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Abstract
The performance penalty of mispredicted branches can be reduced by fetching/exe

both paths of unconfident branches. Executing both paths of a branch involves forking a
thread context for the non-predicted path. A key requirement is the ability to quickly copy reg
and memory state, so that new threads are initiated quickly. Most multipath architectures ar
on top of simultaneous multithreading (SMT), because a shared register file and cache e
new threads to inherit state without any actual data movement. Multipath execution on chip m
processors (CMP) is largely unexplored because per-thread register files and level-1 cach
physically separated, making it difficult to quickly copy state.

Redundant execution is proposed as an enabling mechanism for dual-path executio
CMP with two processing elements (PEs). By always executing two programs, redundant s
maintained continuously in preparation for forking. The threads redundantly and independ
identify unconfident branches and explore alternative paths. When an unconfident b
resolves, one of the threads falls behind. This is remedied by passing control flow and dat
outcomes from the leading thread to the lagging thread. These are consumed as ideal branc
predictions, enabling the lagging thread to catch up, ideally before the next unconfident br
By being pro-active instead of reactive, redundant execution does not exhibit as much overh
on-demand state copying.

A completely distributed, CMP-based solution will generally underperform SMT-based s
tions, yet performance improvements as high as 12% are measured. Latency for commun
predictions between PEs affects performance significantly, but realistic latencies are tolera
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 1
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1.  Introduction

Multipath execution is a technique for reducing the performance penalty of mispred
branches [1,4,8,17,18,19]. A confidence mechanism determines the likelihood that branch p
tions are correct [5]. If confidence in a prediction is low, a multipath processor will fetch and
cute both paths following the branch. As with conventional speculation, the predicted pa
squashed if the prediction was incorrect. The misprediction penalty is reduced, however, be
part of the correct path is already processed by the time the misprediction is detected.

Multipath execution typically requires support for quickly forking new register conte
Simultaneous multithreaded processors (SMT) [16,21] are ideal because they provide m
register contexts in a shared register file, managed by per-thread register map tables. T
dicted path is part of the current thread and uses the current map table. A new thread is fork
the non-predicted path, using the map table of a free context. Initially, the new thread must i
register state up to the point of the branch. With a shared register file, inheriting register stat
not require copying register values, only pointers to the values. So, forking only requires al
ing a new map table and copying current mappings to the new map table. Furthermore, s
cycle copying of map tables is already supported for branch checkpointing (e.g., shadow m

This paper proposes a method for limited multipath execution on chip multiproces
(CMP). A CMP has multiple thread contexts, too, but they are distributed among processin
ments (PEs) [10]. Each PE has a private register file and level-1 (L1) cache. Physically sep
register files and caches make it difficult to quickly fork state. When an unconfident branch
diction is encountered, the contents of the active register file have to be copied to the regis
of a free PE. Copying is slow, partly because of the distance between register files, but m
because of limited bandwidth into and out of the register files. Forking memory state requ
sharing mechanism among distributed L1 caches. In any case, the overhead for copying sta
high that the non-predicted path may not even begin executing before the branch is resolve

Fortunately, there is an alternative to copying state. The program can be executed redun
on multiple PEs. This approach maintains redundant copies of register files and L1 caches c
uously. In this paper, multipath execution is limited to two paths, so two copies of the program
executed redundantly on two PEs. In steady-state, the PEs fetch/execute nearly in lock-st
their state matches closely. Because their state matches, the PEs are prepared for multipath
tion ahead of time, and forking is unnecessary.

The two PEs redundantly predict branch instructions and simultaneously estimate
dence. When an unconfident prediction is encountered, one of the PEs follows the not-take
and the other follows the taken path. When the branch resolves in both PEs, the PE that fo
the correct path continues, while the other PE squashes wrong-path instructions and re-
instruction fetching to the correct path.

At this point, the thread that followed the incorrect path lags behind the other thread.
leading thread passes all of its control flow and data flow outcomes to the lagging thread
communication queue. Outcomes are consumed by the lagging thread as always-correct
and value “predictions” [13,15]. Assisting the lagging thread enables it to catch up with the
ing thread, materializing some of the performance potential of multipath execution.

