a traversal, the store can infer

its array-ified address the same way a branch does. This is

achieved using the linked-list-store shadow-instruction. This

shadow-instruction signals that the corresponding program

instruction is a store that should calculate its active-update index

using the base register and offset register, rather than use its own

address for the active-update index. The partial index (does not

include branch PC yet) is calculated in the fetch stage but will not

be used until the store retires. Thus, the partial index is sent with

the store down the pipeline until the dispatch stage at which time

the partial index can be placed in the store’s store buffer entry for

use at retirement.

Note, it is not a requirement that linked-list stores be performed in

the context of a linked-list traversal. If it cannot be done in a

linked-list traversal, there are other options depending on the

situation:

 If the run-time layer knows that the store is rare or that it

rarely flips branch outcomes, then it may be deemed

unnecessary to trigger active updates by the store. Active

updates by a particular store PC can be disabled simply by

excluding it from the store-PC-to-branch-PC table in the

active update unit.

 If the run-time layer believes that the store frequently flips

branch outcomes, then the affected static branches can be

relegated to the default predictor, simply by not shadowing

them with regular-branch shadow-instructions.

The fields relevant to the linked-list-store shadow-instruction are:

PC and op-code.

3.3.6 Summary of shadow-instructions

Table 1 shows a summary of the shadow-instructions used in this

paper. The table shows, for each shadow-instruction, the op-code

and immediate/flag fields, as well as the operations performed by

the shadow-instruction.

3.4 Light-weight Run-time Layer

The run-time layer can be a simple software layer that monitors

loop regions in which lots of mispredictions happen. The run-time

layer inspects the highly mispredicted branches, in the monitored

loop, to see if the branch is testing a value loaded from an array

(or a linked-list). If so, the run-time layer will generate the

shadow code corresponding to this loop. This paper does not

discuss the details of the light-weight run-time layer, but focuses

on its usage to generate the shadow code and to support the

EXACT-S predictor.

3.5 Active Update Unit

The active update unit consists of the store-PC-to-branch-PC and

value-to-outcome conversion tables (Figure 2).

In EXACT, store-PC-to-branch-PC conversion was wrapped into

the address-to-index conversion table [1]. Since EXACT-S

eliminates the address-to-index conversion table, it has a

dedicated store-PC-to-branch-PC conversion table. It is a small

content-addressable table accessed by store PC and a match

provides the affected branch PC. The branch PC and store address

are hashed to determine the index to actively update.

For value-to-outcome conversion, EXACT used two different

reuse tables, a Ranges Reuse Table (RRT) and a General Reuse

Table (GRT) [1]. EXACT-S borrows only the RRT. It is a small

content-addressable table accessed by branch PC and a match

provides two value ranges: the first provides a range of store

values for which the prediction should be updated to taken and the

second provides a range of store values for which the prediction

should be updated to not-taken.

While it is possible to dynamically train the store-PC-to-branch-

PC table and the RRT, it is much more efficient to populate them

via software (reduces hardware overhead, design complexity, and

training time and power), in the same way that the Shadow-Code

Table is populated: their contents are part of the data segment and

they are populated using pairs of loads and memory-mapped

stores in the initialization phase of the program.

3.6 Reconfigurable Explicit Predictor

A practical consideration for the explicit predictor is that it should

be possible to reallocate its storage to the default predictor, as

there will be programs that do not exploit EXACT-S for various

reasons: (1) legacy programs, (2) programs that have high

accuracy with history-based branch predictors, or (3) programs

that have branches not suitable for EXACT-S.

Figure 5 shows our reconfigurable predictor based on the

aggressive history-based L-TAGE predictor [14]. L-TAGE is

composed of a bimodal predictor, a loop predictor, and 12

partially-tagged predictors (T1 through T12) that use different

lengths of folded global branch history based on a geometric

series and ranging from 4 bits to 640 bits. When EXACT-S is

enabled, the explicit predictor consists of four banks on the right

labeled T3b through T6b. When EXACT-S is disabled, L-TAGE

uses these four banks in lieu of its tables T3a through T6a. We

allocate roughly half of the total storage to each of the default

predictor and the explicit predictor. This implies that T3b-T6b are

much larger than their counterparts T3a-T6a, hence, it is not too

wasteful to not use T3a-T6a when EXACT-S is disabled. In

Section 5, we observe that when the reconfigurable predictor is

configured for L-TAGE-only operation (EXACT-S disabled), it

performs about the same as a fixed L-TAGE predictor of the same

size.

