
ltipro-
of the

pro-
s also

ution
cessor
bling
ted L1

to be
mory
mory
gnifi-
man-

n the
tream
duced
.

Slipstream Memory Hierarchies
Technical Report CESR-TR-02-3

Zach Purser, Karthik Sundaramoorthy, Eric Rotenberg
Center for Embedded Systems Research (CESR)

Department of Electrical and Computer Engineering
North Carolina State University

{zrpurser, ksundar, ericro}@ece.ncsu.edu

Abstract

A slipstream processor harnesses an otherwise unused processing element in a chip mu
cessor (CMP) to speed up a single program. It does this by running two redundant copies
program. Predicted-non-essential computation is speculatively removed from one of the
grams, speeding it up. The second program checks the forward progress of the first and i
sped up in the process. Both program copies finish sooner than either can alone.

The redundant programs are architecturally independent and this leads to a simple exec
model. Physical memory pages are duplicated by the operating system, sparing the pro
from explicitly managing a fixed amount of transparent rename storage. Unfortunately, dou
memory usage partially negates performance gains. We observe that 1) the already-replica
caches in a CMP provide enough implicit rename storage and 2) this storage does not need
explicitly managed because the slipstream paradigm is tolerant of slightly inaccurate me
renaming. Leveraging unmodified cache actions within a typical private-L1/shared-L2 me
hierarchy, we develop an efficient hardware-based memory duplication approach that si
cantly outperforms software-based duplication, yet does not require any explicit hardware
agement.

Furthermore, the new duplication approach enables much simpler state recovery whe
speculative program diverges. Simple cache flushing eliminates a previously-required slips
recovery component. And the performance impact of flush-induced compulsory misses is re
by exploiting preserved data within flushed cache lines as highly-accurate value predictions
Slipstream Memory Hierarchies February 2002 1



,31]
ionary
ute on
already
ncep-

ce of
cru-

e sin-
essor
lightly

nd
gress.
pre-
orrect
tream

comes
of the

erfor-
nstruc-

and
ns. The
hind

n the
ndence
nately,
e
system
have to
e the
in a

n the
other
1.  Introduction

Chip multiprocessing (CMP) [12,17,29] and simultaneous multithreading (SMT) [8,30
are compelling because they maximize the performance capacity of a single chip by evolut
rather than revolutionary means. Independent jobs or parallel tasks that otherwise exec
physically separate processors now execute on the same chip. Several companies have
announced CMP [e.g.,12,29] or SMT [e.g.,8,27] designs because of their high payoff and co
tual simplicity. Unfortunately, CMP/SMT processors do not explicitly address the performan
individual sequential programs. Yet, historically, improving single-program performance is
cial for remaining competitive.

The slipstream paradigm [19,21,22,28] harnesses a CMP/SMT processor to improv
gle-program performance without fundamentally changing its operation. A slipstream proc
concurrently runs two redundant copies of the program. One of the programs always runs s
ahead of the other. The leading program is called theadvanced stream, or A-stream, and the trail-
ing program is called theredundant stream, or R-stream. Hardware monitors the R-stream a
detects dynamic instructions that, in retrospect, were unnecessary for correct forward pro
This knowledge is later used to speculatively but accurately reduce the A-stream:
dicted-non-essential instructions are bypassed in the A-stream if there is high confidence c
forward progress can still be made. Infrequent deviations are detected by passing all A-s
control and data flow outcomes to the non-speculative R-stream, which checks the out
against its own. When the R-stream detects a difference, corrupted architectural state
A-stream is restored to match the R-stream.

Prior work demonstrated the A-stream/R-stream arrangement often leads to an overall p
mance improvement [19]. The A-stream is sped up because it fetches and executes fewer i
tions. The R-stream is not reduced in terms of retired instructions. However, it fetches
executes more efficiently because outcomes from the A-stream are used as ideal predictio
A-stream and R-stream finish at virtually the same time — the R-stream follows closely be
the A-stream — and both finish sooner than a single copy of the program would.

The appeal of slipstreaming is that the underlying CMP/SMT processor operates o
A-stream and R-stream as if they were unrelated. Conventional register and memory depe
mechanisms remain intact because the programs are architecturally independent. Unfortu
independence comes at the expense ofdoubling memory usage. That is, the easiest way to ensur
A-stream loads/stores do not interfere with R-stream loads/stores is to have the operating
allocate separate physical memory pages for each program. Then, the processor does not
rename memory locations itself. Hardware memory renaming is typically complex becaus
processor must provide the illusion of unlimited memory to one of the program copies, with
fixed amount of hardware-managed renaming storage.

Therein lies the challenge in the design of memory systems for slipstream processors. O
one hand, software-based memory duplication leads to a simple execution model. On the
hand, full duplication may degrade memory system performance.
Slipstream Memory Hierarchies February 2002 2



e sim-

sed
g ele-
rks as
and
ided.
ither

eam

e the
orre-
ugh).
s the
corre-
ecula-

based
e stor-
) the

ically,
f slip-
tream
hap-
stream
normal
e

ing a

es cor-
ter state
ecial
ased
tream
ream

and
cache,
ance

ng it
nd may
In this paper, we make two major contributions.

1. We develop a hardware-based solution that duplicates memory efficiently, yet retains th
plicity of software-based memory duplication.

We exploit a memory hierarchy similar to the IBM Power4 [12], a commercial CMP compo
of two processing elements. Our hierarchy has a private level-1 (L1) cache per processin
ment and the L1 caches write-through to a shared level-2 (L2) cache. Our approach wo
follows. First, the private L1 caches implicitly provide unique storage for the A-stream
R-stream, therefore, extra storage for renaming memory locations is not explicitly prov
Second, we make one simple change to the policy of the A-stream’s L1 cache: it is ne
write-through nor write-back, i.e., the A-stream never writes to the L2 cache. If the A-str
writes to a line in its L1 cache, and later that line is replaced,the update is simply lost. Drop-
ping A-stream L1 cache updates works due to the nature of slipstreaming. By the tim
A-stream re-references the evicted line, the R-stream is likely to have performed the c
sponding redundant store to its L1 cache and the L2 cache (R-stream L1 is write-thro
When the A-stream re-references the line from the L2 cache, the line most likely reflect
previously-lost A-stream update. Moreover, even if the R-stream has not performed the
sponding redundant store before the A-stream re-references the line, the A-stream is sp
tive in any case and this just adds another source of A-stream misspeculation.

From the perspective of hardware, the above approach is virtually identical to software-
memory duplication. As before, no special hardware mechanisms are required: 1) renam
age is not explicitly provided due to already-replicated L1 caches [10,13,18,26], and 2
fixed A-stream storage is not explicitly managed becauserenaming does not have to be 100%
accurate. The latter point is a key departure from classical renaming approaches. Class
hardware proactively determines when precious storage can be freed. In the context o
stream processors, an A-stream L1 line can be “freed” when the corresponding R-s
L1/L2 line becomes redundant with it. But we do not have to precisely identify when this
pens because we can afford to be incorrect (a general mechanism is in place to detect A-
deviations, regardless of the cause). Instead, we passively free A-stream storage in the
course of line replacement, essentially making apredictionat replacement time that either th
L2 line is redundant with the A-stream L1 line or will be before re-referencing it.

