
Exploi t ing Mult ip le On-Chip Contexts in
New Ways

Eric Rotenberg

Dept. of Electrical and Computer Engineering
North Carolina State University

http://www.tinker.ncsu.edu/ericro
ericro@ece.ncsu.edu

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
2

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Technology

- Billions of transistors on a chip

- Clock rate growth curve may not be dependable

• Implications to microarchitecture

- Higher performance will rely increasingly on parallelism

• Dictates multiple sources of parallelism

- Billions of transistors helps, but how to use them?

• Evolutionary: integrate more independent entities on
a single chip

• Single-chip Multiprocessors (SMP) and Simultaneous
Multithreaded Processors (SMT)

High Perf. Microprocessor Trends

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
3

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

thread 1

thread 2

thread 3

SMP/SMT Processors

wide-issue superscalar

SMT on a

single-chip (2-way) SMP

wide-issue superscalar

cycle

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
4

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• SMP/SMT is happening

- Compaq announced SMT on an 8-way superscalar

- IBM announced 2 processor cores on a chip

• Opportunity

- View SMP/SMT architecture as an enabling technology for
new processing models

- Look beyond improving throughput

• Value-add other than performance (e.g. fault tolerance)

• Speed up single programs in interesting ways

Exploi t ing SMP/SMT in New Ways

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
5

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

✓Introduction: towards multiple on-chip contexts

✐Pursuing three ideas

- AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors

- Exploiting Large Ineffectual Instruction Sequences

- Exploiting Cross-Program Redundancy

• Summary (common underlying themes)

Talk Out l ine

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
6

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• High clock rate, dense designs (GHz/billion transistors)

- low voltages for power management

- high-performance and “undisciplined” circuit techniques

- managing clock skew with GHz clocks

- pushing the technology envelope potentially reduces
design tolerances in general

=> Entire chip prone to frequent, arbitrary transient faults

Technology and Faul t Tolerance

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
7

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Conventional fault-tolerant techniques

- Specialized techniques (e.g. ECC for memory, RESO for
ALUs) do not cover arbitrary logic faults

- Pervasive self-checking logic is intrusive to design

- System-level fault tolerance (e.g. redundant boards/
computers) too costly for commodity computers

• A microarchitecture-based fault-tolerant approach

- Microarchitecture performance trends can be easily
leveraged for fault-tolerance goals

- Broad coverage of transient faults

- Low overhead: performance, area, and design changes

Microarchi tecture and Faul t Tolerance

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
8

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

Program P’Program P

Processor Processor

FU

FU

FU

FU
i

i’
instr i

Program P

dynamic
scheduling execution units

parallelProcessor

Time Redundancy Spectrum

Program-level
time redundancy

Instruction re-execution

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
9

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

Program P’

Program P

Processor

Time Redundancy Spectrum

time redundancy
AR-SMT

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
10

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• “A” => “Active stream”

• “R” => “Redundant stream”

• “SMT” => “Simultaneous MultiThreading”

A-stream

R-stream

R-stream

A-stream

PROCESSOR
fetch commit

DELAY BUFFER

AR-SMT High Level

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
11

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Delay Buffer

- Simple, fast, hardware-only state passing for comparing
thread state

- Ensures time redundancy: the A- and R-stream copies of
an instruction execute at different times

- Buffer length adjusted to cover transient fault lifetimes

• Transient fault detection and recovery

- Fault detected when thread state does not match

- Error latency related to length of Delay Buffer

- Committed R-stream state is checkpoint for recovery

AR-SMT: Faul t Tolerance

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
12

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Low hardware and design overhead

- Leverages underlying microarchitecture (SMT)

• Low performance overhead

1. SMT-ness: all the same benefits of general SMT (utilization)

2. R-stream has perfect control and data “predictions” from the
A-stream (via delay buffer)!

AR-SMT: Low Overhead

= = =

p1 p2 p3
“predicted” values

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
13

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

1

1.1

1.2

1.3

comp gcc go jpeg li

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e
(s

in
g

le
 t

h
re

ad
 =

 1
)

4 PE
8 PE

AR-SMT: Performance Resul ts

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
14

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

number of PEs used

%
 o

f
al

l c
yc

le
s

A-stream
R-stream

AR-SMT: Performance Resul ts

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
15

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Technology-driven performance improvements

- New fault environment: frequent, arbitrary transient faults

• Leverage microarchitecture performance trends for broad-
coverage, low-overhead fault tolerance

- SMT-based time redundancy

- Control and data “prediction”

• Introducing a second, redundant thread increases execution
time by only 10% to 30%

AR-SMT Summary

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
16

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• D. Siewiorek. “Niche Successes to Ubiquitous Invisibility:
Fault-Tolerant Computing Past, Present, and Future”,
FTCS-25

- (Quote) Fault-tolerant architectures have not kept pace
with the rate of change in commercial systems.