Figure 5. Reconfigurable predictor based on L-TAGE.

When EXACT-S is enabled, the four banks T3b-T6b are used as

bimodal

T5a T6a

T8T9

T3a

T7T11

T10

T12

loop pred.

T4a

T2

T1

T3b T4b T5b T6b

2
m bits

wide

2
n
rows

T3 T4 T5 T6

1-bit

prediction

EXACT-S

index
n m 2

EXACT-S

enable

L-TAGE Predictions T3-T6

(history-based indexing)

L-TAGE Prediction T3-T6 =

(EXACT-S enable ? aT3-T6 : bT3-T6)

Explicit

Prediction
(ID-based indexing)

Table 1. Summary of shadow-instructions used in this paper.

shadow-

instruction

op-code immediate/

flag

operations

seed 0x0 shift amount 1. base-register[base] = GPRX

* use base-register[ready] to synchronize with shadowed instruction X (see relevant text)

2. base-register[shift-amount] = immediate

init-offset 0x1 trip-count
and stride

1. offset-register[offset] = 0
2. offset-register[trip-count] = immediate_upper

3. offset-register[stride] = immediate_lower

loop-branch 0x4 N/A 1. outcome = (offset-register[offset] == offset-register[trip-count] ? NT : T)
2. offset-register[offset]++

regular-branch 0x6 increment

offset

1. pred-index = hash(branch-PC,

 ((base-register[base]<<base-register[shift amount]) + (offset-register[offset]*offset-register[stride])))

2. if (flag) offset-register[offset]++

linked-list-store 0x7 N/A active-update-address =

 ((base-register[base]<<base-register[shift amount]) + (offset-register[offset]*offset-register[stride]))

Table 2. Microarchitecture configuration.

L1 I&D Caches
64KB, 4-way, 64B line,

hit=1 cycle, miss=10 cycles, 32 MHSRs

L2 Cache
Unified, 2MB, 8-way, 128B line,
hit=10 cycles, miss=200 cycles, 64 MHSRs

Reorder Buffer 256

Issue Queue 64

Load-Store Queue 64

Rename Map Checkpoints 16

Fetch-to-exec. Pipe depth 20 stages

Fetch/Issue/Retire Width 4 instr./cycle

Table 3. Predictor configurations used in the experiments.

Predictor Access Latency

(cycles)

Fixed-Size

Components

(KB)

Reconfigurable-EX

(KB)

Bimodal

(KB)

Loop (KB) Tagged (KB)

1 2 3a 4a 5a 6a 7 8 9 10 11 12

3.3 KB L-TAGE 3 cycles 0 0 2.50 0.41 0.02 0.02 0.05 0.05 0.05 0.06 0.03 0.03 0.03 0.04 0.02 0.02

19.9 KB EXACT-S 4 cycles 0.57 16 2.50 0.41 0.02 0.02 0.05 0.05 0.05 0.06 0.03 0.03 0.03 0.04 0.02 0.02

16.7 KB L-TAGE 4 cycles 0 0 2.50 0.41 0.75 0.75 1.62 1.62 1.75 1.88 1.00 1.06 1.06 1.12 0.59 0.62

49.3 KB EXACT-S 5 cycles 0.57 32 2.50 0.41 0.75 0.75 1.62 1.62 1.75 1.88 1.00 1.06 1.06 1.12 0.59 0.62

58.3 KB L-TAGE 5 cycles 0 0 2.50 0.41 3.00 3.00 6.50 6.50 7.00 7.50 4.00 4.25 4.25 4.50 2.38 2.50

Table 4. Fixed-size subcomponents of EXACT-S (not including default predictor and explicit predictor).

Unit Structure # of entries / organization Contents per entry Size (KB)

Fetch Unit

Shadow-Code Table 64 entries / fully-assoc. 16-bit PC tag + 16-bit shadow-instruction payload 0.24

Software-Managed Registers
2 registers 1 ready bit + 20-bit base + 5-bit shift-amount +

13-bit offset + 13-bit trip-count + 3-bit stride

0.007

Active
Update

Unit

RRT
8 entries / 4-way set-assoc. 1 valid bit + 2-bit LRU + 13-bit tag +

4x16-bit for (min_NT, max_NT, min_T, max_T)

0.08

Store-PC-to-Branch-PC Conversion

Table

16 entries / 4-way set-assoc. 1 valid bit + 2-bit LRU + 12-bit tag + 8x14-bit branch-PCs 0.24

Total cost of fixed subcomponents (does not include default predictor and explicit predictor): 0.57

one logical predictor that outputs a 1-bit prediction. This is

achieved by dividing the EXACT-S index into three parts: row

selection, column selection within each bank, and bank selection.

