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Abstract

A slipstream processor harnesses an otherwise unused processing element in a chip multipro-
cessor (CMP) to speed up a single program. It does this by running two redundant copies of the
program. Predicted-non-essential computation is speculatively removed from one of the pro-
grams, speeding it up. The second program checks the forward progress of the first and is also
sped up in the process. Both program copies finish sooner than either can alone.

The redundant programs are architecturally independent and this leads to a simple execution
model. Physical memory pages are duplicated by the operating system, sparing the processor
from explicitly managing a fixed amount of transparent rename storage. Unfortunately, doubling
memory usage partially negates performance gains. We observe that 1) the already-replicated L1
caches in a CMP provide enough implicit rename storage and 2) this storage does not need to be
explicitly managed because the slipstream paradigm is tolerant of slightly inaccurate memory
renaming. Leveraging unmodified cache actions within a typical private-L1/shared-L2 memory
hierarchy, we develop an efficient hardware-based memory duplication approach that signifi-
cantly outperforms software-based duplication, yet does not require any explicit hardware man-
agement.

Furthermore, the new duplication approach enables much simpler state recovery when the
speculative program diverges. Simple cache flushing eliminates a previously-required slipstream
recovery component. And the performance impact of flush-induced compulsory misses is reduced
by exploiting preserved data within flushed cache lines as highly-accurate value predictions.
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1. Introduction

Chip multiprocessing (CMP) [12,17,29] and simultaneous multithreading (SMT) [8,30,31]
are compelling because they maximize the performance capacity of a single chip by evolutionary
rather than revolutionary means. Independent jobs or parallel tasks that otherwise execute on
physically separate processors now execute on the same chip. Several companies have already
announced CMP [e.g.,12,29] or SMT [e.qg.,8,27] designs because of their high payoff and concep-
tual simplicity. Unfortunately, CMP/SMT processors do not explicitly address the performance of
individual sequential programs. Yet, historically, improving single-program performance is cru-
cial for remaining competitive.

The slipstream paradigm [19,21,22,28] harnesses a CMP/SMT processor to improve sin-
gle-program performance without fundamentally changing its operation. A slipstream processor
concurrently runs two redundant copies of the program. One of the programs always runs slightly
ahead of the other. The leading program is callecatiheanced streapor A-stream, and the trail-
ing program is called theedundant streamor R-stream. Hardware monitors the R-stream and
detects dynamic instructions that, in retrospect, were unnecessary for correct forward progress.
This knowledge is later used to speculatively but accurately reduce the A-stream: pre-
dicted-non-essential instructions are bypassed in the A-stream if there is high confidence correct
forward progress can still be made. Infrequent deviations are detected by passing all A-stream
control and data flow outcomes to the non-speculative R-stream, which checks the outcomes
against its own. When the R-stream detects a difference, corrupted architectural state of the
A-stream is restored to match the R-stream.

Prior work demonstrated the A-stream/R-stream arrangement often leads to an overall perfor-
mance improvement [19]. The A-stream is sped up because it fetches and executes fewer instruc-
tions. The R-stream is not reduced in terms of retired instructions. However, it fetches and
executes more efficiently because outcomes from the A-stream are used as ideal predictions. The
A-stream and R-stream finish at virtually the same time — the R-stream follows closely behind
the A-stream — and both finish sooner than a single copy of the program would.

The appeal of slipstreaming is that the underlying CMP/SMT processor operates on the
A-stream and R-stream as if they were unrelated. Conventional register and memory dependence
mechanisms remain intact because the programs are architecturally independent. Unfortunately,
independence comes at the expenseéanibling memory usagé&hat is, the easiest way to ensure
A-stream loads/stores do not interfere with R-stream loads/stores is to have the operating system
allocate separate physical memory pages for each program. Then, the processor does not have to
rename memory locations itself. Hardware memory renaming is typically complex because the
processor must provide the illusion of unlimited memory to one of the program copies, within a
fixed amount of hardware-managed renaming storage.

Therein lies the challenge in the design of memory systems for slipstream processors. On the
one hand, software-based memory duplication leads to a simple execution model. On the other
hand, full duplication may degrade memory system performance.
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In this paper, we make two major contributions.

1. We develop a hardware-based solution that duplicates memory efficiently, yet retains the sim-
plicity of software-based memory duplication

We exploit a memory hierarchy similar to the IBM Power4 [12], a commercial CMP composed
of two processing elements. Our hierarchy has a private level-1 (L1) cache per processing ele-
ment and the L1 caches write-through to a shared level-2 (L2) cache. Our approach works as
follows. First, the private L1 caches implicitly provide unique storage for the A-stream and
R-stream, therefore, extra storage for renaming memory locations is not explicitly provided.
Second, we make one simple change to the policy of the A-stream’s L1 cache: it is neither
write-through nor write-back, i.e., the A-stream never writes to the L2 cache. If the A-stream
writes to a line in its L1 cache, and later that line is repladkd,update is simply losDrop-

ping A-stream L1 cache updates works due to the nature of slipstreaming. By the time the
A-stream re-references the evicted line, the R-stream is likely to have performed the corre-
sponding redundant store to its L1 cache and the L2 cache (R-stream L1 is write-through).
When the A-stream re-references the line from the L2 cache, the line most likely reflects the
previously-lost A-stream update. Moreover, even if the R-stream has not performed the corre-
sponding redundant store before the A-stream re-references the line, the A-stream is specula-
tive in any case and this just adds another source of A-stream misspeculation.

