
Non-Uniform Program Analysis & Repeatable Execution Constraints:
Exploiting Out-of-Order Processors in Real-Time Systems

Aravindh Anantaraman and Eric Rotenberg
Department of ECE, North Carolina State University, Raleigh, NC

{avananta, ericro}@ncsu.edu, www.tinker.ncsu.edu/ericro
Abstract

The objective of this paper is to enable easy, tight, and
safe timing analysis of contemporary complex processors.
We exploit the fact that out-of-order processors can be
analyzed via simulation in the absence of variable control-
flow. In our first technique, Non-Uniform Program Analysis
(NUPA), program segments with a single flow of control are
analyzed on a complex pipeline via simulation and segments
with multiple flows of control are analyzed on a simple
pipeline via conventional static analysis. A reconfigurable
pipeline with dual complex/simple modes mirrors the hybrid
analysis. Our second technique, Repeatable Execution
Constraints for out-of-ORDER (RECORDER), defines
constraints that guarantee a single input-independent
execution time on an out-of-order pipeline for program
segments with multiple flows of control. Thus, execution
time can be derived via simulation with arbitrary inputs.
1. Introduction

Tasks’ worst-case execution times (WCETs) are
derived using some form of timing analysis. Present-day
timing analysis tools can efficiently analyze the cycle-level
timing of simple in-order processors, deriving tight WCETs
in the context of these simple processors. Although tight,
these WCETs are large because of the low performance of
the underlying simple processor. Replacing the simple
processor with a contemporary high-performance processor
may yield smaller WCETs, allowing (1) additional tasks to
be safely scheduled and/or (2) task rates to be increased.
However, statically deriving tasks’ WCETs on contemporary
processors is extremely complicated and, in some cases,
intractable. Since WCETs cannot be safely derived on
contemporary processors, these processors are typically
excluded from hard real-time systems.

In this paper, we examine why it is difficult to
statically analyze the cycle-level timing of a contemporary
out-of-order processor. We then propose two novel
techniques that exploit an out-of-order processor to reduce
tasks’ WCETs with respect to WCETs on a simple in-order
processor.

An out-of-order processor examines a “window” of
dynamic instructions to create a high-performance out-of-
order instruction schedule. As processor pipelines become
wider (to fetch/execute more instructions per cycle) and
deeper (to increase clock frequency), larger scheduling
windows are needed to expose more instructions to the
dynamic scheduler. For example, the Pentium 4 fetches 3
micro-ops per cycle and has more than 20 pipeline stages.
To support such a wide and deep pipeline, the
microarchitecture supports as many as 126 in-flight
instructions in the scheduling window.

Statically deriving the WCET requires examining a
corresponding scheduling window in software, and
anticipating the worst-case schedule that would be formed
dynamically by the processor. Although the processor
schedules instructions at run-time, the schedule can be
deduced easily, a priori, if there is no control-flow and no

variable or unknown latencies. In the absence of control-
flow, there is only one path of dynamic instructions, hence
only one schedule.

Control-flow increases the number of possible paths
through the program, which causes a corresponding increase
in the number of possible execution schedules. Each
additional branch doubles the number of paths and the
number of possible schedules. Returning to the Pentium 4
example, assuming a branch every 8 instructions, we can
have as many as 16 branches in the window. Worst-case
timing analysis has to consider 216 (65,536) possible
execution schedules in this case. As each new processor
generation supports successively larger windows, timing
analysis becomes intractable.

Deriving the WCET for an entire program is an even
harder proposition. Analyzing the program as a whole is not
as simple as sub-dividing the program into discrete
scheduling windows, deriving corresponding sub-WCETs,
and then composing an overall WCET from sub-WCETs. A
naïve concatenation of sub-WCETs is inconsistent with the
fact that a hardware scheduling window continuously shifts
through the dynamic instruction stream. The only way to
truly capture the performance of an out-of-order, continuous-
window processor is to enumerate every possible execution
schedule through the entire program. This is impractical for
programs with variable (i.e., input-dependent) control-flow.

In this paper, we propose two complementary
techniques that greatly simplify timing analysis of
contemporary superscalar processors, allowing us to exploit
out-of-order execution and multiple-instruction-issue to
reduce tasks’ WCETs.