Implementing a reconfigurable gshare predictor [11] would be

easier as it would require just two tables that are configured as

either gshare+explicit (1 table each) or gshare-only (2 tables

operating as 1).

4. SHADOW CODE EXAMPLE AND

OTHER POTENTIAL USE-CASES

Figure 8 (in the appendix) shows the source code, assembly code,

and shadow code generated for two loops in gzip. The two loops

are similar in behavior, so we will explain only the shadow code

of the first loop. The branches of interest are highlighted in red in

the assembly. Assembly instructions that are shadowed are

highlighted in bold and connected via arrows to their shadow-

instructions. In each loop, the code sequences through a 32K-

entry array, including continuously modifying its elements (thus,

active updates are crucial). The instruction at address 0x4013d8 is

the instruction that will generate the base address of the first array,

so it is shadowed by a seed shadow-instruction that writes the

base register (base = r7, the destination of the shadowed

instruction, and shift amount = 0). The instruction at address

0x4013e0 is shadowed, to initialize the offset (to 0), trip-count (to

32,768), and stride (to 2) fields of the offset register. The

instruction at address 0x401480 is the loop branch which will be

shadowed by a loop-branch shadow-instruction (tests and

increments the offset register). And finally, the instruction at

address 0x401440 is the branch of interest, which is shadowed by

a regular-branch shadow-instruction.

In addition to the branch prediction use-case presented in this

paper, shadow-instructions – i.e., direct microarchitecture

manipulation instructions – can be used for other purposes,

including and not limited to:

- Fetch gating: Shadow-instructions can direct the fetch unit to

stop fetching upon encountering hard-to-predict branches

that tend to depend on expensive cache misses.

- Resource configuration: Upon encountering very serial

regions, shadow-instructions can (a) direct the fetch unit to

not fetch at full bandwidth or (b) direct the processor to

transition to a lower-power mode.

5. RESULTS

5.1 Methodology

All results are based on a custom, detailed cycle-level processor

simulator derived from the SimpleScalar toolset [4]. Parameters of

the modeled processor are shown in Table 2.

Eleven of the SPEC2K integer benchmarks were used with

reference inputs. We compiled these benchmarks to the

SimpleScalar PISA instruction set using the SimpleScalar gcc-

based compiler with –O3 optimization. The eon benchmark did

not compile. The SimPoint toolset [16] was used to locate

representative simulation points.

We used the source code posted by Seznec [15] for the L-TAGE

predictor. We performed a design space exploration to find good

(a) 1-cycle latency

(b) N-cycle latency, overriding predictors

Figure 7. Performance improvement w.r.t. 3.3 KB L-TAGE.

0.9

1

1.1

1.2

1.3

1.4

1.5

p
e

rf
o

rm
a

n
c

e
 i
m

p
ro

v
e

m
e

n
t
n

o
rm

.
to

 3
.3

 K
B

 L
-T

A
G

E

3.3 KB L-TAGE

19.9 KB EXACT-S (3.3 KB L-TAGE + 16 KB Reconfig-EX + 0.57 KB Fixed)

16.7 KB L-TAGE

49.3 KB EXACT-S (16.7 KB L-TAGE + 32 KB Reconfig-EX + 0.57 KB Fixed)

58 KB L-TAGE

0.9

1

1.1

1.2

1.3

1.4

1.5

p
e
rf

o
rm

a
n

c
e
 i
m

p
ro

v
e
m

e
n

t
n

o
rm

.
to

 3
.3

 K
B

 L
-T

A
G

E

3.3 KB L-TAGE

19.9 KB EXACT-S (3.3 KB L-TAGE + 16 KB Reconfig-EX + 0.57 KB Fixed)

16.7 KB L-TAGE

49.3 KB EXACT-S (16.7 KB L-TAGE + 32 KB Reconfig-EX + 0.57 KB Fixed)

58.3 KB L-TAGE

fixed sizes for its bimodal and loop predictors. The sizes of the

tagged components are based on equations in the L-TAGE source

code. Table 3 shows the three L-TAGE configurations we use in

the experiments that follow, including total size and the sizes of

their sub-components.

