
© Eric Rotenberg, NC State University. This paper was created Nov. 10, 1999.

Exploiting Large Ineffectual Instruction Sequences 1

Exploiting Large Ineffectual Instruction Sequences

Eric Rotenberg

Abstract
A processor executes the full dynamic instruction stream in order to compute the final output

of a program, yet we observe equivalent, smaller instruction streams that produce the same cor-

rect output. Based on this observation, we attempt to identify large, dynamically-contiguous

regions of instructions that are ineffectual as a whole: they either contain no writes, writes that

are never referenced, or writes that do not modify the value of a location. The architectural impli-

cation is that instruction fetch/execution can quickly bypass predicted-ineffectual regions, while

another thread of control verifies that the implied branch predictions in the region are correct and

that the region is truly ineffectual.

1.  Introduction

A general purpose program is a specification to the processor executing that program: a “con-

tract” of the work to be performed and the output that must ultimately be produced. But the spec-

ification makes no requirement ofhow the processor should reach the final, correct state, and this

allowance has resulted in many microarchitecture innovations (e.g., out-of-order execution, multi-

ple instruction issue, branch and value prediction/speculation) that transform an apparently slow,

sequential program into a faster, parallel one.

This paper suggests the possibility of identifying a smaller fraction of dynamic instructions

that, when executed alone, produce the same overall effect as executing all of the specified

dynamic instructions. The concept (Figure 1) is only an exercise at this point and is based on

observing the evolution of a running program ideally. Nevertheless, the exercise is revealing: in
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some cases, equivalent instruction streams comprising as little as 20% of the full run produce the

correct final program state. This result is based on the following observations.

• Some instructions write a value to a register or memory location and the value is overwritten

before ever being used, or even if not overwritten, is simply never referenced. Such instruc-

tions, and the computation chains leading up to these instructions, have no effect on final pro-

gram state.

• Some instructions write the same value into a register or memory location as already exists at

that location. Such instructions, and the computation chains leading up to them, have no

observable effect on final program output because their writes were not truly modifications.

• The effects of branches (and the computation chains feeding the branches) are bypassed when

their outcomes are predicted in advance. The non-trivial case, and the one we are primarily

interested in, is a long sequence of correctly-predicted branches that either produces no writes,

or produces only ineffectual writes.

The term “ineffectual” is used to describe instructions that fall into any of the above catego-

ries. The term “ineffectual” doesnotmean the computation is unnecessary or avoidable, as will be

shown later. Our study of ineffectual instruction sequences progresses in four basic steps; perfor-

mance and architecture implications become clearer with each step.

1. Individual dynamic instructions are separated into two categories,effectual instructionsand

ineffectual instructions. The purpose of this initial step is to establish techniques for ideally

(but not optimally) identifying ineffectual instructions, and propagating ineffectual status back-

ward through their dependence chains. The techniques are validated by stripping the full

dynamic instruction stream of all ineffectual computation, and verifying the final output of the
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much-reduced dynamic program. The number and type of ineffectual instructions are mea-

sured in this phase.

2. Next, runs of ineffectual instructions are identified. Dynamically-contiguous,ineffectual

regions (IR) are relevant because they suggest architectures that learn, predict, and exploit

entire IRs as a single unit. We characterize key properties of IRs: IR lengths; number of unique

IRs and their repetition, or dynamic frequency; and theineffectual rate, or fraction of occur-

rences for which a particular dynamic instruction sequence is ineffectual. The degree of repeti-

tion and the ineffectual rate will no doubt impact the predictability of IRs.

3. We suggest ways of exploiting IRs and propose new architectures based on the concept. The

underlying idea is to speculatively skip past IRs, i.e., quickly re-route instruction fetching to

the point just after the IR. The IR (if predicted correctly) does not modify state in any relevant

way, so execution can proceed beyond the IR using the register/memory state immediately

prior the IR. In other words, IRs provide a natural source of parallel threads because they create

no dependences with subsequent computation. Of course, the IR may still have to be executed

to confirm that 1) the implicitly-predicted control flow through the IR is correct and 2) the

region is indeed ineffectual.