From the perspective of hardware, the above approach is virtually identical to software-based
memory duplication. As before, no special hardware mechanisms are required: 1) rename stor-
age is not explicitly provided due to already-replicated L1 caches [10,13,18,26], and 2) the
fixed A-stream storage is not explicitly managed becaesaming does not have to be 100%
accurate The latter point is a key departure from classical renaming approaches. Classically,
hardware proactively determines when precious storage can be freed. In the context of slip-
stream processors, an A-stream L1 line can be “freed” when the corresponding R-stream
L1/L2 line becomes redundant with it. But we do not have to precisely identify when this hap-
pens because we can afford to be incorrect (a general mechanism is in place to detect A-stream
deviations, regardless of the cause). Instead, we passively free A-stream storage in the normal
course of line replacement, essentially makingredictionat replacement time that either the

L2 line is redundant with the A-stream L1 line or will be before re-referencing it.

2. We simplify restoring memory locations when the A-stream diverges, including eliminating a
previously required slipstream processor component (memory recovery controller)

Occasionally, the A-stream does not make correct forward progress and its state becomes cor-
rupted. A recovery sequence restores A-stream state so it matches the R-stream. Register state
is finite and restoring all registers is feasible. We do not have this luxury with memory: special
hardware pin-points memory locations that need to be restored [28]. With software-based
memory duplication, sophisticated recovery is unavoidable because A-stream and R-stream
physical memory pages are distinct. With our new duplication approach, however, A-stream
memory can be restored simply by flushing the A-stream L1 cache. Then, A-stream and
R-stream memory match exactly since the A-stream must re-reference all data in the L2 cache,
which is R-stream-only data. We also develop a novel technique for reducing the performance
impact of flush-induced compulsory misses in the A-stream. A line is flushed by marking it
invalid, but both the tag and data are preserved. Preserved values are usually correct and may
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be consumed as accurate value predictions, allowing load-miss-dependent instructions to exe-
cute while the flushed lines are re-filled from the L2 cache.

The original slipstream microarchitecture (using software-based memory duplication) is
reviewed in Section 2. The two alternative memory duplication models are described in Section 3.
We also describe three recovery models in Section 3 — the original recovery controller and two
simpler flush models enabled by hardware-based duplication. Section 4 describes the simulator
and benchmarks, and simulation results comparing duplication and recovery methods are pre-
sented in Section 5. Related work is discussed in Section 6.
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2. Review of slipstream microarchitecture

We review the slipstream microarchitecture in this section. Detailed descriptions are omitted
to conserve space, but enough background is provided to reason about alternative memory hierar-
chies, the focus of this paper. For reference, more detailed microarchitecture descriptions are
available elsewhere [19].

A slipstream processor implemented on a 2-way CMP is shown in Figure 1. Existing super-
scalar cores are shown within shaded boxes. Four new slipstream components are shown external
to and interfacing with the superscalar cores: instruction-removal detector (IR-detector), instruc-
tion-removal predictor (IR-predictor), delay buffer, and recovery controller. The superscalar core
is designed to run either the A-stream or the R-stream (we arbitrarily show the A-stream on the
left and R-stream on the right). Symmetric interfaces to/from the fetch unit and execution pipeline
of both cores makes designing a single core natural.

,,,,,,,,,,,, Astream  qomRdeecor  R-stream
Branch Branch
Pred. = |-cache .o IR-predictor I-cache (¢~ preg.

ty o R
Execute : | | Execute
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FIGURE 1. Slipstream microarchitecture.

2.1 Reducing the A-stream: IR-detector and IR-predictor

The A-stream is reduced by a process called instruction-removal, coordinated by the IR-detec-
tor and IR-predictor.

The IR-detector monitors retired R-stream instructions. It detects instructions that could have
been safely removed and, therefore, might possibly be removed in the future. Candidates for
removal include 1) ineffectual writes (register/memory writes that are not referenced before being
overwritten, or writes that do not change the value in a location) and 2) correctly-predicted
branches. The IR-detector contains a small shifting window of dynamic instructions arranged in
program order. Circuitry among the instructions is configured to form connections between pro-
ducer and consumer instructions, forming a reverse data flow graph (R-DFG). As newly-retired
R-stream instructions are merged into the R-DFG, the IR-detector selects ineffectual writes and
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correctly-predicted branches for removal. Then, the R-DFG circuitry automatically back-propa-
gates this removal status to producer instructions. A producer instruction is also selected for
removal if all of its consumers are selected.

The IR-predictor is a modified branch predictor. Like a conventional branch predictor, it pro-
duces the program counter (PC) of the next fetch block. However, the predicted next PC reflects
skipping any number of dynamic instructions that a conventional processor would otherwise
fetch. The IR-predictor also indicates which instructions within a fetch block can be removed
after fetch and before decode. The IR-detector indicates to the IR-predictor which dynamic
instructions might be removed in the future. Repeated indications by the IR-detector build up con-
fidence in the IR-predictor, and future instances of the ineffectual writes, predictable branches,
and computation chains leading up to them are removed from the A-stream.

2.2 Delay buffer

The delay buffer is a FIFO queue that passes retired A-stream outcomes to the R-stream for
checking. Although branch-predictable computation is removed from the A-stream, the implied
branch predictions are still produced by the IR-predictor. Thus, the delay buffer contains a com-
plete history of control flow, only a subset of which was verified by A-stream computation. The
delay buffer contains a partial history of data flow since the A-stream executes only a subset of the
dynamic instruction stream. Branch predictions from the delay buffer drive the R-stream fetch
unit. Value predictions from the delay buffer are injected into the R-stream pipeline as instructions
are renamed/dispatched. The delay buffer also contains 1-bit per original instruction indicating
whether or not the instruction was skipped by the A-stream; removal information is needed to
route value predictions of non-skipped instructions to the correct R-stream instructions.