Communicating predictions seems equivalent to state copying. Whatever the interpret
redundant execution assisted by predictions is more effective than on-demand copying
demand copying is reactive and incurs a high latency to start the non-predicted path. Th
active approach of passing predictions to a lagging thread eventually re-synchronizes the th
often before multipath execution is needed again.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 2
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The coverage of branch mispredictions varies depending on the separation between t
threads. In the worst case, the lagging thread does not even fetch a mispredicted branch bef
resolved in the leading thread. The full misprediction penalty is exposed because no instru
from the non-predicted path are fetched/executed before the misprediction is detected. In th
case, the lagging thread fetches the mispredicted branch in the same cycle or a few cycles
the leading thread. Little or none of the misprediction penalty is exposed in this case.

The CMP approach has advantages and disadvantages with respect to SMT approac
CMP guarantees bandwidth to the predicted path. On the other hand, there is potential
misprediction coverage due to thread separation.

We do not advocate replacing SMT multipath execution. Instead, our method is a tar
enhancement for CMPs. CMP multipath execution can enhance the performance and/or fa
erance of the following processor models.

• Fault-tolerant CMPs. An important class of fault-tolerant processors executes redun
threads in lock-step on separate processing elements or duplicated pipelines [14,20].
puted results from both pipelines are sent to a checker, which compares results to detec
sient faults. Two of the key elements of multipath execution are already supported
redundant programs and (2) communication of outcomes, or “predictions”, to a checke
built-in redundancy and communication mechanisms in fault-tolerant CMPs can be exp
for higher single-program performance.

• Conventional CMPs. Multipath execution can be used to enhance the single-thread pe
mance of conventional CMPs, at the same time creating opportunities for fault tolerance d
redundant threads.

• Slipstream processors. We are currently investigating a unified architecture for multipath e
cution and slipstream execution [11,15]. Both use redundant threads that collaborate vi
diction queues. Based on our experience with slipstream processors, we expect that slip
execution and multipath execution complement each other. That is, one is likely to enh
performance when the other does not. A more robust architecture is possible by simultan
applying slipstream and multipath execution.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 3
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2.  Microarchitecture of a dual-path CMP

The microarchitecture of a CMP with two PEs and dual-path execution support is show
Figure 1. Each PE is shown inside a shaded box. The conventional pipeline of each PE con
a branch predictor, L1 instruction and data caches, and an execution core. The branch pr
supplies the program counter (PC) of the next predicted fetch block to the instruction c
Instructions fetched from the cache are dispatched to the execution core, which renames i
tions to a physical register file, issues them out-of-order to parallel function units and the
cache, and reorders them for retirement via a reorder buffer.

FIGURE 1. Microarchitecture of a dual-path CMP.

Dual-path execution is enabled by a new component in each PE, called thecommunication
queue(CQ). New paths to and from the CQ are shown with dashed lines in Figure 1. The so
operand values of completed instructions in one PE are sent to the CQ of the other PE, sh
Figure 1 with dashed arrows from each execution core to the opposite CQ. Target PCs of
pleted branch instructions are also sent. Communicating information between PEs may tak
eral cycles, indicated with pipeline latches along the communication paths (small box
Figure 1). The contents of the CQ are used to enhance the performance of a lagging threa
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The following sub-sections describe forking (2.1), management of the communica
queues (2.2), communication latency and bandwidth (2.3), methods for injecting CQ predic
into the pipeline (2.4), the memory model (2.5), and operating system support (2.6).

2.1  Forking

Forking occurs when the PEs fetch/execute opposite paths of an unconfident branch. K
ing when to fork and how to assign paths to PEs is more subtle in a distributed implemen
than in a centralized one (e.g., SMT), and requires explicit coordination between the PEs
mately, all coordination is done through the communication queues, described in Section 2

The PEs predict branches and estimate confidence redundantly, each using their own
branch predictor. If the PEs have already forked and are pursuing different paths, then no
tional forking is possible and confidence is simply disregarded. Otherwise, when a PE reac
unconfident branch, it checks two things to decide what to do next.

1. The PE checks to see if it is the leading thread and, therefore, the first to reach (i.e., fetc
branch instruction.

2. If it is not the first PE to reach the branch instruction, it checks to see if the branch has al
resolved in the other PE.

If the PE is the first to reach the unconfident branch, then it notes the fact that it has reac
fork point but, all the same, follows thepredictedpath. That is, even though the prediction
unconfident, it is best for the leading thread to trust the branch predictor. Otherwise, we
degrading performance with respect to a conventional single-threaded processor. The bran
dictor is more often correct than incorrect when the prediction is unconfident. Also, conside
the lagging thread may be too far behind and incapable of reaching the fork point befor
branch resolves. In this case, trusting the branch predictor is especially crucial.

