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ABSTRACT 
Workloads present diverse performance challenges. 

Consequently, many proposed microarchitecture techniques apply 

to only a subset of applications. This limits their appeal, as the 

added resources tend to be unused by the remaining applications. 

Designing reconfigurable hardware is one way to tackle this issue. 

In this paper, we propose EXACT-S, a software-managed 

reconfigurable branch predictor that targets workloads with hard-

to-predict load-dependent branches encountered in the context of 

sequencing arrays and linked-lists. EXACT-S is inspired by the 

previous EXACT predictor and targets its limitations. EXACT is 

indexed by branches’ load addresses and actively updated by 

stores. With EXACT-S, the idea is to have a light-weight run-time 

layer to convey key information directly to the fetch unit that it 

can use to generate branches’ load addresses in a timely manner. 

This approach is more accurate because it uses branches’ load 

addresses directly rather than prior branches’ load addresses. 

Moreover, with regard to active updates, there is no need for a 

large table to convert store addresses to predictor indices because 

of the direct indexing strategy. As a result, EXACT-S is simpler, 

less expensive and more accurate than EXACT. For applications 

that suffer poor prediction accuracies due to load-dependent 

branches, EXACT-S removes up to 50% of their mispredictions. 

For all other applications, the proposed reconfigurable predictor 

relinquishes EXACT-S storage to the base L-TAGE predictor, 

thus achieving the same prediction accuracy as a similarly-sized 

fixed L-TAGE predictor. 

1. INTRODUCTION 

High performance processors have matured to the point that it is 

rare nowadays to conceive of a single microarchitecture technique 

that will speed up all applications. All of the “low hanging fruits” 

– techniques that target fairly universal behavior – have been 

implemented, and are being scaled out (e.g., OOO execution). 

Now, different applications have specific behaviors that can only 

be effectively addressed by targeted solutions. 

This situation has hindered microarchitecture research. Solutions 

tend to benefit a subset of applications, usually yielding the 

proposed hardware unused by the remaining applications. This 

makes it difficult to justify their inclusion in a commercial 

processor, stifling innovation. 

One way to address this issue is by using reconfigurable hardware 

that releases the unused resource to be allocated in a way that 

benefits the remaining workloads. As an example, we propose a 

reconfigurable branch predictor that targets branches that traverse 

large data structures. This class of branch has been shown to 

trouble even sophisticated branch predictors [1] but is not present 

in all workloads. 

In a conventional branch predictor, the predictor index is based on 

local or global branch history patterns. The patterns used to 

predict different instances of the branch are often the same [1]. In 

the context of data structure traversal, this means that different 

instances of the branch, corresponding to different elements of the 

data structure are likely to end up sharing entries in the predictor 

table. Unfortunately, if instances sharing an entry have different 

outcomes, they will be mispredicted. Note that this sharing 

behavior is a result of the context used to predict branches, not 

limited storage. 

To fix this problem, the recently proposed auxiliary predictor, 

EXACT [1], combines the branch PC with the address of the 

element being tested to provide a unique branch ID. More 

formally, prior work defined the ID of a branch instance to be the 

program counter (PC) of the branch hashed together with the 

address of the load that the branch depends on [1]: 

ID = hash(branch’s PC, branch’s load address) 

Ideally, the index of the branch instance is its ID (truncated to the 

number of index bits). Unfortunately, the ideal indexing strategy 

described above is difficult to achieve in practice, because the 

load that a branch depends on is unlikely to have generated its 

address before the branch is fetched. To deal with this problem, 

the authors of EXACT proposed indexing the predictor with a 

prior, retired branch’s ID some fixed distance away (they used the 

21st branch away in their final experiments) instead of the current 

branch’s ID, which is unavailable. Using a proxy branch to predict 

the current branch works reasonably well due to repetition in the 

global sequence of branches and their IDs. Unfortunately, there 

are key drawbacks of EXACT’s indirect indexing strategy: 

1- Squandering accuracy potential: The accuracy of indexing with 

the current branch’s ID is impressive, but at best indexing with a 

prior branch’s ID achieves half of this potential and sometimes 

less [1]. Using a prior branch’s ID as a proxy for the current 

branch’s ID is a subtle form of load address prediction (predicting 

the current branch’s load address from a prior branch’s load 

address), and is imperfect. 

2- Redundant predictor entries: It was found that some recent 

global branch history bits need to be included in the index of 

certain branches [1]. This is because a prior branch may lead to 

multiple alternative downstream branches along different control-

flow paths. Using only the prior branch’s ID causes the alternative 

branches to have the same index and share a predictor entry. 

Including history ensures the alternative branches have dedicated 

predictor entries but also creates redundant entries if some history 

bits do not influence the alternatives. Redundant entries increase 

pressure on the available storage. As a result, a larger predictor is 

needed than if the current branch’s ID were used to index the 

predictor. 

3- Cost and complexity of “Active Updates”: A store to an 

element of a data structure may cause its corresponding branch 

outcome to flip when it is next encountered. With conventional 

passive updates, a misprediction is suffered before the predictor is 
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retrained. On the other hand, EXACT is unique in that stores 

update the predictor (referred to as “active updates”) [1]. An 

unfortunate but necessary side-effect of the indirect indexing 

strategy is that a branch’s index into the predictor cannot be 

inferred from the load address on which it depends. This leads to a 

complex and storage-intensive active update unit: a large table is 

needed to convert store addresses to the predictor indices that 

must be updated. The dedicated storage can be reduced by 

virtualizing the large table in memory, but the virtualized table 

occupies cache space and is complex to manage. 