These three L-TAGE configurations will be used both standalone

and in the context of our reconfigurable explicit predictor (notice

we use the same notation from Section 3.6 for tagged tables 3a

through 6a). We evaluated two sizes for the reconfigurable

explicit predictor subcomponent, 16KB and 32KB (also in Table

3). The 16KB reconfigurable explicit predictor is integrated with

the 3.3KB L-TAGE and the 32KB one is integrated with the 16.7

KB L-TAGE. We evaluate the five configurations under two

different latency assumptions: 1-cycle latency for all

configurations and N-cycle latency based on total size as shown in

Table 3. For the N-cycle case, all configurations are used as

overriding predictors [10] in conjunction with a 1-cycle 8KB

gshare predictor.

Table 4 shows the cost of the fixed-size subcomponents of

EXACT-S. They total to about ½ KB. This cost does not include

the cost of the reconfigurable explicit predictor’s subcomponents:

the default and explicit predictors.

5.2 Results

Figure 6 shows the misprediction rates of the five configurations.

For the benchmarks that do not use ID-based indexing, 19.9 KB

EXACT-S and 49.3 KB EXACT-S achieve similar accuracies as

the 16.7 KB and 58.3 KB L-TAGE predictors, respectively. As

expected, on benchmarks that use ID-based indexing, 19.9 KB

EXACT-S outperforms the 16.7 KB L-TAGE for gzip (6% vs.

7%) and twolf (3.5% vs. 4%). Similarly, 49.3 KB EXACT-S

outperforms the 58.3 KB L-TAGE for gzip (4.7% vs. 7.2%) and

twolf (2.1% vs. 3.9%). In summary, all benchmarks across the

board have benefited from the reconfigurable predictor compared

to an equally sized fixed L-TAGE predictor.

Figure 6. Misprediction rates.

Figure 7 shows performance improvement normalized to 3.3KB

L-TAGE assuming (a) 1-cycle latency and (b) N-cycle latency

overriding predictor based on values in Table 3. 19.9 KB

EXACT-S achieves similar performance compared to 16.7 KB L-

TAGE for all non-applicable benchmarks, except for gcc where

minor slowdown is recorded, and speedups of 5% for gzip and

twolf. Similarly, 49.3 KB EXACT-S and 58.3 KB L-TAGE

achieve similar performance on all non-applicable benchmarks,

while 49.3 KB EXACT-S shows speedups of 10% and 15% for

gzip and twolf, respectively, compared to 58.3 KB L-TAGE.

Table 5 compares mispredictions rates for EXACT [1] and

EXACT-S at comparable cost points. For EXACT, we show two

different flavors, depending on whether the SACT (the address-to-

index conversion table used for active updates) is implemented in

dedicated storage versus virtualized. We only show comparisons

for gzip and twolf. EXACT-S significantly outperforms EXACT

at these cost points. EXACT-S is more accurate for equal or lesser

cost because of its direct-indexing strategy and very low cost

active updates. In the EXACT paper [1], the authors show that

EXACT can deliver higher accuracies at expensive cost points.

Even at these points, EXACT underperforms EXACT-S due to

indexing with a prior branch’s ID instead of the current one.

Moreovoer, for the rest of the benchmarks, EXACT is a major

liability as its resources are not reconfigured to benefit the base

predictor (L-TAGE), while EXACT-S will deliver similar results

to an equally-sized fixed L-TAGE predictor (results in Figure 7).

Table 5. Comparing EXACT and EXACT-S.

6. RELATED WORK

With the advent of two-level adaptive branch prediction [18],

there has been a plethora of research on branch predictors that

combine branch PCs, local/global branch history, and path

information in ingenious ways to achieve ever higher accuracy.

For brevity, we focus instead on closely related work that target

the load-branch idiom or use software management of hardware.

