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Abstract 

The objective of this paper is to enable easy, tight, and 
safe timing analysis of contemporary complex processors. 
We exploit the fact that out-of-order processors can be 
analyzed via simulation in the absence of variable control-
flow. In our first technique, Non-Uniform Program Analysis 
(NUPA), program segments with a single flow of control are 
analyzed on a complex pipeline via simulation and segments 
with multiple flows of control are analyzed on a simple 
pipeline via conventional static analysis. A reconfigurable 
pipeline with dual complex/simple modes mirrors the hybrid 
analysis. Our second technique, Repeatable Execution 
Constraints for out-of-ORDER (RECORDER), defines 
constraints that guarantee a single input-independent 
execution time on an out-of-order pipeline for program 
segments with multiple flows of control. Thus, execution 
time can be derived via simulation with arbitrary inputs. 
1. Introduction 

Tasks’ worst-case execution times (WCETs) are 
derived using some form of timing analysis. Present-day 
timing analysis tools can efficiently analyze the cycle-level 
timing of simple in-order processors, deriving tight WCETs 
in the context of these simple processors. Although tight, 
these WCETs are large because of the low performance of 
the underlying simple processor. Replacing the simple 
processor with a contemporary high-performance processor 
may yield smaller WCETs, allowing (1) additional tasks to 
be safely scheduled and/or (2) task rates to be increased. 
However, statically deriving tasks’ WCETs on contemporary 
processors is extremely complicated and, in some cases, 
intractable. Since WCETs cannot be safely derived on 
contemporary processors, these processors are typically 
excluded from hard real-time systems.  

In this paper, we examine why it is difficult to 
statically analyze the cycle-level timing of a contemporary 
out-of-order processor. We then propose two novel 
techniques that exploit an out-of-order processor to reduce 
tasks’ WCETs with respect to WCETs on a simple in-order 
processor. 

An out-of-order processor examines a “window” of 
dynamic instructions to create a high-performance out-of-
order instruction schedule. As processor pipelines become 
wider (to fetch/execute more instructions per cycle) and 
deeper (to increase clock frequency), larger scheduling 
windows are needed to expose more instructions to the 
dynamic scheduler. For example, the Pentium 4 fetches 3 
micro-ops per cycle and has more than 20 pipeline stages. 
To support such a wide and deep pipeline, the 
microarchitecture supports as many as 126 in-flight 
instructions in the scheduling window. 

Statically deriving the WCET requires examining a 
corresponding scheduling window in software, and 
anticipating the worst-case schedule that would be formed 
dynamically by the processor. Although the processor 
schedules instructions at run-time, the schedule can be 
deduced easily, a priori, if there is no control-flow and no 

variable or unknown latencies. In the absence of control-
flow, there is only one path of dynamic instructions, hence 
only one schedule.  

Control-flow increases the number of possible paths 
through the program, which causes a corresponding increase 
in the number of possible execution schedules. Each 
additional branch doubles the number of paths and the 
number of possible schedules. Returning to the Pentium 4 
example, assuming a branch every 8 instructions, we can 
have as many as 16 branches in the window. Worst-case 
timing analysis has to consider 216 (65,536) possible 
execution schedules in this case. As each new processor 
generation supports successively larger windows, timing 
analysis becomes intractable.  

Deriving the WCET for an entire program is an even 
harder proposition. Analyzing the program as a whole is not 
as simple as sub-dividing the program into discrete 
scheduling windows, deriving corresponding sub-WCETs, 
and then composing an overall WCET from sub-WCETs. A 
naïve concatenation of sub-WCETs is inconsistent with the 
fact that a hardware scheduling window continuously shifts 
through the dynamic instruction stream. The only way to 
truly capture the performance of an out-of-order, continuous-
window processor is to enumerate every possible execution 
schedule through the entire program. This is impractical for 
programs with variable (i.e., input-dependent) control-flow. 

In this paper, we propose two complementary 
techniques that greatly simplify timing analysis of 
contemporary superscalar processors, allowing us to exploit 
out-of-order execution and multiple-instruction-issue to 
reduce tasks’ WCETs. 