Our proposed approach leverages the trend of simultaneously running multiple independent

threads on the same chip [1,2]. We consider both a single-chip symmetric multiprocessor

(SMP) [2] and a simultaneous multithreaded processor (SMT) [1], in which a primary thread

freely skips over predicted IRs and a second redundant thread executes all instructions and val-

idates the leading thread [3]. The rationale of each of these architectures is explained, e.g., a

2-way SMP is an attractive alternative to doubling superscalar complexity for speeding up a

single program.
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4. An IR-based architecture requires several new mechanisms. Key mechanisms are briefly dis-

cussed in the context of the SMP/SMT architectures, although our research is in its early

stages.

FIGURE 1. Exercise: finding a much-reduced instruction stream that produces the same final output.

2.  Related work

Researchers have demonstrated a tremendous amount of redundancy, repetition, and predict-

ability in general purpose programs. Lipasti, Wilkerson, and Shen [4] and Sodani and Sohi [6,7]

showed that instructions tend to consume and produce the same values repeatedly. This property

can be exploited to collapse entire chains of computation into a single cycle of execution, either

speculatively based on value prediction [5] or non-speculatively via instruction reuse [6].

Huang and Lilja extended instruction reuse to basic blocks [8] and Gonzales, Tubella, and

Molina proposed trace-level reuse [9], i.e., reusing previously-computed live-outs of anarbi-

trarily large dynamic sequence of instructions given repeated live-in operands to the trace. In

addition to executing a long chain of instructions in a single or a few cycles, trace-level reuse is

especially interesting because it potentially eliminates fetching the trace altogether. In their mod-

eling of program predictability, Sazeides and Smith [10] suggest speculatively bypassing large

dynamic sequences of instructions.
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The microarchitecture trend of quickly bypassing large regions of work is the primary moti-

vation behind ineffectual regions. Ineffectual regions are a special case, however, where state does

not need to be updated at all. Furthermore, although we propose quickly bypassing ineffectual

regions, they are still executed (our multithreaded architecture for exploiting ineffectual regions is

based on AR-SMT [3]). For both these reasons (no trace outputs and computation instead of

reuse), we avoid the state explosion that trace-level reuse is potentially prone to.

3.  Analysis of ineffectual instructions and regions

3.1  Methodology

Ineffectual instructions are identified ideally by executing the program and using the resulting

trace to construct a dynamic dataflow graph. Adding a new instruction to the graph requires iden-

tifying the producers of any source operands. This is facilitated by a register table and an

unbounded memory table that indicate the most recent producer of a given register or memory

location, respectively. Additional state is maintained within each register/memory table entry, and

within each node (i.e. instruction) in the dataflow graph, to detect and propagate ineffectual status.

When a new instruction is added to the graph, it may cause the detection of an ineffectual

instruction. The graph generator checks three conditions to detect an ineffectual instruction.

1. If the new instruction writes into a register/memory location, the value written by the previous

producer to that location is “killed” (the old value can no longer be referenced by any new

instructions). If the old value had never been referenced, that value is marked “ineffectual” in

the previous producer’s node. If this is the only value produced by the node, or if all other val-

ues produced by the node are also marked “ineffectual”, then the previous producer instruction

can be considered ineffectual.
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2. The value produced by a new instruction is compared to the value written by the previous pro-

ducer to the same location. If the values match, then the value written by thenew instructionis

marked “ineffectual” in thenew instruction’snode. If this is the only value produced by the

node, or if all other values produced by the node are also marked “ineffectual”, then the new

instruction can be considered ineffectual.

3. All correctly predicted branch instructions are considered ineffectual. (The branch predictor is

described in Section 3.2.)