2. We simplify restoring memory locations when the A-stream diverges, including eliminat
previously required slipstream processor component (memory recovery controller).

Occasionally, the A-stream does not make correct forward progress and its state becom
rupted. A recovery sequence restores A-stream state so it matches the R-stream. Regis
is finite and restoring all registers is feasible. We do not have this luxury with memory: sp
hardware pin-points memory locations that need to be restored [28]. With software-b
memory duplication, sophisticated recovery is unavoidable because A-stream and R-s
physical memory pages are distinct. With our new duplication approach, however, A-st
memory can be restored simply by flushing the A-stream L1 cache. Then, A-stream
R-stream memory match exactly since the A-stream must re-reference all data in the L2
which is R-stream-only data. We also develop a novel technique for reducing the perform
impact of flush-induced compulsory misses in the A-stream. A line is flushed by marki
invalid, but both the tag and data are preserved. Preserved values are usually correct a
Slipstream Memory Hierarchies February 2002 3



to exe-

n) is
ion 3.
d two
ulator

e pre-
be consumed as accurate value predictions, allowing load-miss-dependent instructions
cute while the flushed lines are re-filled from the L2 cache.

The original slipstream microarchitecture (using software-based memory duplicatio
reviewed in Section 2. The two alternative memory duplication models are described in Sect
We also describe three recovery models in Section 3 — the original recovery controller an
simpler flush models enabled by hardware-based duplication. Section 4 describes the sim
and benchmarks, and simulation results comparing duplication and recovery methods ar
sented in Section 5. Related work is discussed in Section 6.
Slipstream Memory Hierarchies February 2002 4



itted
hierar-

ns are

uper-
xternal

struc-
core
n the
eline

detec-

have
es for
being
icted
ed in
pro-
tired
s and
2.  Review of slipstream microarchitecture

We review the slipstream microarchitecture in this section. Detailed descriptions are om
to conserve space, but enough background is provided to reason about alternative memory
chies, the focus of this paper. For reference, more detailed microarchitecture descriptio
available elsewhere [19].

A slipstream processor implemented on a 2-way CMP is shown in Figure 1. Existing s
scalar cores are shown within shaded boxes. Four new slipstream components are shown e
to and interfacing with the superscalar cores: instruction-removal detector (IR-detector), in
tion-removal predictor (IR-predictor), delay buffer, and recovery controller. The superscalar
is designed to run either the A-stream or the R-stream (we arbitrarily show the A-stream o
left and R-stream on the right). Symmetric interfaces to/from the fetch unit and execution pip
of both cores makes designing a single core natural.

FIGURE 1. Slipstream microarchitecture.

2.1  Reducing the A-stream: IR-detector and IR-predictor

The A-stream is reduced by a process called instruction-removal, coordinated by the IR-
tor and IR-predictor.

The IR-detector monitors retired R-stream instructions. It detects instructions that could
been safely removed and, therefore, might possibly be removed in the future. Candidat
removal include 1) ineffectual writes (register/memory writes that are not referenced before
overwritten, or writes that do not change the value in a location) and 2) correctly-pred
branches. The IR-detector contains a small shifting window of dynamic instructions arrang
program order. Circuitry among the instructions is configured to form connections between
ducer and consumer instructions, forming a reverse data flow graph (R-DFG). As newly-re
R-stream instructions are merged into the R-DFG, the IR-detector selects ineffectual write

Recovery
Controller

Branch
Pred. I-cache

D-cache

Execute
Core

Buffer
Reorder

Branch
Pred.I-cache

D-cache

Execute
Core

Buffer
Reorder

IR-detector

from IR-detector

to IR-predictor

A-stream R-stream

Delay Buffer

IR-predictor
Slipstream Memory Hierarchies February 2002 5



opa-
d for

pro-
flects

rwise
oved
amic
con-

ches,

am for
plied
com-
The
of the
fetch
tions
ating
ed to

ere
am to
ispre-

r and
m. All
emory

ain-
from

s are
. The
ration
correctly-predicted branches for removal. Then, the R-DFG circuitry automatically back-pr
gates this removal status to producer instructions. A producer instruction is also selecte
removal if all of its consumers are selected.

The IR-predictor is a modified branch predictor. Like a conventional branch predictor, it
duces the program counter (PC) of the next fetch block. However, the predicted next PC re
skipping any number of dynamic instructions that a conventional processor would othe
fetch. The IR-predictor also indicates which instructions within a fetch block can be rem
after fetch and before decode. The IR-detector indicates to the IR-predictor which dyn
instructions might be removed in the future. Repeated indications by the IR-detector build up
fidence in the IR-predictor, and future instances of the ineffectual writes, predictable bran
and computation chains leading up to them are removed from the A-stream.

2.2  Delay buffer

The delay buffer is a FIFO queue that passes retired A-stream outcomes to the R-stre
checking. Although branch-predictable computation is removed from the A-stream, the im
branch predictions are still produced by the IR-predictor. Thus, the delay buffer contains a
plete history of control flow, only a subset of which was verified by A-stream computation.
delay buffer contains a partial history of data flow since the A-stream executes only a subset
dynamic instruction stream. Branch predictions from the delay buffer drive the R-stream
unit. Value predictions from the delay buffer are injected into the R-stream pipeline as instruc
are renamed/dispatched. The delay buffer also contains 1-bit per original instruction indic
whether or not the instruction was skipped by the A-stream; removal information is need
route value predictions of non-skipped instructions to the correct R-stream instructions.

2.3  IR-mispredictions and recovery

An instruction-removal misprediction, or IR-misprediction, occurs when instructions w
removed from the A-stream that should not have been. IR-mispredictions cause the A-stre
no longer make correct forward progress. IR-mispredictions are detected as branch/value m
dictions in the R-stream. By that time, the A-stream has corrupted its architectural registe
memory state. Recovery involves re-synchronizing the A-stream with respect to the R-strea
A-stream registers are restored by copying values from the R-stream registers. Restoring m
is more complicated because corrupt locations must be pin-pointed. At all times, therecovery
controller monitors store activity in the A-stream and R-stream. It uses this information to m
tain a minimal, up-to-date list of A-stream memory locations that may need to be restored
the R-stream in the event of an IR-misprediction. A-stream registers/memory location
restored by copying values from the corresponding R-stream registers/memory locations
delay buffer, used in the reverse direction, provides a convenient datapath for copying resto
values from R-stream to A-stream.
Slipstream Memory Hierarchies February 2002 6



tream
based
mem-

flush

sical
ation is

and
dupli-

ory is
ing
hy. In

ts of all
3.  Slipstream memory hierarchies

Slipstreaming requires memory duplication so that A-stream loads/stores and R-s
loads/stores do not interfere with each other. In Section 3.1, we examine both software-
duplication and our new hardware-based duplication approach. Section 3.2 describes three
ory recovery models, including the recovery controller and two much simpler cache-
approaches enabled by hardware-based duplication.