Our first technique is called Non-Uniform Program
Analysis (NUPA). It adopts a non-uniform approach to
timing analysis, where each region of a program is
individually analyzed in the context of a pipeline model that
is most suited for that region, in terms of efficient and tight
analysis. NUPA exploits the fact that program segments with
a single flow of control have a single execution schedule.
Thus, simulation can be used to derive their WCETs on a
complex pipeline. On the other hand, program segments with
variable control-flow are statically analyzed in the context of
a simple pipeline. We adapt a previously proposed
reconfigurable processor [1] so that the hardware mirrors
NUPA’s non-uniform analysis. At run-time, the processor
pipeline is configured to operate in a complex mode (that
resembles the complex pipeline) for program segments that
were analyzed for the complex pipeline, and is configured to
operate in a simple mode (that resembles the simple pipeline)
for segments that were analyzed for the simple pipeline.

Note that NUPA only partially exploits the complex
mode. It uses the complex mode only for program segments
that can be simulated (i.e., no variable control-flow),
reducing their WCETs, while WCETs of other segments are
not reduced.

Our second technique directly attacks the problem of
analyzing variable control-flow on an out-of-order pipeline.
The key idea is to simplify timing analysis by eliminating

variable control-flow and its side effects. Eliminating
variable control-flow yields a single path through the
program, permitting simulation-based timing analysis.

Eliminating control-flow for tractable timing analysis
was first proposed by Puschner and Burns in the Single-Path
Architecture [3], but their technique is not sufficient for an
out-of-order pipeline. They used conventional if-conversion
(predication). Predication converts input-dependent control-
flow into input-dependent data-flow. Executing both paths of
a branch yields multiple potential producer instructions of a
value. Ambiguity in who produces the value is referred to as
input-dependent data-flow in this paper. There may be a later
consumer instruction, after the predicated block, that
depends on this value. It is now ambiguous as to when the
consumer executes because it depends on which producer is
the true producer and when that producer executes. Thus,
input-dependent data-flow can cause variations in execution
time and has to be accounted for by timing analysis.
Unfortunately, analyzing input-dependent data-flow is just
as complex as analyzing input-dependent control-flow.

We propose a strict set of constraints, called Repeatable
Execution Constraints for out-of-ORDER (RECORDER),
which facilitates easy timing analysis of an out-of-order
pipeline by ensuring a single execution time that is
independent of the program’s input. The first constraint
stipulates that the number of dynamic instances of an
instruction be constant across program runs, independent of
the program’s input. This can be implemented by predicated
execution, i.e., executing both paths of a predicated branch
and using the results of the correct-path instructions and
discarding the results of the wrong-path instructions. This
constraint is similar to the single-path architecture.

The second constraint requires that a dynamic instance
of an instruction execute at the same instant of time across
different program runs, again independent of the program’s
input. This constraint ensures that execution time is not
affected by any input-dependent data-flow. This is achieved
by issuing/executing a dependent instruction only after all
potential producer instructions have executed.

Thus, RECORDER guarantees a single execution time
that is independent of the program’s input, and this
execution time is both the actual execution time and the
worst-case execution time. Using RECORDER, the
execution time of a program can be recorded once using
arbitrary (random) inputs and this does not change across
program runs. The uniqueness of RECORDER lies in the
fact that it allows instructions to execute out-of-order within
a program, while guaranteeing that a specific dynamic
instance of an instruction executes at the same time across
different program runs, independent of the program’s input.

Note that RECORDER is only a set of constraints and
there may be multiple ways to implement these constraints.
In this paper, we show that a previously proposed
predication technique for out-of-order pipelines, called phi-
predication [4], satisfies RECORDER constraints.

A task which is predicated indiscriminately may have a
larger WCET on a complex pipeline than the WCET of the
original non-predicated task on a simple pipeline, defeating
the purpose of using a high-performance contemporary
processor. It is well known that indiscriminate predication
may degrade performance due to resource contention from
wrong path instructions. To address this, we propose a

combination of NUPA and RECORDER. The idea is to phi-
predicate a program segment only if its WCET on the
complex mode is less than the WCET of the non-predicated
counterpart on the simple mode. The better policy is selected
accordingly: simulation of phi-predicated version on
complex mode (RECORDER) vs. conventional static timing
analysis of non-predicated version on simple mode. Other
factors may also be weighed in the policy decision, such as
power consumption or feasibility of phi-predication.
2. Related work

Hybrid timing analysis approaches have been
previously proposed where different segments of a program
are analyzed using different timing analysis techniques.
Symbolic hybrid timing analysis (SYMTA), proposed by
Ernst and Ye [2], is one such approach. In SYMTA, a
program is divided into single-feasible-paths (SFPs) and
multiple-feasible-paths (MFPs). Simulation is used to
estimate WCETs for SFPs and conventional analysis is used
to estimate WCETs for MFPs. NUPA and SYMTA use a
similar hybrid analysis approach. However, SYMTA only
works with simple processors because it is constrained to a
single pipeline model. On the other hand, NUPA matches
hybrid analysis to a hybrid pipeline underneath, thus
exploiting the performance of a complex mode for SFPs via
simulation, while still enabling efficient static analysis of
MFPs on a simple mode.