In this paper, we propose the EXACT-S predictor. EXACT-S has 

two unique aspects. First, it is reconfigurable. Workloads that 

suffer poor branch prediction accuracies due to traversing data 

structures will benefit from EXACT-S’s unique ID-based 

indexing. For all other workloads, EXACT-S resources are 

diverted to the base predictor, so that its resources benefit all 

workloads. 

Second, it is software-managed. A light-weight run-time layer 

conveys key information directly to the fetch unit that it can use to 

generate branches’ load addresses in a timely manner. Thus, the 

auxiliary predictor can be indexed directly with the current 

branch’s ID. This allows for eliminating the limitations of 

EXACT [1] discussed above. First, EXACT-S is more accurate 

because it uses branches’ IDs directly rather than prior branches’ 

IDs. Second, the direct indexing strategy translates to zero 

redundancy in the predictor. Third, active updates are simple and 

inexpensive because there is no need for a large table to convert 

store addresses to predictor indices since the affected branch’s 

index can be inferred from the store address. 

Since EXACT-S is under software control, there is no need for a 

hardware chooser to learn which branches should be predicted 

using the ID-based indexing vs. the history-based indexing. This 

eliminates both hardware (reducing complexity, cost and power) 

and training time (performance overhead) with respect to 

EXACT. 

Applying EXACT-S to SPEC2K integer benchmarks revealed two 

perfect candidates that benefited from the unique ID-based 

indexing, namely gzip and twolf, where 33% and 50% of 

mispredictions are removed, respectively (compared to a 

similarly-sized L-TAGE predictor). For other applications, the 

unused predictor storage is absorbed by the default predictor via 

our reconfigurable design: the reconfigured predictor shows 

similar accuracy to a similarly-sized fixed L-TAGE predictor. 

2. EXACT versus EXACT-S 

In this section, we first review the operation of the original 

EXACT predictor (Section 2.1) and then provide an overview of 

the proposed EXACT-S, its operation, and its simplifications with 

respect to EXACT (Section 2.2). 

2.1 Background on EXACT 

Figure 1 shows a high level view of EXACT [1]. Instruction fetch 

is directed by a hybrid predictor, comprised of a default history-

based predictor, an auxiliary predictor indexed by ID called the 

explicit predictor, and a chooser. As branches retire from the 

processor, their IDs are deduced from producer loads that retired 

before them (ID Gen) and the IDs are pushed into the Global 

Branch Queue (GBQ). As alluded to previously, the explicit 

predictor predicts the current branch using the ID of a retired 

branch a fixed distance away. This indirect indexing strategy is 

facilitated by the GBQ (see label 1). The explicit predictor is both 

passively updated (branches’ outcomes are recorded as they retire, 

see label 2) and actively updated. When a store retires from the 

processor, its address and value are converted by an active update 

unit into updates of the explicit predictor (see label 3). 

 
Figure 1.  High-level view of EXACT. 

Two mechanisms are required for active updates: 1) converting 

the store address into a predictor index to be updated, and 2) 

converting the store value into a branch outcome. 

Address-to-index conversion would be straightforward if the 

index was based on the branch’s ID: the index would be the store 

address hashed with the branch’s PC. To obtain the branch’s PC, 

EXACT learns which static stores affect which static branches by 

training a small store-PC-to-branch-PC conversion table (Figure 

1). 

Unfortunately, the branch’s index is based on some other branch’s 

ID. This means its index cannot be determined from the store 

address directly. Instead, a large address-to-index conversion table 

is required. The table records, for each address, the explicit 

predictor’s indices corresponding to branches that depend on that 

address. 

Converting the store value to a branch outcome is achieved by the 

value-to-outcome conversion table (Figure 1), which is a compact 

reuse table that remembers for each static branch two ranges of 

load values, one range that causes it to be taken and the other that 

causes it to be not-taken. We call this table the Range Reuse Table 

(RRT). The inputs to this table are the branch’s PC (produced by 

the store-PC-to-branch-PC conversion) and the store value. 

The store-PC-to-branch-PC and value-to-outcome conversion 

tables are small in size since they record static branch information 

unlike the address-to-index conversion table that records 

information about dynamic branches. 

The amount of dedicated storage required for the address-to-index 

conversion table is reduced by virtualizing it [3]. The idea is to 

implement a small level one (L1) version of the component in 

dedicated storage, backed by a full version in physical memory 

which can then be transparently cached in higher levels of the 

general-purpose memory hierarchy (e.g., L2 cache). A potential 

drawback of virtualization is that it significantly increases the 

worst-case latency for performing a single active update. Latency 

is not an issue for the active update unit, however, because most 

benchmarks are tolerant of 400+ cycles of latency to perform 
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active updates, due to the long distances between stores and 

reencounters with branches that they update. Virtualization of the 

address-to-index conversion table is depicted in Figure 1. 

2.2 Overview of EXACT-S 

Figure 2 shows a high-level view of EXACT-S. EXACT-S has the 

same high-level structure as EXACT but is simpler. 

EXACT-S exploits software intervention to make the indexing 

strategy both more accurate and more efficient. In most of the 

applications that benefit from EXACT, many of the data 

structures tested by branches are arrays and to a lesser extent 

linked-lists (which EXACT-S handles as logical arrays as will be 

discussed in a later section). The fetch unit in EXACT-S features 

two special, software-managed registers, base register and offset 

register, which enable the fetch unit to calculate the addresses of 

array elements as the branches that test them are fetched. This 

way, a branch’s ID is known when the branch is fetched, so that 

the explicit predictor can be indexed directly by the current branch 

ID. 

