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The slipstream paradigm harnesses multiple processing elements in a chip

multiprocessor (CMP) to speed up a single, sequential program. It does this by running

two redundant copies of the program, one slightly ahead of the other. The leading

program is the Advanced Stream (A-stream) and the trailing program is the Redundant

Stream (R-stream). Predicted non-essential computation is speculatively removed from

the A-stream. The A-stream is sped up because it fetches and executes fewer instructions

than the original program. The trailing R-stream checks the control flow and data flow

outcomes of the A-stream, and redirects it when it fails to make correct forward progress.

The R-stream also exploits the A-stream outcomes as accurate branch and value

predictions. Therefore, although the R-stream retires the same number of instructions as

the original program, it fetches and executes much more efficiently. As a result, both

program copies finish sooner than the original program.

A slipstream component called the instruction-removal detector (IR-detector)

detects past-ineffectual instructions in the R-stream and selects them for possible removal

from the A-stream in the future. The IR-detector uses a two-step selection process. First,

it selects key trigger instructions -- unreferenced writes, non-modifying writes, and



correctly-predicted branches. A table similar to a conventional register rename table can

easily detect unreferenced and non-modifying writes. The second step, called back-

propagation, selects computation chains feeding the trigger instructions. In an explicit

implementation of back-propagation, retired R-stream instructions are buffered and

consumer instructions are connected to their producer instructions using a configurable

interconnection network. Consumers that are selected because they are ineffectual use

these connections to propagate their ineffectual status to their producers, so that they get

selected, too.

Explicit back-propagation is complex because it requires a configurable

interconnection network. This thesis proposes a simpler implementation of back-

propagation, calledimplicit back-propagation. The key idea is to logically monitor the A-

stream instead of the R-stream. Now, the IR-detector only performs the first step, i.e., it

selects unreferenced writes, non-modifying writes, and correctly-predicted branches.

After building up confidence, these trigger instructions are removed from the A-stream.

Once removed, their producers become unreferenced writes in the A-stream (because

they no longer have consumers). After building up confidence, the freshly exposed

unreferenced writes are also removed, exposing additional unreferenced writes. This

process continues iteratively, until eventually entire non-essential dependence chains are

removed.

By logically monitoring the A-stream, back-propagation is reduced to detecting

unreferenced writes. Implicit back-propagation eliminates complex hardware and

performs within 0.5% of explicit back-propagation.
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Chapter 1

1. Introduction

Recent trends in microarchitecture research reveal a move towards architectures

that can efficiently leverage the billion transistor chips promised by future technologies.

One such architecture is a chip multiprocessor (CMP) [5,10], which incorporates multiple

processor cores on the same chip. A CMP can simultaneously run multiple independent

jobs, multiple tasks from a parallel program, or multiple threads from a multithreaded

program. But, a disadvantage of CMPs is that its multiple processors cannot be used to

speedup a single sequential program.

The slipstream paradigmenables a CMP to also be used for improving single-

program performance. A slipstream processor [11,16] runs two redundant copies of a

program on a dual-processor CMP, one slightly ahead of the other. The leading program

is the Advanced Stream (A-stream) and the trailing program is the Redundant Stream (R-

stream). A significant number of predicted-ineffectual instructions are speculatively

removed from the A-stream. The A-stream is sped up because it fetches and executes

fewer instructions than the original program. The trailing R-stream checks the control

flow and data flow outcomes of the A-stream, and redirects it when it fails to make

correct forward progress (a rare event). The R-stream also exploits the outcomes from the

A-stream as accurate branch and value predictions. Therefore, although the R-stream

retires the same number of instructions as the original program, it fetches and executes
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much more efficiently. As a result, both program copies finish sooner than the original

program.

Removing instructions that are not needed for correct forward progress is a key

aspect of the slipstream processor. Many general purpose programs contain a significant

number of removable instructions [13]. Some dynamic instructions produce results that

are not referenced by subsequent instructions. Other dynamic instructions do not modify

the value of a location. Then, there are instructions whose outcomes are highly

predictable, for example, branch instructions. These instructions – unreferenced writes,

non-modifying writes, and correctly-predicted branches can be removed without affecting

the correct forward progress of the program. Once they are removed, the dependence

chains that lead up to them can also be removed. A slipstream processor relies on

hardware techniques for accurate instruction removal in the reduced program.

1.1 Contributions

The component of a slipstream processor that identifies non-essential instructions is

called the instruction-removal detector(IR-detector) [11,12,16]. It detects past-

ineffectual instructions in the R-stream and selects them for possible removal from the A-

stream in the future. The IR-detector uses a two-step selection process. First, it selects

key trigger instructions- unreferenced writes, non-modifying writes, and correctly-

predicted branches. Second, the computation chains that lead up to the selected

instructions are also selected. This second step involves back-propagating selection
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status through chains of dependent instructions. This thesis is aimed at a simple, yet

effective, implementation of back-propagation. The contributions are as follows.

• An explicit implementation of back-propagation involves constructing a reverse data

flow graph in hardware, by buffering retired R-stream instructions and setting up

connections from consumer instructions to their producers. Although the explicit

implementation of back-propagation performs well, it is complex. An alternative

implementation, based on a novel idea calledimplicit back-propagation, is

proposed. It is much simpler and performs within 0.5% of the explicit

implementation. The key idea is that back-propagation can be achieved implicitly,

i.e., without the support of any explicit circuitry, if the IR-detectorlogically monitors

the A-stream instead of the R-stream. Now, the IR-detector performs only the first

step: it selects unreferenced writes, non-modifying writes, and correctly-predicted

branches. After building up confidence, these trigger instructions are removed from

the A-stream. Once removed, their producers become unreferenced writes in the A-

stream (because they no longer have consumers). The freshly exposed unreferenced

writes are selected by the IR-detector, and after building up confidence are removed

themselves. Removing them, in turn, exposes more unreferenced writes, and the

process continues iteratively, until eventually entire non-essential dependence chains

are removed. Logically monitoring the A-stream reduces the problem of back-

propagation to detecting unreferenced writes.
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• We explain how an otherwise correct IR-detector algorithm can introduce many

spurious A-stream mispredictions, by not accounting for artifacts of the IR-predictor.

We describe IR-detector modifications that compensate for external artifacts beyond

its control.

• Removal of stores [13] (e.g., removal of silent stores [6], unreferenced stores, and

stores that are in the backward slices of loads which were removed) requires the IR-

detector to track the history of load and store references to memory locations. This

requires a cache-like structure since the number of memory locations to be tracked is

potentially unbounded. The IR-detector is further simplified by opting not to support

the removal of stores, eliminating the need for the cache-like structure. The results in

this thesis demonstrate that performance is still within 1% of the original IR-detector

implementation.

• The circuit complexity of IR-detectors based on explicit and implicit back-

propagation is characterized. In the course of doing this, we had to design the logic

for the reverse data flow graph in the case of explicit back-propagation. This is the

first actual design of the explicit back-propagation mechanism.

• This thesis explores the design space for the IR-detector, which includes the

instruction buffer size and confidence counter threshold. Simulations on the SPEC95

and SPEC2K benchmarks indicate that the best instruction buffer size 128, and the

best confidence counter threshold is 64, for both the explicit and implicit IR-

detectors.
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1.2 Organization of the Thesis

Chapter 2 gives an overview of slipstream processors. The insight and rationale

for implicit back-propagation, the key contribution of this thesis, is described in Chapter

3. Chapters 4 and 5 describe the IR-detectors based on explicit and implicit back-

propagation, respectively. The simulation methodology and benchmarks used are

described in Chapter 6, and Chapter 7 presents the experimental results. Other related

work is presented in Chapter 8, focusing on hardware techniques for program data flow

analysis. Chapter 9 summarizes the thesis and proposes future work.
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Chapter 2

2. Slipstream Processors

This chapter reviews slipstream processors [11,12,13,16]. We begin with the

underlying paradigm in Section 2.1, followed by the slipstream microarchitecture in

Section 2.2.

2.1 Slipstream Paradigm

A general-purpose program typically contains computation that does not influence

correct forward progress of the program, or whose influence is highly predictable [13].

Therefore, it is possible to make correct forward progress by executing only a subset of

the original dynamic instruction stream. A slipstream processor is built around this idea.

A slipstream processor creates a shorter instruction stream by skipping predicted-

ineffectual computation. However, once skipped, there is no sure way of knowing

whether the skipped instructions are truly ineffectual or correctly predicted, since they are

not executed. The solution is to verify the speculative program by comparing it against

the full version of the program.

Therefore, a slipstream processor runs two copies of the same program. The two

redundant programs are executed simultaneously on a single-chip multiprocessor (CMP).

Each copy has its own context. One of the programs is speculatively reduced and runs
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slightly ahead of the other. The leading program is called theadvanced stream, or A-

stream, and the trailing program is called theredundant stream, or R-stream.

Retired R-stream instructions are monitored, and the instructions that repeatedly

do not influence the correct forward progress of the program are identified. Future

instances of these ineffectual instructions are removed from the A-stream. The reduced

A-stream is sped up because it fetches and executes fewer instructions. All data and

control outcomes from the A-stream are communicated to the R-stream. The R-stream

compares the communicated values against its own outcomes. If a deviation is detected,

the corrupted A-stream context is recovered from the R-stream context. The R-stream

also uses the communicated values from the A-stream as predictions. Although the R-

stream is unreduced in terms of retired instructions, it is sped up because it leverages the

near perfect predictions from the A-stream. The result is that the two redundant programs

together complete sooner than a single copy of the program.