0%

2%

4%

6%

8%

10%

12%

m
is

p
re

d
ic

ti
o

n
 r

a
te

 %

3.3 KB L-TAGE
19.9 KB EXACT-S (3.3 KB L-TAGE + 16 KB Reconfig-EX + 0.57 KB Fixed)
16.7 KB L-TAGE
49.3 KB EXACT-S (16.7 KB L-TAGE + 32 KB Reconfig-EX + 0.57 KB Fixed)
58.3 KB L-TAGE

 EXACT,
dedicated SACT

EXACT.
virtualized SACT

EXACT-S

size
(KB)

misp.
rate

size
(KB)

misp.
rate

size
(KB)

misp.
rate

gzip 62 7.33 % 68 6.48 % 49.3 4.71%

twolf 67 7.30 % 68 7.03 % 49.3 2.11%

EXACT-S borrows principles from EXACT [1] and, through

software intervention, yields a significantly simpler application of

these principles. EXACT was discussed at length in Section 2.1.

The ARVI predictor [6] uses live-in register values of a branch’s

backward-slice to predict the branch, if these values are available

in the register file (committed). Backward-slices terminate at

loads. Their results showed that 80% of dynamic branches depend

on pending loads whose values are unavailable in the pipeline for

making predictions. This highlights the need for generating load

values or addresses early. EXACT-S exploits software

intervention to achieve the latter.

The ABC predictor (address-branch correlation) [9] specifically

targets hard-to-predict branches that depend on loads that miss in

the L2 cache. They exploit two observations: (1) the value

contents of the data structures tested by these branches tend to be

stable, therefore, a branch outcome correlates well with simply the

address of the data structure, and (2) while the actual value is

unavailable by virtue of being retrieved from the memory system,

the address is available since the load on which the branch

depends has already issued to the memory system. Accordingly,

they use the address of the missed load to repredict the direction

of the load’s dependent branch. The fetch unit is redirected if the

reprediction does not match the original prediction. EXACT-S

(and its precursor EXACT) has the more formidable challenge of

hiding the core pipeline latency for all branches, requiring the

load addresses for every branch to be available. EXACT-S

exploits software intevention to make this possible and practical.

The base and offset registers of EXACT-S are reminiscent of

conventional stride predictors used for load address prediction

[13] and data prefetching. We considered hardware address

prediction but did not pursue it because it breaks down when the

base address is highly variable. For example, twolf’s array-

traversing loop traverses many different array objects. The most

important facet of EXACT-S is in providing the base address

early; strided access is otherwise a fairly common idiom to be

exploited.

Farcy et al. [8], Roth and Sohi [12], and Zilles and Sohi [19]

proposed extracting, hoisting, and pre-executing the backward

slices of hard-to-predict branches so that their outcomes are

known by the time they are fetched.

In SSMT [5], the authors suggested using a micro-thread to

manage a large PAg branch predictor [18] stored in main memory.

After each branch is fetched, a micro-thread is spawned to update

the branch predictor and prepare a prediction for the next branch

instance, which is stored in a prediction cache.

In DISE [7], the authors suggested using a pattern table to match

on a sequence of instructions and replace them with either a native

sequence of instructions or micro-instructions which are fetched

from a replacement table. They applied DISE to memory fault

isolation and dynamic code compression. Our proposed shadow-

instructions do not replace program instructions but enable them

to transparently trigger actions in the fetch unit.

The IBM POWER ISA features a branch-on-count instruction

which manages loop counter registers in the branch unit.

7. SUMMARY AND FUTURE WORK

This paper presented a novel software-managed reconfigurable

branch predictor, EXACT-S, that accurately predicts load-

dependent branches that sequence large data structures. In

EXACT-S, software conveys key information directly to the fetch

unit that it can use to generate branches’ load addresses in a

timely manner which in turn is essential for providing them with

dedicated predictions. This is the same principle behind the

precursor EXACT predictor, but EXACT-S is significantly

streamlined in comparison. We demonstrated EXACT-S on two

applications, gzip and twolf, by writing shadow code for some of

their most difficult-to-predict branches. EXACT-S removes 33%

of mispredictions in gzip and 50% of mispredictions in twolf,

compared to a similarly-sized aggressive history-based L-TAGE

predictor. For other applications, the unused explicit predictor

storage is absorbed by the default predictor via a reconfigurable

design: the reconfigured predictor shows similar accuracy to a

similarly-sized fixed L-TAGE predictor.

For future work, we plan to expand the repertoire of sequencing

idioms of EXACT-S. We also plan to explore other performance

and energy optimizations enabled by direct manipulation of

processor units by shadow code.

8. ACKNOWLEDGEMENTS
This research was supported in part by NSF grants CCF-0702632

and CCF-0916481, SRC grant 2007-HJ-1594, and an Intel gift.