If the PE is the second one to reach the unconfident branch, and the branch has n
resolved in the other PE, then the PE notes the fact that it has reached a fork point and follo
non-predictedpath (completing the forking process). If the branch has been resolved by the
PE, however, then there is no choice in the matter — a known-correct branch prediction sho
available in the CQ, put there by the other PE.

The PE gets its information about which thread is ahead and which branches are re
from its communication queue. In a completely distributed system, communication of any kin
control signals and datapaths — incurs a delay between PEs. The implications of delayed
mation is discussed in depth in Section 2.3, but here we point out a modification to the fo
algorithm that is necessary because of delayed information.

Specifically, given the algorithm above, when the PEs are “tied” or very close in time, ne
will follow the non-predicted path of an unconfident branch. It takes several cycles to comm
cate to the other PE that a branch has been reached. If the PEs fetch the branch in the sam
or only a few cycles apart, they will not know about the other PE for some time and both
assume they are first to reach the branch. Therefore, both PEs assume they lead and that th
take the predicted path, preventing forking from ever occurring.

The solution to this problem is simple. A PE knows when the other PE is close enough t
make a precise determination of who is ahead. If the PEs are very close, and an unco
branch is reached, one of the PEs always chooses the not-taken path and the other always
the taken path. Otherwise, if the PEs are not close and it is clear who leads, then the leading
takes the predicted path and the lagging thread takes the non-predicted path (as described
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 5
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2.2  Communication queue (CQ)

The communication queue (CQ) of a PE contains a recent history of the dynamic instru
stream produced by the opposite PE. Excluding instructions after a fork point, the CQs are r
dant.

The CQ groups instructions together in fetch blocks (typically, basic blocks). This way
PE can quickly read out all of the information for a block of instructions concurrently with fet
ing them from the instruction cache. A single CQ entry is shown in Figure 2. The entry conta
start PC and enough source operand values for the maximum number of instructions in a
block. Whether to use source operand values or destination operand values is implemen
specific. We chose source operand values because it works best with our approach for in
value predictions into the pipeline, which is described in Section 2.4.

Also, as shown in Figure 2, there is a valid bit associated with the PC and each pair of s
operand values. The corresponding valid bit is set when the CQ receives information f
instruction that completed in the other PE.

FIGURE 2. A CQ entry.

For convenience, we explain the operation of the CQ in terms of individual instructions,
though the CQ groups multiple instructions together in a single entry. Therefore, for the rem
der of this section, a single entry in the CQ corresponds to a single instruction. This makes
ier to visualize the one-to-one mapping between the dynamic instruction stream and CQ en

Processing element PE1 reads from its communication queue CQ1. CQ1 is written by the
opposite PE, PE2. Likewise, PE2 reads from its communication queue CQ2, which is written by
PE1.

CQ1 and CQ2 are managed by six pointers, as shown in the example in Figure 3:H1, T1, H2,
T2, head, andfork. Both CQs have copies of all pointers.

CQ entries betweenH1 andT1 correspond to instructions fetched and not yet retired by P1.
The entry pointed to byH1 corresponds to the oldest instruction in PE1. It is incremented when
the oldest instruction is retired (like the head pointer of the reorder buffer). The entry point
by T1 corresponds to the newest instruction in PE1. It is incremented when a new instruction i
fetched (like the tail pointer of the reorder buffer).

Also, T1 is backed up when a branch misprediction is detected, to the entry containin
mispredicted branch (like squashing entries in the reorder buffer). Usually, a branch mispred
is detected when the branch executes locally. This is shown in Figure 1 as a squash signal fr
execution core to the branch predictor. The misprediction may be detected earlier, however
incoming message to the CQ. This occurs when a branch outcome is received from the ot
before it is executed locally. Hence, there is another squash signal in Figure 1, from the C
both the branch predictor and the execution core.