2.2 Slipstream Microarchitecture

The slipstream microarchitecture must support separate architectural contexts for

the A-stream and R-stream. It also requires components for managing instruction removal

in the A-stream and for communicating A-stream outcomes to the R-stream.

A high-level block diagram of a slipstream processor implemented on a dual-

processor chip-multiprocessor (CMP) is shown in Figure 2.1. The A-stream is shown on
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the left and the R-stream is shown on the right. The shaded blocks show the processors

and the shared L2 cache which constitute the original CMP. Each processor core is a

conventional superscalar or VLIW processor with a branch predictor, instruction and data

caches, register file, and execution engine.

Slipstreaming requires three new components.

1. The instruction-removal predictor, or IR-predictor, is essentially a branch predictor

augmented for instruction removal. It generates the program counter (PC) for the next

block of instructions to be fetched in the A-stream, like a conventional branch

predictor. The only difference is that the generated PC may reflect skipping entire,

predicted-ineffectual basic blocks. For basic blocks that are not entirely ineffectual,

the IR-predictor also specifies a bit-vector. The bit-vector indicates which instructions

within the fetched block are ineffectual. These instructions are removed from the

fetched block before the decode stage.

2. The instruction-removal detector, or IR-detector, identifies instructions which were

not essential for the R-stream’s correct forward progress. The IR-detector then

conveys to the IR-predictor that these instructions can potentially be skipped in the A-

stream, in the future. The IR-predictor removes the corresponding instructions from

the A-stream after repeated indications by the IR-detector, i.e., after a certain

confidence threshold has been reached.

3. Thedelay bufferis used to communicate the data and control flow outcomes from the

A-stream to the R-stream.
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2.2.1 IR-predictor

The IR-predictor is a conventional branch predictor augmented to keep track of

instruction removal information. It is indexed like thegsharepredictor [8], by XORing

the PC with the global branch history bits. Each table entry contains the following

information for a dynamic basic block.

• Tag: This is the start PC of the basic block and is used to determine whether the entry

contains information for the block being fetched. A partial tag can be used to reduce

the total storage, if predictor aliasing is negligible.

• 2-bit counter: If the basic block ends with a conditional branch, then the 2-bit counter

predicts its outcome.

• Confidence counters: There is a resetting confidence counter [4] for each instruction

in the block. The counter corresponding to a particular instruction is incremented, if

the IR-detector detected that the instruction was ineffectual. Otherwise, the counter is

reset to zero. Repeated indications by the IR-detector saturate the confidence counter,

in which case the corresponding instruction is removed from the A-stream when it is

next encountered.

The number of instructionsexecutedin the A-stream can be reduced with the IR-

predictor discussed above. But, the number of instructionsfetchedremains unreduced. In

some cases, processor performance may be restricted by instruction fetch. The A-stream

can be made more efficient, if instruction fetching is also reduced by the IR-predictor.
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The example in Figure 2.2 shows how the number of A-stream fetch cycles can be

reduced. Consider four basic blocks, A, B, C, and D, which are in the predicted path of

the A-stream. All the confidence counters within blocks B and C are saturated (indicated

with shading), and therefore the blocks are predicted to be skipped entirely. A simple IR-

predictor predicts and fetches the four blocks in sequence, and the process takes four

cycles. After instruction fetch, blocks B and C are found to be predicted-ineffectual, and

these blocks are removed before the decode stage. The IR-predictor can be modified to

reduce the number of fetch cycles to two, by bypassing the fetch of blocks B and C. An

improved IR-predictor does instruction fetching as shown on the right-hand side of

Figure 2.2. This requires two additional pieces of information in block A’s IR-predictor

entry.

A

B

C

D

A

B

C

D

FIGURE 2.2 Bypassing fetching of ineffectual basic blocks.
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• The predicted directions of branches in the bypassed blocks must be stored, i.e., the

predicted directions of branches in blocks B and C. The reason is that a complete

history of A-stream control flow needs to be passed to the R-stream, for checking,

and also for directing the R-stream instruction fetch unit.

• A target address must be stored, in this case the start PC of block D. The target

address overrides the branch target buffer in the fetch unit, so that block D can be

fetched immediately following block A. The branch target buffer could be augmented

to support multi-way branches, instead of storing targets in the IR-predictor [11].

The additional pieces of information are captured in block A’s entry as the entries of

blocks B, C, and D are updated by the IR-detector.

2.2.2 IR-detector

The IR-detector consumes retired R-stream instructions and data. It then identifies

instructions which were not essential for correct forward progress, in retrospect. The IR-

detector watches for any of the following three triggering conditions for instruction

removal.

• Unreferenced writes, i.e., a write followed by a write to the same location, with no

intervening read.

• Non-modifying writes, i.e., a write that does not modify the value of a location.

• Correctly-predicted branches.
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When any of the above conditions are observed, the corresponding instruction is selected

for removal and this information is passed on to the IR-predictor.

Additional ineffectual instructions are removed from the A-stream by a technique

called back-propagation. Back-propagation detects computation chains that feed the

instructions selected for removal based on the triggering conditions mentioned above.

An instruction can be selected for removal if all of its dependent instructions are selected

for removal. For example, once a branch is selected, the computation leading to that

branch is no longer needed and can be selected for removal, if no other instructions

depend on the computation.

Efficient implementation of back-propagation, and the IR-detector as a whole, is

the topic of this thesis.

2.2.3 Delay buffer

The delay buffer is a FIFO queue used to communicate control and data outcomes

from the A-stream to the R-stream. The A-stream communicates a complete history of

branch outcomes and a partial history of operand values through the delay buffer. This is

shown in Figure 2.1 with a solid arrow from the A-stream retirement unit to the delay

buffer. The control flow history is complete, since the A-stream predicts all branches

even though it may not fetch all instructions, as described in Section 2.2.1. However, the

data history is incomplete since the A-stream executes only a subset of the program.
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The R-stream uses the control and data outcomes from the delay buffer as

predictions. This is shown in Figure 2.1 with a solid arrow from the delay buffer to the

instruction cache and execution core of the R-stream. The branch outcomes are used to

direct instruction fetching from the instruction cache. The data outcomes (source operand

values and load/store addresses) are used as value predictions in the execution core. To

bind the data outcomes to corresponding R-stream instructions, the delay buffer also

contains 1 bit per dynamic instruction that indicates whether the corresponding

instruction was skipped or not.

2.2.4 Memory hierarchy

The A-stream and R-stream in a slipstream processor are architecturally

independent. A-stream loads and stores should not interfere with R-stream loads and

stores. The simplest way to take care of this aspect is to have the operating system

allocate separate physical memory pages for each program. But, the simplicity of

software-based memory duplicationcomes at the expense of doubling memory usage.

And, this may be unacceptable in many commercial systems.

Therefore, a more eleganthardware-based memory duplicationscheme is used in

slipstream processors [12]. The approach exploits the typical memory hierarchy found in

commercial dual-processor CMPs [5]. The memory hierarchy consists of private L1

caches for each of the processing elements, and a shared L2 cache. The scheme works as

follows.

• Both the A-stream and R-stream read/write their respective L1 caches normally.
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• Both streams share a common L2 cache.

• The R-stream L1 cache is write-through, i.e., if the R-stream performs a store in its

L1 cache, it also performs the store in the shared L2 cache.

• The A-stream L1 cache is neither write-through nor write-back, i.e., A-stream stores

are not propagated to the shared L2 cache. If a dirty line (a line modified by the A-

stream) needs to be evicted from the A-stream L1 cache, it is not written back to the

shared L2 cache. The dirty line is simply thrown out and the updated data it contains

is lost. Notice, in Figure 2.1, the R-stream reads and writes the L2 cache, but the A-

stream only reads from it.

It turns out that the eviction of dirty lines in the A-stream L1 cache, and the

corresponding loss of updates that they contain, is not a major issue. The R-stream is

usually close behind the A-stream, and the lost A-stream data is regenerated by the R-

stream and propagated to the L2 cache before it is re-referenced by the A-stream.

Occasionally, the A-stream re-references an evicted line in the L2 cache before the R-

stream has performed the corresponding redundant store. In this case, the A-stream gets

stale data and diverges from the R-stream. The A-stream is speculative in any case, and

all mispredictions are recoverable, without the need for discriminating the type of

misprediction.

2.2.5 IR-mispredictions and recovery

An instruction-removal misprediction, or IR-misprediction, occurs when A-

stream instructions were removed that should not have been. IR-mispredictions cause the
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A-stream to not make correct forward progress, and this is ultimately detected as branch

or value mispredictions in the R-stream. When an IR-misprediction is detected, the

corrupted A-stream state needs to be recovered from the R-stream state, i.e., the A-stream

needs to be re-synchronized with respect to the R-stream. This involves restoring A-

stream register and memory state from R-stream registers and memory. Copying all

register values from the R-stream to the A-stream is feasible, since the register file is

finite. The movement of register file data occurs through the delay buffer, as shown in

Figure 2.1 with dashed arrows. Or, software exception handlers simultaneously executed

on both cores can copy data via shared-memory loads and stores from the R-stream

register file to the A-stream register file.

Potentially, recovery of memory state is a more involved process. If software-based

memory duplication is used, corrupt memory locations must be pin-pointed [11,16].

Fortunately, recovering is much simpler if hardware-based memory duplication is used.

Hardware-based memory duplication is used in more recent slipstream processor

implementations [12]. Two simple and effective schemes are given below.

• Flush cache: The A-stream memory state is recovered by invalidating all the lines in

the A-stream’s L1 cache. Compulsory misses in the L1 cache force the A-stream to

access the correct and up-to-date R-stream memory state available in the shared L2

cache.