3.1  Memory duplication models

3.1.1  Software-based memory duplication

In previous slipstream implementations [19,28], the operating system duplicated phy
memory pages to separate the two redundant programs. Software-based memory duplic
shown in Figure 2. Light shading and dark shading indicate data from A-stream pages
R-stream pages, respectively. As the figure indicates, a major drawback of software-based
cation is the capacity of the memory hierarchy is effectively halved (assuming physical mem
fully utilized to begin with). Some or all of the performance improvement due to slipstream
may be negated due to additional capacity/conflict misses throughout the memory hierarc
large commercial systems (e.g., database servers), doubling physical memory requiremen
running programs may be unacceptable.

FIGURE 2. Software-based memory duplication.

L1 D$

R-stream

L1 D$

A-stream

Main Memory

L2 D$
Slipstream Memory Hierarchies February 2002 7



ream
mory
andling
rupts.
e O/S
s are

m, but
t (I/O)

n the
. The
he sus-
servic-
es must

te lags
y
rity of
dupli-
lever-

g.

ement
the

he L1

rms a
f a
line,
con-
Another major drawback of software-based memory duplication is that it exposes slipst
to the operating system (O/S). The O/S must duplicate the original program’s physical me
image and manage separate page tables for the A-stream and R-stream. And trap h
requires unique O/S support. “Trap” refers to system calls, exceptions, and external inter
Slipstream processors synchronize the A-stream and R-stream at a trap [21]. After that, th
has two options. In the first option, the O/S preserves both programs, i.e., both program
swapped out and later swapped in. The O/S handles the trap as it would for one progra
duplicates the results as needed for both suspended contexts. For example, file input/outpu
is not duplicated but the memory state of both contexts should reflect the results of file I/O. I
second option, one of the program copies is killed by the O/S before servicing the trap
remaining program is swapped out and the trap is serviced in the usual manner. To restart, t
pended program is duplicated and both copies are swapped in. The first option complicates
ing of traps, whereas the second option incurs high performance overhead because all pag
be copied after every trap. The fact that the O/S is involved at all is undesirable.

3.1.2  Hardware-based memory duplication

The A-stream reaches store instructions before the R-stream, so R-stream memory sta
slightly behind A-stream memory state —but not by much. The redundant programs are typicall
no more than a few thousand instructions apart, and often less. This means the vast majo
A-stream and R-stream physical pages in Figure 2 are identical, and only a small amount of
cation is required. Below, we describe how a representative CMP memory hierarchy can be
aged with almost no modifications to support efficient and system-transparent slipstreamin

1. The L1 data cache is typically replicated in a CMP, a private cache for each processing el
(PE), providing convenient and implicit memory replication close to the PEs. Both
A-stream and R-stream read/write their respective L1 caches independently and freely.

2. We assume the CMP has a single, shared L2 cache.

3. The R-stream L1 cache is write-through. That is, when the R-stream performs a store in t
cache, it also performs the store in the L2 cache.

4. The A-stream L1 cache is neither write-through nor write-back. When the A-stream perfo
store in the L1 cache, it doesnot also perform the store in the L2 cache. Furthermore, i
“dirty” line (a line that was stored to) needs to be evicted to make room for another cache
the line isnotwritten back to the L2 cache. The evicted cache line, and the updated data it
tains, is simply lost. In short, the A-stream can read from the L2 cache but not write to it.
Slipstream Memory Hierarchies February 2002 8



icated
ream
-stream
cache

cause

repro-
d and,

the L2
in the

ts stale
ble. In

s mea-

rectly
victed
he line
refer-

nothing
opera-
Figure 3 shows hardware-based memory duplication. As before, A-stream state is ind
with light shading and R-stream state with dark shading. A thin black rectangle in the A-st
L1 cache represents a cache line to which the A-stream has performed a store, and the R
has not yet performed its corresponding redundant store. The figure shows how one such
line written by the A-stream is evicted from the cache and the update it contains is lost, be
the A-stream does not have its own renamed state beyond the L1 cache.

FIGURE 3. Hardware-based memory duplication.

Evicting and losing A-stream updates is rarely a problem because the R-stream usually
duces the data before the A-stream re-references it. The R-stream is generally not far behin
because its L1 cache is write-through, the evicted-and-lost A-stream data is re-created in
cache before the A-stream needs it again. Occasionally, the A-stream re-references the line
L2 cache before the R-stream has performed its corresponding update. The A-stream ge
data, but the A-stream is speculative in any case and A-stream mispredictions are recovera
Section 5, we measure how many stale bytes are consumed by the A-stream; we label thi
surementstale in Section 5.

Losing A-stream data can occasionally aid the A-stream. The A-stream sometimes incor
skips a store or incorrectly performs a store. In either case, the corrupt cache line may be e
before being referenced and, later, the A-stream references a correct version of the cac
from the L2 cache. In Section 5, we measure how many inadvertently-repaired bytes are
enced by the A-stream; we label this measurementself-repair in Section 5.

In summary, our new approach is as simple as before because the processor does
explicit to manage A-stream storage. Instead, inherent cache actions perform the desired
tions: the A-streamimplicitly duplicates memory by allocating lines in its L1 cache andimplicitly

A-stream update
Evicted-and-lost

��������

��������

��������

��������

L1 D$

R-stream

L1 D$

A-stream

Main Memory

L2 D$
Slipstream Memory Hierarchies February 2002 9



archy
he.

ets the
cache
s on

ec-
ream
differ
o not
r and
ou-

hows
first
con-
first

ate
n

r
com-

r

the

The
n 2.2,
uted

e store.
eter-

l the
frees memory by replacing lines in its L1 cache. The approach is also efficient: memory hier
performance is not impacted because duplication is limited to the already-replicated L1 cac

We should point out that a write-through R-stream L1 cache is not a strict requirement. If the
R-stream L1 cache were write-back, coherence mechanisms would ensure the A-stream g
most recent R-stream data when the A-stream fetches from the L2. Either the R-stream L1
snoops on its own behalf or, more typically, the L2 cache maintains inclusion and snoop
behalf of the L1 caches. We did not also implement write-back due to time constraints.

3.2  Recovery models

3.2.1  Recovery controller

The recovery controller[28] monitors store activity in the A-stream, R-stream, and IR-det
tor, pin-pointing memory locations that need to be restored from the R-stream if the A-st
goes astray. It maintains a list of memory locations, identified by address, that are known to
between the A-stream and R-stream. Actually, there are many locations that differ but d
affect program correctness. The recovery controller only tracks memory locations that diffe
have not yet been verified as “OK” to differ. Our implementation keeps track of individual d
blewords, although a word or cache line granularity could also be used.

