
Cooperat ive Redundant Threads (CRT)

Eric Rotenberg

Karthik Sundaramoorthy, Zach Purser

Dept. of Electrical and Computer Engineering
North Carolina State University

http://www.tinker.ncsu.edu/ericro
ericro@ece.ncsu.edu

Cooperative Redundant Threads (CRT) Slide
2

Eric Rotenberg
NC State University
© 2000

• Program is merely a specification

- Processor executes full dynamic instruction stream

- Can construct shorter instruction stream with same
overall effect

• Result: as little as 20% of the original dynamic program can
produce the same result
- Tech report - Exploiting Large Ineffectual Instruction Sequences, Rotenberg, Nov 1999

Many means to an end

original dynamic instruction stream

equivalent, shorter instruction stream

Final Output

Final Output

IDENTICAL

Cooperative Redundant Threads (CRT) Slide
3

Eric Rotenberg
NC State University
© 2000

• Key idea

- Only need a small part of program to make full, correct,
forward progress

- The catch:

• Speculative

• Must monitor original program to determine essential
component

Many means to an end

Cooperative Redundant Threads (CRT) Slide
4

Eric Rotenberg
NC State University
© 2000

1. Speculatively create a shorter version of the program

- Operating system creates two redundant processes

- Monitor one of the programs for:

• Ineffectual writes

• Highly-predictable branches

- With high confidence, but no certainty, future instances
of ineffectual and branch-predictable computation are
bypassed in the other program copy

Cooperat ive Redundant Threads

Cooperative Redundant Threads (CRT) Slide
5

Eric Rotenberg
NC State University
© 2000

2. Run the two versions on a single-chip multiprocessor
(CMP) or simultaneous multithreaded processor (SMT)

- Names

• Short program: Advanced Stream, or A-stream

• Full program: Redundant Stream, or R-stream

- A-stream speculatively runs ahead and communicates
control/data outcomes to R-stream

- R-stream consumes outcomes as predictions but still
redundantly produces same information

• R-stream executes more efficiently

• R-stream verifies the speculative A-stream; if A-stream
deviates, its context is recovered from R-stream

Cooperat ive Redundant Threads

Cooperative Redundant Threads (CRT) Slide
6

Eric Rotenberg
NC State University
© 2000

• Two potential benefits

1. Improved single-program performance

• Faster than running only the original program

2. Improved fault tolerance

• Partial redundancy allows detection of transient
hardware faults

• Can also tolerate faults via the existing recovery
mechanism

Cooperat ive Redundant Threads

Cooperative Redundant Threads (CRT) Slide
7

Eric Rotenberg
NC State University
© 2000

✓Introduction to CRT

➔Microarchitecture description

• Understanding performance benefits

• Performance results

• Understanding fault tolerance benefits

• The bigger picture: harnessing CMP/SMT processors

• Conclusions

• Future work

Talk Out l ine

Cooperative Redundant Threads (CRT) Slide
8

Eric Rotenberg
NC State University
© 2000

Recovery
Controller

Branch
Pred. I-cache

D-cache

Execute
Core

Buffer
Reorder

Branch
Pred.I-cache

D-cache

Execute
Core

Buffer
Reorder

IR-detector

from IR-detector

to IR-predictor

A-stream R-stream

Delay Buffer

IR-predictor

Example Microarchi tecture

Cooperative Redundant Threads (CRT) Slide
9

Eric Rotenberg
NC State University
© 2000

• A-stream creation

1. IR-predictor: instruction-removal predictor

• Built on top of conventional branch predictor

• Generates next PC in a new way
- Next PC reflects skipping past any number of

instructions that would otherwise be fetched/executed
- Also indicates which instructions within fetch block to

discard

2. IR-detector: monitor R-stream, detect candidate
instructions for future removal

• IR-detector indicates removal info to IR-predictor

• Repeated indications cause IR-predictor to remove
future instances

Creat ing the A-stream

Cooperative Redundant Threads (CRT) Slide
10

Eric Rotenberg
NC State University
© 2000

• Indexed like gshare

• Each table entry contains info for one dynamic basic block

- Tag

- 2-bit counter to predict branch

- Per-instruction resetting confidence counters

• Updated by IR-detector

• Counter incremented if instr. detected as removable

• Counter reset to zero otherwise

• Saturated counter => instruction removed from
A-stream when next encountered

IR-predictor (Base)

Cooperative Redundant Threads (CRT) Slide
11

Eric Rotenberg
NC State University
© 2000

• Reducing fetch cycles in the A-stream

IR-predictor (Improved)

B

D

C

A

base IR-predictor

A

B

D

C

improved IR-predictor

Cooperative Redundant Threads (CRT) Slide
12

Eric Rotenberg
NC State University
© 2000

• Bypassing fetch => same effect as taken branch!