 

Figure 2.  High-level view of EXACT-S. 

A light-weight run-time layer allocates the base register and offset 

register for the static branch that tests elements of an array. 

Software writes the base address of the array into the base 

register, increments/decrements the offset register, and signals 

when to index the explicit predictor for a dynamic instance of the 

static branch. The index is the sum of the base and offset registers, 

hashed with the branch’s PC to form the ID, as shown in Figure 2. 

One approach to enable software to manage the fetch unit is to 

modify the instruction-set architecture (ISA): (1) add new 

instructions to write the base and offset registers, and (2) add a bit 

to conditional branch opcodes to signal whether a static branch 

should use the explicit predictor or default predictor. There are 

two drawbacks to this approach. First, it requires changing the 

ISA which may not be an option. Second, this approach will 

increase the dynamic instruction count of programs modified to 

use EXACT-S, reducing the performance gain of EXACT-S. 

Therefore, we propose managing the fetch unit with shadow code. 

We use the term “shadow” because the light-weight run-time 

layer creates a correspondence between selected instructions in 

the original program and shadow-instructions in the shadow code. 

That is, each shadow-instruction shadows a particular instruction 

in the original program. Each shadow-instruction is tagged with 

the PC of the instruction that it shadows. When the instruction is 

fetched, the shadow-instruction that shadows it is triggered via the 

PC. 

Typically, key instructions that are shadowed by shadow-

instructions include: (1) the instruction that generates the base 

address of an array, (2) any instruction that is convenient for 

signaling when to increment the offset and by what positive or 

negative value, and (3) the static branch that tests elements of the 

array. For example, consider a loop that iterates over an array. The 

instruction prior to the loop that generates the base address of the 

array is shadowed by a shadow-instruction in the shadow code 

called the seed shadow-instruction. The seed shadow-instruction 

writes the base address into the base register in the fetch unit. An 

arbitrary instruction prior to the loop is shadowed by a shadow-

instruction to initialize the offset register. A convenient 

instruction within the loop is shadowed by a shadow-instruction 

that increments/decrements the offset register by a certain stride. 

Finally, a branch within the loop that tests elements of the array is 

shadowed by a shadow-instruction which signals that the branch 

should be predicted with the explicit predictor. The load address 

feeding the branch is computed using the base and offset registers. 

The seed shadow-instruction is special in that it involves 

communication between the general-purpose register file and the 

fetch unit’s base register (to write a value into the base register). 

The seed shadow-instruction records the physical register number 

allocated to the destination of the instruction that it shadows. This 

way, when the instruction executes, its result (the base address) 

can be obtained from the function unit’s result bus. (Note that the 

hardware support for this is present in most modern processors as 

the datapath for sending indirect-branch targets from the 

execution engine to the fetch unit.) Moreover, there is a ready bit 

associated with the base register in the fetch unit. The ready bit is 

reset when the seed shadow-instruction is initially triggered and 

set when the shadowed instruction executes. If a branch is fetched 

that needs to index the explicit predictor, but the base register is 

not yet ready, then the branch is predicted by the default predictor.  

In addition to the accuracy benefits that come with software-

controlled indexing, a number of complex and expensive 

mechanisms are made obsolete: 

1. Note that EXACT-S does not require a chooser (contrast Figure 

1 with Figure 2). The shadow code, and the readiness of the base 

register, controls selection of the explicit predictor or default 

predictor. 

2. EXACT-S does not require the complex post-retirement ID 

generation unit for propagating loads’ addresses to their 

dependent branches. IDs generated in the fetch unit obviate the 

need for this complex hardware. 

3. Since the current branch’s ID is used to index into the explicit 

predictor, there is no need for an address-to-index conversion 

table in the active update unit. As shown in Figure 2, the active 

update unit simply hashes the store address with the branch PC to 

determine the index of the branch that must be updated. Only the 

small store-PC-to-branch-PC and value-to-outcome tables remain. 

As an alternative to using hardware to train these tables, they are 

pre-loaded with information generated by the light-weight run-

time layer. 

While we focused on arrays in the description above, it is possible 

to target EXACT-S for stable linked-lists as well, as we discuss in 

Section 3. Essentially, they can be treated as logical arrays in a 

process called “array-ification”. 
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3. EXACT-S IMPLEMENTATION 

3.1 Shadow Code and the Shadow-Code Table 

Shadow code is conveyed from software to hardware without 

changing the ISA, as follows: 

 The shadow code is made a part of the data segment of the 

program binary. This allows for user-level loads to read bytes 

of the shadow code. 

 The Shadow-Code Table is memory-mapped, making it 

possible to initialize its contents via user-level stores. 

Typically, a given machine comes with a machine manual 

that specifies its memory-mapped registers. 

 Initialization code is added to the beginning of the program, 

that uses pairs of loads and stores to copy the bytes of 

shadow code from the data segment (loads) to the Shadow-

Code Table (stores). 

 If the run-time layer would like to use more shadow-

instructions than there is space in the Shadow-Code Table, 

the table can be explicitly managed even after the 

initialization stage. Bytes of shadow code can be loaded from 

the data segment and stored into the Shadow-Code Table as 

different shadow-instructions become needed. 

There is a one-to-one correspondence between selected 

instructions in the program and shadow-instructions in the shadow 

code. That is, each shadow-instruction shadows a particular 

instruction in the program. Each shadow-instruction has a PC field 

containing the PC of the instruction that it shadows. When the 

instruction is fetched, the shadow-instruction that shadows it is 

triggered via the PC. This process is explained next. 