H2 andT2 have the same meaning with respect to PE2 asH1 andT1 have with respect to PE1.
That is,H2 andT2 correspond to the oldest and newest instructions in PE2, respectively.H2 is
incremented when PE2 retires its oldest instruction.T2 is incremented when a new instruction i
fetched by PE2, and backed up to the offending entry when a branch misprediction is detect

V1 SRCA 1 SRCB 1 V2 SRCA 2 SRCB 2V PC SRCB nSRCA nVn
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 6



FIGURE 3. Example showing how the CQs operate.
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Because CQ is a circular buffer,H andT pointers alone are not sufficient to tell which PE
ahead. Theheadpointer serves as a reference pointer. Theheadpointer points to the laggingH
pointer, identifying the lagging thread. Theheadpointer is maintained as follows: (1)headalways
tracks theH pointer it is currently pointing to; (2) ifhead= H1 = H2, and then one of theH point-
ers advances,head remains behind to track whicheverH pointer did not advance.

The example in Figure 3 shows a sequence of instructions {A-M} redundantly fetched
cuted by both PEs. Instruction M, reached first by PE1, is a mispredicted branch. It is a fork poin
and PE1 fetches/executes the incorrect path (i.e., the predicted path), instructions {N1-R1}.2
fetches/executes the correct path (i.e., the non-predicted path), instructions {N2-R2}. To the
of the instruction sequence are snapshots of the CQs at three points in time: before forking
forking, and after the branch is resolved.

Before forking,head= H2 and that indicates PE2 needs to catch up to PE1. Fortunately, CQ2
contains predictions for six instructions {A-F} already retired by PE1. (We know {A-F} have
been retired by PE1 because they are betweenheadandH1). CQ2 may even have predictions fo
six additional instructions {G-L} (in the entries betweenH1 andT1), depending on whether they
have completed yet in PE1. In summary, entries in CQ2 betweenheadand T1 correspond to
instructions fetched and possibly executed by PE1, and are available as predictions for PE2 to
enhance its performance.

On the other hand, before forking, CQ1 does not provide predictions to PE1 simply because
PE2 has not reached the same point in the program. Actually, in this example, predictions
exist in CQ1, but only for instructions already retired by PE1 — {A-F}, in the entries between
head andT2.

It is straightforward to generalize the method for reading predictions from the CQ. During
instruction fetch stage, PEx reads the entry in CQx thatTx points to. A prediction is available ifTx
is logically betweenhead andTy, and the valid bit of entryTx is set.

Valid bits must be properly maintained to ensure entries are consumed only when they
tain predictions, and as soon as the predictions become available. WhenTx advances, indicating
that a new instruction has been fetched by PEx, PEy resets the valid bit of the entry in CQy pointed
to by the updatedTx pointer. It is in this entry of CQy that PEx will eventually write the values for
the instruction, when it completes. To ensure that the values are eventually written to the ent
entry number (Tx) must be recorded with the instruction as it flows through the pipeline in Px
(like a reorder buffer tag). Then, when the instruction completes, it knows to which CQy entry its
values should be routed. When the values arrive at CQy, the entry’s valid bit is set.

We now turn to the second snapshot in Figure 3. In the second snapshot, we can see P2 has
nearly caught up to PE1 (thanks in part to predictions), becauseH2 is only slightly behindH1.
Also, both PEs have forked. PE1 reached the unconfident branch first, therefore, it took the p
dicted path {N1-R1}, which happens to be incorrect. PE2 reached the unconfident branch secon
therefore, it took the non-predicted path {N2-R2}.

A PE knows whether it reaches a branch first (hence, which direction to fork) by comparT
pointers.T pointers reflect how far into the dynamic instruction stream the PEs have fetched
PEx, if Tx is betweenhead andTy, then PEx is second to the branch. Otherwise, it is first.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 8
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Another thing, the PE which arrives second to a branch only forks if the prediction is un
fident and its CQ does not contain a prediction for the branch. If the CQ contains a prediction
because the other PE has already resolved the branch.

When a branch is forked, thefork pointer points to the corresponding entry in the CQ. F
example, in Figure 3 (second snapshot),fork points to instruction M in both CQs. Thefork pointer
prevents the PE from reading non-redundant predictions from the CQ. IfTx is not betweenhead
andfork, then predictions should not be read from the CQ. The predictions are for instruction
the opposite path, since they were produced after the fork point by the other PE. For exam
Figure 3 (second snapshot), PE1 fetches/executes instructions {N1-R1} but receives predictio
for {N2-P2} in CQ1. The predictions come in handy for PE1 later, when it realizes it executed th
wrong path and needs to catch up to PE2.