• Previous example

- “Convert” branch ending block A to a taken branch
whose target is D

• At least two possible methods

1. Include converted target (D) and implied intervening
branch outcomes (B,C) in block A’s entry

2. Include intervening branch outcomes (B,C) in block A’s
entry, but separate BTB to store numerous targets per
static branch

IR-predictor (Improved)

Cooperative Redundant Threads (CRT) Slide
13

Eric Rotenberg
NC State University
© 2000

• Monitor retired R-stream instructions for three triggering
conditions

1. Unreferenced writes

2. Non-modifying writes

3. Correctly-predicted branches

• Select triggering instructions as candidates for removal

• Also select their computation chains for removal

- Can remove an instruction if all consumers are known
(value has been killed) and all are selected for removal

- Facilitated by reverse data flow graph (R-DFG) circuits

IR-detector

Cooperative Redundant Threads (CRT) Slide
14

Eric Rotenberg
NC State University
© 2000

OPERAND
RENAME
TABLE

- kill instructions

unreferenced writes for removal
- select non-modifying writes and

IR-predictor
update

New Instr.
merge instruction

VALID
BIT

REF
BIT

VALUE PRODUCER

into R-DFG
R-DFG

IR-detector

Cooperative Redundant Threads (CRT) Slide
15

Eric Rotenberg
NC State University
© 2000

• A simple FIFO queue for communicating outcomes

- A-stream pushes

- R-stream pops

• Actually two buffers

- Control flow buffer

• Complete history of control flow as determined by A-stream

• Instruction-removal information (for matching partial data
outcomes w/ instructions in R-stream)

- Data flow buffer

• Partial history of data flow, for instructions executed in
A-stream

• Source/dest. register values and memory addresses

Delay Buffer

Cooperative Redundant Threads (CRT) Slide
16

Eric Rotenberg
NC State University
© 2000

• Instruction-removal misprediction (IR-misprediction)

- Instructions were removed from A-stream that shouldn’t
have been removed

- Undetectable by A-stream

- IR-mispredictions corrupt A-stream context and must be
resolved by the R-stream

IR-mispredict ions

Cooperative Redundant Threads (CRT) Slide
17

Eric Rotenberg
NC State University
© 2000

• Three things needed

1. Detect IR-mispredictions

• Both R-stream and IR-detector perform checks

2. Get ready for state recovery

• Backup IR-predictor (branch predictor)

• Flush delay buffer, flush ROBA, flush ROBR

• PCA=PCR

3. ...

Handl ing IR-mispredict ions

Cooperative Redundant Threads (CRT) Slide
18

Eric Rotenberg
NC State University
© 2000

3. Pinpoint corrupted architectural state in A-stream and
recover state from R-stream

• Entire register file copied from R-stream to A-stream

• Recovery controller maintains list of potentially tainted
memory addresses

• Communicate restore values via Delay Buffer, reverse
direction

Handl ing IR-mispredict ions (cont.)

Cooperative Redundant Threads (CRT) Slide
19

Eric Rotenberg
NC State University
© 2000

• Usually surface as branch/value mispredictions in R-stream

• Some IR-mispredictions take long time to show symptoms

• IR-detector can detect a problem sooner

- Compare predicted & computed removal information

- Checks are redundant with R-stream checks, but
recovery model requires “last line of defense”