In parallel with fetching instructions from the instruction cache, 

the PCs of all instructions in the fetch bundle are searched in the 

Shadow-Code Table. If a PC hits, then the matching shadow-

instruction is read from the Shadow-Code Table and executed 

within the fetch unit. Shadow-instructions write, update, or read 

the software-managed registers in the fetch unit. 

If a branch hits in the Shadow-Code Table, it will be predicted by 

the explicit predictor instead of the default predictor. This means 

that the Shadow-Code Table assumes the role of the chooser as 

shown in Figure 2. 

3.2 Software-Managed Registers in the Fetch 

Unit 

Figure 3 shows the fields of the two software-managed registers in 

the fetch unit read and written by the shadow code. 

 

Figure 3. The fetch unit registers read and written by the 

shadow code. 

3.2.1 Base Register 

The base register is used for conveying the base address of a data 

structure that is being traversed, such as an array or linked-list, to 

the fetch unit. There are two fields in a base register: base and 

shift amount. Base contains the base address. Shift amount is used 

by software for effectively modeling linked-lists as arrays in the 

explicit predictor, a process we refer to as “array-ifying” the 

linked-list. Array-ification is discussed below. Figure 3 also 

shows a ready bit associated with the base register. The ready bit 

is not visible to software, i.e., it is purely microarchitectural. It 

will be explained when we discuss the shadow-instruction type 

that writes base registers. 

To array-ify a linked-list, the address of its head node is 

considered the base address and subsequent nodes are considered 

to be at contiguous addresses with a stride of 1 (even though they 

are at arbitrary addresses). Thus, when sequencing a linked-list, 

dynamic branches that test its elements index a contiguous range 

of entries in the explicit predictor. 

Basic array-ification, as described above, may cause different 

linked-lists to conflict in the explicit predictor because it is 

possible for their contiguous ranges to overlap. Whether or not 

two array-ified linked-lists conflict in the explicit predictor 

depends on their base addresses and sizes. True arrays cannot 

conflict in this way because they are laid out contiguously in 

memory; true arrays can only conflict in the explicit predictor due 

to its limited size. 

The shift amount field is used by software to reduce conflicts 

between array-ified linked-lists. The shift amount field specifies 

an amount by which the base address should be shifted to the left 

when forming an index into the explicit predictor. Effectively, this 

provides a dedicated region for the linked-list within the explicit 

predictor as long as the number of elements is less than  

2(shift amount). 

3.2.2 Offset Register 

The fields of the offset register are designed with loops in mind, 

in particular, loops that iterate over and test the contents of data 

structures such as arrays and linked-lists. An offset register has 

three fields: offset, trip-count, and stride. The offset field generally 

corresponds to the loop induction variable. The trip-count is the 

number of times to iterate. The stride is the stride between 

elements that are accessed consecutively. It is a signed integer. 

Thus, the offset register has two uses. First, the address of an 

element being tested can be calculated by adding offset*stride to 

the base address contained in a base register. Second, offset can be 

compared to trip-count to predict the loop branch: taken if they 

are not equal and not-taken if they are equal. 

3.3 Shadow-Instructions 

Figure 4 shows the format of a shadow-instruction. The PC field 

identifies the program instruction that is shadowed. The op-code 

field is 3-bits wide, supporting up to 8 different types of shadow-

instructions. The last field is immediate/flag. This field allows the 

shadow-instruction to use an immediate value. Alternatively, 

some shadow-instructions use this field as a flag that controls 

incrementing the offset register. 

 

Figure 4.  General format of a shadow-instruction. 
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The shadow-instructions used in this paper are enumerated below: 

3.3.1 seed shadow-instruction 

The seed shadow-instruction shadows an instruction in the 

program that generates base addresses of arrays or linked-lists. 

The fields relevant to the seed shadow-instruction are: PC and op-

code 

The seed shadow-instruction is the only one that cannot be 

executed immediately in the fetch unit because it must wait for its 

corresponding program instruction to execute. The seed shadow-

instruction is executed as follows. First, the ready bit of the base 

register is cleared since the base address is not yet available. 

(Branches that are directed to use the explicit predictor – see 

regular-branch shadow-instruction – must use the default 

predictor if they reference a not-ready base register.) At the same 

time, its corresponding program instruction is annotated so that it 

knows to communicate with the fetch unit when it reaches two 

different pipeline stages: the rename stage and the writeback 

stage. When the program instruction is renamed, it sends the 

physical register tag of its destination register to the fetch unit. 

The fetch unit writes the physical register tag into the base 

register, in lieu of an actual value. When the program instruction 

has executed and reaches the writeback stage, it communicates its 

physical register tag and value to the fetch unit. The fetch unit 

writes the value into the base register and sets the ready bit, only if 

the physical register tag matches the one currently in the base 

register (otherwise the value is simply discarded). The reason for 

comparing physical register tags is to handle the scenario of a 

second seed shadow-instruction reusing the base register before 

the first seed shadow-instruction has had a chance to write it. At 

this point, branches affiliated with the first seed shadow-

instruction have already been predicted without the benefit of 

using the explicit predictor, moreover, the first seed shadow-

instruction should not interfere with the branches affiliated with 

the second seed shadow-instruction that is now in progress. This 

implementation is basically an application of Tomasulo’s 

renaming algorithm [2]. 