Figure 4 demonstrates how the recovery controller tracks memory locations. The figure s
the progression in time (from left to right) of two different types of stores as they pass
through the A-stream, then through the R-stream, and finally through the IR-detector. The
tents of the recovery controller is shown evolving over time, at the bottom of the figure. The
store is to addressA and is not skipped by the A-stream; it is shown with a solid circle to indic
it was not skipped. The second store is to addressB and is skipped by the A-stream; it is show
with a hollow circle to indicate it was skipped.

When store(A) is committed by the A-stream, addressA is added to the recovery controlle
because that location now differs between the A-stream and R-stream. When the R-stream
mits the corresponding redundant store(A), addressA is removed from the recovery controlle
because it no longer differs. If the processor initiates a recovery sequence after store(A) is com-
mitted by the A-stream and before it is committed by the R-stream, we know to “undo”
A-stream store because addressA is in the recovery controller’s list.

Store(B) is skipped by the A-stream so no signal is sent by it to the recovery controller.
R-stream knows which instructions were skipped by the A-stream (as described in Sectio
the delay buffer contains removal information for matching up results of A-stream-exec
instructions with R-stream instructions). When store(B) is committed by the R-stream, addressB
is added to the recovery controller because the A-stream perhaps should have performed th
By the time store(B) has reached the end of the IR-detector’s analysis scope, we will have d
mined whether or not store(B) was necessary. If store(B) is deemed ineffectual, addressB is
removed from the recovery controller. Otherwise, it remains in the recovery controller unti
next recovery sequence since we do not know for certain that it was alright to skip store(B).
Slipstream Memory Hierarchies February 2002 10



entry

, all of

e

ecov-

with
by effi-
ed in
e
nd
persist
mea-
recov-

based
ream
simply
are
tate.
l that
rfect
FIGURE 4. Recovery controller operation.

The recovery controller is organized as a set-associative or fully-associative buffer. Each
contains a memory address and two counters, thestore-undocounter and thestore-docounter.
Counters are used because there can be multiple unverified stores to the same location
which must be tracked. Referring back to Figure 4, thestore-undocounter for addressA is incre-
mented when store(A) is committed by the A-stream and decremented when store(A) is commit-
ted by the R-stream. Thestore-do counter for addressB is incremented when store(B) is
committed by the R-stream and decremented when store(B) is detected as removable by th
IR-detector. An entry in the recovery controller can be replaced when both thestore-undoand
store-docounts are zero. If there is no room for a new address in the recovery controller, a r
ery sequence is initiated to clear out the recovery controller.

The recovery controller is required if software-based duplication is used. It also works
hardware-based duplication but is optional, because simpler recovery models are enabled
cient duplication. Actually, the recovery controller does not recover state perfectly when us
conjunction with hardware-based duplication. Namely,the recovery controller has no knowledg
of stale lines brought into the A-stream L1 cache(A-stream evicts and loses an updated line, a
re-references a stale version of the line from the L2 cache). After a recovery, stale data may
in the cache and potentially cause problems for the A-stream in the future. In Section 5, we
sure how many stale bytes introduced before recovery are referenced by the A-stream after
ery; we label this measurementpersistent-stale in Section 5.

3.2.2  Flush cache

The recovery controller adds complexity to slipstream processors. The new hardware-
memory duplication approach can be exploited to eliminate the recovery controller. A-st
memory state can be restored, i.e., re-synchronized with the memory state of the R-stream,
by invalidating en massethe A-stream’s L1 cache lines. Recovery is gradual as lines
re-accessed from the L2 cache, which contains correct and up-to-date R-stream memory s

The only hardware support for this recovery method is a global invalidation control signa
resets the valid bit of all cache lines. Also, whereas the recovery controller is slightly impe
due to thepersistent-stale case, flushing the cache is completely effective.

Recovery
Controller

time

STORE (B)STORE (A)
A-stream

R-stream

IR-detector

A

add A remove A add B remove B

B

Slipstream Memory Hierarchies February 2002 11



ory
educe

y, our
n the
er the
efore

tale
after
t

on the
mea-

stream

lobal

ta

lid bit
pact of

invalid
ecked
predic-

load
cache
ts in a
o stall
was
ally,

e cor-
3.2.3  Flush dirty lines

Invalidating all lines in the A-stream L1 cache is inefficient because only a handful of mem
locations are typically corrupted. There are undue compulsory misses after recovery. To r
A-stream compulsory misses, we propose invalidating onlydirty lines. Any data written to the
cache after the A-stream goes astray may be incorrect. And even if data is written correctl
recovery strategy requires stores not yet performed in the R-stream to be “undone” i
A-stream at the time of recovery (to re-synchronize state). Thus, lines that become dirty aft
A-stream diverges are good candidates for invalidating. Unfortunately, lines that were dirty b
the A-stream diverged and not subsequently written to are needlessly invalidated.

As with the recovery controller, flushing dirty lines leads to imperfect recovery. First, s
lines brought in from the L2 cache that are not subsequently written to (clean) will persist
recovery. So, flushing dirty lines also suffers thepersistent-staleproblem. Second, clean lines tha
are corrupt due to incorrectly-skipped stores persist after recovery (the recovery controller,
other hand, tracks addresses of correctly- and incorrectly-skipped stores). In Section 5, we
sure how often bytes corrupted by a skipped-store before recovery are referenced by the A-
after recovery; we label this measurementpersistent-skipped-write in Section 5.

The hardware support for this recovery method is 1) dirty bits in the L1 cache and 2) a g
invalidation control signal gated by the dirty bit that resets the valid bit of dirty cache lines.

3.2.4 Reducing impact of flush-induced misses: value prediction using preserved cache da

For either recovery method in Sections 3.2.2 and 3.2.3, flushing a cache line resets its va
but preserves its tag and data. The preserved tag and data can be exploited to reduce the im
recovery-induced compulsory misses in the A-stream. When the A-stream accesses an
line, the cache miss is serviced like usual. However, the preserved cache tag(s) are still ch
and, if there is a match, the A-stream retrieves a value from the cache and uses it as a value
tion. The value prediction is eventually validated when the cache miss completes.

Value predicting a load miss in this way gives some performance benefit, even if the
reaches the head of the reorder buffer and stalls A-stream retirement while waiting for the
miss to complete. First, execution of dependent instructions is not delayed and this resul
faster retirement rate when retirement eventually resumes. Second, the load is unlikely t
retirement for too long, if at all, because the invalidated line is likely to be in the L2 cache if it
found in the L1 cache. Third, other recovery-induced misses potentially initiate earlier. Fin
value predictions are nearly 100% accurate because, typically, only a handful of lines ar
rupted when the A-stream deviates.
Slipstream Memory Hierarchies February 2002 12



cation
covery
ector,
e and
3.3  Simplified slipstream microarchitecture

Figure 5 shows the slipstream microarchitecture using hardware-based memory dupli
and either of the flush-based recovery models. This microarchitecture does not need a re
controller, so now there are only three slipstream components — the IR-predictor, IR-det
and delay buffer. The L2 cache is shown. Notice the A-stream only reads from the L2 cach
the R-stream reads and writes the L2 cache.