The first and second conditions may be true simultaneously, in which case the second condi-

tion arbitrarily takes precedence. The third condition is necessary for 1) detecting ineffectual

branch-related computation, as defined in the introduction, and 2) identifying branch-predictable

IRs containing possibly many basic blocks. Regarding the latter, if predictable branches were not

considered ineffectual, than IRs would be unnecessarily short in length. Also, ineffectual branches

are only interesting within the context of larger IRs, and our results should be interpreted with this

understanding in mind.

So far we have described detecting thesourcesof ineffectual behavior. When an instruction is

marked “ineffectual”, the dataflow graph generator attempts to propagate ineffectual status back-

ward along dependence arcs. Each source operand of the ineffectual instruction is processed as

follows. The producer of the source operand is identified, and the corresponding value in the pro-

ducer node is marked “ineffectual” if 1) the value has been killed, i.e., all uses of the value are

fully known, and 2) all other uses have indicated similar “ineffectual” status. The value may be

killed at a later time, in which case the same check is invoked at that time. When all values created

by the producer instruction are marked “ineffectual”, the producer instruction itself is considered

ineffectual, and the process continues recursively.
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3.2  Simulation environment

An important restriction of the study is that the dataflow graph cannot grow arbitrarily large.

A size of 64K (65536) nodes is maintained at all times. When a new instruction is incorporated

into the graph, the node corresponding to the oldest instruction is removed, at which time its inef-

fectual status is checked. An unknown fraction of ineffectual instructions will be considered

effectual as a result of the limited graphs. In Section 3.3, we measure the number of ineffectual

instructions detectable with graphs smaller than 64K.

A 64K-entry gshare predictor [11] is used to predict conditional branch outcomes. A

64K-entry target predictor, using the samegshareindex, is used to predict the targets of jump

indirect and call indirect instructions [12] (direct branch targets require no prediction). An

unbounded return address stack [13] is used to predict subroutine return instructions.

The Simplescalar toolset [14] is used to generate instruction traces. Binaries were compiled

with -O3 level optimization. The Simplescalar compiler is gcc-based and the ISA is MIPS-based;

as a result, instruction traces inherit any inefficiencies of the gnu compiler and MIPS ISA. In the

future, we plan on evaluating the impact of the compiler, and we hope to better understand how

much ineffectual behavior is due to the programmer/algorithm, the language, the ISA, and the

compiler.

A total of six benchmarks are used -- five integer SPEC95 benchmarks and thepostgresdata-

base backend -- as shown in Table 1.Postgresversion 6.4.2 [15], ported to the Simplescalar

toolset [16], runs TPC-R query #1 on a scaled-down version of the TPC-R database [17].

We verified correctness of ineffectual instruction analysis using the process depicted in

Figure 1. The full run of the program is stripped of all ineffectual instructions and the resulting

shortened trace -- program counter values only -- is fed into thesim-fastfunctional simulator of
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the Simplescalar toolset. The program counters merely override the normal next-PC computation

of sim-fast. For all benchmarks, 1) the reduced program completes without prematurely faulting,

core-dumping, etc., and 2) the final output matches the final output of the full run.

3.3  Results for ineffectual instructions

In this section, we measure the number of individual instructions that are effectual and inef-

fectual. Ineffectual instructions are further broken down into those that are the source of ineffec-

tual behavior and those that are ineffectual because their values are used only by other ineffectual

instructions. A breakdown of all dynamic instructions is graphed in Figure 2 using the following

notation.

• effectual : The fraction of dynamic instructions that are effectual. These instructions, when

run alone, produce the same effect as running the entire program.

• BR: The first of threesources of ineffectual behavior -- correctly predictedbranches.

• WW: The second of three sources of ineffectual behavior -- awrite followed by awrite to the

same location, with no intervening reference.

• SV: The third source of ineffectual behavior -- writing thesamevalue to a location.