The Single-Path Architecture [3] proposed by Puschner
and Burns is closely related to RECORDER. In the single-
path architecture, variable control-flow is removed by if-
conversion. The idea is to force a single execution path
through the program and use simulation to derive the
WCET. The single-path architecture implicitly assumes that
instructions are executed in strict program order. This
assumption does not hold in an out-of-order pipeline. Due to
out-of-order execution, a value guarded by a predicated
branch may be forwarded at different times depending on
when the candidate producer instructions complete and when
the predicate is computed, leading to variation in execution
time. As a result, the single-path architecture cannot
guarantee a single execution time (in spite of ensuring a
single path through the program) on an out-of-order pipeline.

We demonstrate the problem with the single-path
architecture on an out-of-order pipeline, using the same
example provided in their paper, shown below.

1. r1 = expr1;
2. r2 = expr2;
3. test cond;
4. movt rr, r1;
5. movf rr, r2;

Assume that instruction 3 is executed first (i.e., cond is
evaluated first), followed by instruction 2 (r2 is computed
second), and then instruction 1 executes (r1 is computed
last). Based on the outcome of cond, only one of the two
mov instructions (inst. 4 or inst. 5) actually writes into
register rr. (Note that the destination registers (rr) of inst. 4
and inst. 5 must be renamed to the same physical register to
ensure that later consumers of rr get the correct value.) If
cond is false, inst. 5 executes as soon as r2 is computed.
Later instructions that consume rr can now execute without
having to wait for r1 to be computed. Similarly, if cond is
true, inst. 4 executes, writing the value of r1 into rr. Later
instructions that consume rr can now execute without having

to wait for r2. Summing up, later dependent instructions may
execute at different times based on the outcome of cond and
when r1 and r2 are computed. There can be variations in
execution time even with a single path, depending on the
outcome of inst. 3 (i.e., cond).

Moreover, it is difficult or impossible to employ if-
conversion in certain scenarios (for example, function calls
in branch paths). It might be impossible to convert a whole
program into a single path. Finally, whole-program if-
conversion may also result in inflated WCETs and high
power consumption. RECORDER also has the above issues.
Nonetheless, NUPA permits us to opt out of the complex
mode when phi-predication is difficult or not beneficial and
allows us to revert to the simple mode instead.

In the Virtual Simple Architecture [1], tasks are
speculatively attempted on the complex mode of a
reconfigurable processor. However, WCETs are still derived
in the context of the simple mode. The complex mode only
creates dynamic slack. Tasks’ WCETs are not reduced with
respect to the simple mode. On the other hand, NUPA
exploits the complex mode to reduce the WCET. Note that
NUPA and VISA are complementary techniques. Program
segments that are analyzed on the simple mode in NUPA can
be speculatively attempted on the complex mode with the
VISA gauging mechanisms turned on. Thus, we can exploit
the benefits of both techniques – reduced WCET due to
NUPA and dynamic slack due to VISA.
3. Non-Uniform Program Analysis (NUPA)

NUPA is a flexible timing analysis strategy that allows
different segments of a program to be analyzed on different
pipelines. The key idea is to match each program segment to
the pipeline that is most suited for that program segment, in
terms of a tight WCET and easy analysis.

In this paper, we adapt the reconfigurable pipeline
proposed in VISA [1] to match NUPA’s timing analysis. The
reconfigurable pipeline has two operating modes: (1) a high-
performance complex mode that features out-of-order
execution, multiple-issue, and dynamic branch prediction,
and (2) a static-timing-analysis-oriented simple mode that
features in-order execution, single-issue, and static branch
prediction.

We divide a program into multiple smaller segments
based on the nature of control-flow. Program segments with
no branches or input-independent branches have a single
path (i.e., a single-feasible path), and segments with input-
dependent branches have multiple paths (i.e., multiple-
feasible paths). Path clustering [2] can be used to classify
program segments based on the nature of control-flow.