Our first technique is called Non-Uniform Program 
Analysis (NUPA). It adopts a non-uniform approach to 
timing analysis, where each region of a program is 
individually analyzed in the context of a pipeline model that 
is most suited for that region, in terms of efficient and tight 
analysis. NUPA exploits the fact that program segments with 
a single flow of control have a single execution schedule. 
Thus, simulation can be used to derive their WCETs on a 
complex pipeline. On the other hand, program segments with 
variable control-flow are statically analyzed in the context of 
a simple pipeline. We adapt a previously proposed 
reconfigurable processor [1] so that the hardware mirrors 
NUPA’s non-uniform analysis. At run-time, the processor 
pipeline is configured to operate in a complex mode (that 
resembles the complex pipeline) for program segments that 
were analyzed for the complex pipeline, and is configured to 
operate in a simple mode (that resembles the simple pipeline) 
for segments that were analyzed for the simple pipeline. 

Note that NUPA only partially exploits the complex 
mode. It uses the complex mode only for program segments 
that can be simulated (i.e., no variable control-flow), 
reducing their WCETs, while WCETs of other segments are 
not reduced. 

Our second technique directly attacks the problem of 
analyzing variable control-flow on an out-of-order pipeline. 
The key idea is to simplify timing analysis by eliminating 



variable control-flow and its side effects. Eliminating 
variable control-flow yields a single path through the 
program, permitting simulation-based timing analysis.  

Eliminating control-flow for tractable timing analysis 
was first proposed by Puschner and Burns in the Single-Path 
Architecture [3], but their technique is not sufficient for an 
out-of-order pipeline. They used conventional if-conversion 
(predication). Predication converts input-dependent control-
flow into input-dependent data-flow. Executing both paths of 
a branch yields multiple potential producer instructions of a 
value. Ambiguity in who produces the value is referred to as 
input-dependent data-flow in this paper. There may be a later 
consumer instruction, after the predicated block, that 
depends on this value. It is now ambiguous as to when the 
consumer executes because it depends on which producer is 
the true producer and when that producer executes. Thus, 
input-dependent data-flow can cause variations in execution 
time and has to be accounted for by timing analysis. 
Unfortunately, analyzing input-dependent data-flow is just 
as complex as analyzing input-dependent control-flow. 

We propose a strict set of constraints, called Repeatable 
Execution Constraints for out-of-ORDER (RECORDER), 
which facilitates easy timing analysis of an out-of-order 
pipeline by ensuring a single execution time that is 
independent of the program’s input. The first constraint 
stipulates that the number of dynamic instances of an 
instruction be constant across program runs, independent of 
the program’s input. This can be implemented by predicated 
execution, i.e., executing both paths of a predicated branch 
and using the results of the correct-path instructions and 
discarding the results of the wrong-path instructions. This 
constraint is similar to the single-path architecture. 

The second constraint requires that a dynamic instance 
of an instruction execute at the same instant of time across 
different program runs, again independent of the program’s 
input. This constraint ensures that execution time is not 
affected by any input-dependent data-flow. This is achieved 
by issuing/executing a dependent instruction only after all 
potential producer instructions have executed.  

Thus, RECORDER guarantees a single execution time 
that is independent of the program’s input, and this 
execution time is both the actual execution time and the 
worst-case execution time. Using RECORDER, the 
execution time of a program can be recorded once using 
arbitrary (random) inputs and this does not change across 
program runs. The uniqueness of RECORDER lies in the 
fact that it allows instructions to execute out-of-order within 
a program, while guaranteeing that a specific dynamic 
instance of an instruction executes at the same time across 
different program runs, independent of the program’s input. 

Note that RECORDER is only a set of constraints and 
there may be multiple ways to implement these constraints. 
In this paper, we show that a previously proposed 
predication technique for out-of-order pipelines, called phi-
predication [4], satisfies RECORDER constraints. 