TABLE 1. Benchmarks.

benchmark input instruction count branch misp. rate

gcc -O3 genrecog.i -o genrecog.s 117 million 7.77%

go 9 9 133 million 15.53%

jpeg vigo.ppm 166 million 6.67%

m88ksim -c < ctl.in 119 million 1.55%

perl scrabbl.pl < scrabbl.in 108 million 2.71%

postgres 1.sql 423 million 1.42%
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• P:{BR | WW | SV} : There are seven categories for instructions that inherit, via back-prop-

agation, ineffectual status from subsequent ineffectual instructions. TheBR, WW, andSVquali-

fiers indicateall sources of ineffectual behavior that an instruction has inherited.

• other : Most sources of ineffectual behavior fall into only one of theBR, WW, andSV catego-

ries. It is unusual, but possible, for a source to be ineffectual for more than one reason. The

other category includes 1) ineffectual store instructions that store multiple bytes, some of

which are attributed toWWand others toSV, and 2) call instructions that link the return address

through a register, in which case bothBRandSVcan be simultaneously active. This category is

infrequent and is only included for completeness.

FIGURE 2. Breakdown of effectual and ineffectual instructions.
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For gccandm88k, fewer than 20% of the dynamic instructions are effectual;perl andpost-

gresare about 30% effectual;go andjpegare 40% and 65% effectual, respectively. This confirms

our hypothesis that there exist significantly smaller, equivalent dynamic instruction streams that

produce the correct, final program state.

Of course, we must interpret this result carefully. Branch instructions account for approxi-

mately 1 of every 5 instructions in integer benchmarks. Consequently, correctly-predicted

branches (BR) directly account for 20% (go) to 24% (postgres) of ineffectual instructions, and

indirectly account for 15% (m88ksim) to 40% (go) of ineffectual instructions as a result of compu-

tation feeding the branches (P:BR).

Unreferenced writes,WW, appear to be a small source of ineffectual behavior, however, this is

most likely an artifact ofSV having precedence when both occur simultaneously (other results,

not presented here, indicateWWis a large source when given precedence). Together,WWandSV

directly account for 15% (go) to 43% (m88ksim) of ineffectual instructions, and indirectly account

for about 15% additional ineffectual instructions (P:WW, P:SV, andP:WW,SV).

As described in Section 3.2, the dataflow graph used to identify ineffectual instructions con-

tains 64K nodes. Figure 3 shows that 80% (perl) to 95% (m88ksim) of ineffectual instructions are

identified within a distance of 256 nodes, i.e., a significantly smaller dataflow graph can achieve

similar results.

The full implications of ineffectual behavior are not clear until we consider groups of ineffec-

tual instructions, or IRs, which we treat in the next section. An individual, correctly-predicted

branch, along with a few isolated instructions in the branch’s program slice, do not suggest an

exploitable program property. Rather, we are interested in cases of large, repetitive dynamic code

sequences that execute and produce no observable output;predicting the sequence, in fact, implies

there will be no changes to persistent program state. An example is shown in Figure 4(left), in
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which a long linked-list search executes only to verify the original assumption: the element is not

in the list (found = false; ). If this outcome is repetitive in a predictable way, the entire loop

can be speculatively bypassed because it is ineffectual.

FIGURE 3. Size of dataflow graph and its impact on identification of ineffectual instructions.

FIGURE 4. Linked-list example of a large ineffectual region.

The benchmarkgo, incidentally, exhibits the example because it performs many list searches
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3.4  Results for ineffectual regions

In this section, we identify dynamically-contiguous groups of ineffectual instructions. We are

particularly interested in long IRs (length-20 and longer), so we first measure their combined con-

tribution to ineffectual instruction count. Next, we identifyuniqueIRs and measure their individ-

ual contributions to ineffectual instruction count.

The graphs in Figure show the cumulative fraction of ineffectual instructions due to length-1

IRs, length-2 IRs, etc. Forgccandm88ksim, length-20+ IRs contribute about 40% of all ineffec-

tual instructions; this is followed bygo with 35%, perl with 30%, andjpeg and postgreswith

20%.