Any opinions, findings, and conclusions or recommendations

expressed herein are those of the authors and do not necessarily

represent the views of the National Science Foundation.

9. REFERENCES

[1] M. Al-Otoom, E. Forbes, E. Rotenberg. EXACT: Explicit Dynamic-
Branch Prediction with Active Updates. CF-7, May 2010.

[2] D. W. Anderson, F. J. Sparacio, R. M. Tomasulo. The IBM
System/360 Model 91. IBM Journal of R&D, vol. 11, 1967.

[3] I. Burcea, S. Somogyi, A. Moshovos, B. Falsafi. Predictor
Virtualization. ASPLOS-XIII, March 2008.

[4] D. Burger, et al. Evaluating Future Microprocessors: The
Simplescalar Toolset. CS-TR-96-1308,UW-Mad., July 1996.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, Y. Patt. Simultaneous
Subordinate Microthreading (SSMT). ISCA-26, May 1999.

[6] L. Chen, S. Dropsho, D. Albonesi. Dynamic Data Dependence
Tracking and its Application to Branch Prediction. HPCA-9, Feb.
2003.

[7] M. L. Corliss, E. C. Lewis, A. Roth. DISE: A Programmable Macro
Engine for Customizing Applications. ISCA-30, June 2003.

[8] A. Farcy, O. Temam, R. Espasa, T. Juan. Dataflow Analysis of
Branch Mispredictions and its Applications to Early Resolution of
Branches. MICRO-31, Dec. 1998.

[9] H. Gao, Y. Ma, M. Dimitrov, H. Zhou. Address-Branch Correlation:
A Novel Locality for Long-Latency Hard-to-Predict Branches.
HPCA-14, Feb. 2008.

[10] D. Jiménez, S. Keckler, C. Lin. The Impact of Delay on the Design
of Branch Predictors. MICRO-33, Dec. 2000.

[11] S. McFarling. Combining Branch Predictors. DEC WRL TN-36,
June 1993.

[12] A. Roth and G. Sohi. Speculative Data-Driven Multithreading.
HPCA-7, Jan. 2001.

[13] Y. Sazeides, J. E. Smith. The predictability of data values. MICRO-
30, Dec. 1997.

[14] A. Seznec. The L-TAGE Branch Predictor. JILP, May 2007.

[15] A. Seznec. L-TAGE header file.
http://www.irisa.fr/caps/projects/Architecture/L-TAGE.h

[16] T. Sherwood, et al. Automatically Characterizing Large Scale
Program Behavior. ASPLOS-X, Oct. 2002.

[17] A. Sodani and G. Sohi. Dynamic Instruction Reuse. ISCA-24, June
1997.

[18] T.-Y. Yeh and Y. Patt. Alternative Implementations of Two-Level
Adaptive Branch Prediction. ISCA-19, May 1992.

[19] C. Zilles and G. Sohi. Execution-based Prediction Using Speculative
Slices. ISCA-28, July 2001.

http://www.irisa.fr/caps/projects/Architecture/L-TAGE.h

10. APPENDIX

Figure 8. Shadow-code

example for gzip.

4
0
1
3
d
0

l
u
i

$
a
3
[
7
]
,
4
0
9
9

4
0
1
3
d
8

a
d
d
i
u

$
a
3
[
7
]
,
$
a
3
[
7
]
,
2
4
0
0

4
0
1
3
e
0

l
w

$
v
0
[
2
]
,
-
3
0
5
5
2
(
$
g
p
[
2
8
]
)

4
0
1
3
e
8

l
w

$
a
0
[
4
]
,
-
3
0
5
5
6
(
$
g
p
[
2
8
]
)

4
0
1
3
f
0

l
w

$
a
1
[
5
]
,
-
3
0
5
6
8
(
$
g
p
[
2
8
]
)

4
0
1
3
f
8

a
d
d
i
u

$
v
1
[
3
]
,
$
z
e
r
o
[
0
]
,
-
3
2
7
6
8

4
0
1
4
0
0

a
d
d
u

$
v
0
[
2
]
,
$
v
0
[
2
]
,
$
v
1
[
3
]

4
0
1
4
0
8

a
d
d
u

$
a
0
[
4
]
,
$
a
0
[
4
]
,
$
v
1
[
3
]