FIGURE 5. Slipstream microarchitecture with hardware-based memory duplication and flush-based recovery.

Pred. I-cache

D-cache

Branch

Core

Buffer
Reorder

Execute

Branch
Pred.I-cache

D-cache

Execute
Core

Buffer
Reorder

IR-detector

to IR-predictor

from IR-detectorA-stream R-stream

Delay Buffer

IR-predictor

L2 CACHE (R-stream state only)
Slipstream Memory Hierarchies February 2002 13



o mem-
e the

ed in
es.
3.4  Summary: qualitative comparisons

Table 1 recaps the advantages, disadvantages, and required hardware support of the tw
ory duplication methods (top-half) and three memory recovery methods (bottom-half). Notic
four useful measurements introduced in this section are highlighted in bold italics:stale and
self-repair relate to memory duplication;persistent-staleand persistent-skipped-writerelate to
recovery. Results in Section 5 quantify much of the information summarized in Table 1.

Note that the cache-based value prediction technique is not listed in Table 1, but is us
conjunction with either flush model to reduce the performance impact of flush-induced miss

TABLE 1. Comparisons of duplication and recovery methods.

POSITIVES NEGATIVES HARDWARE SUPPORT

memory
duplication

method

software-
based

+ simple state renaming

- double memory usage

- requires recovery controller

- hard system-level issues

none

hardware-
based

+ as simple as s/w-based

+ efficient memory usage

+ enables simpler recovery

+ system-transparent

+ self-repair

- stale

No explicit hardware mecha-
nisms, only assumes
IBM-Power4-like CMP
memory hierarchy

memory
recovery
method

recovery
controller

+ restore data without
flushing line from cache

- adds h/w complexity

- explicitly increases
recovery latency

- force recovery when full

- imperfect recovery:
persistent-stale

recovery controller mecha-
nism

flush
+ simple

+ 100% recovery
- many compulsory misses invalidate wire

flush
dirty lines

+ simple

+ flush fewer lines

- some compulsory misses

- imperfect recovery:
persistent-stale
persistent-skipped-write

invalidate wire,
dirty bits
Slipstream Memory Hierarchies February 2002 14



faith-
pro-
cks the

te, etc.
with
flow

lists
four
reader
).

4-way
hey are
m con-
eam
s, an L1
.

4.  Simulation methodology

We use a detailed execution-driven simulator of a slipstream processor. The simulator
fully models the architecture depicted in Figure 1 and outlined in Section 2: the A-stream
duces real, possibly incorrect values/addresses and branch outcomes, the R-stream che
A-stream and initiates recovery actions, A-stream state is recovered from the R-stream sta
The simulator itself is validated via a functional simulator run independently and in parallel
the detailed timing simulator [24]. The functional simulator checks retired R-stream control
and data flow outcomes.

Microarchitecture parameters are listed in Table 2. The top-left portion of the table
parameters for individual processors within a CMP. The bottom-left portion describes the
slipstream components. We use the same parameters as in previous work [19], to which the
is referred for more details, and focus on the slipstream memory hierarchy (right-hand side

The per-PE L1 data cache size/associativity is varied. The shared L2 cache is 256KB,
set-associative, and holds both instructions and data. Instruction pages are read-only so t
not duplicated even if software-based duplication is used. We also reduce A-stream/R-strea
flicts in the L2 cache for software-based duplication by inverting the high index bit for R-str
accesses (otherwise, the two address streams are too alike). An L1 data cache hit is 2 cycle
miss/L2 hit takes 12 cycles, and round-trip time to main memory is a minimum of 70 cycles

TABLE 2. Microarchitecture configuration.

single processor core (PE) slipstream memory hierarchy

caches
private L1 instr. cache (see memory hier. column) L1

instruction
cache

(per PE)

size = 64 KB

private L1 data cache (see memory hier. column) assoc = 4-way

superscalar
core

reorder buffer: 64 entries replacement = LRU

dispatch/issue/retire bandwidth: 4 instr/cycle line size = 64 bytes

4 fully-symmetric functional units L1
data
cache

(per PE)

size = 8 KB / 32 KB / 64 KB

4 loads/stores per cycle assoc = 1-way / 4-way

execution
latencies

address generation = 1 cycle replacement = LRU

load access = 2 cycles (hit) line size = 64 bytes

integer ALU ops = 1 cycle

L2 cache

unified instr./data

complex ops = MIPS R10000 latencies shared among PEs

slipstream components size = 256 KB

IR-predictor
220entries,gshare-indexed (16 bits branch history) assoc = 4-way

block size = 16, 16 confidence counters per entry replacement = LRU

confidence threshold = 32 line size = 64 bytes

IR-detector R-DFG = 256 instructions, unpartitioned write-back policy

delay buffer
data flow buffer: 256 instruction entries

memory
access
times

L1 instruction hit = 1 cycle

control flow buffer: 4K branch predictions L1 data hit = 2 cycles

recovery
controller

128 entries, fully associative L1 miss/L2 hit = 12 cycles

recovery latency (after IR-misprediction detected):

• 5 cycles to start up recovery pipeline
• 4 reg. restores/cycle (64 regs performed 1st)
• 4 mem. restores/cycle (mem performed 2nd)
• ∴ min. latency (no memory) = 21 cycles

L1 miss/L2 miss = 70 cycles

# out. misses unlimited for all caches

DUPLICATION software- or hardware-based

RECOVERY
recovery controller, flush,
flush-dirty, or flush/flush-dirty
with value prediction
Slipstream Memory Hierarchies February 2002 15



trol-
covery
ov-
ency

and is

ench-

 2
Finally, we vary the memory duplication method and recovery method. The recovery con
ler (if present) holds 128 addresses and is fully-associative. Independent of the memory re
method, recovery latency (after the IR-misprediction is detected) is 5 cycles to startup the rec
ery pipeline followed by 4 register restores per cycle (a total of 21 cycles). An additional lat
of 4 memory restores per cycle is incurredif the recovery controller is used. For flush-based
recovery, we assume the global invalidation signal can flush the cache within a few cycles
hidden by the 21 cycle register file recovery latency.

The Simplescalar [4] compiler and ISA are used. We use six of the SPEC2000 integer b
marks, compiled with -O3 optimization, and run withref input datasets (Table 3). The first billion
instructions are skipped, and then 100 million instructions are simulated.