The final snapshot in Figure 3 shows the state of the CQs just after the branch is res
PE1 mispredicted the branch, so it re-directs instruction fetching to the correct path and bac
T1 to just after the mispredicted branch (instruction M). Now, PE2 has taken the lead (T2 > T1).
Fortunately, PE1 already has predictions for instructions {N2-R2} queued in CQ1, in the entries
betweenheadandT2. The predictions will assist it in catching up to PE2, hopefully in time for the
next fork point.

2.3  Inter-PE latency and bandwidth

Communication between PEs is shown in Figure 4 (dashed lines indicate inter-PE com
cation). Instruction values or target PCs are communicated along the indicated datapaths fro
PE to the CQ of the other PE. Control signals include theH andT pointers.

The bandwidth for communicating instruction values or target PCs from one PE to the C
the other PE is equal to the completion bandwidth of the execution core. That is, the one
communication bandwidth between PEs is equal to the maximum rate at which instructions
plete. This is usually the superscalar issue width.

FIGURE 4. Inter-PE communication incurs a fixed delay.

Also, all communication incurs a fixed latency, indicated with pipeline latches (small bo
in Figure 4.H1 andT1 are controlled by PE1. H2 andT2 are controlled by PE2. To maintain a com-

CQ 2CQ 1
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T1

H1’
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PE1 2PE

head head
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 9



Q

ed ver-

In the

h
redicted

pipe-
lues
are

ruc-
issue

uction,
e CQ
ns and

le
gister
aged as
d into
. The
r the
ched.
being
ipeline
n they
head

ced by
ictly
nsient
both
pend-

meth-
pletely distributed implementation, we donot assume that changes inH1 andT1 are immediately
visible to PE2 and, likewise, that changes inH2 andT2 are immediately visible to PE1. As with
communicating values and target PCs, it takes some number of cycles to propagateH1 andT1
from PE1 to PE2. This is indicated with pipeline latches between the CQs in Figure 4. So, C2
uses delayed versions ofH1 andT1 calledH1’ and T1’, respectively. Likewise, CQ1 uses delayed
versions ofH2 andT2 calledH2’ andT2’, respectively.

Recall, from Section 2.1, delay impacts the forking process. TheT1 andT2 pointers are com-
pared to determine which PE reached an unconfident branch first. But each PE has a delay
sion of the other PE’sT pointer. Therefore, ifT1 and T2’ (or, T1’ and T2) are within a certain
number of entries of each other — equal to the inter-PE latency — both PEs assume a tie.
case of a tie, they choose pre-determined directions, e.g., PE1 chooses the not-taken path and PE2
chooses the taken path. Otherwise, if theT pointers are sufficiently far apart and it is clear whic
PE leads, then the leading PE takes the predicted path and the lagging PE takes the non-p
path.

2.4  Injecting branch and value predictions into the pipeline

This section describes how PCs and values retrieved from the CQ are injected into the
line. The fetch PC from the CQ simply overrides the fetch PC from the branch predictor. Va
from the CQ can be injected into the execution pipeline in a number of ways, two of which
described below.

• Reservation stations. “Issue queues,” as opposed to “reservation stations,” store only inst
tions, and values are retrieved from the register file during the register read stage. The
queues can be modified to also store source operand value predictions with each instr
similar to reservation stations. Instructions whose value predictions are available from th
are marked as ready-to-issue before being dispatched into the scheduler. Then, instructio
their value predictions are routed to the issue queues.

• Value prediction register file. Values from the CQ are written to a value prediction register fi
that sits alongside the physical register file in the execution core. The value prediction re
file does not require complex management because values are read only once. It is man
a circular FIFO, with support for random-access reads. When an instruction is dispatche
the issue queues, its source operand value predictions are written to the tail of the FIFO
current tail pointer locates the value prediction. Therefore, the tail pointer is substituted fo
physical register file tags of source operands, for the instruction currently being dispat
Instructions whose values are available in the FIFO are marked as ready-to-issue before
dispatched into the scheduler, and read the values during the register read stage of the p
using the substitute tags as indices into the FIFO. FIFO entries are marked as invalid whe
are read. When the entry pointed to by the FIFO’s head pointer becomes invalid, the
pointer advances, implicitly freeing the register.