IRs, like traces [19,20], are uniquely identified by a start PC and a sequence of embedded

branch outcomes. In the following analysis, we assume IRs are terminated at indirect branches,

similar to conventional trace selection [19,20] (the previous analysis assumes no such constraint,

and there is a noticeable discrepancy between Figures 5 and 6 form88ksim). We identify all

unique IRs containing 20 or more instructions and collect three pieces of information for each IR:

1) length, 2) number of times the dynamic sequence is encountered, and 3) the number of times

the dynamic sequence is ineffectual. The product of 3) and 1) is the IR’s individualcontributionto

ineffectual instruction count. The ratio of 3) divided by 2) is theineffectual rate, i.e., the fraction

of occurrences that the IR was ineffectual. In Figure 6, IRs are sorted by decreasingcontribution

or decreasingineffectual rateand, progressing down the sorted list, we accumulate the fraction of

ineffectual instructions (y-axis) and the fraction of unique IRs (x-axis).

Sorting by decreasingcontribution tries to maximize the number of ineffectual instructions

with the minimal number of unique IRs. Forgcc, only 5% of length-20+ IRs are needed to pro-

vide 30% ofgcc’s ineffectual instruction count; all length-20+ IRs taken together can only pro-
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vide 38%. The same trend applies for the other benchmarks (exceptperl) -- 5% of length-20+ IRs

provide a majority of the benefit of all length-20+ IRs.

FIGURE 5. IR length and contribution to ineffectual instruction count.
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is ineffectual 50% of the time (although the latter may be just as predictable). Therefore, the sec-

ond curve in each graph of Figure 6 may be more representative of expected “returns” from indi-

vidual IRs. We can see that IRs with highineffectual ratesdo not necessarily contribute many

ineffectual instructions and, conversely, IRs that make large contributions may not be consis-

tently/predictably ineffectual.

FIGURE 6. Unique IRs and contribution to ineffectual instruction count.
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4.  Architectural implications

In this section, we suggest an unconventional approach for speeding up programs. The

approach leverages ineffectual regions and multithreading/multiprocessing execution models.

Single-chip, symmetric multiprocessors (SMP) [2] and simultaneous multithreading proces-

sors (SMT) [1] exploit both thread-level and instruction-level parallelism, effectively utilizing

processor resources. And we feel SMP/SMT architectures provide a unique opportunity to

explore new paradigms. The opportunity stems from 1) the close proximity, in both space and

time, of multiple threads, 2) the separation of state that enables autonomy among threads, and 3)

the flexibility to dynamically choose from among multiple execution modes using the same hard-

ware, depending on the application and need at hand (e.g., single-thread performance, high utili-

zation, reliability [3]).

4.1  Cooperating, partially-redundant threads

Exploiting ineffectual regions implies skipping over the regions. Unfortunately, we cannot

guarantee ahead of time that a dynamic sequence of instructions is ineffectual, for several reasons.

First, there are implicit control flow predictions through the region. Second, there are implicit data

predictions in the region, for example, if ineffectual behavior stems from overwriting the same

value in a location. Third,future control flow and data flow ultimately determines ineffectual

behavior.

Therefore, skipping over IRs is speculative in nature and validation is required. We propose

running two partially-redundant threads on either an SMP or SMT processor. At any given time,

one of the threads is considered the primary oractive instruction stream (A-stream). The

A-stream fetches and executes instructions in a conventional manner, but it also predicts future
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IRs based on the past history of IRs. When an IR is predicted, the A-stream transparently deviates

from conventional fetch/execution by skipping past the ineffectual region.

The second thread is a redundant instruction stream (R-stream) that runs “behind” the

A-stream. It maintains its own copy of program state. Because it executes behind the A-stream,

the R-stream has the benefit of perfect control and data flow “predictions” obtained from the

A-stream and, consequently, executes with peak parallelism. Until the A-stream predicts an IR,

the R-stream functions merely to keep in step with the A-stream and maintain a correct copy of

program state.