A task which is predicated indiscriminately may have a 
larger WCET on a complex pipeline than the WCET of the 
original non-predicated task on a simple pipeline, defeating 
the purpose of using a high-performance contemporary 
processor. It is well known that indiscriminate predication 
may degrade performance due to resource contention from 
wrong path instructions. To address this, we propose a 

combination of NUPA and RECORDER. The idea is to phi-
predicate a program segment only if its WCET on the 
complex mode is less than the WCET of the non-predicated 
counterpart on the simple mode. The better policy is selected 
accordingly: simulation of phi-predicated version on 
complex mode (RECORDER) vs. conventional static timing 
analysis of non-predicated version on simple mode. Other 
factors may also be weighed in the policy decision, such as 
power consumption or feasibility of phi-predication.  
2. Related work 

Hybrid timing analysis approaches have been 
previously proposed where different segments of a program 
are analyzed using different timing analysis techniques. 
Symbolic hybrid timing analysis (SYMTA), proposed by 
Ernst and Ye [2], is one such approach.  In SYMTA, a 
program is divided into single-feasible-paths (SFPs) and 
multiple-feasible-paths (MFPs). Simulation is used to 
estimate WCETs for SFPs and conventional analysis is used 
to estimate WCETs for MFPs. NUPA and SYMTA use a 
similar hybrid analysis approach. However, SYMTA only 
works with simple processors because it is constrained to a 
single pipeline model. On the other hand, NUPA matches 
hybrid analysis to a hybrid pipeline underneath, thus 
exploiting the performance of a complex mode for SFPs via 
simulation, while still enabling efficient static analysis of 
MFPs on a simple mode. 

The Single-Path Architecture [3] proposed by Puschner 
and Burns is closely related to RECORDER. In the single-
path architecture, variable control-flow is removed by if-
conversion. The idea is to force a single execution path 
through the program and use simulation to derive the 
WCET. The single-path architecture implicitly assumes that 
instructions are executed in strict program order. This 
assumption does not hold in an out-of-order pipeline.  Due to 
out-of-order execution, a value guarded by a predicated 
branch may be forwarded at different times depending on 
when the candidate producer instructions complete and when 
the predicate is computed, leading to variation in execution 
time. As a result, the single-path architecture cannot 
guarantee a single execution time (in spite of ensuring a 
single path through the program) on an out-of-order pipeline.  

We demonstrate the problem with the single-path 
architecture on an out-of-order pipeline, using the same 
example provided in their paper, shown below. 

1. r1 = expr1; 
2. r2 = expr2; 
3. test cond; 
4. movt rr, r1; 
5. movf rr, r2; 

Assume that instruction 3 is executed first (i.e., cond is 
evaluated first), followed by instruction 2 (r2 is computed 
second), and then instruction 1 executes (r1 is computed 
last). Based on the outcome of cond, only one of the two 
mov instructions (inst. 4 or inst. 5) actually writes into 
register rr. (Note that the destination registers (rr) of inst. 4 
and inst. 5 must be renamed to the same physical register to 
ensure that later consumers of rr get the correct value.) If 
cond is false, inst. 5 executes as soon as r2 is computed. 
Later instructions that consume rr can now execute without 
having to wait for r1 to be computed. Similarly, if cond is 
true, inst. 4 executes, writing the value of r1 into rr. Later 
instructions that consume rr can now execute without having 



to wait for r2. Summing up, later dependent instructions may 
execute at different times based on the outcome of cond and 
when r1 and r2 are computed. There can be variations in 
execution time even with a single path, depending on the 
outcome of inst. 3 (i.e., cond). 

Moreover, it is difficult or impossible to employ if-
conversion in certain scenarios (for example, function calls 
in branch paths). It might be impossible to convert a whole 
program into a single path. Finally, whole-program if-
conversion may also result in inflated WCETs and high 
power consumption. RECORDER also has the above issues. 
Nonetheless, NUPA permits us to opt out of the complex 
mode when phi-predication is difficult or not beneficial and 
allows us to revert to the simple mode instead.  