• Flush dirty lines: Invalidating all cache lines is inefficient because typically only a

few lines are corrupted. Unnecessary compulsory misses degrade performance. A
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good recovery heuristic is to invalidate only dirty lines. The approach does not

recover A-stream state perfectly, but closely approximates complete recovery and

performs almost as well as the previous method of identifying and flushing corrupted

lines. A detailed rationale for this heuristic can be found elsewhere [12].

In both the flush and flush-dirty schemes, not all flushed cache lines were corrupt.

Sometimes, only a handful of lines contain incorrect data. A line is flushed by resetting

its valid bit; its data and tag remain intact after flushing. Preserved data is exploited to

reduce the impact of recovery-induced compulsory misses in the A-stream. When the A-

stream references a flushed line that would otherwise be a hit in the cache, the preserved

data in the cache line is used as a value prediction. The L2 cache is accessed to service

the L1 cache miss. The prediction is validated when the L2 access completes, and in most

cases the prediction is correct.
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Chapter 3

3. Thesis Contribution: Implicit Back-propagation

Removal of ineffectual computation from the A-stream is an essential function in

a slipstream processor, and this is handled together by the IR-detector and IR-predictor.

The IR-detector monitors retired R-stream instructions and data, and informs the IR-

predictor about instructions that can potentially be removed from the A-stream in the

future. This information is tracked in the IR-predictor using confidence counters, and

instructions are removed from the A-stream after their confidence counters reach a

certain threshold.

The selection of past-ineffectual instructions by the IR-detector involves two

steps. First, unreferenced writes, non-modifying writes, and correctly-predicted branches

are selected for possible removal from the A-stream in the future. Second, instructions in

the backward slices of unreferenced writes, non-modifying writes, and correctly-

predicted branches are also selected, by back-propagation. The first step is simple

because it can be implemented using a register-indexed table that is managed like a

register rename table. The table tracks references to registers, and detects unreferenced

writes and non-modifying writes accordingly. An optional address-indexed table tracks

references to memory locations similarly. Correctly-predicted branches are identified by

comparing predictions to outcomes, which is done in any case.
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The complexity of the IR-detector depends on the back-propagation method –

explicit (complex) or implicit (not complex). The alternative approaches are discussed at

a high level in this chapter, in order to highlight the “thesis” of this work: the IR-detector

can monitor what is logically the A-stream version of the program to reduce the problem

of back-propagation to the detection of unreferenced writes. Chapters 4 and 5 describe

each approach in detail.

3.1 Explicit Back-propagation

To implement explicit back-propagation, retired R-stream instructions are queued

in an instruction buffer, and a configurable interconnection network is programmed to

establish direct links between consumers and producers in the buffer. When an

unreferenced write, non-modifying write, or correctly-predicted branch is detected, the

instruction is selected for removal in the instruction buffer. From that point onward, the

interconnection network handles back-propagation automatically. Ineffectual status is

propagated from consumers to producers along the links that were established initially.

Dedicated links from consumers to producers allow all instructions in an

ineffectual dependence chain to be selected for removal at the same time. We observe

that an iterative approach may perform nearly as well, without the interconnection

network, which requires many wires and logic gates.
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3.2 Implicit Back-propagation

Our “thesis” is that the IR-detector does not need to explicitly implement back-

propagation ifthe reduced version of the program (A-stream) is monitored by the IR-

detector, instead of the unreduced version (R-stream). The IR-detector detects

unreferenced writes, non-modifying writes, and correctly-predicted branches, as before.

Repeated indications by the IR-detector cause the IR-predictor to eventually remove

these ineffectual instructions from the A-stream. Once removed,their producers become

unreferenced writes, because their consumers were removed from the A-stream.

Unreferenced writes are detectable using the register-indexed table (and optional address-

indexed table), as described earlier. Repeated indications by the IR-detector cause the IR-

predictor to eventually remove these freshly exposed unreferenced writes from the A-

stream. Their producers, in turn, are exposed as unreferenced writes in the A-stream. This

process repeats until all instructions in an ineffectual dependence chain are removed.

In practice, the IR-detector still monitors retired R-stream instructions. However,

instructions that were removed from the A-stream by the IR-predictor are specially

marked with an “R-bit”. The IR-detector uses the R-bit to hide a consumer instruction

from its producers, and thereby expose its producers as unreferenced writes.
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Chapter 4

4. IR-detector: Using Explicit Back-propagation

This chapter describes an IR-detector based on explicit back-propagation. Retired

R-stream instructions are buffered. Buffering is finite, so the oldest instructions leave the

buffer as new instructions are added. Status of the exiting instructions is used to update

the IR-predictor. Within the buffer, complex circuits are dynamically configured to link

consumer instructions with their producer instructions. In other words, the buffer is a

literal hardware implementation of a reverse data flow graph (R-DFG). As new

instructions are merged into the R-DFG, the IR-detector detects unreferenced writes, non-

modifying writes, and correctly-predicted branches. These instructions are selected for

removal. Ineffectual instructions in the backward slices of the selected instructions are

also selected for removal. R-DFG connections facilitate back-propagation of ineffectual

status from consumers back to producers.

4.1 Implementation

The IR-detector based on explicit back-propagation is shown in Figure 4.1. The

operand rename table (ORT) plays two roles. First, it determines dependencies among

instructions, and uses this information to link consumers to their producers as they are

merged into the R-DFG (Section 4.1.1). Second, the ORT detects unreferenced and non-

modifying writes (Section 4.1.2). The removal of instructions by back-propagation is

handled autonomously by the R-DFG, via the links configured by the ORT (Section

4.1.3). If the B-bit of an incoming instruction is set, then the instruction is a correctly-
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predicted branch. If the R-bit is set, then the instruction was actually removed from the

A-stream this time around, by the IR-predictor.

4.1.1 Merging instructions into the R-DFG

The operand rename table (ORT) resembles a register renamer, but it tracks both

registers and memory locations. Thus, there are actually two operand rename tables, one

for registers and one for memory locations. The register ORT has as many entries as the

number of architectural registers. The memory ORT is a cache-like structure, since the

number of locations is potentially unbounded. When a new instruction is merged into the

R-DFG, the following steps are performed.

R-DFG
OPERAND
RENAME

TABLE
(ORT)

VALID REF VALUE PRODUCER

New Instruction,
R-bit, B-bit

Merge

- kill instructions
- select unreferenced & non-modifying

writes for removal

Update
IR-predictor

FIGURE 4.1 IR-detector based on explicit back-propagation.
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• The source operand(s) are looked up in the ORT to get their most recent producer

instructions, in order to link an instruction with its producer instructions in the R-

DFG. If thevalid bit is set, then theproducerfield in the ORT indicates the producer

of the source operand.

• The ref bit corresponding to each source operand is set, indicating that the values

have been referenced.

• The destination operand is looked up in the ORT to find the previous producer. The

previous producer in the R-DFG is marked as “killed”. (Note, however, that the

previous producer is not killed in the case of a non-modifying write, as described in

Section 4.1.2.)

• The ORT entry corresponding to the destination operand is updated with the latest

producer and value. Thevalid bit is set. Theproducer field is updated with the R-

DFG location where the incoming instruction is being placed. Finally, thevaluefield

is updated with the destination operand’s value. (Note, however, that the update of the

ORT entry occurs only after checking for unreferenced and non-modifying writes, as

described in Section 4.1.2.)

4.1.2 Detecting the trigger instructions

Before updating the ORT entry corresponding to the destination operand (with the

latest producer and value), the IR-detector checks for a non-modifying write or

unreferenced write, in that order.
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• If the valid bit is set and the value produced by the incoming instruction is the same

as thevaluefield in the ORT, then the incoming instruction is a non-modifying write

and it is immediately selected for removal. In this case, the old producer is not killed

and the ORT entry corresponding to the destination operand is not updated.

• If the valid bit is set and theref bit is not set, then the previous producer is an

unreferenced write. The previous producer, whose location in the R-DFG is indicated

by theproducerfield, is selected for removal.

If the B-bit associated with the incoming instruction is set, then it is a correctly

predicted branch and it is immediately selected for removal.

4.1.3 Explicit back-propagation using the R-DFG

The R-DFG autonomously selects ineffectual instructions by back-propagation.

The R-DFG selects an instruction for removal if all of its dependent instructions are

known and all of them are selected for removal. The R-DFG buffers instructions in the

program order (FIFO), but also has a network of wires that connects each buffer entry to

every other buffer entry. The network is configured to link consumer instructions to their

producer instructions. The structure of the R-DFG is shown in Figure 4.2, and the logic

within a single R-DFG entry is shown in Figure 4.3.

The R-DFG establishes connections from consumers to producers. A producer

instruction may have as consumers any number of instructions after it in the R-DFG. So,

a potential connection is required from every other R-DFG entry to the producer. The

producer has a dedicated propagation bus, or p-bus, to support these potential
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connections. The producer is the receiver, or sink, of the p-bus. All other instructions in

the R-DFG (potential consumers) are drivers, or sources, of the p-bus. Therefore, the p-

bus has as many wires as the number of instructions in the R-DFG, less one (because the

producer cannot depend on itself), so that each potential consumer can signal to the

producer that there is dependence. A non-consumer drives its wire low to signal that it

does not depend on the producer; a consumer instruction drives its wire high to signal

that it depends on the producer. If all the wires in the producer’s p-bus are low, then the

producer does not have any consumers within the R-DFG; and, if the producer has also

been killed by the ORT, then we know there are no consumers at all (it is ineffectual).

Because every instruction in the R-DFG is a potential producer instruction, each

has its own dedicated p-bus. Therefore, as shown in Figure 4.2, for an N-entry R-DFG,

there are N p-buses and each p-bus contains N-1 wires (a wire for each potential

consumer).