TABLE 3. Benchmarks.

benchmark ref input dataset

gap gap -l./ -q -m 8M ref.in
gcc cc1 expr.i -o expr.s (note: SPEC2K version of cc1 is hardwired to -O3 optimization)
parser parser 2.1.dict -batch < ref.in
perl perlbmk -I./lib splitmail.pl 850 5 19 18 1500
vortex vortex bendian1.raw
vpr vpr net.in arch.in place.out dum.out -nodisp -place_only -init_t 5 -exit_t 0.005 -alpha_t 0.9412 -inner_num
Slipstream Memory Hierarchies February 2002 16



In the
a CMP

of slip-
cores.
con-

struc-

, dem-
ance.

plica-
h the
rd-

very
edic-
alue
and
oft-

ith
e con-

4 is a

slip-
in all

the
les the

-
ce by

% and

ity are
nce
mance
re is a

-way.

s result
rect
s result
5.  Results

The slipstream processor is built on top of a CMP composed of two superscalar cores.
slipstream paradigm, the goal is to leverage a second, otherwise unused superscalar core in
to improve single-program performance. Therefore, all results are reported as the speedup
streaming using two superscalar cores with respect to conventional execution on one of the
Except for L1 data cache size and set-associativity, the core is fixed and is called the BASE
figuration: BASE is a 4-way issue dynamically scheduled superscalar processor with a 64-in
tion reorder buffer.

We first compare software-based and hardware-based memory duplication (Section 5.1)
onstrating that the hardware-based approach is required for materializing slipstream perform
We then investigate five recovery models within the context of hardware-based memory du
tion (Section 5.2). In all, we simulate six slipstream processor configurations, labeled wit
memory duplication method — SD for (s)oftware-based (d)uplication and HD for (h)a
ware-based (d)uplication — followed by the recovery model in parentheses — “rc” = reco
controller, “flush” = flush entire cache, “flush-vp” = flush entire cache and use as value pr
tions, “flushd” = flush dirty lines in cache, “flushd-vp” = flush dirty lines in cache and use as v
predictions. The six configurations are SD(rc), HD(rc), HD(flush), HD(flush-vp), HD(flushd),
HD(flushd-vp). Recall that the recovery controller is the only valid recovery method for s
ware-based memory duplication.

5.1  Software-based vs. hardware-based memory duplication

The instructions-per-cycle (IPC) performance improvement of SD(rc) and HD(rc) w
respect to BASE are shown in Figure 6. There is one graph per benchmark and L1 data cach
figuration is varied along the x-axis (for example, 8k-1 is an 8KB direct mapped cache, 32k-
32KB 4-way set-associative cache).

Based on the results in Figure 6, efficient memory duplication is required to materialize
stream performance. HD(rc) almost always outperforms SD(rc), and by large margins
benchmarks exceptgap and perl. The SPEC2000 benchmarks place reasonable stress on
memory hierarchy. Consequently, SD(rc) takes a large performance hit because it doub
number of physical pages competing for the already highly-utilized memory hierarchy.

The performance impact of full duplication inparserandvpr is large enough to degrade per
formance with respect to BASE by up to 5%. On the other hand, HD(rc) improves performan
about 17% inparserand 7%vpr. SD(rc) improves performance by about 8% and 5% ingccand
vortex, respectively. However, HD(rc) is able to increase those speedups to as high as 14
20%, respectively.

Thegccbenchmark shows interesting trends for HD(rc) as cache size and set-associativ
increased.Gap, perl, and vortex also show these trends, but less clearly. First, performa
improvement increases steadily with successively larger direct mapped caches. Yet, perfor
improvement is constant with cache size if the cache is 4-way set-associative. Second, the
jump in performance improvement when associativity is increased from direct mapped to 4

These trends can be explained by examining the number ofstalebytes referenced by HD(rc),
shown in Figure 8 averaged across all benchmarks. The number of referencedstalebytes is virtu-
ally non-existent (< 300 bytes) for set-associative caches. In contrast, direct mapped cache
in a high number ofstalebytes referenced (e.g., 55,000 bytes for 8 KB direct mapped). A di
mapped cache usually has more conflict misses than a set-associative cache. Conflict misse
Slipstream Memory Hierarchies February 2002 17



ore the
ispre-
s than
soon.
ent
ent is

es. The
in many evicted-and-lost line updates that are re-accessed in the L2 cache too soon, bef
R-stream has a chance to re-create the lost data (resulting in additional, costly A-stream m
dictions). Evictions in set-associative caches are more likely to be caused by capacity misse
conflict misses, in which case the evicted-and-lost line update is less likely to be re-accessed
We conjecture that an A-stream victim cache [11] will improve HD(rc) performance improvem
with direct mapped caches. The same analysis explains why HD(rc) performance improvem
sensitive to L1 cache size for direct mapped caches and not for 4-way set-associative cach
stale problem always exists, but decreases, as direct mapped cache size is increased.

FIGURE 6. Comparison of duplication methods: performance of SD(rc) and HD(rc) with respect to BASE.

GCC

0%

5%

10%

15%

20%

25%

30%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)

PARSER

-5%

0%

5%

10%

15%

20%

25%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)

PERL

0%

5%

10%

15%

20%

25%

30%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)

VORTEX

0%

5%

10%

15%

20%

25%

30%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)

VPR

-5%

0%

5%

10%

15%

20%

25%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)

GAP

0%

5%

10%

15%

20%

25%

30%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E SD(rc)
HD(rc)
Slipstream Memory Hierarchies February 2002 18



y are

p),
ks. As

ected
rrupt

che
r-

d,

ing’s
8KB

com-
use it
tream

.5%.
In Figure 8, the number ofself-repairbytes referenced shows exactly the same trend asstale
bytes referenced, i.e., direct mapped caches exhibit a lot ofself-repair. This is to be expected,
since conflict misses can actually be beneficial in terms of evicting corrupt lines before the
referenced.

5.2  Recovery model results

The IPC performance improvement of HD(flush), HD(flush-vp), HD(flushd), HD(flushd-v
and HD(rc) with respect to BASE are shown in Figure 7, averaged across all the benchmar
before, L1 data cache configuration is varied along the x-axis.

FIGURE 7. Comparison of recovery methods for hardware-based memory duplication, averaged across all
benchmarks.

From Figure 7, on average, HD(rc) almost always performs best. This is to be exp
because the recovery controller is both accurate and efficient, by virtue of pin-pointing co
data words.

The reason HD(rc) slightly underperforms HD(flushd-vp) for the 8KB direct mapped ca
has to do with references topersistent-stalebytes. HD(rc) and HD(flushd) do not recover pe
fectly. Neither explicitly identifies stale cache lines, ultimately leading topersistent-staledata that
remains after recovery. From Figure 8, the number ofpersistent-stalebytes referenced in HD(rc)
is significantly higher thanpersistent-stalebytes referenced in HD(flushd). This is to be expecte
because the less efficient flushing method inadvertently flushes somestaledata, preventingpersis-
tent-staledata. This factor, combined with the value prediction enhancement to reduce flush
cache miss penalty, pushes HD(flushd-vp) slightly ahead of HD(rc). This is only true for the
direct mapped cache (also supported by data in Figure 8).