2.3 IR-mispredictions and recovery

An instruction-removal misprediction, or IR-misprediction, occurs when instructions were
removed from the A-stream that should not have been. IR-mispredictions cause the A-stream to
no longer make correct forward progress. IR-mispredictions are detected as branch/value mispre-
dictions in the R-stream. By that time, the A-stream has corrupted its architectural register and
memory state. Recovery involves re-synchronizing the A-stream with respect to the R-stream. Al
A-stream registers are restored by copying values from the R-stream registers. Restoring memory
is more complicated because corrupt locations must be pin-pointed. At all timegcineery
controller monitors store activity in the A-stream and R-stream. It uses this information to main-
tain a minimal, up-to-date list of A-stream memory locations that may need to be restored from
the R-stream in the event of an IR-misprediction. A-stream registers/memory locations are
restored by copying values from the corresponding R-stream registers/memory locations. The
delay buffer, used in the reverse direction, provides a convenient datapath for copying restoration
values from R-stream to A-stream.
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3. Slipstream memory hierarchies

Slipstreaming requires memory duplication so that A-stream loads/stores and R-stream
loads/stores do not interfere with each other. In Section 3.1, we examine both software-based
duplication and our new hardware-based duplication approach. Section 3.2 describes three mem-
ory recovery models, including the recovery controller and two much simpler cache-flush
approaches enabled by hardware-based duplication.

3.1 Memory duplication models

3.1.1 Software-based memory duplication

In previous slipstream implementations [19,28], the operating system duplicated physical
memory pages to separate the two redundant programs. Software-based memory duplication is
shown in Figure 2. Light shading and dark shading indicate data from A-stream pages and
R-stream pages, respectively. As the figure indicates, a major drawback of software-based dupli-
cation is the capacity of the memory hierarchy is effectively halved (assuming physical memory is
fully utilized to begin with). Some or all of the performance improvement due to slipstreaming
may be negated due to additional capacity/conflict misses throughout the memaory hierarchy. In
large commercial systems (e.g., database servers), doubling physical memory requirements of all
running programs may be unacceptable.

A-stream R-stream

L1 D$ L1 D$

L2 D$

Main Memory

FIGURE 2. Software-based memory duplication.
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Another major drawback of software-based memory duplication is that it exposes slipstream
to the operating system (O/S). The O/S must duplicate the original program’s physical memory
image and manage separate page tables for the A-stream and R-stream. And trap handling
requires unique O/S support. “Trap” refers to system calls, exceptions, and external interrupts.
Slipstream processors synchronize the A-stream and R-stream at a trap [21]. After that, the O/S
has two options. In the first option, the O/S preserves both programs, i.e., both programs are
swapped out and later swapped in. The O/S handles the trap as it would for one program, but
duplicates the results as needed for both suspended contexts. For example, file input/output (I/O)
is not duplicated but the memory state of both contexts should reflect the results of file I/O. In the
second option, one of the program copies is killed by the O/S before servicing the trap. The
remaining program is swapped out and the trap is serviced in the usual manner. To restart, the sus-
pended program is duplicated and both copies are swapped in. The first option complicates servic-
ing of traps, whereas the second option incurs high performance overhead because all pages must
be copied after every trap. The fact that the O/S is involved at all is undesirable.

3.1.2 Hardware-based memory duplication

The A-stream reaches store instructions before the R-stream, so R-stream memory state lags
slightly behind A-stream memory state but not by muchThe redundant programs are typically
no more than a few thousand instructions apart, and often less. This means the vast majority of
A-stream and R-stream physical pages in Figure 2 are identical, and only a small amount of dupli-
cation is required. Below, we describe how a representative CMP memory hierarchy can be lever-
aged with almost no modifications to support efficient and system-transparent slipstreaming.

1. The L1 data cache is typically replicated in a CMP, a private cache for each processing element
(PE), providing convenient and implicit memory replication close to the PEs. Both the
A-stream and R-stream read/write their respective L1 caches independently and freely.

2. We assume the CMP has a single, shared L2 cache.

3. The R-stream L1 cache is write-through. That is, when the R-stream performs a store in the L1
cache, it also performs the store in the L2 cache.

4. The A-stream L1 cache is neither write-through nor write-back. When the A-stream performs a
store in the L1 cache, it dog®t also perform the store in the L2 cache. Furthermore, if a
“dirty” line (a line that was stored to) needs to be evicted to make room for another cache line,
the line isnotwritten back to the L2 cache. The evicted cache line, and the updated data it con-
tains, is simply lost. In short, the A-stream can read from the L2 cache but not write to it.
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Figure 3 shows hardware-based memory duplication. As before, A-stream state is indicated
with light shading and R-stream state with dark shading. A thin black rectangle in the A-stream
L1 cache represents a cache line to which the A-stream has performed a store, and the R-stream
has not yet performed its corresponding redundant store. The figure shows how one such cache
line written by the A-stream is evicted from the cache and the update it contains is lost, because
the A-stream does not have its own renamed state beyond the L1 cache.

A-stream R-stream

L1 D$ L1 D$

L2 D$

Evicted-and-lost
A-stream update

Main Memory

FIGURE 3. Hardware-based memory duplication.

Evicting and losing A-stream updates is rarely a problem because the R-stream usually repro-
duces the data before the A-stream re-references it. The R-stream is generally not far behind and,
because its L1 cache is write-through, the evicted-and-lost A-stream data is re-created in the L2
cache before the A-stream needs it again. Occasionally, the A-stream re-references the line in the
L2 cache before the R-stream has performed its corresponding update. The A-stream gets stale
data, but the A-stream is speculative in any case and A-stream mispredictions are recoverable. In
Section 5, we measure how many stale bytes are consumed by the A-stream; we label this mea-
suremenstalein Section 5.