Figure 4.3 shows the logic within a single R-DFG entry. The top of Figure 4.3

shows the logic for signaling the instruction’s producers, via the p-buses. When the

instruction is merged into the R-DFG, the ORT renames its source operands so that the

instruction knows where its producers are located in the R-DFG. The instruction uses this

information to assert its wire within the p-bus of each of its producers. The signals to its

producers are deasserted if and when the instruction is selected for removal. As shown at

the bottom of Figure 4.3, removal status gates the signaling mechanism.
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FIGURE 4.3 Single entry within the R-DFG. (N is the number of entries in the R-DFG.)
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The logic at the bottom of Figure 4.3 selects instructions for removal by back-

propagation. An instruction is selected for removal by back-propagation if the following

three conditions are met.

• All of the dependent instructions are known, i.e., the instruction is killed by a

subsequent instruction.

• All of the dependent instructions are selected for removal.

• All of the dependent instructions were removed from the A-stream (by the IR-

predictor) this time around, i.e., the R-bits corresponding to all of the dependent

instructions must be set.

The ORT sends akill signal to an instruction when it is killed by a later instruction.

The kill signal is latched to remember this fact. The second and third conditions are true

when theno_consumerssignal is high. When the second and third conditions are true, the

removeand R-bit latches of all consumer instructions are high, and this prevents the

consumer instructions from asserting their wires in the producer’s p-bus. The

no_consumerssignal of the producer is high as a result.

When an instruction exits the R-DFG, the state of theremovelatch is used to update

the IR-predictor. The latch gets set either through triggering conditions (selectis asserted

by the ORT due to an unreferenced write, non-modifying write, or correctly predicted

branch), or through back-propagation (no_consumersandkill are high).
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The third condition for back-propagation (R-bit) is needed because a producer

instruction should know that its consumers are removedin practice, by the IR-predictor,

and not just that the consumers are theoretically removable, which is what the IR-detector

determines. The IR-detector may find that a producer and consumer pair is always

theoretically removable. However, it is possible for their IR-predictor counters to get “out

of sync”. For example, aliasing may evict the consumer’s counter. In this case the

producer should not be removed, because the IR-predictor does not remove the consumer

until its evicted counter gets saturated again.

The R-bit criterion is a simple method for implicitly synchronizing the counters of

producers and consumers. Synchronizing counters is described in the next section,

Section 4.2.

4.1.4 Handling producer instructions that leave the R-DFG

Two things need to be taken care of when a producer instruction leaves the R-

DFG. First, the consumer instructions in the R-DFG should be notified that their producer

instruction has left the window, so that they stop driving the p-bus corresponding to their

producer. This is achieved by broadcasting thetail_pointer which points to the

instruction leaving the window, and generating thedisable_srcsignals as shown in

Figure 4.3. Second, the ORT entry corresponding to the destination operand of the exiting

producer should be made invalid. Otherwise, there is a possibility that the ORT maykill
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or selectincorrect instructions, later on. One solution is to broadcast thetail_pointer in

the ORT. ORT entries that have thetail_pointer in their producer fields are invalidated.

Alternatively, sequence numbers can be used to implicitly invalidate ORT entries.

A global sequence number is incremented whenever thetail_pointer wraps around. The

producerfield of an operand in the ORT consists of the index of its producer in the R-

DFG concatenated with the global sequence number at the time the producer instruction

is merged into the R-DFG. The producer of an operand in the ORT is still within the R-

DFG only if (1) the sequence number in theproducerfield is equal to the current global

sequence number, and the index in theproducer field is less than or equal to the

tail_pointer, or (2) the sequence number in theproducer field is equal to the previous

global sequence number, and the index in theproducer field is greater than the

tail_pointer. So, only if either of these two conditions is satisfied, can the ORTkill or

selectan instruction in the R-DFG. A sufficiently large sequence number reduces the

chance of incorrectly killing or selecting instructions in the R-DFG.

4.2 Synchronizing Counters

One of the criteria for selecting an instruction for removal by back-propagation is

that all of its consumer instructions must have been removed from the A-streamin

practice. This criterion implicitly synchronizes the counters of producers and consumers

instructions, even if they get “out of sync”. The criterion is checked in the R-DFG by

making sure that the R-bits of all of the consumer instructions are set before the producer

is selected for removal.
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IR-predictor aliasing is one way for producer-consumer counters to become

unsynchronized. Aliasing occurs when the confidence counter for an instruction is

evicted by some other instruction. Consider the example in Figure 4.4. Instruction B is a

branch that is always predicted correctly, so it is always selected for removal by the IR-

detector. Instruction B is the only consumer of instruction A. Using the first two criteria

for back-propagation given in Section 4.1.3, instruction A will always be selected for

removal (by the R-DFG), too.

The counters of both instructions are incremented in lock-step, and they saturate

at the value 31 at the same time. Future instances of both instructions are skipped in the

A-stream. Now, suppose B’s counter is displaced from the IR-predictor by another basic

block (aliasing). When the basic block containing B is eventually re-allocated an entry in

B
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1
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Recurring
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2
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FIGURE 4.4 Recurring IR-mispredictions.
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Counter for B
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IR-misprediction
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the IR-predictor, B’s counter is reinitialized to 0. Meanwhile, the counter corresponding

to instruction A is still saturated. This leads to the removal of the producer but not the

consumer, which causes an IR-misprediction. The IR-detector, unaware of this, keeps

selecting both of the instructions for removal. Instruction A’s counter remains in

saturation, but instruction B’s counter increments gradually from 0 to 31 (saturation).

Until instruction B’s counter saturates again, the situation in which A is removed and B is

not removed keeps repeating in the A-stream, leading to more IR-mispredictions. A

single predictor aliasing event causes 31 IR-mispredictions, 30 of which could have been

averted by re-synchronizing A’s counter with B’s counter.

The recurrence of IR-mispredictions caused by unsynchronized counters can be

prevented if the third condition for back-propagation is also satisfied, in addition to the

first two conditions. Instruction A is selected for removal by the IR-detector if instruction

B is selected for removaland if B was actually removed by the IR-predictor in practice

(R-bit = 1). Now, if instruction B’s counter is reset due to aliasing (or other scenarios),

A’s counter will also be reset.

The same example is shown in Figure 4.5, the only difference being that all three

conditions for back-propagation are considered. An instruction is selected for removal by

back-propagation only if all of its dependent instructions are selected for removal and the

R-bits of all of its dependent instructions are true. In this case, instruction B’s counter

saturates first, and then future instances of instruction B are skipped in the A-stream.

Instruction A’s counter starts incrementing only after instruction B’s counter is saturated
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(since instruction A waits for instruction B’s R-bit to be true). Future instances of

instruction A are also skipped after its counter saturates. Now, suppose B’s counter is

reset due to aliasing. This leads to the removal of instruction A but not instruction B,

causing an IR-misprediction. The R-bit of instruction B is false, indicating to the IR-

detector that instruction B was not removed from the A-stream this time. The IR-detector

selects instruction B for removal. However, instruction A is not selected for removal

because its consumer (instruction B) did not have its R-bit set. Instruction A’s confidence

counter is reset as a result, and instruction B’s counter starts incrementing from zero. This

prevents recurring IR-mispredictions due to the removal of a producer instruction and not

its consumer instruction. A single predictor aliasing event causes only a single IR-

misprediction due to unsynchronized counters.

Other scenarios besides IR-predictor aliasing can cause counters to become

unsynchronized, requiring the R-bit to re-synchronize them. Consider the program

B
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snippet shown in Figure 4.6 and assume the R-bit condition for back-propagation is not

used. The program takes path 1 initially. Instruction B is a highly predictable branch and

it is the only consumer of instruction A (on path 1). Therefore, both instructions A and B

are selected for removal by the IR-detector. The confidence counters are incremented in

lock-step, and they saturate at the same time. Future instances of both instructions A and

B are removed from the A-stream. Now, suppose the program takes path 2. Instruction C

is a highly predictable branch and it is the only consumer of instruction A (on path 2).

Instruction A will be removed from the A-stream since its counter is saturated. But,

instruction C will not be removed since the counter value is 0. As a result, branch C will

be evaluated incorrectly, leading to an IR-misprediction. The IR-detector is unaware of

this. It keeps selecting both instructions A and C for removal. Instruction A’s counter

remains saturated, while instruction C’s counter increments from 0 to 31. Until

instruction C’s counter saturates, the IR-misprediction keeps repeating.

Here again, using the R-bit condition for back-propagation prevents the

recurrence of IR-mispredictions caused by unsynchronized counters. When the program

takes path 2 for the first time, instruction A will be removed without removing instruction

C. This causes an IR-misprediction. But now that instruction C’s R-bit is false, indicating

that it was not removed from the A-stream, instruction A is not selected for removal until

instruction C’s counter saturates again. This resets instruction A’s counter, avoiding

recurring IR-mispredictions.



35

Branch Y, (r1 > 5) Branch Z, (r1 > 5)

Set r1 = 0

Set r1 = 1

A

B C

D

E

Add r1= r2+10

Branch X, (r3==0)

Path 1 Path 2

A

B

31

31

A

C

31

0

A

C

31

1

A

C

31

31

Set r2 = 0

Recurring IR-mispredictions

Switch from
path 1 to path 2

FIGURE 4.6 Another example of recurring IR-mispredictions
caused by unsynchronized producer and consumer counters.

Initial IR-misprediction



36

4.3 Characterizing Circuit Complexity

The register ORT is similar to a map table used in register renaming. It has as

many entries as the number of architectural registers. Each field in the entry is stored in a

separate physical structure, and the following are the port requirements for a 4-way

superscalar processor.