HD(flush) significantly underperforms the other recovery models, because of too many
pulsory misses after recovery. HD(flushd) performs significantly better than HD(flush) beca
flushes fewer cache lines. For a 32KB 4-way set-associative cache, HD(flush) drops slips
performance improvement from 16% to 11%, whereas HD(flushd) only drops it down to 14

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E

HD(flush)
HD(flush-vp)
HD(flushd)
HD(flushd-vp)
HD(rc)
Slipstream Memory Hierarchies February 2002 19



uced
r the
ushd)
nt of
e. In
oller.
ensi-

iative
ct to
n is the
do not
isible

hows
the
Using flushed data as value predictions significantly reduces the impact of recovery-ind
misses. HD(flush-vp) performs close to HD(flushd) — 14% versus 14.5%, respectively, fo
32KB 4-way set-associative cache. And HD(flushd-vp) nearly closes the gap between HD(fl
and HD(rc). For all cache configurations, HD(flushd-vp) is within a single percentage poi
HD(rc). The significant result is that HD(flushd-vp) renders the recovery controller obsolet
fact, all of the flush models except HD(flush) are effective alternatives to the recovery contr

As discussed in the previous section, performance improvement of all HD(*) models is s
tive to direct mapped cache size due tostale data. This trend is observed again in Figure 7.

Performance improvement of HD(rc) is insensitive to cache size for the 4-way set-assoc
caches. Interestingly, the performance improvement of all of the flush models with respe
BASE decreases as the size of the 4-way set-associative cache is increased. The reaso
BASE processor benefits fully from the increased cache capacity, whereas the flush models
benefit fully because lines are flushed during recovery. And the reason this trend was not v
for direct mapped caches is thestale problem dominates in that context.

As mentioned earlier, HD(rc) and HD(flushd) are imperfect recovery models. Figure 8 s
the persistent-staleproblem is minor for both models, an order of magnitude smaller than
number ofstalebytes referenced. HD(flushd) has thepersistent-skipped-writeproblem as well.
The persistent-skipped-writeproblem is also minor, fewer than 2,000persistent-skipped-write
bytes referenced over all cache configurations.

FIGURE 8. Number of referencedstale, self-repair, persistent-stale, andpersistent-skipped-write bytes.

HD(rc)

0

20

40

60

80

100

120

140

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

N
u

m
b

er
 o

f 
b

yt
es

 (
kb

)

self-repair
stale
persistent-stale
persistent-skipped-write

HD(flushd)

0

20

40

60

80

100

120

140

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4
L1 cache (size-assoc)

N
u

m
b

er
 o

f 
b

yt
es

 (
kb

)

self-repair
stale
persistent-stale
persistent-skipped-write

HD(flush)

0

20

40

60

80

100

120

140

8k-1 32k-1 64k-1 8k-4 32k-4 64k-4

L1 cache (size-assoc)

N
u

m
b

er
 o

f 
b

yt
es

 (
kb

)

self-repair
stale
persistent-stale
persistent-skipped-write
Slipstream Memory Hierarchies February 2002 20



ogram
uted
ctural
must
must
single

epen-

been
LDS
tasks
plete

lts
o the
dences
are

unda-
lim-

cond, the
ream

n a
reate
ctions.

hich
dvance,
ived,
. This
has

red
xplic-

lored
6.  Related work
Speculative multithreading architectures [e.g.,1,13,17,24,26] speed up a sequential pr

by dividing it into speculatively-parallel tasks, and concurrently running the tasks on distrib
processing elements or a simultaneous multithreaded pipeline. There is only one archite
context. Multiple speculative versions of a memory location can be created and hardware
explicitly track their program order. Version ordering is required because a dependent load
obtain the most recent prior version, and also because versions must be committed to the
architectural context in program order. Finally, loads may issue speculatively before prior d
dent stores, so the versioning hardware also detects load violations after the fact.

The idea of leveraging private L1 caches in a CMP for renaming memory locations has
previously proposed in the context speculative multithreading, for example, SVC [10], T
[26], and MDT [13]. However, slipstreaming uses redundant programs instead of parallel
and this leads to certain simplifications. The A-stream and R-stream are functionally-com
programs with independent contexts — certainly with full duplication, butalso with constrained
A-stream renaming storage. Constraining the A-stream is only done for efficiency and this resu
in anartificial dependence on the R-stream, in which we rely on the R-stream catching up t
A-stream to reproduce lost A-stream data. Because conceptually there are no true depen
(only this new sort of artificial dependence), explicit mechanisms for ordering versions
non-existent, whereas ordering mechanisms are fundamentally required for parallel tasks.

Both slipstream and speculative multithreading demonstrate load speculation, but in f
mentally different ways. First, load misspeculation in the context of this paper is caused by
ited A-stream storage, as opposed to ambiguous store-load dependences among tasks. Se
R-stream is a general checking mechanism for verifying the forward progress of the A-st
[19,21], and specific misprediction-detection hardware is not required.

Finally, unlike SVC, TLDS, or MDT, the A-stream neither stalls nor initiates recovery whe
cache replacement is needed. It simply loses data, implicitly predicting the R-stream will re-c
the data before it is needed again. This may avoid many unnecessary stalls and recovery a

Speculative Data-Driven Multithreading [23] and related work [2,3,5,6,7,9,15,25,32], w
spawn specialized threads to prefetch cache misses and resolve branch mispredictions in a
are closer in spirit to slipstreaming. A fundamental difference is the use of multiple, short-l
specialized threads versus a single, persistent, functionally-complete program (A-stream)
difference results in very different microarchitectures and, specifically, memory renaming
evolved differently. Use of the memory hierarchy (e.g., L1 cache or full duplication) is tailo
towards the A-stream’s persistence/completeness. Linking stores directly to loads via an e
itly-managed memory cloaking table [16], bypassing the memory system entirely, is tai
towards short-lived dependence-chain-based threads.
Slipstream Memory Hierarchies February 2002 21



m, har-
cation
epen-
slip-

in the
eam-

lica-
epre-

nd the
ed L1
eed to
mory

tream
e the
e not a
king is
he new
nage-

overy.
e. We
while
within
rform
te.
7.  Summary

Slipstream processors use redundant program execution to speed up a single progra
nessing an otherwise unused PE in a CMP or thread context in an SMT processor. Full dupli
of physical memory pages in software leads to a simple execution model due to program ind
dence. Memory usage is doubled, however, and we showed this partially or fully negates
stream performance benefits when a realistic memory hierarchy is simulated. Moreover,
future we would like to investigate the potential memory latency tolerance benefits of slipstr
ing, but inefficient duplication obscures that effort.

We showed it is possible to duplicate memory efficiently in hardware, without the comp
tions normally associated with managing a fixed amount of rename storage in hardware. R
sentative CMP hierarchies (private L1 caches that write-through to a shared L2 cache) a
unique nature of slipstreaming are the sources of simplification. First, the already-replicat
caches in a CMP provide enough implicit rename storage. Second, this storage does not n
be explicitly managed because the slipstream paradigm is tolerant of slightly inaccurate me
renaming. Evicted L1 cache lines containing A-stream updates are simply lost, but the R-s
usually reproduces the lost data (which reaches the L2 cache via write-though) befor
A-stream re-references the line in the L2 cache. And occasional references to stale data ar
problem because the A-stream is speculative in any case (furthermore, no special chec
required because the R-stream generally checks A-stream forward progress). In summary, t
hardware-based memory duplication requires no explicit rename storage nor explicit ma
ment, and significantly outperforms software-based memory duplication.