Losing A-stream data can occasionally aid the A-stream. The A-stream sometimes incorrectly
skips a store or incorrectly performs a store. In either case, the corrupt cache line may be evicted
before being referenced and, later, the A-stream references a correct version of the cache line
from the L2 cache. In Section 5, we measure how many inadvertently-repaired bytes are refer-
enced by the A-stream; we label this measuresahtepairin Section 5.

In summary, our new approach is as simple as before because the processor does nothing
explicit to manage A-stream storage. Instead, inherent cache actions perform the desired opera-
tions: the A-streanmplicitly duplicates memory by allocating lines in its L1 cache anglicitly
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frees memory by replacing lines in its L1 cache. The approach is also efficient: memory hierarchy
performance is not impacted because duplication is limited to the already-replicated L1 cache.

We should point out that a write-through R-stream L1 cache is not a strict requirethém
R-stream L1 cache were write-back, coherence mechanisms would ensure the A-stream gets the
most recent R-stream data when the A-stream fetches from the L2. Either the R-stream L1 cache
snoops on its own behalf or, more typically, the L2 cache maintains inclusion and snoops on
behalf of the L1 caches. We did not also implement write-back due to time constraints.

3.2 Recovery models

3.2.1 Recovery controller

Therecovery controlle28] monitors store activity in the A-stream, R-stream, and IR-detec-
tor, pin-pointing memory locations that need to be restored from the R-stream if the A-stream
goes astray. It maintains a list of memory locations, identified by address, that are known to differ
between the A-stream and R-stream. Actually, there are many locations that differ but do not
affect program correctness. The recovery controller only tracks memory locations that differ and
have not yet been verified as “OK” to differ. Our implementation keeps track of individual dou-
blewords, although a word or cache line granularity could also be used.

Figure 4 demonstrates how the recovery controller tracks memory locations. The figure shows
the progression in time (from left to right) of two different types of stores as they pass first
through the A-stream, then through the R-stream, and finally through the IR-detector. The con-
tents of the recovery controller is shown evolving over time, at the bottom of the figure. The first
store is to addresa and is not skipped by the A-stream; it is shown with a solid circle to indicate
it was not skipped. The second store is to addBeasd is skipped by the A-stream; it is shown
with a hollow circle to indicate it was skipped.

When stored)) is committed by the A-stream, addre&ss added to the recovery controller
because that location now differs between the A-stream and R-stream. When the R-stream com-
mits the corresponding redundant stéde(addressA is removed from the recovery controller
because it no longer differs. If the processor initiates a recovery sequence aftek)s®es(m-
mitted by the A-stream and before it is committed by the R-stream, we know to “undo” the
A-stream store because addrAss in the recovery controller’s list.

Store@) is skipped by the A-stream so no signal is sent by it to the recovery controller. The
R-stream knows which instructions were skipped by the A-stream (as described in Section 2.2,
the delay buffer contains removal information for matching up results of A-stream-executed
instructions with R-stream instructions). When st8)aé committed by the R-stream, addrdss
is added to the recovery controller because the A-stream perhaps should have performed the store.
By the time stordf) has reached the end of the IR-detector’s analysis scope, we will have deter-
mined whether or not storBf was necessary. If stof®) is deemed ineffectual, addreBsis
removed from the recovery controller. Otherwise, it remains in the recovery controller until the
next recovery sequence since we do not know for certain that it was alright to ski)store(
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FIGURE 4. Recovery controller operation.

The recovery controller is organized as a set-associative or fully-associative buffer. Each entry
contains a memory address and two countersstbee-undocounter and thetore-docounter.
Counters are used because there can be multiple unverified stores to the same location, all of
which must be tracked. Referring back to Figure 4,gteee-undocounter for addresA is incre-
mented when stord]) is committed by the A-stream and decremented when #tprecommit-
ted by the R-stream. Thetore-do counter for addres® is incremented when stoig) is
committed by the R-stream and decremented when &piie(detected as removable by the
IR-detector. An entry in the recovery controller can be replaced when botstéhe-undoand
store-docounts are zero. If there is no room for a new address in the recovery controller, a recov-
ery sequence is initiated to clear out the recovery controller.

The recovery controller is required if software-based duplication is used. It also works with
hardware-based duplication but is optional, because simpler recovery models are enabled by effi-
cient duplication. Actually, the recovery controller does not recover state perfectly when used in
conjunction with hardware-based duplication. NamtHg, recovery controller has no knowledge
of stale lines brought into the A-stream L1 ca¢Bestream evicts and loses an updated line, and
re-references a stale version of the line from the L2 cache). After a recovery, stale data may persist
in the cache and potentially cause problems for the A-stream in the future. In Section 5, we mea-
sure how many stale bytes introduced before recovery are referenced by the A-stream after recov-
ery; we label this measuremegersistent-stalen Section 5.

3.2.2 Flush cache

The recovery controller adds complexity to slipstream processors. The new hardware-based
memory duplication approach can be exploited to eliminate the recovery controller. A-stream
memory state can be restored, i.e., re-synchronized with the memory state of the R-stream, simply
by invalidating en massethe A-stream’s L1 cache lines. Recovery is gradual as lines are
re-accessed from the L2 cache, which contains correct and up-to-date R-stream memory state.