• The producer field requires 12 read ports and 4 write ports. The read ports are for

reading out producers of the 8 source operands (for setting up links to producer

instructions in the R-DFG), as well as the previous producers of the 4 destination

operands (for killing and possibly selecting previous producers in the R-DFG). The

write ports are for updating destination operands with new producers.

• The valid field also requires 12 read ports and 4 write ports. The read ports are for

checking whether the 8 source operands and 4 destination operands have valid

producers in the R-DFG. The write ports are for setting the valid bits of the 4

destination operands.

• The ref field requires 4 read ports and 12 write ports. The read ports are for detecting

whether or not the previous producers of the 4 destination operands are unreferenced

writes. The write ports are for setting theref bits of the 8 source operands, and for

resetting theref bits of the 4 destination operands.

• The value field requires 4 read ports and 4 write ports. The read ports are for

detecting non-modifying writes of the 4 destination operands, and the write ports are

for updating destination operands with the latest values.
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A maximum of four instructions in the R-DFG can be killed or selected for

removal by the ORT every cycle. The ORT has logic to detect four ineffectual

instructions per cycle based on triggering criteria, and decodes four producer IDs per

cycle to assert the appropriateselectandkill lines in the R-DFG. The memory ORT has

similar logic, but requires a cache-like structure. The memory ORT has 4 fewer read

ports for theproducer andvalid fields and 4 fewer write ports for theref field, compared

to the register ORT.

The R-DFG is essentially a reverse data flow graph constructed in hardware, with

physical connectivity from consumer instructions to their producers. As described in

Section 4.1.3, for an R-DFG that can buffer N instructions, there are N propagation buses

to signal dependences. And, each of the propagation buses contains (N-1) lines.

Therefore, the number of wires in the R-DFG back-propagation network is N(N-1). Each

entry within the R-DFG contains the following: the renamed source operands, theR-bit

latch, thekill latch, and theremovelatch. The primary combinational logic complexity

includes two source operand decoders for driving the p-bus signals, and the (N-1)-input

NOR gate for generating theno_consumerssignal.
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Chapter 5

5. IR-detector: Using Implicit Back-propagation

As described in Chapter 4, explicit back-propagation requires a complex

configurable interconnection network, the R-DFG.Implicit back-propagation, on the

other hand, does not require the R-DFG. The key innovation is tologically monitor the

A-stream for past-ineffectual instructions, instead of the R-stream. As before, the IR-

detector selects unreferenced writes, non-modifying writes, and correctly-predicted

branches for possible removal from the A-stream in the future. After repeated indications

by the IR-detector, the IR-predictor will remove these trigger instructions from the A-

stream. Once the trigger instructions are removed, their producers become unreferenced

writes in the A-stream. These freshly exposed unreferenced writes are themselves

eventually removed, exposing more unreferenced writes, and the process continues

iteratively. Eventually, entire non-essential dependence chains are removed from the A-

stream. Logically monitoring the A-stream eliminates the need for an explicit back-

propagation network. Instead, the ORT implicitly handles back-propagation through the

detection of (newly-exposed) unreferenced writes, which is done in any case.

5.1 Implementation

The IR-detector based on implicit back-propagation is shown in Figure 5.1.

Earlier, we implied that the IR-detector processes retired A-stream instructions. In fact, it

processes retired R-stream instructions, as before. However, the R-bit is used to “extract”

the A-stream from the R-stream. Recall, the R-bit of the incoming instruction indicates
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whether it was removed from the A-stream by the IR-predictor this time around. An

instruction whose R-bit is set is not part of the A-stream, and can be hidden from its

producers. The B-bit is set if the incoming instruction is a correctly predicted branch.

And, as before, the operand rename table (ORT) selects instructions for removal based on

the three triggering conditions: unreferenced writes, non-modifying writes, and correctly-

predicted branches. There is no longer an R-DFG because back-propagation is reduced to

the detection of unreferenced writes. The ORT handles unreferenced writes

indiscriminately. The R-DFG is replaced by a FIFO instruction queue, which is needed

only to update the IR-predictor in program order. Each entry in the FIFO contains a

single bit, indicating whether or not the instruction has been selected for removal by the

IR-detector.

INSTRUCTION
QUEUE

OPERAND
RENAME

TABLE
(ORT)

VALID REF VALUE PRODUCER

New Instruction,
R-bit, B-bit

Push

- select unreferenced & non-modifying
writes for removal

Update
IR-predictor

FIGURE 5.1 IR-detector based on implicit back-propagation.
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5.1.1 Pushing instructions into the queue

As before, the operand rename table (ORT) tracks references to both registers and

memory locations. New instructions are pushed into the instruction queue after the

following steps are performed.

• The ref bit corresponding to each source operand is setonly if the incoming

instruction’s R-bit is not set,indicating that the values were referenced in the A-

stream. Not setting theref bits implicitly performs back-propagation, and is described

further in Sub-section 5.1.3. Note, theref bits are set unconditionally in the previous

approach.

• The ORT entry corresponding to the destination operand is updated with the latest

producer and value. Theproducerfield is updated with the location in the instruction

queue where the incoming instruction is being placed. Thevaluefield is updated with

the incoming instruction’s result. Note, the update of the ORT entry occurs only after

checking for unreferenced writes and non-modifying writes, as described in Sub-

section 5.1.2.

5.1.2 Detecting trigger instructions

Trigger instructions are detected the same way as before. Unreferenced and non-

modifying writes are detected by the ORT, as follows. Before updating the ORT entry

corresponding to the destination operand (with the latest producer and value), the IR-

detector checks for a non-modifying write or unreferenced write, in that order.
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• If the valid bit is set and the value produced by the incoming instruction is the same

as thevaluefield in the ORT, then the incoming instruction is a non-modifying write

and it is immediately selected for removal. In this case, the ORT entry corresponding

to the destination operand is not updated.

• If the valid bit is set and theref bit is not set, then the previous producer is an

unreferenced write. The previous producer, whose location in the instruction queue is

indicated by theproducerfield, is selected for removal.

If the B-bit associated with the incoming instruction is set, then it is a correctly-

predicted branch and it is immediately selected for removal.

5.1.3 Implicit back-propagation

Back-propagation is handled implicitly by the ORT. Previously, as described in

Chapter 4, theref bit corresponding to each source operand was set unconditionally, i.e.,

the new instruction always “announced” to its producers that it was a consumer. Now, if

the new instruction was actually removed from the A-streamthis time aroundby the IR-

predictor (R-bit is set), then theref bits corresponding to its source operands are not set.

This way, the consumer instruction makes itself invisible to its producer instructions

speculatively, predicting that it will be selected for removal even this time. When one of

its source operands is killed by a subsequent instruction, the ORT will observe that the

old producer (indicated by theproducerfield) is an unreferenced write and select it for

removal (if no other consumer set theref bit). The producerfield is used to index into

the instruction queue and select the old producer for removal. Eventually, after reaching
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the counter threshold, the producer instruction itself will be removed from the A-stream

by the IR-predictor. The next instance of the producer instruction, when it is brought into

the IR-detector, will speculatively make itself invisible to its producer because its R-bit is

set, and the implicit back-propagation continues. Implicit back-propagation effectively

converts the detection of an ineffectual computation chain into the detection of a

sequence of unreferenced writes.

An example of implicit back-propagation is shown in Figure 5.2. Instructions A,

B, and C form a dependence chain, and they write to registers RA, RB, and RC,

respectively. Instruction C is an unreferenced write, and the only consumer of B.

Instruction B is the only consumer of A. The sequence of events is as follows. First, C is

selected for removal by the ORT, since it is an unreferenced write. It is eventually

removed from the A-stream after its confidence counter saturates (counter reaches a value

of 31). The next time, when the IR-detector analyzes the sequence A, B, and C, it finds

that the R-bit associated with instruction C is set (which says that the IR-predictor

skipped C in the A-stream). During the processing of instruction C by the ORT, theref

bit corresponding to register RB is not set, i.e., instruction C is not added as a consumer of

instruction B, speculatively. This assumes that instruction C will be selected for removal

by the IR-detector even this time. When register RB is killed by some later instruction, the

ORT finds that the register is not referenced by any other instruction, and it selects

instruction B for removal as an unreferenced write. Eventually, instruction B is also

removed from the A-stream after its counter saturates. The next time the sequence A, B,

and C is analyzed by the IR-detector, it finds that the R-bits associated with instructions
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B and C are set. Instruction C is not added as a consumer of B, and instruction B is not

added as a consumer of A. This assumes that B (and C) will be selected for removal by

the IR-detector even this time. Now, instruction A is selected for removal as an

unreferenced write when RA is killed by a later instruction. Eventually, instruction A is

also removed from the A-stream after its counter saturates.

As described in the above example, if an instruction is removed from the A-

stream (R-bit is set), it speculatively makes itself invisible to its producer instructions in

the IR-detector. This assumes that the consumer instruction is ineffectual and will be

selected for removal this time, too. However, the consumer instruction may not be

ineffectual this time. This does not go unchecked. The implicit IR-detector can detect the

transition of any instruction from ineffectual status to effectual status, because the

destination operands of all instructions are always tracked for detecting unreferenced and

non-modifying writes, and the B-bits of the branch instructions are always checked. Once

an instruction changes status from ineffectual to effectual, the dependence chain leading

up to it should also be made effectual. Unfortunately, this task takes multiple passes in

the implicit IR-detector because we speculatively use the R-bit to implicitly back-

propagate the status of consumer instructions to their producers. This may cause extra IR-

mispredictions as discussed in Section 5.2. Fortunately, the R-bit based prediction is

extremely accurate.
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Stage 1. Instruction C is an unreferenced write.