When the A-stream skips past an IR, the R-stream begins executing the IR in a conventional

manner (it has nodata flowpredictions from the A-stream because the A-stream skipped over

these instructions). Meanwhile, the A-stream is free to slip far ahead of the R-stream. When the

R-stream completes execution of the IR, it once again has perfect predictions available from the

A-stream. Therefore, the R-stream has the opportunity to catch up to the A-stream by executing

instructions with peak parallelism.

Figure 7 shows a high-level view of the cooperating A-stream and R-stream. The thick lines

indicate the dynamic instruction streams. Time and execution progress from left to right. Parts of

the R-stream that execute with peak parallelism -- due to values and branch outcomes passed from

the A-stream -- are shown with rotated lines (indicating many instructions executed in parallel). In

the center of the figure, the A-stream encounters a predicted IR and skips past it. The R-stream

executes it in less-than-peak-parallel fashion, but is able to catch up with the A-stream after exe-

cuting the IR.



© Eric Rotenberg, NC State University. This paper was created Nov. 10, 1999.

Exploiting Large Ineffectual Instruction Sequences 17

FIGURE 7. Cooperating threads for exploiting ineffectual regions.

Because the R-stream executes all instructions, it is able to 1) detect IR mispredictions in the

A-stream and 2) continuously update the state of the IR prediction mechanism. In fact, the two

functions are performed by the same hardware since updates and validation both require searching

for ineffectual regions.

Note that IR-mispredictions can be detected at three different points in time. First, if the IR is

incorrect due to mispredicted control flow, this will be detected during execution of the IR by the

R-stream. When the A-stream predicts an IR, it provides control flow information about the pre-

dicted IR to the R-stream (start PC and branch outcomes through the region, similar to trace pre-

diction [18]). This enables the R-stream to validate the predicted IR’s control flow. Second, if the

predicted IR is not actually ineffectual, and instructions immediately after the skipped region

depend on values produced in the region, the R-stream will detect branch/value mispredictions

coming from the A-stream. Third, if the predicted IR is effectual but the effects are not detectable

for some time (i.e., the A-stream still appears uncorrupted), the IR-detection hardware will even-

tually detect that the region is effectual.
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A-stream state is corrupted in the event of an IR-misprediction. And although the R-stream

state is correct, there is no obvious method for repairing A-stream state using R-stream state

because the differences are unknown. The solution is to maintain a history of writes in the

A-stream. When a write occurs to a location, the old value is saved in the history buffer in the

event we need to recover the old value. Subsequent writes to the same location need not save pre-

vious values. After detecting a misprediction, A-stream state is selectively repaired by reading old

values from the history buffer. (Note that a single history buffer can easily support any number of

outstanding, unresolved IR predictions.)

Lastly, when an IR misprediction is detected in the A-stream, the roles of the A-stream and

R-stream swap. The A-stream must back up just prior to the IR, whereas the R-stream may have

completed executing the IR and instructions beyond it. Therefore, the (old) R-stream is actually

ahead of the (old) A-stream.

We now summarize the key, new components of the architecture:

• A mechanism for detecting and selecting IRs.

• An IR predictor.

• A buffer for communicating control and data flow predictions from the A-stream to the

R-stream. The R-stream uses these predictions to execute with peak parallelism and it validates

the predictions with computed results (catching many IR mispredictions before the IR detec-

tion mechanism).

• A write history buffer for repairing corrupted A-stream state in the event of an IR-mispredic-

tion.
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4.2  Performance of cooperating threads with an ideal IR implementation

In this section, we demonstrate the ability to obtain higher performance using the cooperating

thread concept. The intent is to validate the execution model’s performance claims.