3.3.2 init-offset shadow-instruction 

This shadow-instruction initializes all three fields of the offset 

register. It initializes the offset field to zero and the trip-count and 

stride fields to specified values. Aside from PC and op-code, the 

field relevant to the init-offset shadow-instruction is: 

immediate/flag that specifies the trip-count and stride values. 

3.3.3 loop-branch shadow-instruction 

This shadow-instruction signals that the corresponding program 

instruction is a loop branch, and it will generate a prediction by 

comparing the offset and trip-count fields of the offset register. If 

they match, it means that the loop branch will fall-through and the 

prediction should be not-taken, otherwise, the prediction should 

be taken. Executing this shadow-instruction will also 

automatically increment the offset field of the offset register. The 

fields relevant to the loop-branch shadow-instruction are: PC and 

op-code. 

3.3.4 regular-branch shadow-instruction 

This shadow-instruction signals that the corresponding program 

instruction is a branch, that should attempt to use the explicit 

predictor. The index into the explicit predictor is calculated by 

adding the base register (shifted for array-ified linked-lists) to the 

offset register and combining with the PC, as follows: 

hash{PC, ((base<<shift amount) + (offset*stride))} 

The multiplication of the offset and stride can be performed by a 

shift operation if the stride is constrained to be a power of two. 

Alternatively, hardware can circumvent all three arithmetic 

operations – the shift, multiply, and add – by microarchitecturally 

extending the base/offset registers with an absolute address 

register that is initialized to (base<<shift amount) and incremented 

by stride. 

Aside from PC and op-code, the field relevant to the regular-

branch shadow-instruction is: immediate/flag (if 1, increment 

offset). 

3.3.5 linked-list-store shadow-instruction 

After array-ification, the index of a linked-list element is not 

based on its address. Instead, it is based on the address of the head 

element plus a virtual offset. This complicates active updates for 

linked-list elements: the index cannot be inferred from the store 

address. The software solution to this problem is to exploit 

opportunities to perform the store in the context of a linked-list 

traversal. If done in the context of a traversal, the store can infer 

its array-ified address the same way a branch does. This is 

achieved using the linked-list-store shadow-instruction. This 

shadow-instruction signals that the corresponding program 

instruction is a store that should calculate its active-update index 

using the base register and offset register, rather than use its own 

address for the active-update index. The partial index (does not 

include branch PC yet) is calculated in the fetch stage but will not 

be used until the store retires. Thus, the partial index is sent with 

the store down the pipeline until the dispatch stage at which time 

the partial index can be placed in the store’s store buffer entry for 

use at retirement. 

Note, it is not a requirement that linked-list stores be performed in 

the context of a linked-list traversal. If it cannot be done in a 

linked-list traversal, there are other options depending on the 

situation: 

 If the run-time layer knows that the store is rare or that it 

rarely flips branch outcomes, then it may be deemed 

unnecessary to trigger active updates by the store. Active 

updates by a particular store PC can be disabled simply by 

excluding it from the store-PC-to-branch-PC table in the 

active update unit. 

 If the run-time layer believes that the store frequently flips 

branch outcomes, then the affected static branches can be 

relegated to the default predictor, simply by not shadowing 

them with regular-branch shadow-instructions. 

The fields relevant to the linked-list-store shadow-instruction are: 

PC and op-code. 



3.3.6 Summary of shadow-instructions 

Table 1 shows a summary of the shadow-instructions used in this 

paper. The table shows, for each shadow-instruction, the op-code 

and immediate/flag fields, as well as the operations performed by 

the shadow-instruction. 

3.4 Light-weight Run-time Layer 

The run-time layer can be a simple software layer that monitors 

loop regions in which lots of mispredictions happen. The run-time 

layer inspects the highly mispredicted branches, in the monitored 

loop, to see if the branch is testing a value loaded from an array 

(or a linked-list). If so, the run-time layer will generate the 

shadow code corresponding to this loop. This paper does not 

discuss the details of the light-weight run-time layer, but focuses 

on its usage to generate the shadow code and to support the 

EXACT-S predictor. 

3.5 Active Update Unit 

The active update unit consists of the store-PC-to-branch-PC and 

value-to-outcome conversion tables (Figure 2). 

In EXACT, store-PC-to-branch-PC conversion was wrapped into 

the address-to-index conversion table [1]. Since EXACT-S 

eliminates the address-to-index conversion table, it has a 

dedicated store-PC-to-branch-PC conversion table. It is a small 

content-addressable table accessed by store PC and a match 

provides the affected branch PC. The branch PC and store address 

are hashed to determine the index to actively update. 

For value-to-outcome conversion, EXACT used two different 

reuse tables, a Ranges Reuse Table (RRT) and a General Reuse 

Table (GRT) [1]. EXACT-S borrows only the RRT. It is a small 

content-addressable table accessed by branch PC and a match 

provides two value ranges: the first provides a range of store 

values for which the prediction should be updated to taken and the 

second provides a range of store values for which the prediction 

should be updated to not-taken. 

While it is possible to dynamically train the store-PC-to-branch-

PC table and the RRT, it is much more efficient to populate them 

via software (reduces hardware overhead, design complexity, and 

training time and power), in the same way that the Shadow-Code 

Table is populated: their contents are part of the data segment and 

they are populated using pairs of loads and memory-mapped 

stores in the initialization phase of the program. 

3.6 Reconfigurable Explicit Predictor 

A practical consideration for the explicit predictor is that it should 

be possible to reallocate its storage to the default predictor, as 

there will be programs that do not exploit EXACT-S for various 

reasons: (1) legacy programs, (2) programs that have high 

accuracy with history-based branch predictors, or (3) programs 

that have branches not suitable for EXACT-S. 