In the Virtual Simple Architecture [1], tasks are 
speculatively attempted on the complex mode of a 
reconfigurable processor. However, WCETs are still derived 
in the context of the simple mode. The complex mode only 
creates dynamic slack. Tasks’ WCETs are not reduced with 
respect to the simple mode. On the other hand, NUPA 
exploits the complex mode to reduce the WCET. Note that 
NUPA and VISA are complementary techniques. Program 
segments that are analyzed on the simple mode in NUPA can 
be speculatively attempted on the complex mode with the 
VISA gauging mechanisms turned on. Thus, we can exploit 
the benefits of both techniques – reduced WCET due to 
NUPA and dynamic slack due to VISA.  
3. Non-Uniform Program Analysis (NUPA) 

NUPA is a flexible timing analysis strategy that allows 
different segments of a program to be analyzed on different 
pipelines. The key idea is to match each program segment to 
the pipeline that is most suited for that program segment, in 
terms of a tight WCET and easy analysis.  

In this paper, we adapt the reconfigurable pipeline 
proposed in VISA [1] to match NUPA’s timing analysis. The 
reconfigurable pipeline has two operating modes: (1) a high-
performance complex mode that features out-of-order 
execution, multiple-issue, and dynamic branch prediction, 
and (2) a static-timing-analysis-oriented simple mode that 
features in-order execution, single-issue, and static branch 
prediction. 

We divide a program into multiple smaller segments 
based on the nature of control-flow. Program segments with 
no branches or input-independent branches have a single 
path (i.e., a single-feasible path), and segments with input-
dependent branches have multiple paths (i.e., multiple-
feasible paths). Path clustering [2] can be used to classify 
program segments based on the nature of control-flow. 

NUPA exploits the fact that simulation with arbitrary 
program inputs can be used to derive WCET on an out-of-
order pipeline if there is no control-flow and no variable-
latency instructions. Segments with single-feasible-paths are 
analyzed via simulation in the context of the complex mode 
of the reconfigurable processor. Other program segments 
with multiple-feasible-paths are analyzed via conventional 
static timing analysis in the context of the simple mode.  

Variable-latency instructions, for example, memory 
accesses, multiply instructions, and floating-point divide 
instructions, can lead to different execution times in spite of 
a single-feasible path. For this initial work, we assume the 
worst-case latency for all variable-latency arithmetic 
instructions, independent of the program’s input. For 

memory accesses, cache locking or software-managed 
scratch-pad memories can be used to guarantee a constant 
latency. Accounting for variable-latency instructions will be 
considered in future work. 

Finally, to ensure a single execution time, the 
microarchitectural state at the start of a given program 
segment must be identical across program runs. This 
includes the state of the pipeline, the caches, and the branch 
predictor. We assume that the pipeline is drained at the 
beginning of a program segment. Also, the caches and 
branch predictor are flushed at the beginning of a program 
segment. The overheads of draining the pipeline and 
flushing the hardware structures are added to the WCET of 
the program segment. 

The reconfigurable pipeline has to be configured to the 
complex mode at the beginning of program segments that 
are analyzed on the complex mode and switched back to the 
simple mode at the start of program segments that are 
analyzed on the simple mode. The overhead of switching has 
to be accounted for in the WCET. 

The uniqueness of NUPA is that it can be applied at the 
task-set level too. For example, some tasks may have single 
feasible path from start to end. These tasks can be analyzed 
on the complex mode while other tasks with multiple 
feasible paths are analyzed on the simple mode. In this case, 
the pipeline is reconfigured only at task boundaries and not 
within tasks.  

 To demonstrate the benefits of NUPA, we use four 
tasks from the C-lab benchmark suite. In this paper, we only 
present results for task-set level NUPA. All 4 tasks have 
single-feasible paths and can be analyzed via simulation on 
the complex mode.  Table 1 shows the WCETs of the 4 tasks 
on the simple mode (derived via static analysis) and the 
complex mode (derived via simulation with arbitrary inputs). 
 Table 1. WCETs using NUPA. 

The last column 
shows % reduction in 
WCET yielded by the 
complex mode w. r. t. the 
simple mode. The reduction 
in WCET ranges from 69% 
to 83% for the 4 tasks. 