4
0
1
4
1
0

a
d
d
u

$
a
1
[
5
]
,
$
a
1
[
5
]
,
$
v
1
[
3
]

4
0
1
4
1
8

s
w

$
v
0
[
2
]
,
-
3
0
5
5
2
(
$
g
p
[
2
8
]
)

4
0
1
4
2
0

s
w

$
a
0
[
4
]
,
-
3
0
5
5
6
(
$
g
p
[
2
8
]
)

4
0
1
4
2
8

s
w

$
a
1
[
5
]
,
-
3
0
5
6
8
(
$
g
p
[
2
8
]
)

4
0
1
4
3
0

l
h
u

$
v
1
[
3
]
,
0
(
$
a
3
[
7
]
)

4
0
1
4
3
8

s
l
t
u

$
v
0
[
2
]
,
$
t
0
[
8
]
,
$
v
1
[
3
]

4
0
1
4
4
0

b
e
q

$
v
0
[
2
]
,
$
z
e
r
o
[
0
]
,
4
0
1
4
6
0

4
0
1
4
4
8

a
d
d
u

$
v
0
[
2
]
,
$
v
1
[
3
]
,
$
t
2
[
1
0
]

4
0
1
4
5
0

s
h

$
v
0
[
2
]
,
0
(
$
a
3
[
7
]
)

4
0
1
4
5
8

j

0
0
4
0
1
4
6
8

<
f
i
l
l
_
w
i
n
d
o
w
+
2
7
0
>

4
0
1
4
6
0

s
h

$
z
e
r
o
[
0
]
,
0
(
$
a
3
[
7
]
)

4
0
1
4
6
8

a
d
d
i
u

$
a
3
[
7
]
,
$
a
3
[
7
]
,
2

4
0
1
4
7
0

a
d
d
i
u

$
a
2
[
6
]
,
$
a
2
[
6
]
,
1

4
0
1
4
7
8

s
l
t
u

$
v
0
[
2
]
,
$
t
0
[
8
]
,
$
a
2
[
6
]

4
0
1
4
8
0

b
e
q

$
v
0
[
2
]
,
$
z
e
r
o
[
0
]
,
4
0
1
4
3
0

4
0
1
4
8
8

a
d
d
u

$
a
2
[
6
]
,
$
z
e
r
o
[
0
]
,
$
z
e
r
o
[
0
]

4
0
1
4
9
0

a
d
d
i
u

$
a
1
[
5
]
,
$
z
e
r
o
[
0
]
,
3
2
7
6
7

4
0
1
4
9
8

o
r
i

$
a
3
[
7
]
,
$
z
e
r
o
[
0
]
,
3
2
7
6
8

4
0
1
4
a
0

l
u
i

$
a
0
[
4
]
,
4
0
9
8

4
0
1
4
a
8

a
d
d
i
u

$
a
0
[
4
]
,
$
a
0
[
4
]
,
2
4
0
0

4
0
1
4
b
0

l
h
u

$
v
1
[
3
]
,
0
(
$
a
0
[
4
]
)

4
0
1
4
b
8

s
l
t
u

$
v
0
[
2
]
,
$
a
1
[
5
]
,
$
v
1
[
3
]

4
0
1
4
c
0

b
e
q

$
v
0
[
2
]
,
$
z
e
r
o
[
0
]
,
4
0
1
4
e
0

4
0
1
4
c
8

a
d
d
u

$
v
0
[
2
]
,
$
v
1
[
3
]
,
$
a
3
[
7
]

4
0
1
4
d
0

s
h

$
v
0
[
2
]
,
0
(
$
a
0
[
4
]
)

4
0
1
4
d
8

j

0
0
4
0
1
4
e
8

<
f
i
l
l
_
w
i
n
d
o
w
+
2
f
0
>

4
0
1
4
e
0

s
h

$
z
e
r
o
[
0
]
,
0
(
$
a
0
[
4
]
)

4
0
1
4
e
8

a
d
d
i
u

$
a
0
[
4
]
,
$
a
0
[
4
]
,
2

4
0
1
4
f
0

a
d
d
i
u

$
a
2
[
6
]
,
$
a
2
[
6
]
,
1

4
0
1
4
f
8

s
l
t
u

$
v
0
[
2
]
,
$
a
1
[
5
]
,
$
a
2
[
6
]