Because the two threads are redundant, values from the CQ should match those produ
execution. Therefore, validation of branch and value predictions from the CQ is not str
required. However, adding a CQ prediction validation stage to the pipeline enhances tra
fault detection capability [2,12,13]. A transient hardware fault may cause errors in either or
threads, which are manifested as CQ mispredictions (either the PE or the CQ is incorrect, de
ing on which thread was affected by the fault). When an error is detected, various recovery
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 10
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ods are possible, including trapping to the operating system to restart the program fro
beginning or from a checkpoint.

A key aspect of our prediction-based communication method is that the issue logic (wa
and select logic) of the two PEs are not linked. That is, an instruction in one PE cannot wake
instruction in the other PE. Values can only be consumed as instructions are brought in
instruction window, during the rename/dispatch stage. If an instruction is dispatched into the
dow, and later its predictions arrive in the CQ, then the predictions are not forwarded t
instruction and we missed an opportunity to enhance performance. However, the core wa
select logic is preserved, resulting in a less complex microarchitecture. This is only pos
because redundant threads are independent and can make forward progress on their own.

2.5  Memory model

From a system-level perspective, there is only one program. That is to say, physical me
pages are not duplicated. Memory is implicitly duplicated at the L1 cache level only, in that
thread independently reads and writes its private L1 data cache.

We assume the L1 data caches use a write-through policy and the L2 cache uses a writ
policy. Because state is not duplicated (or “renamed”) in the L2 cache, steps must be taken
vent the leading thread from overwriting data not yet read by the lagging thread — a WAR h
caused by redundant threads with delay between them. The reverse situation is also po
where the lagging thread overwrites newer data produced by the leading thread, with older d
a type of WAW hazard.

The solution is to synchronize and combine redundant writes via asynchronizing write-
through queue, as shown in Figure 1. It is a FIFO queue with a head and tail pointer. Writes f
both PEs are sent in program order to the queue (store instructions are performed when they
in-order). At any given time, the queue contains writes from only the leading thread. The re
is, when the lagging thread performs a write, it will match the write at the head of the queue
that entry is popped and written into the L2 cache. Therefore, the implementation of the q
only requires: (1) a thread id (0 or 1), identifying the thread whose writes are in the queue
happens to be the leading thread), (2) a FIFO queue, where each entry consists of a doub
address and the corresponding doubleword of data, and (3) snooping logic (address compa
to intercept loads from the leading thread whose data is still in the queue instead of the L2
(this bypass path is shown in Figure 1).

Essentially, the synchronizing write-through queue is L2 rename storage for the lea
thread. The L2 cache reflects the architectural state of the lagging thread. The L2 cache and
through queue, combined, reflect the architectural state of the leading thread, with prece
given to the write-through queue.

2.6  Operating system support for redundancy-based dual-path execution

In the new CMP microarchitecture, there is a choice between higher job throughpu
improving single-program performance via dual-path execution. We advocate allowing the
ating system (O/S) to flexibly choose among different operating modes, based on throu
demands, job priorities, anticipated benefit of dual-path execution, user input, etc.

The O/S initiates dual-path execution by scheduling the program for execution on both
Although not absolutely required for correctness, as a practical matter, the branch predict
confidence tables of both PEs should be flushed to ensure redundant predictions initially.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 11
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Events that require O/S intervention but do not involve a context-switch — e.g., most sy
calls and lightweight synchronous exceptions — do not require synchronizing the threads an
minating redundant execution. Redundant execution (hence, dual-path execution) may cont
the system code. The only requirement is that redundant memory operations with system
effects must be merged to prevent duplicating I/O operations. This is the same requireme
writes to the memory system in general. The synchronizing write-through queue describ
Section 2.5 can be augmented to merge redundant I/O operations into one operation at the
level.

Events that require O/S intervention and involve a context-switch — e.g., asynchronous
rupts and heavyweight synchronous exceptions — are handled by synchronizing the threa
minating one of them, and swapping the program out as usual.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 12



faith-
lts of
h the

ically
tional

. The
tions.
direct

-

and
ranch
n this,

y for

idth
d in

EC95
ench-
3.  Simulation environment

We use a detailed execution-driven simulator of a chip multiprocessor. The simulator
fully models the architecture depicted in Figure 1 and outlined in Section 2. Retired resu
both threads are checked by a functional simulator run independently and in parallel wit
detailed timing simulator.