- “Last line of defense” bounds state in recovery controller

IR-mispredict ion Detect ion

Cooperative Redundant Threads (CRT) Slide
20

Eric Rotenberg
NC State University
© 2000

ROB of A-stream Delay Buffer ROB of R-stream IR-detector

recovery controller

(possible store-undo)
add store 2

(possible store-do)
remove store 1add store 1

remove store 2

store 1: executed in A-stream
store 2: skipped in A-stream

IR-mispredict ion Recovery

Cooperative Redundant Threads (CRT) Slide
21

Eric Rotenberg
NC State University
© 2000

Review

Recovery
Controller

Branch
Pred. I-cache

D-cache

Execute
Core

Buffer
Reorder

Branch
Pred.I-cache

D-cache

Execute
Core

Buffer
Reorder

IR-detector

from IR-detector

to IR-predictor

A-stream R-stream

Delay Buffer

IR-predictor

Cooperative Redundant Threads (CRT) Slide
22

Eric Rotenberg
NC State University
© 2000

✓Introduction to CRT

✓Microarchitecture description

➔Understanding performance benefits

• Performance results

• Understanding fault tolerance benefits

• The bigger picture: harnessing CMP/SMT processors

• Conclusions

• Future work

Talk Out l ine

Cooperative Redundant Threads (CRT) Slide
23

Eric Rotenberg
NC State University
© 2000

• A-stream’s perspective

- Performance is better simply because program is shorter

- R-stream plays secondary role of validation

• R-stream’s perspective

- Better branch prediction

• [Pre-execution : Roth&Sohi, Zilles&Sohi, Farcy et. al.]

• A-stream is a helper thread

- Better value prediction (program-based, not history-based)

Predictor

predictions
unconfident

confident
predictions

A-stream R-stream

unverified

verified

Understanding Performance

Cooperative Redundant Threads (CRT) Slide
24

Eric Rotenberg
NC State University
© 2000

• What if fetch & execution bandwidth were unlimited?

- Critical path through program = serialized dependence
chains of mispredicted branches

- A-stream cannot reduced this critical path!

Understanding Performance (cont.)

Cooperative Redundant Threads (CRT) Slide
25

Eric Rotenberg
NC State University
© 2000

• Reasoning about instruction fetch and execution

- More execution bandwidth devoted to R-stream (more
units, bigger ROB) => A-stream less effective

- UNLESS A-stream can also bypass instruction fetching

- Raw instruction fetch bandwidth not as easily increased

• Branch predictor throughput

• Taken branches

• (trace predictors and trace caches...)

• Having a second program counter is great alternative
if it can run ahead

Understanding Performance (cont.)

Cooperative Redundant Threads (CRT) Slide
26

Eric Rotenberg
NC State University
© 2000

✓Introduction to CRT

✓Microarchitecture description

✓Understanding performance benefits

➔Performance results

• Understanding fault tolerance benefits

• The bigger picture: harnessing CMP/SMT processors

• Conclusions

• Future work

Talk Out l ine

Cooperative Redundant Threads (CRT) Slide
27

Eric Rotenberg
NC State University
© 2000

• Detailed execution-driven simulator

- Faithfully models entire microarchitecture

• A-stream produces possibly bad control/data,
R-stream checks A-stream and recovers, etc.

• Simulator validation: independent functional simulator
checks timing simulator (R-stream retired instr.)

- Simplescalar ISA and compiler

• Inherit inefficiency of MIPS ISA and gcc compiler

• SPEC95 integer benchmarks, run to completion (100M -
200M instructions)

Exper imental Method

Cooperative Redundant Threads (CRT) Slide
28

Eric Rotenberg
NC State University
© 2000

single processor

instruction cache

size/assoc/repl = 64kB/4-way/LRU
line size = 16 instructions
2-way interleaved
miss penalty = 12 cycles

data cache
size/assoc/repl = 64kB/4-way/LRU
line size = 64 bytes
miss penalty = 14 cycles

superscalar core

reorder buffer: 64, 128, or 256 entries
dispatch/issue/retire bandwidth: 4-/8-/16-way superscalar
n fully-symmetric functional units (n = issue bandwidth)
n loads/stores per cycle (n = issue bandwidth)

execution latencies

address generation = 1 cycle
memory access = 2 cycles (hit)
integer ALU ops = 1 cycle
complex ops = MIPS R10000 latencies

Single Processor Conf igurat ion

Cooperative Redundant Threads (CRT) Slide
29

Eric Rotenberg
NC State University
© 2000

new components for cooperating threads

IR-predictor
220 entries,gshare-indexed (16 bits of global branch history)
16 confidence counters per entry
confidence threshold = 32

IR-detector R-DFG = 256 instructions, unpartitioned

delay buffer
data flow buffer: 256 instruction entries
control flow buffer: 4K branch predictions

recovery controller

number of outstanding store addresses = unconstrained
recovery latency (after IR-misprediction detection):
• 5 cycles to start up recovery pipeline
• 4 register restores per cycle (64 regs performed first)
• 4 memory restores per cycle (mem performed second)
• ∴ minimum latency (no memory) = 21 cycles

New Component Conf igurat ion

Cooperative Redundant Threads (CRT) Slide
30

Eric Rotenberg
NC State University
© 2000

• SS(64x4): single 4-way superscalar proc. with 64 ROB entries.