4.2.1  Simulator

We use an ideal IR implementation to test the execution model. IRs are identified using the

method of Section 3.Only length-20 or longer IRs are exploited. The gshare predictor of

Section 3 is used to predict control flow; IR prediction itself is perfect, i.e., given a branch-pre-

dictable dynamic sequence of instructions, the A-stream has perfect knowledge of whether the

dynamic sequence is effectual or ineffectual.

Our simulator models a wide-superscalar processor, SMT implemented on a wide-supersca-

lar processor, and an SMP composed of superscalar processing elements. We implement the fol-

lowing hardware constraints and assumptions:

• The A-stream (or single thread in the superscalar processor) can fetch any number ofsequen-

tial instructions in a single cycle, up to the maximum fetch bandwidth. The R-stream, because

it has any number of non-contiguous PCs available from the A-stream, can fetch multiple

non-contiguousbasic blocks from the banked instruction cache (alternatively,instructions

could be passed in the communication buffer as well). The latter is a key requirement for the

R-stream to exploit A-stream value predictions and execute with peak parallelism.

• Instruction fetch, dispatch, issue, execute, and retire stages are modeled. Fetch and dispatch

take 1 cycle each. Issue takes at least 1 cycle, possibly more if the instruction must stall for

operands. Execution takes a fixed latency based on instruction type, plus any time spent wait-

ing for a result bus. Address generation takes 1 cycle, and all data cache accesses are 1 cycle

(i.e. perfect data cache). Instructions retire in order. Functional units are symmetric and fully
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pipelined. Output and anti-dependences for both registers and memory are eliminated. Oracle

memory disambiguation is used.

4.2.2  Results

In Figure 8, instructions retired per cycle (IPC) is given for 1) SS(64-4), a 4-way superscalar

processor with a 64-entry reorder buffer, 2) an SMP composed of two SS(64-4) processing ele-

ments, 3) SS(128-8), an 8-way superscalar processor with a 128-entry reorder buffer, and 4) SMT

implemented on SS(128-8). Of course, in the dual-threaded SMP/SMT, IPC is computed as the

number of instructions in the original program divided by the number of cycles to complete.

FIGURE 8. Performance comparison of superscalar and SMP/SMT exploiting ineffectual regions.

By adding a second processing element to SS(64-4) and exploiting IRs, the SMP improves

performance across all of the benchmarks. Although doubling the complexity to SS(128-8) gives

a larger improvement (the SMP is fundamentally limited to a throughput of 4 IPC), the SMP is an

attractive alternative -- in terms of clock rate and flexibility. That is, overall performance (IPCand

clock rate) and functionality potentially favor the SMP.
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The SMT performs better than superscalar with the same underlying processor, SS(128-8),

for half of the benchmarks. SMT overcomes the fundamental 4-IPC bottleneck of the SMP model.

Poor utilization of 8-way issue bygcc, go, andm88ksimresult in the redundant threads not being

a performance problem, and IRs provide a net performance improvement. Performance is notice-

ably degraded forjpeg, however, because this benchmark exploits 8-way issue and because there

is a lack of length-20+ IRs injpeg.

5.  Summary

A processor executes the full dynamic instruction stream in order to compute the final output

of a program, yet we observed equivalent, smaller instruction streams that produce the same cor-

rect output. Unreferenced writes, writes that do not modify the value of a location, and correctly

predicted branches all contribute significantly to the number of ineffectual instructions.

Based on these experiments, we identified large, dynamically-contiguous regions of instruc-

tions that are ineffectual as a whole: they either contain no writes, writes that are never referenced,

or writes that do not modify the value of a location. Ineffectual regions (IRs) of length 20 instruc-

tions or more account for 15% to 40% of all ineffectual instructions in the program; and only

5-10% of all unique IRs account for most of these ineffectual instructions.

The architectural implication of this work is that instruction fetch/execution can quickly

bypass predicted-ineffectual regions, while another thread of control verifies that the implied

branch predictions in the region are correct and that the region is truly ineffectual.
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