Microarchitecture parameters are listed in Table 1. Each processing element is a dynam
scheduled 4-way superscalar processor with a window size of 64 instructions. Condi

branches are predicted using a 216-entrygsharepredictor [9] with 16 bits of global history. Each
entry has a 2-bit counter for the prediction and a 5-bit resetting counter [5] for confidence
resetting counter is incremented for correct predictions and reset to 0 for incorrect predic
The branch is unconfident if the resetting counter value is less than the threshold, 31. In

branches are predicted using a separate 216-entry gsharepredictor which contains predicted tar
gets. Return instructions are predicted using a return address stack [6] of unlimited depth.

The minimum branch misprediction penalty is 10 cycles (the Intel Itanium is 10 cycles
the Intel Pentium-4 is 20 cycles). This is the minimum number of cycles between when a b
is predicted/fetched and when it is executed. Of course, the penalty can be higher tha
depending on how long the branch waits for source operands to become available.

The size of the synchronizing write-through queue is 16 doubleword entries. The latenc
retrieving data from the write-through queue is equal to the L2 cache hit latency.

Each CQ can hold predictions for up to 256 instructions. One-way communication bandw
matches the PE completion bandwidth (4 instr./cycle). Communication latency will be varie
the experiments.

The Simplescalar [3] compiler and ISA are used. We use six benchmarks from the SP
and SPEC2000 integer benchmarks (Table 2), compiled with -O3 optimization. SPEC95 b
marks were run to completion. For the SPEC2000 benchmarks (ref inputs), the first billion
instructions are skipped, and then 100 million instructions are simulated.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 13



TABLE 1. Microarchitecture configuration.

conditional branch predictor &
confidence mechanism

216-entrygshare predictor, 16 bits of global branch history

2-bit counter for prediction, 5-bit resetting counter for confidence

confidence threshold = 31

indirect branch predictor identical to cond. branch predictor, but predicts indirect targets

return address predictor return address stack (unlimited depth)

minimum misprediction penalty 10 cycles (minimum time between fetch and execution of a branch)

fetch bandwidth fetch up to 16 sequential instructions per cycle

superscalar core

reorder buffer: 64 entries

dispatch/issue/retire bandwidth: 4 instr/cycle

4 fully-symmetric function units

4 loads/stores per cycle

execution latencies

address generation = 1 cycle

load access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

L1 instruction cache 64 KB, 4-way set-assoc., 64 B lines, LRU, 2-way interleaved

L1 data cache 64 KB, 4-way set-assoc., 64 B lines, LRU, write-through

L2 unified cache 1 MB, 8-way set-assoc., 64 B lines, LRU, write-back

memory access times

L1 instruction hit = 1 cycle

L1 data hit = 2 cycles

L1 miss/L2 hit = 12 cycles (minimum)

L1 miss/L2 miss = 70 cycles (minimum)

synchronizing write-through queue 16 doubleword entries

communication queue (CQ) 256 instruction entries

TABLE 2. Benchmarks.

benchmark suite benchmark input # instructions
compress spec95 120000 e 2231 71M
go spec95 9 9 133M
jpeg spec95 vigo.ppm 166M
gcc spec2K -O3 expr.i -o expr.s 100M (skip 1st billion)
twolf spec2K ref 100M (skip 1st billion)

vpr spec2K
net.in arch.in place.out dum.out -nodisp -place_only -init_t 5 -exit_t 0.005
-alpha_t 0.9412 -inner_num 2

100M (skip 1st billion)
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 14
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4.  Results

The dual-path processor is built on top of a CMP composed of two superscalar cores. I
paradigm, the goal is to leverage a second, otherwise unused superscalar core in a C
improve single-program performance. Therefore, all results are reported as the speedup o
path execution using two superscalar cores with respect to conventional execution on one
cores. The core is fixed and is called the BASE configuration: BASE is a 4-way issue dynam
scheduled superscalar processor with a 64-instruction reorder buffer, as reported Section 3

Communication latency (for passing predictions and coordinating CQs) is varied. The g
in Figure 5 shows performance improvement with respect to BASE, for communication late
of 0 cycles, 1 cycle, 2 cycles, and 4 cycles. A 0-cycle latency means a value produced in one
the current cycle can be read from the other PE’s CQ in thesubsequent cycle.