Another nice feature of hardware-based duplication is it enables much simpler state rec
The A-stream can be re-synchronized to the R-stream by flushing the A-stream L1 cach
showed compulsory misses after recovery limit performance, and that flushing dirty lines (
not 100% effective at restoring state) performs much better. And, using preserved data
flushed cache lines as value predictions allows the flush-dirty-line recovery model to pe
within a few percent of the recovery controller, rendering that slipstream component obsole
Slipstream Memory Hierarchies February 2002 22



8.  Acknowledgments

This research was supported by generous funding and equipment donations from Intel,
Ericsson, and by NSF CAREER grant No. CCR-0092832.
Slipstream Memory Hierarchies February 2002 23



ecom-

ssor

calar
ity of

icro-

com-

ctions

tions

.

all

on of

ni-

in

via

in-
-

9.  References

[1] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor.31st Int’l Symp. on
Microarch., Dec. 1998.

[2] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching by Dependence Graph Pr
putation.28th Int’l Symp. on Computer Architecture, July 2001.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically Allocating Proce
Resources Between Nearby and Distant ILP.28th Int’l Symp. on Computer Architecture,
July 2001.

[4] D. Burger, T. Austin, and S. Bennett. Evaluating Future Microprocessors: The Simples
Toolset. Technical Report CS-TR-96-1308, Computer Sciences Department, Univers
Wisconsin - Madison, July 1996.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultaneous Subordinate M
threading (SSMT).26th Int’l Symp. on Computer Architecture, May 1999.

[6] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, J. Shen. Speculative Pre
putation: Long-range Prefetching of Delinquent Loads.28th Int’l Symp. on Computer Archi-
tecture, July 2001.

[7] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-executing Instru
Under a Cache Miss.Proceedings of ICS, 1997.

[8] J. Emer. Simultaneous Multithreading: Multiplying Alpha Performance.Microprocessor
Forum, October 1999.

[9] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis of Branch Mispredic
and its Application to Early Resolution of Branch Outcomes.31st Int’l Symp. on Microar-
chitecture, Dec. 1998.

[10] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative Versioning Cache4th
Int’l Symposium on High-Performance Computer Architecture, February 1998.

[11] N. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Sm
Fully-Associative Cache and Prefetch Buffers.17th Int’l Symp. on Computer Architecture,
May 1990.

[12] J. Kahle. Power4: A Dual-CPU Processor Chip.Microprocessor Forum, October 1999.
[13] V. Krishnan and J. Torrellas. Hardware and Software Support for Speculative Executi

Sequential Binaries on a Chip-Multiprocessor.1998 Int’l Conference on Supercomputing,
July 1998.

[14] M. Lipasti. Value Locality and Speculative Execution. Ph.D. Thesis, Carnegie Mellon U
versity, April 1997.

[15] C.-K. Luk. Tolerating Memory Latency through Software-Controlled Pre-Execution
Simultaneous Multithreading Processors.28th Int’l Symp. on Computer Architecture, July
2001.

[16] A. Moshovos and G. S. Sohi. Streamlining Inter-Operation Memory Communication
Data Dependence Prediction,30th Int’l Symp. on Microarchitecture, Dec. 1997.

[17] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang. The Case for a S
gle-Chip Multiprocessor.7th Int’l Conf. on Architectural Support for Programming Lan
guages and Operating Systems, Oct. 1996.
Slipstream Memory Hierarchies February 2002 24



nd
tan-

.

ding.

es-

port,
Nov.

ort
ison,

ment

cili-
c-

Pro-

both
-

hip

ulti-
[18] J. Oplinger, D. Heine, S.-W. Liao, B. Nayfeh, M. Lam, and K. Olukotun. Software a
Hardware for Exploiting Speculative Parallelism in Multiprocessors. CSL-TR-97-715, S
ford University, Feb. 1997.

[19] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of Slipstream Processors33rd
Int’l Symposium on Microarchitecture, Dec. 2000.

[20] S. Reinhardt and S. Mukherjee. Transient Fault Detection via Simultaneous Multithrea
27th Int’l Symp. on Computer Architecture, June 2000.

[21] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microproc
sors.29th Int’l Symp. on Fault-Tolerant Computing, June 1999.

[22] E. Rotenberg. Exploiting Large Ineffectual Instruction Sequences. Technical Re
Department of Electrical and Computer Engineering, North Carolina State University,
1999.

[23] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. Technical Rep
CS-TR-2000-1414, Computer Sciences Department, University of Wisconsin - Mad
April 2000.

[24] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar Processors.22nd Int’l Symp. on Com-
puter Architecture, June 1995.

[25] Y. H. Song and M. Dubois. Assisted Execution. Technical Report CENG-98-25, Depart
of EE-Systems, University of Southern California, October 1998.

[26] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation to Fa
tate Automatic Parallelization.4th Int’l Symp. on High-Performance Computer Archite
ture, Feb. 1998.

[27] S. Storino and J. Borkenhagen. A Multi-Threaded 64-bit PowerPC Commercial RISC
cessor Design.11th Hot Chips Symposium, August 1999.

[28] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving
Performance and Fault Tolerance.9th Int’l Conf. on Arch. Support for Programming Lan
guages and Operating Systems, Nov. 2000.

[29] M. Tremblay. MAJC: Microprocessor Architecture for Java Computing.11th Hot Chips
Symposium, Aug. 1999.

[30] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing On-C
Parallelism.22nd Int’l Symp. on Computer Architecture, June 1995.

[31] W. Yamamoto and M. Nemirovsky. Increasing Superscalar Performance through M
streaming.Parallel Architectures and Compilation Techniques, June 1995.

[32] C. Zilles and G. Sohi. Execution-based Prediction Using Speculative Slices.28th Int’l Symp.
on Computer Architecture, July 2001.
Slipstream Memory Hierarchies February 2002 25


	1. Introduction
	2. Review of slipstream microarchitecture
	2.1 Reducing the A-stream: IR-detector and IR-predictor
	2.2 Delay buffer
	2.3 IR-mispredictions and recovery

	3. Slipstream memory hierarchies
	3.1 Memory duplication models
	3.1.1 Software-based memory duplication
	3.1.2 Hardware-based memory duplication

	3.2 Recovery models
	3.2.1 Recovery controller
	3.2.2 Flush cache
	3.2.3 Flush dirty lines
	3.2.4 Reducing impact of flush-induced misses: value prediction using preserved cache data

	3.3 Simplified slipstream microarchitecture
	3.4 Summary: qualitative comparisons

	4. Simulation methodology
	5. Results
	5.1 Software-based vs. hardware-based memory duplication
	5.2 Recovery model results

	6. Related work
	7. Summary
	8. Acknowledgments
	9. References