• SS(128x8): single 8-way superscalar proc. with 128 ROB entries.

• SS(256x16): single 16-way superscalar proc. with 256 ROB entries.

• CMP(2x64x4): CRT on a CMP composed of two SS(64x4) cores.

• CMP(2x64x4)/byp: Same as previous, but A-stream can bypass
instruction fetching.

• CMP(2x128x8): CRT on a CMP composed of two SS(128x8) cores.

• CMP(2x128x8)/byp: Same as previous, but A-stream can bypass
instruction fetching.

• SMT(128x8)/byp: CRT on SMT, where SMT is built on top of SS(128x8).

Models

Cooperative Redundant Threads (CRT) Slide
31

Eric Rotenberg
NC State University
© 2000

0

1

2

3

4

5

6

comp gcc go jpeg li m88k perl vortex

IP
C

SS (64x4)
SS (128x8)
SS (256x16)
CMP(2x64x4)
CMP(2x64x4)/byp
CMP(2x128x8)
CMP(2x128x8)/byp
SMT(128x8)/byp

IPC Resul ts

Cooperative Redundant Threads (CRT) Slide
32

Eric Rotenberg
NC State University
© 2000

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

comp gcc go jpeg li m88k perl vortex AVG

%
 IP

C
 im

p
ro

ve
m

en
t

CMP(2x64x4) vs. SS(64x4)
CMP(2x64x4)/byp vs. SS(64x4)
CMP(2x128x8) vs. SS(128x8)
CMP(2x128x8)/byp vs. SS(128x8)

Using a Second Processor for CRT

Cooperative Redundant Threads (CRT) Slide
33

Eric Rotenberg
NC State University
© 2000

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

comp gcc go jpeg li m88k perl vortex AVG

%
 IP

C
 d

if
fe

re
n

ce
CMP(2x64x4)/byp vs. SS(128x8)

CMP(2x128x8)/byp vs. SS(256x16)

CRT on 2 smal l cores VS. 1 large core

Cooperative Redundant Threads (CRT) Slide
34

Eric Rotenberg
NC State University
© 2000

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

comp gcc go jpeg li m88k perl vortex

%
 IP

C
 Im

p
ro

ve
m

en
t

SMT(128x8)/byp vs. SS(128x8)

SMT Resul ts

Cooperative Redundant Threads (CRT) Slide
35

Eric Rotenberg
NC State University
© 2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

comp gcc go jpeg li m88k perl vortex

fr
ac

ti
o

n
 o

f
d

yn
am

ic
 in

st
ru

ct
io

n
s

prop writes/branches
prop writes
writes
prop branches
branches

Instruct ion Removal

Cooperative Redundant Threads (CRT) Slide
36

Eric Rotenberg
NC State University
© 2000

-5%

0%

5%

10%

15%

20%

25%

30%

35%

comp gcc go jpeg li m88k perl vortex

%
 IP

C
 im

p
ro

ve
m

en
t

o
ve

r
S

S
(6

4x
4)

SS(64x4) + context-based value prediction
CMP(2x64x4)/byp -- no value prediction
CMP(2x64x4)/byp

Predict ion Benef i ts

Cooperative Redundant Threads (CRT) Slide
37

Eric Rotenberg
NC State University
© 2000

✓Introduction to CRT

✓Microarchitecture description

✓Understanding performance benefits

✓Performance results

➔Understanding fault tolerance benefits

• The bigger picture: harnessing CMP/SMT processors

• Conclusions

• Future work

Talk Out l ine

Cooperative Redundant Threads (CRT) Slide
38

Eric Rotenberg
NC State University
© 2000

• [FTCS-29 - AR-SMT, Rotenberg, June 99]

• Formal analysis left for future work

• Assumptions

- Single transient fault model

- Fault eventually manifests as a bad value, appearing as
a misprediction in R-stream

• Time redundancy provides certain guarantees

- Single fault may cause simultaneous but different errors
in both A-stream and R-stream

- Streams are shifted in time: guarantees the two
redundant copies of an instruction will not both be
affected

Faul t Tolerance

Cooperative Redundant Threads (CRT) Slide
39

Eric Rotenberg
NC State University
© 2000

Fault Tolerance

Scenario #2

XR-stream

A-stream

X

Scenario #3

X

Scenario #1

Cooperative Redundant Threads (CRT) Slide
40

Eric Rotenberg
NC State University
© 2000

• Scenario #1

- Fault detectable, but indistinguishable from IR-misprediction!