- Fault tolerance must make unconventional in-roads into
commodity processors: leverage the commodity
microarchitecture.

• P. Rubinfeld. “Managing Problems at High Speeds”, Virtual
Roundtable on the Challenges and Trends in Processor
Design, Computer, Jan. 1998.

- Implications of very high clock rate, dense designs

Other Interest ing Perspect ives

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
17

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

✓Introduction: towards multiple on-chip contexts

✐Pursuing three ideas

✓AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors

- Exploiting Large Ineffectual Instruction Sequences

- Exploiting Cross-Program Redundancy

• Summary (common underlying themes)

Talk Out l ine

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
18

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• The program is merely a specification

- Only requirement is to obtain correct, final output

- The processor executes the full dynamic instruction
stream to meet this requirement

• Hypothetical question

- Are there shorter, equivalent instruction streams that
produce the same exact output?

Equivalent Dynamic Instr. Streams

original dynamic instruction stream

equivalent, shorter instruction stream

Final Output

Final Output

IDENTICAL

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
19

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Thought experiment

- Run the full program and lay out the dynamic instruction
stream

- By trial and error, remove dynamic instructions and
discard them if the final program output does not change

• Result: as little as 20% of the original dynamic program can
produce the same result

Equivalent Dynamic Instr. Streams

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
20

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Criteria for identifying ineffectual instructions

1. Write to a location followed by another write, and no
intervening read; first write is ineffectual

2. Write the same value to a location as already exists at
that location; this write is ineffectual

3. Any correctly predicted branch is considered ineffectual
because the effect is predicted in advance

• Propagate ineffectual status backwards

- Computation leading solely to ineffectual instructions can
be marked as ineffectual as well

Inef fectual Instruct ions

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
21

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Identify ineffectual instructions ideally but not optimally

- Based on our three criteria and back-propagation

- Requires maintaining a dataflow graph and register/
memory tracking state

- Dataflow graph limited to 64K nodes

- A 216-entry gshare branch predictor is used to identify
correctly predicted branches (3rd criterion)

Exper iment

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
22

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

Breakdown of Effectual / Ineffectual Instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc go jpeg perl m88k postgres

fr
ac

ti
o

n
 o

f
d

yn
am

ic
 in

st
ru

ct
io

n
s

other

P: SV,WW,BR

P: SV,WW

P: SV,BR

P: SV

P: WW,BR

P: WW

P: BR

SV

WW

BR

effectual

Results: Inef fectual Instruct ions

branches
write-write

write-same-val

propagate

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
23

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Ineffectual regions

- Isolated ineffectual instructions are uninteresting

- Identify long runs of ineffectual instructions

• Real example from benchmark go

• Sources of ineffectual behavior are not just the compiler,
ISA, and ABI => the algorithm as well

- Understanding sources is future work

found = false;
ptr = head;

while (ptr) {
if (ptr->key == key) {

...
}
else

ptr = ptr->next;

}

never entered

s = connect_bamboo(...);

if (s != NO_SQUARE) {
... never entered

}

Inef fectual Regions (IRs)

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
24

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 in

ef
fe

ct
ua

l i
ns

tr
uc

tio
ns

cumulative fraction of unique IRs

GCC: IRs >= length 20

IRs sorted by ineff. instr. contribution

IRs sorted by ‘ineffectual-rate’

Results: Inef fectual Regions

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
25

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Back to thought experiment

• IRs provide means to create another version of program!

- Detect and learn about IRs via an IR-predictor

- Dynamically create a short version of the program using
IR-predictor

• Fetching is redirected to point just after a predicted IR

• If correct, IR can be skipped without corrupting state

- Run original version of program in a separate context

• Validate the shorter version, similar to AR-SMT!

• Verify that 1) implied branch predictions in IR are
correct and 2) the region is truly ineffectual

Archi tectural Impl icat ions

original dynamic instruction stream

equivalent, shorter instruction stream

Final Output

Final Output

IDENTICAL

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
26

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

A-stream

R-stream

A-stream skips IR

R-stream executes IR

branch outcomes
values

branch outcomes
values

Cooperat ing Threads Model

• New (non-intrusive) hardware components

- IR-detection hardware and IR-predictor

- Queue to communicate outcomes from A-stream to R-stream

- Write checkpoint buffer to repair A-stream if corrupted

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
27

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

0

1

2

3

4

5

gcc go jpeg m88k perl postgres

IP
C

SS(64-4)
SMP(2 x 64-4)
SS(128-8)
SMT(128-8)

Results (perfect IR-predictor)

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
28

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Hypothesized and identified smaller equivalent program