Figure 5 shows our reconfigurable predictor based on the 

aggressive history-based L-TAGE predictor [14]. L-TAGE is 

composed of a bimodal predictor, a loop predictor, and 12 

partially-tagged predictors (T1 through T12) that use different 

lengths of folded global branch history based on a geometric 

series and ranging from 4 bits to 640 bits. When EXACT-S is 

enabled, the explicit predictor consists of four banks on the right 

labeled T3b through T6b. When EXACT-S is disabled, L-TAGE 

uses these four banks in lieu of its tables T3a through T6a. We 

allocate roughly half of the total storage to each of the default 

predictor and the explicit predictor. This implies that T3b-T6b are 

much larger than their counterparts T3a-T6a, hence, it is not too 

wasteful to not use T3a-T6a when EXACT-S is disabled. In 

Section 5, we observe that when the reconfigurable predictor is 

configured for L-TAGE-only operation (EXACT-S disabled), it 

performs about the same as a fixed L-TAGE predictor of the same 

size. 

 

Figure 5. Reconfigurable predictor based on L-TAGE. 

When EXACT-S is enabled, the four banks T3b-T6b are used as 
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Table 1. Summary of shadow-instructions used in this paper. 

shadow-

instruction 

op-code immediate/

flag 

operations 

seed 0x0 shift amount 1. base-register[base] = GPRX 

* use base-register[ready] to synchronize with shadowed instruction X (see relevant text) 

2. base-register[shift-amount] = immediate 

init-offset 0x1 trip-count  
and stride 

1. offset-register[offset] = 0 
2. offset-register[trip-count] = immediate_upper 

3. offset-register[stride] = immediate_lower 

loop-branch 0x4 N/A 1. outcome = (offset-register[offset] == offset-register[trip-count] ? NT : T) 
2. offset-register[offset]++ 

regular-branch 0x6 increment  

offset 

1. pred-index = hash(branch-PC,  

            ((base-register[base]<<base-register[shift amount]) + (offset-register[offset]*offset-register[stride]))) 

2. if (flag) offset-register[offset]++ 

linked-list-store 0x7 N/A active-update-address =  

          ((base-register[base]<<base-register[shift amount]) + (offset-register[offset]*offset-register[stride])) 

  

 



Table 2. Microarchitecture configuration. 

L1 I&D Caches 
64KB, 4-way, 64B line,  

hit=1 cycle, miss=10 cycles, 32 MHSRs 

L2 Cache 
Unified, 2MB, 8-way, 128B line,  
hit=10 cycles, miss=200 cycles, 64 MHSRs 

Reorder Buffer 256 

Issue Queue 64 

Load-Store Queue 64 

Rename Map Checkpoints 16 

Fetch-to-exec. Pipe depth 20 stages 

Fetch/Issue/Retire Width 4 instr./cycle 

 

Table 3. Predictor configurations used in the experiments. 

Predictor  Access Latency 

(cycles) 

Fixed-Size 

Components 

(KB) 

Reconfigurable-EX  

(KB) 

Bimodal 

(KB) 

Loop (KB) Tagged (KB) 

1 2 3a 4a 5a 6a 7 8 9 10 11 12 

3.3 KB L-TAGE 3 cycles 0 0 2.50 0.41 0.02 0.02 0.05 0.05 0.05 0.06 0.03 0.03 0.03 0.04 0.02 0.02 

19.9 KB EXACT-S 4 cycles 0.57 16 2.50 0.41 0.02 0.02 0.05 0.05 0.05 0.06 0.03 0.03 0.03 0.04 0.02 0.02 

16.7 KB L-TAGE 4 cycles 0 0 2.50 0.41 0.75 0.75 1.62 1.62 1.75 1.88 1.00 1.06 1.06 1.12 0.59 0.62 

49.3 KB EXACT-S  5 cycles 0.57 32 2.50 0.41 0.75 0.75 1.62 1.62 1.75 1.88 1.00 1.06 1.06 1.12 0.59 0.62 

58.3 KB L-TAGE 5 cycles 0 0 2.50 0.41 3.00 3.00 6.50 6.50 7.00 7.50 4.00 4.25 4.25 4.50 2.38 2.50 

 

Table 4. Fixed-size subcomponents of EXACT-S (not including default predictor and explicit predictor). 

Unit Structure # of entries / organization Contents per entry Size (KB) 

Fetch Unit 

Shadow-Code Table 64 entries / fully-assoc. 16-bit PC tag + 16-bit shadow-instruction payload 0.24 

Software-Managed Registers 
2 registers 1 ready bit + 20-bit base + 5-bit shift-amount +  

13-bit offset + 13-bit trip-count + 3-bit stride 

0.007 

Active 
Update 

Unit 

RRT 
8 entries / 4-way set-assoc. 1 valid bit + 2-bit LRU + 13-bit tag + 

4x16-bit for (min_NT, max_NT, min_T, max_T) 

0.08 

 

Store-PC-to-Branch-PC Conversion 

Table 

16 entries / 4-way set-assoc. 1 valid bit + 2-bit LRU + 12-bit tag + 8x14-bit branch-PCs 0.24 

 

Total cost of fixed subcomponents (does not include default predictor and explicit predictor): 0.57 

 

one logical predictor that outputs a 1-bit prediction. This is 

achieved by dividing the EXACT-S index into three parts: row 

selection, column selection within each bank, and bank selection. 