- Must assume IR-misprediction

1. Don’t make any special considerations

• If fault does not flip R-stream arch. state, don’t care about
source of problem — recovery works! (pipeline coverage)

• Otherwise, the system is bad and we are unaware of it

2. Try to distinguish faults

• If no prior unresolved IR-predictions, it’s a fault — invoke
software (e.g., restart)

• Otherwise, default to 1) above

3. ECC on R-stream register file, D$: always fault tolerant

Faul t Tolerance

Cooperative Redundant Threads (CRT) Slide
41

Eric Rotenberg
NC State University
© 2000

• Scenario #2

- Affected R-stream instruction doesn’t have redundant
A-stream equivalent, nothing to compare with

- May propagate and detect later, but possibly too late

- Currently: no coverage for scenario #2 (future work)

• Scenario #3

- IR-misprediction detected before fault can cause
problems

• Summary

- Can (potentially) tolerate all faults that affect redundantly
executed instructions

Faul t Tolerance

Cooperative Redundant Threads (CRT) Slide
42

Eric Rotenberg
NC State University
© 2000

✓Introduction to CRT

✓Microarchitecture description

✓Understanding performance benefits

✓Performance results

✓Understanding fault tolerance benefits

➔The bigger picture: harnessing CMP/SMT processors

➔Conclusions

➔Future work

Talk Out l ine

Cooperative Redundant Threads (CRT) Slide
43

Eric Rotenberg
NC State University
© 2000

1. Multithreaded processors will be prevalent in the future.

2. There is vast, untapped potential for harnessing
multithreaded processors in new ways.

3. A single multithreaded processor can and should flexibly
provide many capabilities.

4. A multithreaded processor can and should be leveraged
without making fundamental changes to existing
components/mechanisms.

CRT is a concrete application of these principles.

Bigger Picture

Cooperative Redundant Threads (CRT) Slide
44

Eric Rotenberg
NC State University
© 2000

• CRT: flexible, comprehensive functionality within a single
strategic architecture

- multiprogrammed/parallel workload performance (CMP/SMT)

- single-program performance with improved reliability (CRT)

- high reliability with less performance impact (AR-SMT / SRT)

• Performance results
- 12% average improvement harnessing otherwise unused PE
- CRT on 2 small cores has comparable IPC to 1 large core, but with faster

clock and more flexible architecture
- Majority of benchmarks show significant A-stream reduction (50%); CRT

on 8-way SMT improves their performance 10%-20%
- Benefits: resolving mispredictions in advance + quality value prediction
- Demonstrated importance of bypassing instruction fetching

Conclusions

Cooperative Redundant Threads (CRT) Slide
45

Eric Rotenberg
NC State University
© 2000

1. CRT
- Understanding performance
- Microarchitecture design space
- Pipeline organization
- Fault tolerance
- System-level issues
- Adaptivity

2. Fundamental variations of CRT
- Streamlining R-stream
- Other A-stream shortening approaches
- Scaling to N threads
- Approximate A-streams

3. Other novel CMP/SMT applications

Future Work

Cooperative Redundant Threads (CRT) Slide
46

Eric Rotenberg
NC State University
© 2000

• Fault tolerance in high-perf. commodity microprocessors

- AR-SMT [Rotenberg, FTCS-29]

- DIVA [Austin, MICRO-32]

- SRT [Reinhardt, Mukherjee, ISCA-27]

- FTCS-29: panel on using COTS in reliable systems

- [Rubinfeld, Computer]

• Much prior work exploiting repetition, redundancy,
predictability in programs

- Instruction reuse, block reuse, trace-level reuse,
computation reuse

- Value speculation, silent writes

- Motivation for creating shorter A-stream

 Related Work

Cooperative Redundant Threads (CRT) Slide
47

Eric Rotenberg
NC State University
© 2000

• Understanding backward slices, pre-execution
- [Farcy et. al., MICRO-31], [Zilles&Sohi, ISCA-27], [Roth et. al., ASPLOS-8 / Tech Reports]

• Explicitly identify difficult computation chains, possibly for
pre-execution

• Instruction-removal is “inverted” with same effect:
A-stream is less-predictable subset but runs ahead

• A-stream — entire, redundant program instead of many
specialized kernels

• Speculative multithreading [e.g., Multiscalar, DMT]

- Replicated programs: no forking/merging of spec. thread
state needed

• DataScalar: redundant programs to eliminate memory reads

Related Work