NUPA exploits the fact that simulation with arbitrary
program inputs can be used to derive WCET on an out-of-
order pipeline if there is no control-flow and no variable-
latency instructions. Segments with single-feasible-paths are
analyzed via simulation in the context of the complex mode
of the reconfigurable processor. Other program segments
with multiple-feasible-paths are analyzed via conventional
static timing analysis in the context of the simple mode.

Variable-latency instructions, for example, memory
accesses, multiply instructions, and floating-point divide
instructions, can lead to different execution times in spite of
a single-feasible path. For this initial work, we assume the
worst-case latency for all variable-latency arithmetic
instructions, independent of the program’s input. For

memory accesses, cache locking or software-managed
scratch-pad memories can be used to guarantee a constant
latency. Accounting for variable-latency instructions will be
considered in future work.

Finally, to ensure a single execution time, the
microarchitectural state at the start of a given program
segment must be identical across program runs. This
includes the state of the pipeline, the caches, and the branch
predictor. We assume that the pipeline is drained at the
beginning of a program segment. Also, the caches and
branch predictor are flushed at the beginning of a program
segment. The overheads of draining the pipeline and
flushing the hardware structures are added to the WCET of
the program segment.

The reconfigurable pipeline has to be configured to the
complex mode at the beginning of program segments that
are analyzed on the complex mode and switched back to the
simple mode at the start of program segments that are
analyzed on the simple mode. The overhead of switching has
to be accounted for in the WCET.

The uniqueness of NUPA is that it can be applied at the
task-set level too. For example, some tasks may have single
feasible path from start to end. These tasks can be analyzed
on the complex mode while other tasks with multiple
feasible paths are analyzed on the simple mode. In this case,
the pipeline is reconfigured only at task boundaries and not
within tasks.

 To demonstrate the benefits of NUPA, we use four
tasks from the C-lab benchmark suite. In this paper, we only
present results for task-set level NUPA. All 4 tasks have
single-feasible paths and can be analyzed via simulation on
the complex mode. Table 1 shows the WCETs of the 4 tasks
on the simple mode (derived via static analysis) and the
complex mode (derived via simulation with arbitrary inputs).
 Table 1. WCETs using NUPA.

The last column
shows % reduction in
WCET yielded by the
complex mode w. r. t. the
simple mode. The reduction
in WCET ranges from 69%
to 83% for the 4 tasks.

Future work involves studying the WCET reduction
yielded by NUPA within a single task.
4. Repeatable Execution Constraints for

out-of-ORDER (RECORDER)
RECORDER defines a strict set of constraints that

guarantee a single input-independent execution schedule on
an out-of-order pipeline. If these constraints are met,
simulation with arbitrary (random) inputs can be used to
derive the execution schedule.

RECORDER specifies the following constraints: (1)
the number of dynamic instances of an instruction must be
constant across program runs, independent of the input, and
(2) a dynamic instance of an instruction must execute at the
same time across program runs, independent of the
program’s input. These constraints guarantee a single input-
independent execution schedule on an out-of-order pipeline.

The first constraint stipulates that the number of
dynamic instructions must be constant across program runs.
This ensures that there is no variation in the dynamic
instruction stream. The dynamic scheduler sees a single trace

WCET (ms)
Task simple complex

% reduction
in WCET

w.r.t. simple
CNT 0.07 0.02 71%
FFT 0.36 0.06 83%
LMS 0.17 0.04 76%
MM 2.1 0.66 69%

of instructions, that does not change with the program’s
input. This can be achieved by predicating all input-
dependent branches, thereby always executing both paths of
these branches.

Executing both paths of an input-dependent branch
may yield multiple potential producers of a value. A later
dependent instruction, after the predicated block, may
execute at different times depending on which producer is
ultimately selected and when that producer executes. The
second RECORDER constraint stipulates that there must be
no such timing variability. This can be achieved by
executing an instruction only after all potential producer
instructions are executed.

The uniqueness of RECORDER is that it only specifies
a set of constraints that have to be followed by the dynamic
scheduler. The execution schedule does not have to be
constructed a priori. The execution schedule is determined
by the dynamic scheduler at run-time. The dynamic
scheduler has the flexibility to schedule instructions out-of-
order for high performance. The constraints specified by
RECORDER simply guarantee that the dynamic scheduler
will always construct the same high-performance execution
schedule across program runs, independent of the program’s
inputs. Thus, instructions can execute out-of-order within a
program run, but a specific instance of an instruction always
executes at the same time across program runs.