Stage 2. B and C are unreferenced writes. C is invisible to B (because its R-bit is set).

Stage 3. A, B, and C are unreferenced writes. C is invisible to B, and B is invisible to A.

FIGURE 5.2 ORT during the stages of implicit back-propagation. An instruction
whose R-bit is set (R) was removed from the A-stream by the IR-predictor.

VALID REF VALUE PRODUCER

1 1 VA A

1 1 VB B

1 0 VC C

VALID REF VALUE PRODUCER

1 1 VA A

1 0 VB B

1 0 VC C

VALID REF VALUE PRODUCER

1 0 VA A

1 0 VB B

1 0 VC C
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C
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A

B

C

RA

RB

RC
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ORT
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5.1.4 Updating the IR-predictor

The function of the instruction queue is simply to update the IR-predictor in

program order, which minimizes the number of IR-predictor accesses. Instructions are

selected for removal by the ORT out of program order, depending on when registers (or

memory locations) are killed. The instruction queue, however, ensures IR-predictor

updates occur in program order. The oldest instructions are removed from the queue to

make room for new instructions. The selection status of exiting instructions is used to

update the IR-predictor. However, before updating the IR-predictor, exiting instructions

are re-grouped into fetch blocks. This is necessary for efficient IR-predictor accesses. A

single access updates all counters for the fetch block. Without the instruction queue,

regrouping instructions into fetch blocks would be difficult.

5.1.5 Handling producer instructions that leave the instruction queue

The ORT entry corresponding to the destination operand of an exiting producer

should be invalidated. Otherwise, the ORT may select incorrect instructions for removal.

The solutions proposed in Section 4.1.4 for the explicit IR-detector also work for the

implicit IR-detector. One solution is to broadcast thetail_pointer to all ORT entries. ORT

entries that have thetail_pointer in their producer fields are invalidated. Alternatively,

sequence numbers can be used, as described in Section 4.1.4. A sufficiently large

sequence number reduces the chance of the ORT incorrectly selecting an instruction in

the queue.
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5.2 IR-mispredictions due to Unsynchronized Counters

As described in Section 4.2, IR-predictor aliasing and other events can cause the

confidence counters of producer and consumer instructions to become unsynchronized,

and this may lead to extra IR-mispredictions. For an IR-predictor that uses explicit back-

propagation, the R-bit back-propagation criterion re-synchronizes the counters of an

entire dependence chain in a single pass, limiting the number of IR-mispredictions to one

per aliasing event. An IR-detector that uses implicit back-propagation, however, requires

a lengthier re-synchronization time, and the number of IR-mispredictions per aliasing

event is equal to the length of the dependence chain. Figure 5.3 shows the effect of a

single aliasing event, in the context of implicit back-propagation.

Instruction C is a highly predictable branch and the only consumer of instruction

B. Instruction B is the only consumer of instruction A. Taken together as a whole, the

B
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FIGURE 5.3 Extra IR-mispredictions caused by unsynchronized counters.
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three instructions are ineffectual and can be selected for removal. The sequence of events

is as follows. First, instruction C is selected for removal by the ORT. It is removed from

the A-stream after its confidence counter saturates. Next, instruction B is selected for

removal, since instruction C does not add itself as a consumer of B. Instruction B is also

removed from the A-stream after its counter saturates. This causes instruction A to be

selected for removal, since instruction B does not add itself as a consumer. Instruction A

is also removed from the A-stream when its counter saturates. Ultimately, all three

instructions are removed from the A-stream as a whole.

Now, suppose C’s counter is displaced from the IR-predictor by another basic

block due to aliasing. When the basic block containing instruction C is re-allocated an

entry in the IR-predictor, instruction C’s counter is reinitialized to zero. This means

producer B is removed without also removing consumer C, which causes the first IR-

misprediction. Next pass, when the IR-detector analyzes the sequence A, B, and C again,

it finds that the R-bits corresponding to instructions A and B are set, but not the R-bit of

instruction C. Instruction B does not add itself as a consumer of instruction A, since the

R-bit of instruction B is set. However, instruction C adds itself as a consumer of

instruction B, since instruction C’s R-bit is not set. The outcome is that instruction B is

not selected for removal and instruction B’s counter is reset. Unfortunately, instruction A

is still removed from the A-stream (because B still made itself invisible – its R-bit was

set), without also removing instructions B and C. This leads to yet another (extra) IR-

misprediction. Next pass, the IR-detector finds that the R-bit of instruction A is set, but

not the R-bits of instructions B and C. Instruction C adds itself as a consumer of
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instruction B, and instruction B adds itself as a consumer of instruction A. Instruction A

and B are not selected for removal as a result. None of the three instructions are removed

from the A-stream. The learning process repeats and the whole dependence chain

eventually gets selected for removal again. In general, a single event that causes counters

to become unsynchronized results in multiple IR-mispredictions, equal in number to the

chain length. Re-synchronizing takes multiple passes in the IR-detector as a direct

consequence of using the R-bit speculatively.

5.3 Characterizing Circuit Complexity

The ORT is similar to the one used by the IR-detector based on explicit back-

propagation (Section 4.3). The difference is that, for a 4-way superscalar processor, the

ORT has 8 fewer read ports for theproducerandvalid fields, compared to the ORT in the

explicit IR-detector. The reason is that we no longer need to explicitly link consumers to

producers in the queue, so source operands do not need to be renamed to producer

indices. This means that, for the implicit IR-detector, all ORT fields except theref field

have 4 read and 4 write ports: theref field has 4 read and 12 write ports, as before.

Another difference is that the ORT has to assert only theselectlines to the instruction

queue (thekill lines are not needed).

The instruction queue, which is a simple FIFO, is used to buffer the retired

instructions in program order. There is no back-propagation network. Each FIFO entry

contains a single bit, which indicates whether or not the instruction is selected for

removal.
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Chapter 6

6. Simulation Methodology

A detailed execution-driven simulator is used to study the slipstream processor

[12]. The simulator models the architecture given in Figure 2.1. Ineffectual instructions

are speculatively skipped in the A-stream, the correct forward progress of the A-stream is

checked by the R-stream, and the streams are re-synchronized whenever there is an IR-

misprediction. The execution-driven simulator is validated by a functional simulator

running independently and parallel with it. The functional simulator verifies retired R-

stream control and data outcomes.

6.1 Microarchitecture Configuration

The slipstream microarchitecture parameters are listed in Table 6.1. The top-left

portion lists parameters for individual processors within the CMP. The bottom-left

portion describes the slipstream components. The right portion describes the slipstream

memory hierarchy.

The CMP is composed of two processors. Each one is a 4-way superscalar

processor with a 64-instruction reorder buffer. Each processor has its own L1 instruction

and data caches. The processors share a unified L2 cache.

A large IR-predictor is used for accurate instruction removal. IR-detectors based

on both explicit and implicit back-propagation are simulated. The delay buffer stores
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values for up to 256 instructions, and stores up to 4K branch predictions. Hardware-based

memory duplication is used, and A-stream memory state is recovered by flushing dirty

lines with value prediction [12]. Recovery of the register file takes 21 cycles.

SINGLE PROCESSOR CORE (PE) SLIPSTREAM MEMORY HIERARCHY
Private L1 data cache Size = 64KB

Caches Private L1 instruction cache Associativity = 4-way
Reorder Buffer : 64 instructions Replacement = LRU

Dispatch/issue/retire bandwidth : 4
L1 I-cache

Line size = 64 bytes

4 universal function units

Superscalar
core

4 loads/stores per cycle
Size = 64KB

Address generation = 1 cycle Associativity = 4-way
Load access = 2 cycles Replacement = LRU
Integer ALU ops = 1 cycle

L1 D-cache
Line size = 64 bytes

Execution
latencies

Complex ops = MIPS R10000 latencies Unified instruction/data
SLIPSTREAM COMPONENTS Shared among the PEs

220 entries, gshare-indexed Size = 256KB
Block size = 16 Associativity = 4-way
16 confidence counters per entry Replacement = LRUIR-predictor
Confidence threshold = 32, 64,… (varied) Line size = 64 bytes

IR-detector
Number of instructions buffered = 32,
64, 128, and 256 (varied)

L2 cache

Write-back policy

Data flow buffer: 256 instruction entries L1 instruction hit = 1 cycle

Delay buffer Control flow buffer: 4K branch
predictions

L1 data hit = 2 cycles

Memory: Flush dirty lines with value
prediction

L2 hit = 12 cycles (min.)
Memory
access times

L2 miss = 70 cycles (min.)
# out. misses Unlimited for all cachesRecovery

Register File:
• Recovery latency = 21 cycles
• 5 cycles to start up recovery pipeline
• 4 reg. restores/cycle (total 64 regs )

Duplication
Hardware-based memory
duplication

TABLE 6.1 Microarchitecture configuration.
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6.2 Benchmarks

A combination of SPEC2000 and SPEC95 integer benchmarks are used for the

simulations, 12 benchmarks in all. The benchmarks are compiled with –O3 optimization

using the Simplescalar compiler [2]. For the SPEC2000 benchmarks, the first billion

instructions are skipped, and then 100 million instructions are simulated. The SPEC95

benchmarks are run to completion. The benchmarks used and their input datasets are

given in Table 6.2.