The only hardware support for this recovery method is a global invalidation control signal that
resets the valid bit of all cache lines. Also, whereas the recovery controller is slightly imperfect
due to thepersistent-stalease, flushing the cache is completely effective.
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3.2.3 Flush dirty lines

Invalidating all lines in the A-stream L1 cache is inefficient because only a handful of memory
locations are typically corrupted. There are undue compulsory misses after recovery. To reduce
A-stream compulsory misses, we propose invalidating alirty lines. Any data written to the
cache after the A-stream goes astray may be incorrect. And even if data is written correctly, our
recovery strategy requires stores not yet performed in the R-stream to be “undone” in the
A-stream at the time of recovery (to re-synchronize state). Thus, lines that become dirty after the
A-stream diverges are good candidates for invalidating. Unfortunately, lines that were dirty before
the A-stream diverged and not subsequently written to are needlessly invalidated.

As with the recovery controller, flushing dirty lines leads to imperfect recovery. First, stale
lines brought in from the L2 cache that are not subsequently written to (clean) will persist after
recovery. So, flushing dirty lines also suffers persistent-stal@roblem. Second, clean lines that
are corrupt due to incorrectly-skipped stores persist after recovery (the recovery controller, on the
other hand, tracks addresses of correctly- and incorrectly-skipped stores). In Section 5, we mea-
sure how often bytes corrupted by a skipped-store before recovery are referenced by the A-stream
after recovery; we label this measuremgarsistent-skipped-writ@ Section 5.

The hardware support for this recovery method is 1) dirty bits in the L1 cache and 2) a global
invalidation control signal gated by the dirty bit that resets the valid bit of dirty cache lines.

3.2.4 Reducing impact of flush-induced misses: value prediction using preserved cache data

For either recovery method in Sections 3.2.2 and 3.2.3, flushing a cache line resets its valid bit
but preserves its tag and data. The preserved tag and data can be exploited to reduce the impact of
recovery-induced compulsory misses in the A-stream. When the A-stream accesses an invalid
line, the cache miss is serviced like usual. However, the preserved cache tag(s) are still checked
and, if there is a match, the A-stream retrieves a value from the cache and uses it as a value predic-
tion. The value prediction is eventually validated when the cache miss completes.

Value predicting a load miss in this way gives some performance benefit, even if the load
reaches the head of the reorder buffer and stalls A-stream retirement while waiting for the cache
miss to complete. First, execution of dependent instructions is not delayed and this results in a
faster retirement rate when retirement eventually resumes. Second, the load is unlikely to stall
retirement for too long, if at all, because the invalidated line is likely to be in the L2 cache if it was
found in the L1 cache. Third, other recovery-induced misses potentially initiate earlier. Finally,
value predictions are nearly 100% accurate because, typically, only a handful of lines are cor-
rupted when the A-stream deviates.

Slipstream Memory Hierarchies February 2002 12



3.3 Simplified slipstream microarchitecture

Figure 5 shows the slipstream microarchitecture using hardware-based memory duplication
and either of the flush-based recovery models. This microarchitecture does not need a recovery
controller, so now there are only three slipstream components — the IR-predictor, IR-detector,

and delay buffer. The L2 cache is shown. Notice the A-stream only reads from the L2 cache and
the R-stream reads and writes the L2 cache.

. Astream from IR-detector Restream
Branch ‘ : Branch
Pred. = l-cache o IR-predictor —» I-Cache « . preq.

Py T
Execute : | . | Execute
Core . h Delay Buffer : Core
D-cachel Reorde ‘ ‘ ‘ ‘ ‘ ‘ e | | Reorde D-cachel
Buffer . Buffer
Vo T

L

IR-detecto ~—[

to IR-predictor

L2 CACHE (R-stream state only)

FIGURE 5. Slipstream microarchitecture with hardware-based memory duplication and flush-based recovery.
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3.4 Summary: qualitative comparisons

Table 1 recaps the advantages, disadvantages, and required hardware support of the two mem-
ory duplication methods (top-half) and three memory recovery methods (bottom-half). Notice the
four useful measurements introduced in this section are highlighted in bold itsiads:and
self-repairrelate to memory duplicatiorpersistent-staleand persistent-skipped-writeslate to
recovery. Results in Section 5 quantify much of the information summarized in Table 1.

Note that the cache-based value prediction technique is not listed in Table 1, but is used in
conjunction with either flush model to reduce the performance impact of flush-induced misses.

TABLE 1. Comparisons of duplication and recovery methods.

POSITIVES

NEGATIVES

HARDWARE SUPPORT

software-
based

+ simple state renaming

- double memory usage
- requires recovery controll
- hard system-level issues

grone

memory
S + as simple as s/w-based o
duplication + efficient memory usage No explicit hardware mech
method | hardware- + enables simpler recovery- stale nisms, only assumes
based IBM-Power4-like CMP
+ system-transparent memory hierarchy
+ self-repair
-adds h/w complexity
- explicitly increases
recovery [+ restore data without recovery latency recovery controller mecha-
controller | flushing line from cache |- force recovery when full |nism
memory - imperfect recovery:
recovery persistent-stale
thod flush + simple - many compulsory misses| invalidate wire
me + 100% recovery
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4. Simulation methodology

We use a detailed execution-driven simulator of a slipstream processor. The simulator faith-
fully models the architecture depicted in Figure 1 and outlined in Section 2: the A-stream pro-
duces real, possibly incorrect values/addresses and branch outcomes, the R-stream checks the
A-stream and initiates recovery actions, A-stream state is recovered from the R-stream state, etc.
The simulator itself is validated via a functional simulator run independently and in parallel with
the detailed timing simulator [24]. The functional simulator checks retired R-stream control flow
and data flow outcomes.