Finally, we show how a previously proposed technique,
called Phi-predication [4], satisfies RECORDER constraints.
With conventional predication, a branch is converted into a
predicate computation and each path (all instructions in that
path) is assigned a unique predicate. Phi-predication differs
from conventional predication, in that all predicated
instructions write their results to the register file and a
special “select” instruction (per logical register) at the end of
the predicated block is used to select the correct result to be
forwarded after the predicated block, based on the outcomes
of predicates.

Phi-predication satisfies the first RECORDER
constraint since instructions along both paths of a predicated
branch are always executed. This guarantees that the number
of dynamic instances of an instruction is the same across
program runs, independent of the program’s input.

Phi-predication uses a select instruction to choose the
correct version of a register when there are multiple
producers of the register in a predicated region. By
introducing the select instruction, a later consumer that uses
the register depends on the single select instruction.
Moreover, the select instruction depends on all potential
producers and it executes only after all the potential
producer instructions have executed. This implies that the
select instruction and subsequent dependent instructions wait
for the slowest potential producer. In this way, the select
instruction removes timing variations of a dynamic instance
across runs, otherwise caused by input-dependent data-flow,
guaranteeing the second RECORDER constraint.

We use a synthetic micro-benchmark to illustrate
RECORDER. The benchmark consists of an input-
dependent branch inside a loop that is executed 30 times.
One path of the input-dependent branch has 15 add
instructions and the other path of the branch has 2 add
instructions. Figure 1 shows the actual execution times
(AETs) of the benchmark on an in-order scalar pipeline with

static branch prediction (called simple) and an out-of-order
2-issue pipeline with dynamic branch prediction (called
complex), for 5 different input sets. The third bar shows
WCET on simple obtained via conventional timing analysis.
Complex cannot be analyzed, so there is no provably known
WCET on complex. The last bar shows the AET (also the
WCET) on an out-of-order 2-issue pipeline that uses phi-
predication (called complex w/ RECORDER). The key point
to note is that the AET/WCET on complex w/ RECORDER
remains constant for all 5 inputs, whereas the AETs on
simple and complex vary with the program’s input.

0

100

200

300

400

500

600

700

800

900

Input 1 Input 2 Input 3 Input 4 Input 5

tim
e

(m
s)

AET (simple)
AET (complex)
WCET (simple)
AET/WCET (complex w/ RECORDER)

Figure 1. Actual execution times and worst-case execution times
for simple and complex with and without RECORDER.

Notice that the AET/WCET on complex w/
RECORDER is slightly greater than the AET on complex.
This is due to the overhead of phi-predication. Nonetheless,
complex w/ RECORDER yields a 43% reduction in WCET
w.r.t. WCET on simple. Thus, RECORDER guarantees a
constant input-independent execution time on an out-of-
order pipeline that can be obtained via simulation, with
arbitrary inputs, and this WCET is much smaller than the
WCET on an in-order pipeline.
5. Summary

We proposed two complementary techniques that
enable easy, tight, and safe WCET analysis of complex
processors. With NUPA, program segments with a single
path are analyzed on a complex pipeline via simulation, and
program segments with multiple paths are analyzed on a
simple pipeline via conventional static analysis. A
reconfigurable processor with dual modes mirrors the hybrid
analysis. RECORDER defines constraints that, if met,
guarantee a single input-independent execution schedule on
an out-of-order pipeline, allowing simulation-based timing
analysis with arbitrary inputs even for program segments
with variable control-flow. NUPA and RECORDER work
hand-in-hand to capitalize on the performance of
contemporary microarchitectures in hard-real-time systems.
References
[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F.

Mueller, “Virtual Simple Architecture (VISA): Exceeding the
Complexity Limit in Safe Real-Time Systems”, Proc. Int.
Sym. on Computer Architecture, 2003

[2] R. Ernst and W. Ye, "Embedded Program Timing Analysis
Based on Path Clustering and Architecture Classification",
Proc. Int. Conf. on CAD, 1997, pp. 598-604.

[3] P. Puschner, A. Burns. “Writing Temporally Predictable
Code”. Proc. 7th Int. Workshop on Object-Oriented Real-
Time Dependable Systems, 2002.

[4] W. Chuang, B. Calder, J. Ferrante. “Phi-Predication for
Light-Weight If-Conversion”, Proc. Int. Sym. on Code
Generation and Optimization, 2003.