Benchmark Suite Input dataset
gap SEPC2000 -1./ -q –m 8M ref.in
gcc SPEC2000 expr.i –o expr.s (-O3 is hardwired)
gzip SPEC2000 input.program 16
parser SPEC2000 2.1.dict –batch
perl SPEC2000 -I./lib splitmail.pl 850 5 19 18 1500
twolf SPEC2000 ref
vortex SPEC2000 bendian1.raw
vpr SPEC2000 net.in arch.in place.out dum.out –nodisp –place_only –init_t 5 –exit_t 0.005 –

alpha_t 0.9412 –inner_num 2
compress SPEC95 40000 e 2231
jpeg SPEC95 vigo.ppm

li SPEC95 test.lsp (queens 7)
m88ksim SPEC95 -c < ctl.in (dcrand.big)

TABLE 6.2 Benchmarks and input datasets.
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Chapter 7

7. Experimental Results

This chapter begins with a study of the IR-detector design space. For our set of

benchmarks, the best confidence counter threshold and instruction buffer size are

identified for both the explicit and implicit IR-detectors. Next, we compare the

performance of the explicit and implicit IR-detectors, using their best performing

configurations. Finally, the effect of the removal of ineffectual stores on the performance

of the implicit IR-detector is measured.

The performance metric is %IPC improvement of slipstream execution on two

processor cores relative to single-program execution on one of the processor cores. For

slipstream, IPC is computed by dividing the number of retired R-stream instructions (i.e.,

the original program) by the number of cycles for the A-stream and R-stream

combination to complete.

7.1 IR-detector Design Space Study

Choosing the best confidence counter threshold involves balancing two

competing goals – maximizing the number of removed instructions (favoring a low

threshold) while minimizing the number of IR-mispredictions (favoring a high threshold).

In the first part of the study, the counter threshold is increased while keeping the IR-

detector instruction buffer size fixed at 128 instructions. We identify the best counter
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threshold for our benchmarks. After finding the best counter threshold, the threshold is

held constant and the instruction buffer size is varied to find its best value.

7.1.1 Explicit back-propagation

The performance of the slipstream processor with explicit back-propagation is

shown in Figure 7.1. Confidence counter threshold is varied from 32 to 72. The

instruction buffer size is 128 instructions. The notationQx indicates the instruction buffer

size andTy indicates the counter threshold. On average, a slipstream processor with the

explicit IR-detector improves IPC from 11.4% to 12.3% as the counter threshold

increases from 32 to 72, with peak improvement occurring at 64. The trend is very

distinct in the case ofm88ksim, where the %IPC improvement increases from 18% to

21.3%, with the peak improvement occurring at a counter threshold of 64. The change is

due to the fact that the percentage of instruction removal in the A-stream decreases

negligibly as the counter threshold increases from 32 to 64 (from 66.6% to 65.6%

instruction removal), while there is a 58.5% decrease in the number of IR-mispredictions.

Next, the instruction buffer size is varied from 32 to 256 instructions while

keeping the counter threshold fixed at 64. The results are shown in Figure 7.2. On

average, %IPC improvement does not vary much with instruction buffer size. The peak

IPC improvement of 12.3% occurs at a buffer size of 128 instructions. We conclude that

the best configuration, on average, is a counter threshold of 64 and an instruction buffer

size of 128 instructions, for the explicit IR-detector. This configuration is used for the

remainder of the study.
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FIGURE 7.1 Performance of the slipstream processor with explicit back-propagation,
for an instruction buffer size of 128 and counter threshold varying from 32 to 72.

FIGURE 7.2 Performance of the slipstream processor with explicit back-propagation,
for a counter threshold of 64 and instruction buffer size varying from 32 to 256.
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7.1.2 Implicit back-propagation

The performance of the slipstream processor with implicit back-propagation is

shown in Figure 7.3. As before, confidence counter threshold is varied from 32 to 72. The

instruction buffer size is 128 instructions. On average, a slipstream processor with the

implicit IR-detector improves IPC from 10.1% to 11.8% as the counter threshold

increases from 32 to 72, with peak improvement occurring at 64. Againm88ksimshows a

distinct trend, where the %IPC improvement increases from 16.1% to 20.2%, with the

peak improvement occurring at a counter threshold of 64. The increase in %IPC

improvement is due to the fact that the percentage of instruction removal in the A-stream

decreases negligibly as the counter threshold increases from 32 to 64 (from 66.5% to

65.6% of instruction removal), while there is a 55.4% decrease in the number of IR-

mispredictions.

Next, the instruction buffer size is varied from 32 to 256 instructions while

keeping the counter threshold fixed at 64. The results are shown in Figure 7.4. On

average, the %IPC improvement varies from 11.3% to 11.8%. The peak %IPC

improvement of 11.8% occurs at an instruction buffer size of 128. Therefore, on average,

the best counter threshold (64) and instruction buffer size (128) for the implicit and

explicit IR-detectors are the same.
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FIGURE 7.3 Performance of the slipstream processor with implicit back-propagation,
for an instruction buffer size of 128 and counter threshold varying from 32 to 72.

FIGURE 7.4 Performance of the slipstream processor with implicit back-propagation,
for a counter threshold of 64 and instruction buffer size varying from 32 to 256.
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7.2 Comparison of Explicit and Implicit IR-detectors

The comparison of slipstream processors with the best explicit

(explicit_Q128_T64) and implicit (implicit_Q128_T64) IR-detectors is given in Figure

7.5. Theavg bar represents the average %IPC improvement for all 12 benchmarks. The

avg_1/3bar is the average %IPC improvement for the 6 benchmarks which have more

than 1/3 instruction removal in the A-stream:gcc, parser, perl, vortex, li , andm88ksim.

The comparison is done at a counter threshold of 64 and an instruction buffer size of 128

instructions, the best configuration for both the explicit and implicit IR-detectors.
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The slipstream processor with the explicit IR-detector gives an average

performance improvement of 12.3%, while the one with the implicit IR-detector gives an

average performance improvement of 11.8%. The average performance improvement for

the 6 benchmarks with more than 1/3 instruction removal is 20.3% with explicit back-

propagation and 19.3% with implicit back-propagation. The results show that the

performance improvement of the slipstream processor with the implicit IR-detector is

comparable to the performance improvement of the slipstream processor with the explicit

IR-detector – within one percentage point or less, on average.

The slight performance difference between implicit back-propagation and explicit

back-propagation may be due to two reasons. The first reason is that implicit back-

propagation may remove fewer A-stream instructions than explicit back-propagation. The

second reason is that implicit back-propagation may cause more IR-mispredictions than

explicit back-propagation. Figure 7.6 shows the percentage of instruction removal is

almost the same for both IR-detectors. But, there is a noticeable increase in the number of

IR-mispredictions for implicit back-propagation, as shown in Figure 7.7, except for

compressand jpeg. And, for these two benchmarks, the implicit IR-detector outperforms

the explicit IR-detector. The typically lower performance of the implicit IR-detector can

be attributed to the increase in the number of IR-mispredictions. As discussed in Chapter

5, when the last instruction in an ineffectual dependence chain causes an IR-

misprediction, there is a cascade of N-1 additional IR-mispredictions (if the chain is N

instructions long). On the other hand, the explicit IR-detector does not incur additional

IR-mispredictions after the initial one.



59

0

10

20

30

40

50

60

70

gap
gcc

gzip

pars
er

perl
tw

olf

vo
rte

x
vp

r

co
mp

jpe
g li

m88k

%
in

st
ru

ct
io

n
re

m
ov

al

explicit_Q128_T64

implicit_Q128_T64

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

gap
gcc

gzip

pars
er

perl
tw

olf

vo
rte

x
vp

r

co
m

p
jpe

g li

m88k

IR
-m

is
pr

ed
ic

tio
ns

pe
r1

00
0

in
st

. explicit_Q128_T64

implicit_Q128_T64

FIGURE 7.6 Comparison of the amount of instruction removal.

FIGURE 7.7 Comparison of IR-mispredictions per 1000 instructions.



60

7.3 Breakdown of Dynamic Instructions in the A-stream

The breakdown of dynamic instructions in the A-stream, is given in Figure 7.8.

The breakdown was measured for a slipstream processor with the implicit IR-detector.

Results are almost the same for the explicit IR-detector. Theeffectualcomponent is the

fraction of instructions in the A-stream that were not removed. Thebranchcomponent is

the fraction of instructions that were removed due to correctly-predicted branches. The

WSVcomponent is the fraction of instructions that were removed due to non-modifying

writes (“write-same-value”). TheWWcomponent is the fraction of instructions that were

removed due to original unreferenced writes (“write-write”). Thepropagationcomponent

is the fraction of instructions removed due to back-propagation; note, these are exposed

as unreferenced writes by the implicit IR-detector, but we separate this component from

the WWcomponent. As shown in Figure 7.8, branches, non-modifying writes, and back-

propagation are the major sources of instruction removal. Original unreferenced writes

are not as significant as the other three components.
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7.4 Removal of Stores

An address-indexed memory operand rename table tracks references to memory

locations. It is needed to detect and remove unreferenced stores, non-modifying stores,

and stores that are in the backward slices of loads that were removed. The number of

memory locations is potentially large, therefore, a cache-like structure is required. The

IR-detector can be simplified further if we choose not to remove store instructions. In this

case, only a register operand rename table is used, and it is similar to the rename table in

conventional superscalar processors. The %IPC improvement of a slipstream processor

with the implicit IR-detector, both with (implicit_Q128_T64) and without

(implicit_Q128_T64_NS) the removal of stores, is shown in Figure 7.9. The breakdown

FIGURE 7.8 Breakdown of dynamic instructions in the A-stream.
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of instructions in the A-stream with and without the removal of stores is shown in Figure

7.10. (Suffix_nsindicates no removal of store instructions).
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The average slipstream performance improvement decreases from 11.8% to

11.2%, without store-related removal. The average slipstream performance decreases

from 19.3% to 18.7% for the 6 benchmarks with more than 1/3 instruction removal. This

is primarily due to a decrease in the number of instructions removed from the A-stream.