The first observation from Figure 5 is that redundancy-based dual-path execution can
improve performance, despite not being able to copy state on-demand like an SMT-based
mentation can. For the best case of 0-cycle latency, speedup ranges from 6% (jpeg) to 12% (go).
Go is known to have especially difficult branches, so it is encouraging that the dual-path CM
effectively improve its performance.

The second observation from Figure 5 is that communication latency has a large impa
the performance improvement of redundancy-based dual-path execution, although speed
significant even for longer latencies. Performance improvement decreases approximately li
with increasing latency. For a 2-cycle latency, performance improvement ranges from 3%jpeg)
to 9% (go).

FIGURE 5. Performance of redundancy-based dual-path execution on a CMP.

Increasing latency negatively affects two aspects of the microarchitecture. First, it affect
diction passing. Second, it affects distributed mechanisms for coordinating the forking pr
and the CQs. For example, queue pointers are delayed more, it is increasingly difficult to
mine which thread is the leading thread and anticipate ties, etc. It is unclear which aspect
microarchitecture is more sensitive to latency and, hence, which aspect is primarily respo
for the decrease in speedup as latency increases. We plan to explore this facet in future wo

0%

2%

4%

6%

8%

10%

12%

14%

comp go jpeg gcc twolf vpr

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
B

A
S

E 0 cycles
1 cycle
2 cycles
4 cycles
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 15



unit
y the
ntrol.
hes.

dual-
fetch
amic

its of
mul-
lyPath
n by

that
exe-
5.  Related work

Uht and Sindagi proposed Disjoint Eager Execution [18], a technique in which the fetch
follows a single flow of control for awhile, but anticipated accuracy degrades and eventuall
fetch unit backs up to a prior unresolved branch and starts exploring an alternate flow of co
The term “disjoint” refers to arbitrarily jumping backwards and forwards to unresolved branc
Disjoint Eager Execution was implemented on a processor with a static instruction window.

Heil and Smith [4] and Tyson, Lick, and Farrens [17] proposed and studied selective
path execution, within the context of processors that quickly copy/fork state. Because the
unit is limited to two paths at a time, a confidence mechanism [5,17] carefully selects dyn
branches for which dual-path execution is likely to pay off.

Ahuja, Skadron, Martonosi, and Clark re-evaluated the performance potential and lim
multipath execution in light of recent advances in multithreaded processors [1]. Two detailed
tipath architectures built on top of SMT processors have been proposed. These are the Po
Architecture by Klauser, Paithankar, and Grunwald [8] and Threaded Multiple Path Executio
Wallace, Calder, and Tullsen [19].

We are not aware of any multipath architectures built on top of CMPs, or any work
explores the implications of distributed register files and caches on implementing multipath
cution.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 16
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6.  Summary and future work

This paper combines redundant execution with prediction-based communication to e
dual-path execution in CMPs. Hedging an unconfident branch requires forking a new thread
text for the non-predicted path. Copying state on-demand from one register file to another h
much overhead. Redundant execution maintains redundant state continuously, so that cop
unnecessary when the unconfident branch is predicted/fetched. When the unconfident
resolves, one of the threads must re-direct fetching to the correct path and it falls behind. B
continuously exchanging control flow and data flow outcomes between PEs via communic
queues, the lagging thread can catch up, ideally before another mispredicted branch is reso
the leading thread.

We developed a completely distributed implementation of CMP dual-path execution. S
aspects were highlighted. For example, coordination delays may result in both threads ass
they are in the lead when they are actually tied, preventing forking from occurring unless
sures are taken to identify potential ties. As another example, it is essential that the leading
(if there is a clear leader) select the predicted path. These and other subtle aspects are abs
centralized implementations that can rely on quick state-copying support.

For an untuned implementation, we demonstrated potential performance improveme
high as 12%, and improvements as high as 9% for anticipated inter-PE communication late

The new microarchitecture is relatively unexplored. Further research is needed to att
performance to various microarchitecture features — the confidence mechanism/threshold
munication latency, coordination latency, limited paths, no CQ-initiated instruction wakeup
Future work includes experimenting with confidence thresholds, developing more precise
coordination methods (for example, a precise way to identify the lagging thread in close ca
to remember the thread that chose the wrong path at the last fork point), scaling the num
PEs to enable more than two paths, incorporating fault tolerance, and combining multipat
slipstream execution.
Multipath Execution on Chip Multiprocessors Enabled by Redundant Threads October 23, 2001 17
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