4
0
1
5
0
0

b
e
q

$
v
0
[
2
]
,
$
z
e
r
o
[
0
]
,
4
0
1
4
b
0

P
C

o
p
-
c
o
d
e

i
m
m
e
d
i
a
t
e
/
f
l
a
g

c
o
m
m
e
n
t
s

4
0
1
3
d
8

0

0

/
/

s
e
e
d
:

b
a
s
e
-
r
e
g

=

r
7
,

/
/

(
r
7

i
s

d
e
s
t
.

r
e
g
i
s
t
e
r

o
f

4
0
1
3
d
8
)

4
0
1
3
e
0

1

3
2
7
6
8

/
/

i
n
i
t

o
f
f
s
e
t
-
r
e
g
:

o
f
f
s
e
t
-
f
i
e
l
d

=

0
,

/
/

t
r
i
p
-
c
o
u
n
t
-
f
i
e
l
d

=

3
2
7
6
8
,

/
/

s
t
r
i
d
e
-
f
i
e
l
d

=

2

4
0
1
4
8
0

4

0

/
/

l
o
o
p
-
b
r
a
n
c
h
:

(
o
f
f
s
e
t
-
f
i
e
l
d

=
=

t
r
i
p
-
c
o
u
n
t
-
f
i
e
l
d

?

N
T

:

T
)
,

/
/

o
f
f
s
e
t
-
f
i
e
l
d
+
+

4
0
1
4
4
0

6

0

/
/

r
e
g
u
l
a
r
-
b
r
a
n
c
h
:

p
r
e
d
_
i
n
d
e
x

=

h
a
s
h
(
P
C
,

b
a
s
e
-
r
e
g

+

(
o
f
f
s
e
t
-
f
i
e
l
d

*

s
t
r
i
d
e
-
f
i
e
l
d
)
)

4
0
1
4
a
8

0

0

/
/

s
e
e
d
:

b
a
s
e
-
r
e
g

=

r
4
,

/
/

(
r
4

i
s

d
e
s
t
.

r
e
g
i
s
t
e
r

o
f

4
0
1
4
a
8
)

4
0
1
4
9
0

1

3
2
7
6
8

/
/

i
n
i
t
-
o
f
f
s
e
t
-
r
e
g
:

o
f
f
s
e
t
-
f
i
e
l
d

=

0
,

/
/

t
r
i
p
-
c
o
u
n
t
-
f
i
e
l
d

=

3
2
7
6
8
,

/
/

s
t
r
i
d
e
-
f
i
e
l
d

=

2

4
0
1
5
0
0

4

0

/
/

l
o
o
p
-
b
r
a
n
c
h
:

(
o
f
f
s
e
t
-
f
i
e
l
d

=
=

t
r
i
p
-
c
o
u
n
t
-
f
i
e
l
d

?

N
T

:

T
)
,

/
/

o
f
f
s
e
t
-
f
i
e
l
d
+
+

4
0
1
4
c
0

6

0

/
/

r
e
g
u
l
a
r
-
b
r
a
n
c
h
:

p
r
e
d
_
i
n
d
e
x

=

h
a
s
h
(
P
C
,

b
a
s
e
-
r
e
g

+

o
f
f
s
e
t
-
f
i
e
l
d

*

s
t
r
i
d
e
-
f
i
e
l
d
)
)

A
s
s
e

m
b

ly

C
o

d
e

S
h

a
d

o
w

C
o

d
e

// W
S

IZ
E

 =
 H

A
S

H
_

S
IZ

E
 =

 0
x
8

0
0

0

fo
r (n

 =
 0

; n
 <

 H
A

S
H

_
S

IZ
E

; n
+

+
) {

 m
 =

 h
e

a
d
[n

];

 h
e

a
d

[n
] =

 (P
o

s
)(m

 >
=

 W
S

IZ
E

 ?
 m

-W
S

IZ
E

 : N
IL

); // 1
s
t b

ra
n

c
h

 o
f in

te
re

s
t

} fo
r (n

 =
 0

; n
 <

 W
S

IZ
E

; n
+

+
) {

 m
 =

 p
re

v
[n

] ;

 p
re

v
[n

] =
 (P

o
s
)(m

 >
=

 W
S

IZ
E

 ?
 m

-W
S

IZ
E

 : N
IL

); // 2
n

d
 b

ra
n

c
h

 o
f in

te
re

s
t

}

S
o

u
rc

e

C
o

d
e