Microarchitecture parameters are listed in Table 2. The top-left portion of the table lists
parameters for individual processors within a CMP. The bottom-left portion describes the four
slipstream components. We use the same parameters as in previous work [19], to which the reader
is referred for more details, and focus on the slipstream memory hierarchy (right-hand side).

TABLE 2. Microarchitecture configuration.

single processor core (PE) slipstream memory hierarchy
caches private L1 instr. cachesée memory hier. colurn L1 size = 64 KB
private L1 data cachesge memory hier. column instruction assoc = 4-way
reorder buffer: 64 entries cache replacement = LRU
superscalar | dispatch/issue/retire bandwidth: 4 instr/cycle (per PE) line size = 64 bytes
core 4 fully-symmetric functional units L1 size =8 KB /32 KB/ 64 KB
4 loads/stores per cycle data assoc = 1-way / 4-way
address generation = 1 cycle cache replacement = LRU
execution |load access = 2 cycles (hit) (per PE) line size = 64 bytes
latencies |integer ALU ops = 1 cycle unified instr./data
complex ops = MIPS R10000 latencies shared among PEs
sllpstream components size = 256 KB
2% entries gshareindexed (16 bits branch history L2 cache  |assoc = 4-way
IR-predictor [block size = 16, 16 confidence counters per entfy replacement = LRU
confidence threshold = 32 line size = 64 bytes
IR-detector |R-DFG = 256 instructions, unpartitioned write-back policy
delay buffer data flow buffer: 256 instruction entries emor L1 instruction hit = 1 cycle
control flow buffer: 4K branch predictions accesg L1 data hit = 2 cycles
128 entries, fully associative times L1 miss/L2 hit = 12 cycles
recovery latencyafter IR-misprediction detected) L1 miss/L2 miss = 70 cycles
recovery ® 5 cycles to start up recovery pipeline # out. misses |unlimited for all caches
controller 4 reg. restores/cycle (64 regs performed 1st)l DUPLICATION |[software- or hardware-base
4 mem. restores/cycle (mem performed 2nd recovery controller, flush,
¢ [ min. latency (no memory) = 21 cycles RECOVERY |flush-dirty, or flush/flush-dirty
with value prediction

The per-PE L1 data cache size/associativity is varied. The shared L2 cache is 256KB, 4-way
set-associative, and holds both instructions and data. Instruction pages are read-only so they are
not duplicated even if software-based duplication is used. We also reduce A-stream/R-stream con-
flicts in the L2 cache for software-based duplication by inverting the high index bit for R-stream
accesses (otherwise, the two address streams are too alike). An L1 data cache hitis 2 cycles, an L1
miss/L2 hit takes 12 cycles, and round-trip time to main memory is a minimum of 70 cycles.
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Finally, we vary the memory duplication method and recovery method. The recovery control-
ler (if present) holds 128 addresses and is fully-associative. Independent of the memory recovery
method, recovery latencyfter the IR-misprediction is detected) is 5 cycles to startup the recov-
ery pipeline followed by 4 register restores per cycle (a total of 21 cycles). An additional latency
of 4 memory restores per cycle is incurrdédhe recovery controller is used-or flush-based
recovery, we assume the global invalidation signal can flush the cache within a few cycles and is
hidden by the 21 cycle register file recovery latency.

The Simplescalar [4] compiler and ISA are used. We use six of the SPEC2000 integer bench-
marks, compiled with -O3 optimization, and run wrgf input datasets (Table 3). The first billion
instructions are skipped, and then 100 million instructions are simulated.

TABLE 3. Benchmarks.

benchmark ref input dataset

gap gap -I./ -q -m 8M ref.in

gcc ccl expr.i -0 expr.s (note: SPEC2K version of ccl is hardwired to -O3 optimization)

parser parser 2.1.dict -batch < ref.in

perl perlbmk -I./lib splitmail.pl 850 5 19 18 1500

vortex vortex bendianl.raw

vpr vpr net.in arch.in place.out dum.out -nodisp -place_only -init_t 5 -exit_t 0.005 -alpha_t 0.9412 -inner_num 2
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5. Results

The slipstream processor is built on top of a CMP composed of two superscalar cores. In the
slipstream paradigm, the goal is to leverage a second, otherwise unused superscalar core in a CMP
to improve single-program performance. Therefore, all results are reported as the speedup of slip-
streaming using two superscalar cores with respect to conventional execution on one of the cores.
Except for L1 data cache size and set-associativity, the core is fixed and is called the BASE con-
figuration: BASE is a 4-way issue dynamically scheduled superscalar processor with a 64-instruc-
tion reorder buffer.

We first compare software-based and hardware-based memory duplication (Section 5.1), dem-
onstrating that the hardware-based approach is required for materializing slipstream performance.
We then investigate five recovery models within the context of hardware-based memory duplica-
tion (Section 5.2). In all, we simulate six slipstream processor configurations, labeled with the
memory duplication method — SD for (s)oftware-based (d)uplication and HD for (h)ard-
ware-based (d)uplication — followed by the recovery model in parentheses — “rc” = recovery
controller, “flush” = flush entire cache, “flush-vp” = flush entire cache and use as value predic-
tions, “flushd” = flush dirty lines in cache, “flushd-vp” = flush dirty lines in cache and use as value
predictions. The six configurations are SD(rc), HD(rc), HD(flush), HD(flush-vp), HD(flushd), and
HD(flushd-vp). Recall that the recovery controller is the only valid recovery method for soft-
ware-based memory duplication.