Implementing a reconfigurable gshare predictor [11] would be 

easier as it would require just two tables that are configured as 

either gshare+explicit (1 table each) or gshare-only (2 tables 

operating as 1). 

4. SHADOW CODE EXAMPLE AND 

OTHER POTENTIAL USE-CASES 

Figure 8 (in the appendix) shows the source code, assembly code, 

and shadow code generated for two loops in gzip. The two loops 

are similar in behavior, so we will explain only the shadow code 

of the first loop. The branches of interest are highlighted in red in 

the assembly. Assembly instructions that are shadowed are 

highlighted in bold and connected via arrows to their shadow-

instructions. In each loop, the code sequences through a 32K-

entry array, including continuously modifying its elements (thus, 

active updates are crucial). The instruction at address 0x4013d8 is 

the instruction that will generate the base address of the first array, 

so it is shadowed by a seed shadow-instruction that writes the 

base register (base = r7, the destination of the shadowed 

instruction, and shift amount = 0). The instruction at address  

0x4013e0 is shadowed, to initialize the offset (to 0), trip-count (to 

32,768), and stride (to 2) fields of the offset register. The 

instruction at address 0x401480 is the loop branch which will be 

shadowed by a loop-branch shadow-instruction (tests and 

increments the offset register). And finally, the instruction at 

address 0x401440 is the branch of interest, which is shadowed by 

a regular-branch shadow-instruction. 

In addition to the branch prediction use-case presented in this 

paper, shadow-instructions – i.e., direct microarchitecture 

manipulation instructions – can be used for other purposes, 

including and not limited to: 

- Fetch gating: Shadow-instructions can direct the fetch unit to 

stop fetching upon encountering hard-to-predict branches 

that tend to depend on expensive cache misses. 

- Resource configuration: Upon encountering very serial 

regions, shadow-instructions can (a) direct the fetch unit to 

not fetch at full bandwidth or (b) direct the processor to 

transition to a lower-power mode. 

5. RESULTS 

5.1 Methodology 

All results are based on a custom, detailed cycle-level processor 

simulator derived from the SimpleScalar toolset [4]. Parameters of 

the modeled processor are shown in Table 2. 

Eleven of the SPEC2K integer benchmarks were used with 

reference inputs. We compiled these benchmarks to the 

SimpleScalar PISA instruction set using the SimpleScalar gcc-

based compiler with –O3 optimization. The eon benchmark did 

not compile. The SimPoint toolset [16] was used to locate 

representative simulation points. 

We used the source code posted by Seznec [15] for the L-TAGE 

predictor. We performed a design space exploration to find good 



 

(a) 1-cycle latency 

 

 
(b) N-cycle latency, overriding predictors 

Figure 7. Performance improvement w.r.t. 3.3 KB L-TAGE. 
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fixed sizes for its bimodal and loop predictors. The sizes of the 

tagged components are based on equations in the L-TAGE source 

code. Table 3 shows the three L-TAGE configurations we use in 

the experiments that follow, including total size and the sizes of 

their sub-components. 

These three L-TAGE configurations will be used both standalone 

and in the context of our reconfigurable explicit predictor (notice 

we use the same notation from Section 3.6 for tagged tables 3a 

through 6a). We evaluated two sizes for the reconfigurable 

explicit predictor subcomponent, 16KB and 32KB (also in Table 

3). The 16KB reconfigurable explicit predictor is integrated with 

the 3.3KB L-TAGE and the 32KB one is integrated with the 16.7 

KB L-TAGE. We evaluate the five configurations under two 

different latency assumptions: 1-cycle latency for all 

configurations and N-cycle latency based on total size as shown in 

Table 3. For the N-cycle case, all configurations are used as 

overriding predictors [10] in conjunction with a 1-cycle 8KB 

gshare predictor. 

Table 4 shows the cost of the fixed-size subcomponents of 

EXACT-S. They total to about ½ KB. This cost does not include 

the cost of the reconfigurable explicit predictor’s subcomponents: 

the default and explicit predictors. 

5.2 Results 

Figure 6 shows the misprediction rates of the five configurations. 

For the benchmarks that do not use ID-based indexing, 19.9 KB 

EXACT-S and 49.3 KB EXACT-S achieve similar accuracies as 

the 16.7 KB and 58.3 KB L-TAGE predictors, respectively. As 

expected, on benchmarks that use ID-based indexing, 19.9 KB 

EXACT-S outperforms the 16.7 KB L-TAGE for gzip (6% vs. 

7%) and twolf (3.5% vs. 4%). Similarly, 49.3 KB EXACT-S 

outperforms the 58.3 KB L-TAGE for gzip (4.7% vs. 7.2%) and 

twolf (2.1% vs. 3.9%). In summary, all benchmarks across the 

board have benefited from the reconfigurable predictor compared 

to an equally sized fixed L-TAGE predictor. 

 

Figure 6. Misprediction rates. 

Figure 7 shows performance improvement normalized to 3.3KB 

L-TAGE assuming (a) 1-cycle latency and (b) N-cycle latency 

overriding predictor based on values in Table 3. 19.9 KB 

EXACT-S achieves similar performance compared to 16.7 KB L-

TAGE for all non-applicable benchmarks, except for gcc where 

minor slowdown is recorded, and speedups of 5% for gzip and 

twolf. Similarly, 49.3 KB EXACT-S and 58.3 KB L-TAGE 

achieve similar performance on all non-applicable benchmarks, 

while 49.3 KB EXACT-S shows speedups of 10% and 15% for 

gzip and twolf, respectively, compared to 58.3 KB L-TAGE. 