- Equivalent programs comprising 20% of original

- Due to unreferenced writes, non-modifying writes, and
correctly-predicted branches (and computation chains)

• More useful to identify large ineffectual regions (IRs)

- IRs provide means to speculatively create second,
shorter version of program

- IRs of length 20 or greater contribute 15-40% of all
ineffectual instructions

- Only 5-10% of all unique IRs account for most of these

• Cooperating threads architecture: potential for 30%
speedup leveraging SMP/SMT cores

Summary

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
29

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

✓Introduction: towards multiple on-chip contexts

✐Pursuing three ideas

✓AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors

✓Exploiting Large Ineffectual Instruction Sequences

- Exploiting Cross-Program Redundancy

• Summary (common underlying themes)

Talk Out l ine

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
30

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Where AR-SMT performance is coming from

- R-stream ILP is increased because A’s past is R’s future

- R-stream execution time is not improved and A/R-stream
have same average IPC

- R-stream requires less window resources => A-stream is
degraded less

AR-SMT revis i ted

A-stream

R-stream

A-stream

R-stream
=

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
31

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Generalize this to independent but partially redundant
programs!

Cross-Program Redundancy (XPR)

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
32

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Applications

- XPR is likely to be special-purpose

• Close similarity across different runs of a program

• Heavy batch environment

• Ability for O/S to predict XPR and co-schedule

- Examples

• Databases (Decision Support, Web Engines): multiple
similar/related queries

• Simulations: design-space searches

Potent ia l XPR Appl icat ions

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
33

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

1. Ensuring redundant regions are close in time

- O/S co-schedules to start things off

• Use high-level program information to predict XPR

- But need the hardware to continuously fine-tune

• Detect regions of XPR

• Delay/advance threads to line up XPR regions

note: schedule other SMT threads in delayed regions...

Research Aspects

DELAY THREAD

too far too far

DELAY THREAD

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
34

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

2. Types of information to communicate

- Implicit: improve cache hits

• Beneficial for shared data with poor reuse

- Explicit: control and data predictions

• Beneficial for branches/data that are unpredictable
using self-program information

Research Aspects

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
35

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

3. Passing information

- Caches: no explicit communication, just line programs up
to ensure cache hits

- Predictors: two options

• Handle like caches (rely on positive interference of
existing, shared predictor)

• Pass predictions explicitly via queues

Research Aspects

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
36

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

communication
queues (per-PC)

chooser

UPDATE

PREDICT

UPDATE

PREDICT

conventional
predictor

cache

communication

thread-delay ctrl
XPR detection

queues (per-PC)

XPR detection
thread-delay ctrl

monitor a key item K
from thread 0

monitor a key item K
from thread 1

High-Level View

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
37

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

SORT

AGG

GROUP

SORT

NESTLOOP

NESTLOOP SEQSCAN (nation)

MERGEJOIN SEQSCAN (customer)

SEQSCAN (customer) SEQSCAN (customer)

SORT

SEQSCAN (lineitem)

SORT

SEQSCAN (orders)

SORT

AGG

GROUP

SORT

NESTLOOP

MERGEJOIN SEQSCAN (customer)

SEQSCAN (customer) SEQSCAN (customer)

SORT

SEQSCAN (lineitem)

SORT

SEQSCAN (orders)

Postgres/TPC-R Example

TPC-R Query #3

TPC-R Query #10

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
38

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

10082000

10083000

10084000

10085000

10086000

10087000

10088000

10089000

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

sh
ar

ed
 m

em
or

y
ad

dr
es

s

dynamic instruction stream (‘time’)

shared memory access pattern of load instruction PC=50b4d8 (relation block lookup)

3.sql
10.sql

XPR Detect ion / Thread-Delay Control

orders

lineitem

customers

query-3

query-10

• Note the similar access pattern of a particular load: the key

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
39

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Detect XPR and align the queries by monitoring the key

XPR Detect ion / Thread-Delay Control

10082000

10083000

10084000

10085000

10086000

10087000

10088000

10089000

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

sh
ar

ed
 m

em
or

y
ad

dr
es

s

dynamic instruction stream (‘time’)

shared memory access pattern of load instruction PC=50b4d8 (relation block lookup)

3.sql
10.sql

Exploiting Multiple On-Chip Contexts in New Ways
January 10, 2000

Slide
40

Eric Rotenberg
NC State University
© 2000 by Eric Rotenberg

• Vision

- Flexibility and functionality: dynamically choose among
diverse goals with same underlying architecture

• Throughput

• Improve performance of a single program

• Fault tolerance

- Common theme:

• Explicit cooperation between redundant or
partially-redundant threads

Summary

XPR

ineff. regions

SMT/SMP

AR-SMT