5.1 Software-based vs. hardware-based memory duplication

The instructions-per-cycle (IPC) performance improvement of SD(rc) and HD(rc) with
respect to BASE are shown in Figure 6. There is one graph per benchmark and L1 data cache con-
figuration is varied along the x-axis (for example, 8k-1 is an 8KB direct mapped cache, 32k-4 is a
32KB 4-way set-associative cache).

Based on the results in Figure 6, efficient memory duplication is required to materialize slip-
stream performance. HD(rc) almost always outperforms SD(rc), and by large margins in all
benchmarks excemap and perl. The SPEC2000 benchmarks place reasonable stress on the
memory hierarchy. Consequently, SD(rc) takes a large performance hit because it doubles the
number of physical pages competing for the already highly-utilized memory hierarchy.

The performance impact of full duplication parserandvpr is large enough to degrade per-
formance with respect to BASE by up to 5%. On the other hand, HD(rc) improves performance by
about 17% inparserand 7%vpr. SD(rc) improves performance by about 8% and 5%jd¢nand
vortex respectively. However, HD(rc) is able to increase those speedups to as high as 14% and
20%, respectively.

Thegccbenchmark shows interesting trends for HD(rc) as cache size and set-associativity are
increased.Gap, perl, and vortex also show these trends, but less clearly. First, performance
improvement increases steadily with successively larger direct mapped caches. Yet, performance
improvement is constant with cache size if the cache is 4-way set-associative. Second, there is a
jump in performance improvement when associativity is increased from direct mapped to 4-way.

These trends can be explained by examining the numbstiatédbytes referenced by HD(rc),
shown in Figure 8 averaged across all benchmarks. The number of refestaledytes is virtu-
ally non-existent (< 300 bytes) for set-associative caches. In contrast, direct mapped caches result
in a high number obtalebytes referenced (e.g., 55,000 bytes for 8 KB direct mapped). A direct
mapped cache usually has more conflict misses than a set-associative cache. Conflict misses result
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in many evicted-and-lost line updates that are re-accessed in the L2 cache too soon, before the
R-stream has a chance to re-create the lost data (resulting in additional, costly A-stream mispre-
dictions). Evictions in set-associative caches are more likely to be caused by capacity misses than
conflict misses, in which case the evicted-and-lost line update is less likely to be re-accessed soon.
We conjecture that an A-stream victim cache [11] will improve HD(rc) performance improvement
with direct mapped caches. The same analysis explains why HD(rc) performance improvement is
sensitive to L1 cache size for direct mapped caches and not for 4-way set-associative caches. The
staleproblem always exists, but decreases, as direct mapped cache size is increased.
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5 @
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FIGURE 6. Comparison of duplication methods: performance of SD(rc) and HD(rc) with respect to BASE.
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In Figure 8, the number dfelf-repairbytes referenced shows exactly the same treratads
bytes referenced, i.e., direct mapped caches exhibit a letlbfrepair This is to be expected,
since conflict misses can actually be beneficial in terms of evicting corrupt lines before they are
referenced.

5.2 Recovery model results

The IPC performance improvement of HD(flush), HD(flush-vp), HD(flushd), HD(flushd-vp),
and HD(rc) with respect to BASE are shown in Figure 7, averaged across all the benchmarks. As
before, L1 data cache configuration is varied along the x-axis.

B HD(flush)
B HD(flush-vp)
20% T OHD(flushd)
18% -4 O HD(flushd-vp)
W HD(rc)

16%
14% -
12% -
10% -
8% -
6% {1
4% -

% IPC improvement over BASE

2% A
0% +

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

FIGURE 7. Comparison of recovery methods for hardware-based memory duplication, averaged across all
benchmarks.

From Figure 7, on average, HD(rc) almost always performs best. This is to be expected
because the recovery controller is both accurate and efficient, by virtue of pin-pointing corrupt
data words.

The reason HD(rc) slightly underperforms HD(flushd-vp) for the 8KB direct mapped cache
has to do with references feersistent-staldytes. HD(rc) and HD(flushd) do not recover per-
fectly. Neither explicitly identifies stale cache lines, ultimately leadingdxsistent-stalelata that
remains after recovery. From Figure 8, the numbepasistent-staldytes referenced in HD(rc)
is significantly higher thapersistent-staldytes referenced in HD(flushd). This is to be expected,
because the less efficient flushing method inadvertently flushesstafadata, preventingersis-
tent-staledata. This factor, combined with the value prediction enhancement to reduce flushing’s
cache miss penalty, pushes HD(flushd-vp) slightly ahead of HD(rc). This is only true for the 8KB
direct mapped cache (also supported by data in Figure 8).

HD(flush) significantly underperforms the other recovery models, because of too many com-
pulsory misses after recovery. HD(flushd) performs significantly better than HD(flush) because it
flushes fewer cache lines. For a 32KB 4-way set-associative cache, HD(flush) drops slipstream
performance improvement from 16% to 11%, whereas HD(flushd) only drops it down to 14.5%.

Slipstream Memory Hierarchies February 2002 19



Using flushed data as value predictions significantly reduces the impact of recovery-induced
misses. HD(flush-vp) performs close to HD(flushd) — 14% versus 14.5%, respectively, for the
32KB 4-way set-associative cache. And HD(flushd-vp) nearly closes the gap between HD(flushd)
and HD(rc). For all cache configurations, HD(flushd-vp) is within a single percentage point of
HD(rc). The significant result is that HD(flushd-vp) renders the recovery controller obsolete. In
fact, all of the flush models except HD(flush) are effective alternatives to the recovery controller.

As discussed in the previous section, performance improvement of all HD(*) models is sensi-
tive to direct mapped cache size dustialedata. This trend is observed again in Figure 7.