Table 5 compares mispredictions rates for EXACT [1] and 

EXACT-S at comparable cost points. For EXACT, we show two 

different flavors, depending on whether the SACT (the address-to-

index conversion table used for active updates) is implemented in 

dedicated storage versus virtualized. We only show comparisons 

for gzip and twolf. EXACT-S significantly outperforms EXACT 

at these cost points. EXACT-S is more accurate for equal or lesser 

cost because of its direct-indexing strategy and very low cost 

active updates. In the EXACT paper [1], the authors show that 

EXACT can deliver higher accuracies at expensive cost points. 

Even at these points, EXACT underperforms EXACT-S due to 

indexing with a prior branch’s ID instead of the current one. 

Moreovoer, for the rest of the benchmarks, EXACT is a major 

liability as its resources are not reconfigured to benefit the base 

predictor (L-TAGE), while EXACT-S will deliver similar results 

to an equally-sized fixed L-TAGE predictor (results in Figure 7). 

Table 5. Comparing EXACT and EXACT-S. 

 

6. RELATED WORK 

With the advent of two-level adaptive branch prediction [18], 

there has been a plethora of research on branch predictors that 

combine branch PCs, local/global branch history, and path 

information in ingenious ways to achieve ever higher accuracy. 

For brevity, we focus instead on closely related work that target 

the load-branch idiom or use software management of hardware. 
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gzip 62 7.33 % 68 6.48 % 49.3  4.71% 

twolf 67 7.30 % 68 7.03 % 49.3 2.11% 



EXACT-S borrows principles from EXACT [1] and, through 

software intervention, yields a significantly simpler application of 

these principles. EXACT was discussed at length in Section 2.1. 

The ARVI predictor [6] uses live-in register values of a branch’s 

backward-slice to predict the branch, if these values are available 

in the register file (committed). Backward-slices terminate at 

loads. Their results showed that 80% of dynamic branches depend 

on pending loads whose values are unavailable in the pipeline for 

making predictions. This highlights the need for generating load 

values or addresses early. EXACT-S exploits software 

intervention to achieve the latter. 

The ABC predictor (address-branch correlation) [9] specifically 

targets hard-to-predict branches that depend on loads that miss in 

the L2 cache. They exploit two observations: (1) the value 

contents of the data structures tested by these branches tend to be 

stable, therefore, a branch outcome correlates well with simply the 

address of the data structure, and (2) while the actual value is 

unavailable by virtue of being retrieved from the memory system, 

the address is available since the load on which the branch 

depends has already issued to the memory system. Accordingly, 

they use the address of the missed load to repredict the direction 

of the load’s dependent branch. The fetch unit is redirected if the 

reprediction does not match the original prediction. EXACT-S 

(and its precursor EXACT) has the more formidable challenge of 

hiding the core pipeline latency for all branches, requiring the 

load addresses for every branch to be available. EXACT-S 

exploits software intevention to make this possible and practical. 

The base and offset registers of EXACT-S are reminiscent of 

conventional stride predictors used for load address prediction 

[13] and data prefetching. We considered hardware address 

prediction but did not pursue it because it breaks down when the 

base address is highly variable. For example, twolf’s array-

traversing loop traverses many different array objects. The most 

important facet of EXACT-S is in providing the base address 

early; strided access is otherwise a fairly common idiom to be 

exploited. 

Farcy et al. [8], Roth and Sohi [12], and Zilles and Sohi [19] 

proposed extracting, hoisting, and pre-executing the backward 

slices of hard-to-predict branches so that their outcomes are 

known by the time they are fetched. 

In SSMT [5], the authors suggested using a micro-thread to 

manage a large PAg branch predictor [18] stored in main memory. 

After each branch is fetched, a micro-thread is spawned to update 

the branch predictor and prepare a prediction for the next branch 

instance, which is stored in a prediction cache. 

In DISE [7], the authors suggested using a pattern table to match 

on a sequence of instructions and replace them with either a native 

sequence of instructions or micro-instructions which are fetched 

from a replacement table. They applied DISE to memory fault 

isolation and dynamic code compression. Our proposed shadow-

instructions do not replace program instructions but enable them 

to transparently trigger actions in the fetch unit. 

The IBM POWER ISA features a branch-on-count instruction 

which manages loop counter registers in the branch unit. 

7. SUMMARY AND FUTURE WORK 

This paper presented a novel software-managed reconfigurable 

branch predictor, EXACT-S, that accurately predicts load-

dependent branches that sequence large data structures. In 

EXACT-S, software conveys key information directly to the fetch 

unit that it can use to generate branches’ load addresses in a 

timely manner which in turn is essential for providing them with 

dedicated predictions. This is the same principle behind the 

precursor EXACT predictor, but EXACT-S is significantly 

streamlined in comparison. We demonstrated EXACT-S on two 

applications, gzip and twolf, by writing shadow code for some of 

their most difficult-to-predict branches. EXACT-S removes 33% 

of mispredictions in gzip and 50% of mispredictions in twolf, 

compared to a similarly-sized aggressive history-based L-TAGE 

predictor. For other applications, the unused explicit predictor 

storage is absorbed by the default predictor via a reconfigurable 

design: the reconfigured predictor shows similar accuracy to a 

similarly-sized fixed L-TAGE predictor. 

 

For future work, we plan to expand the repertoire of sequencing 

idioms of EXACT-S. We also plan to explore other performance 

and energy optimizations enabled by direct manipulation of 

processor units by shadow code. 
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10. APPENDIX 

    

Figure 8. Shadow-code 

example for gzip. 
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