Figure 7.10 shows a noticeable decrease in the number of instructions removed, the

categories of non-modifying writes (WSV) and propagation (Prop.) being impacted the

most. But,m88ksimandvortexactually perform better without the removal of ineffectual

stores. Although the percentage of instructions removed from the A-stream decreases by

FIGURE 7.9 Effect of the removal of stores on slipstream processor performance.
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9% in m88ksimand 15% invortex, overall performance improves as a result of an

increase in the number of value predictions communicated from the A-stream to the R-

stream.
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FIGURE 7.10 Breakdown of dynamic instructions in the A-stream, with and
without the removal of stores. The implicit IR-detector is used.
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Chapter 8

8. Related Work

Sundaramoorthy, Purser, and Rotenberg [11,13,16] proposed the first IR-detector

for slipstream processors. They defined the criteria for instruction removal in slipstream

processors. Key ineffectual instructions (unreferenced writes, non-modifying writes, and

correctly-predicted branches) are selected for removal first, using an operand

rename table (ORT). Ineffectual instructions in the backward program slices of the

triggering instructions are selected using a reverse data flow graph (R-DFG). The R-DFG

buffers retired instructions, and then establishes physical connections from consumer

instructions to their producers. The implicit IR-detector proposed in this thesis inherits

some aspects of the original explicit IR-detector, specifically, (1) the instruction-removal

criteria, (2) the ORT, which determines data dependences and identifies unreferenced and

non-modifying writes, and (3) the R-bit criterion, which is required to synchronize

producer and consumer confidence counters. Yet, the new IR-detector significantly

improves upon the old one. Implicit back-propagation eliminates the need for the

complex back-propagation network (i.e., the R-DFG). In addition to implicit back-

propagation, this thesis makes other novel contributions. Specifically, (1) we designed a

gate-level implementation of the R-DFG to characterize its complexity, whereas

previously there was no published gate-level design, and (2) we provided extensive

results for both the new and old IR-detectors, whereas previously there were no published

experiments documenting sensitivity to confidence threshold, buffer size, and removal of

ineffectual stores.
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Roth and Sohi [14,15] proposed Speculative Data-Driven Multithreading, an

architecture for pre-executing threads to resolve likely-mispredicted branches early and

prefetch possible cache misses. They do not propose a hardware mechanism for

constructing pre-execution threads. Instead, they use an off-line profile-driven approach

for identifying the backward slices of unpredictable branches and loads that tend to miss

frequently. Zilles and Sohi [17,18] also studied the use of pre-execution to reduce the

impact of performance-degrading instructions. They used profiling and manual analysis

to construct the pre-execution threads.

Collins, Tullsen, Wang, and Shen [3] proposed a hardware mechanism for

dynamically constructing pre-computation slices (p-slices) of delinquent loads (loads that

tend to miss). A table records the miss rates of loads, and they are dynamically classified

as delinquent or not. A Retired Instruction Buffer (RIB) buffers retired instructions

between two instances of a delinquent load. When the second instance is detected, the

RIB stops receiving new retired instructions, and begins analyzing buffered instructions.

Instructions in the RIB are scanned serially, starting from the second instance of the

delinquent load and moving steadily backwards. Scanning identifies instructions in the

backward slice of the delinquent load. When the p-slice is constructed, it is optionally

optimized and then stored in a p-slice cache. Other pre-computation architectures

[e.g.,1,9] use similar approaches for dynamically constructing p-slices. Others have

proposed compiler construction of p-slices [7].
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Many retired instructions are "dropped" during the time that the RIB is busy

analyzing a region of the dynamic instruction stream. Passing over dynamic instructions

is not a problem in the context of pre-computation. A region only has to be analyzed once

because its p-slice does not change. Therefore, there is no urgency to construct p-slices. If

a region containing a new p-slice is passed over because the RIB is busy constructing

another p-slice, we simply wait until the region is seen again to construct its p-slice.

A slipstream processor, on the other hand, must update its IR-predictor for each

and every dynamic instruction. Therefore, all dynamic instructions must pass through the

IR-detector, and the IR-detector must keep up with instruction retirement. Scanning

instructions serially and backward (as the RIB does) is simple, but it is also incompatible

with the throughput requirement of IR-detectors. The implicit IR-detector is simple and

provides high throughput. In fact, the implicit IR-detector is even simpler than backward

scanning: the RIB moves forward to initially buffer instructions and then scans backward

when a region is terminated; the implicit IR-detector moves forward continuously.

Another limitation of the RIB is that it uses a non-sliding analysis window, which

is incompatible with the need to maximize detection of ineffectual instructions. There are

two requirements for detecting an ineffectual dependence chain leading to a trigger

instruction. First, many dynamic instructions before the trigger instruction need to be

buffered. This ensures a large scope for identifying the dependence chain leading to the

trigger instruction. Second, a large number of dynamic instructions after the trigger

instruction need to be buffered. This increases the scope for killing values produced by
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instructions that lead up to the trigger instruction. And, both requirements are equally

important for back-propagation. A non-sliding analysis window such as the RIB cannot

effectively guarantee both of these requirements. Trigger instructions near the top of the

non-sliding window have a small scope for identifying the dependence chains that feed

them. And, instructions feeding trigger instructions located near the bottom of the non-

sliding window have a small scope for getting killed. A sliding window analysis, like in

the case of the IR-detector, is the best choice, since the act of sliding through the

instruction stream ensures a large scope for analyzing dependence chains and also a large

scope for killing values, and thereby gives the effect of an equally large window for all

dynamic instructions.
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Chapter 9

9. Summary and Future Work

9.1 Summary

The IR-detector detects past-ineffectual instructions in the R-stream, and selects

them for possible removal from the A-stream in the future. The confidence counters of

selected instructions are incremented in the IR-predictor, and the IR-predictor actually

removes the instructions from the A-stream when their counters saturate.

The IR-detector uses a two-step selection process. First, it selects key trigger

instructions -- unreferenced writes, non-modifying writes, and correctly-predicted

branches. The operand rename table (ORT) can easily detect unreferenced and non-

modifying writes. The second step, called back-propagation, selects computation chains

feeding the trigger instructions.

An explicit implementation of back-propagation buffers retired R-stream

instructions, and connects consumers to their producers using a configurable

interconnection network. Consumers that are selected for removal use these connections

to signal their producers, so that they get selected, too. This explicit signaling

mechanism is the complex part, requiring a network of N(N-1) wires (where N is the

instruction buffer size) and a complex logic block for each instruction in the buffer. The

first gate-level design for the R-DFG was developed in this thesis, and presented in

Chapter 4.
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This thesis proposes a simpler implementation of back-propagation, called

implicit back-propagation. The key idea is to logically monitor the A-stream instead of

the R-stream. Now, the IR-detector only performs the first step, i.e., it selects

unreferenced writes, non-modifying writes, and correctly-predicted branches. After

building up confidence, these trigger instructions are removed from the A-stream. Once

removed, their producers become unreferenced writes in the A-stream (because they no

longer have consumers). After building up confidence, the freshly exposed unreferenced

writes are also removed, exposing additional unreferenced writes. This process continues

iteratively, until eventually entire non-essential dependence chains are removed.

Logically monitoring the A-stream eliminates the need for an explicit back-propagation

network. Instead, the ORT implicitly handles back-propagation through the detection of

(newly-exposed) unreferenced writes, which is done in any case.

A slipstream processor with explicit back-propagation improves performance by

an average of 12.3% (relative to conventional non-redundant execution), while a

slipstream processor with implicit back-propagation improves performance by an average

of 11.8%. Performance improvements are 20.3% and 19.3%, respectively, for

benchmarks with more than 1/3 instruction removal. The difference in performance is

due to the fact that implicit back-propagation incurs more IR-mispredictions than explicit

back-propagation, as explained in Section 5.2. But, hardware complexity is significantly

reduced with only moderate performance impact.
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Removal of ineffectual stores requires a cache-like structure to track references to

memory locations. The complexity of the IR-detector is further reduced by opting not to

implement the removal of stores. The average performance improvement drops from

11.8% to 11.2% without the removal of stores. The average performance improvement

drops from 19.3% to 18.7%, for benchmarks with more than 1/3 instruction removal.

9.2 Future Work

Some of the benchmarks (likejpeg and twolf) do not have enough instruction

removal. Future work includes understanding why this is the case, and possibly defining

additional instruction-removal criteria.

Currently, the slipstream processor removes the maximum number of instructions

realistically possible. But, peak slipstream performance does not always occur with

maximum instruction removal. For benchmarks likem88ksimand vortex, less-than-

maximum instruction removal is preferred, because the A-stream provides more value

predictions to the R-stream. Dynamic throttling of instruction removal has significant

potential. Future work includes understanding the amount of instruction removal required

for programs to achieve peak slipstream performance, and then dynamically throttling

instruction removal accordingly.

In its present form, the slipstream processor relies on hardware mechanisms for

identifying (IR-detector) and removing (IR-predictor) non-essential instructions from the

A-stream. In future work, we would like to enlist the compiler to assist instruction
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removal. For example, the compiler can identify instructions that are likely to be

repeatedly removable, so that IR-predictor resources are not wasted on these instructions.

The compiler can assist bypassing instruction fetching by presenting the A-stream fetch

unit with one or more compressed versions of the program. The compiler can also use

more sophisticated analysis to increase dynamic instruction removal.

Finally, as part of future work, we would like to design the implicit IR-detector

using a hardware description language, such as Verilog or VHDL. This design could be

synthesized, and we could measure cost (die area) and critical path delay.
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