Performance improvement of HD(rc) is insensitive to cache size for the 4-way set-associative
caches. Interestingly, the performance improvement of all of the flush models with respect to
BASE decreases as the size of the 4-way set-associative cache is increased. The reason is the
BASE processor benefits fully from the increased cache capacity, whereas the flush models do not
benefit fully because lines are flushed during recovery. And the reason this trend was not visible
for direct mapped caches is ttaleproblem dominates in that context.

As mentioned earlier, HD(rc) and HD(flushd) are imperfect recovery models. Figure 8 shows
the persistent-stalgoroblem is minor for both models, an order of magnitude smaller than the
number ofstale bytes referenced. HD(flushd) has tpersistent-skipped-writproblem as well.

The persistent-skipped-writeroblem is also minor, fewer than 2,0@@rsistent-skipped-write
bytes referenced over all cache configurations.
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FIGURE 8. Number of referencedstalg self-repair persistent-staleand persistent-skipped-writbytes.
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6. Related work

Speculative multithreading architectures [e.g.,1,13,17,24,26] speed up a sequential program
by dividing it into speculatively-parallel tasks, and concurrently running the tasks on distributed
processing elements or a simultaneous multithreaded pipeline. There is only one architectural
context. Multiple speculative versions of a memory location can be created and hardware must
explicitly track their program order. Version ordering is required because a dependent load must
obtain the most recent prior version, and also because versions must be committed to the single
architectural context in program order. Finally, loads may issue speculatively before prior depen-
dent stores, so the versioning hardware also detects load violations after the fact.

The idea of leveraging private L1 caches in a CMP for renaming memory locations has been
previously proposed in the context speculative multithreading, for example, SVC [10], TLDS
[26], and MDT [13]. However, slipstreaming uses redundant programs instead of parallel tasks
and this leads to certain simplifications. The A-stream and R-stream are functionally-complete
programs with independent contexts — certainly with full duplication,disb with constrained
A-stream renaming storag€onstraining the A-stream is only done for efficiency and this results
in anartificial dependence on the R-stream, in which we rely on the R-stream catching up to the
A-stream to reproduce lost A-stream data. Because conceptually there are no true dependences
(only this new sort of artificial dependence), explicit mechanisms for ordering versions are
non-existent, whereas ordering mechanisms are fundamentally required for parallel tasks.

Both slipstream and speculative multithreading demonstrate load speculation, but in funda-
mentally different ways. First, load misspeculation in the context of this paper is caused by lim-
ited A-stream storage, as opposed to ambiguous store-load dependences among tasks. Second, the
R-stream is a general checking mechanism for verifying the forward progress of the A-stream
[19,21], and specific misprediction-detection hardware is not required.

Finally, unlike SVC, TLDS, or MDT, the A-stream neither stalls nor initiates recovery when a
cache replacement is needed. It simply loses data, implicitly predicting the R-stream will re-create
the data before it is needed again. This may avoid many unnecessary stalls and recovery actions.

Speculative Data-Driven Multithreading [23] and related work [2,3,5,6,7,9,15,25,32], which
spawn specialized threads to prefetch cache misses and resolve branch mispredictions in advance,
are closer in spirit to slipstreaming. A fundamental difference is the use of multiple, short-lived,
specialized threads versus a single, persistent, functionally-complete program (A-stream). This
difference results in very different microarchitectures and, specifically, memory renaming has
evolved differently. Use of the memory hierarchy (e.g., L1 cache or full duplication) is tailored
towards the A-stream’s persistence/completeness. Linking stores directly to loads via an explic-
itly-managed memory cloaking table [16], bypassing the memory system entirely, is tailored
towards short-lived dependence-chain-based threads.
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7. Summary

Slipstream processors use redundant program execution to speed up a single program, har-
nessing an otherwise unused PE in a CMP or thread context in an SMT processor. Full duplication
of physical memory pages in software leads to a simple execution model due to program indepen-
dence. Memory usage is doubled, however, and we showed this partially or fully negates slip-
stream performance benefits when a realistic memory hierarchy is simulated. Moreover, in the
future we would like to investigate the potential memory latency tolerance benefits of slipstream-
ing, but inefficient duplication obscures that effort.

We showed it is possible to duplicate memory efficiently in hardware, without the complica-
tions normally associated with managing a fixed amount of rename storage in hardware. Repre-
sentative CMP hierarchies (private L1 caches that write-through to a shared L2 cache) and the
unique nature of slipstreaming are the sources of simplification. First, the already-replicated L1
caches in a CMP provide enough implicit rename storage. Second, this storage does not need to
be explicitly managed because the slipstream paradigm is tolerant of slightly inaccurate memory
renaming. Evicted L1 cache lines containing A-stream updates are simply lost, but the R-stream
usually reproduces the lost data (which reaches the L2 cache via write-though) before the
A-stream re-references the line in the L2 cache. And occasional references to stale data are not a
problem because the A-stream is speculative in any case (furthermore, no special checking is
required because the R-stream generally checks A-stream forward progress). In summary, the new
hardware-based memory duplication requires no explicit rename storage nor explicit manage-
ment, and significantly outperforms software-based memory duplication.

Another nice feature of hardware-based duplication is it enables much simpler state recovery.
The A-stream can be re-synchronized to the R-stream by flushing the A-stream L1 cache. We
showed compulsory misses after recovery limit performance, and that flushing dirty lines (while
not 100% effective at restoring state) performs much better. And, using preserved data within
flushed cache lines as value predictions allows the flush-dirty-line recovery model to perform
within a few percent of the recovery controller, rendering that slipstream component obsolete.
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