Future work involves studying the WCET reduction 
yielded by NUPA within a single task.  
4. Repeatable Execution Constraints for  

out-of-ORDER (RECORDER) 
RECORDER defines a strict set of constraints that 

guarantee a single input-independent execution schedule on 
an out-of-order pipeline. If these constraints are met, 
simulation with arbitrary (random) inputs can be used to 
derive the execution schedule. 

RECORDER specifies the following constraints: (1) 
the number of dynamic instances of an instruction must be 
constant across program runs, independent of the input, and 
(2) a dynamic instance of an instruction must execute at the 
same time across program runs, independent of the 
program’s input. These constraints guarantee a single input-
independent execution schedule on an out-of-order pipeline. 

The first constraint stipulates that the number of 
dynamic instructions must be constant across program runs. 
This ensures that there is no variation in the dynamic 
instruction stream. The dynamic scheduler sees a single trace 

WCET (ms) 
Task simple complex 

% reduction 
in WCET 

w.r.t. simple 
CNT 0.07 0.02 71% 
FFT 0.36 0.06 83% 
LMS 0.17 0.04 76% 
MM 2.1 0.66 69% 



of instructions, that does not change with the program’s 
input. This can be achieved by predicating all input-
dependent branches, thereby always executing both paths of 
these branches.  

Executing both paths of an input-dependent branch 
may yield multiple potential producers of a value. A later 
dependent instruction, after the predicated block, may 
execute at different times depending on which producer is 
ultimately selected and when that producer executes. The 
second RECORDER constraint stipulates that there must be 
no such timing variability. This can be achieved by 
executing an instruction only after all potential producer 
instructions are executed. 

The uniqueness of RECORDER is that it only specifies 
a set of constraints that have to be followed by the dynamic 
scheduler. The execution schedule does not have to be 
constructed a priori. The execution schedule is determined 
by the dynamic scheduler at run-time. The dynamic 
scheduler has the flexibility to schedule instructions out-of-
order for high performance. The constraints specified by 
RECORDER simply guarantee that the dynamic scheduler 
will always construct the same high-performance execution 
schedule across program runs, independent of the program’s 
inputs. Thus, instructions can execute out-of-order within a 
program run, but a specific instance of an instruction always 
executes at the same time across program runs.  

Finally, we show how a previously proposed technique, 
called Phi-predication [4], satisfies RECORDER constraints. 
With conventional predication, a branch is converted into a 
predicate computation and each path (all instructions in that 
path) is assigned a unique predicate. Phi-predication differs 
from conventional predication, in that all predicated 
instructions write their results to the register file and a 
special “select” instruction (per logical register) at the end of 
the predicated block is used to select the correct result to be 
forwarded after the predicated block, based on the outcomes 
of predicates.  

Phi-predication satisfies the first RECORDER 
constraint since instructions along both paths of a predicated 
branch are always executed. This guarantees that the number 
of dynamic instances of an instruction is the same across 
program runs, independent of the program’s input. 

Phi-predication uses a select instruction to choose the 
correct version of a register when there are multiple 
producers of the register in a predicated region. By 
introducing the select instruction, a later consumer that uses 
the register depends on the single select instruction. 
Moreover, the select instruction depends on all potential 
producers and it executes only after all the potential 
producer instructions have executed. This implies that the 
select instruction and subsequent dependent instructions wait 
for the slowest potential producer. In this way, the select 
instruction removes timing variations of a dynamic instance 
across runs, otherwise caused by input-dependent data-flow, 
guaranteeing the second RECORDER constraint. 

We use a synthetic micro-benchmark to illustrate 
RECORDER. The benchmark consists of an input-
dependent branch inside a loop that is executed 30 times. 
One path of the input-dependent branch has 15 add 
instructions and the other path of the branch has 2 add 
instructions. Figure 1 shows the actual execution times 
(AETs) of the benchmark on an in-order scalar pipeline with 

static branch prediction (called simple) and an out-of-order 
2-issue pipeline with dynamic branch prediction (called 
complex), for 5 different input sets. The third bar shows 
WCET on simple obtained via conventional timing analysis. 
Complex cannot be analyzed, so there is no provably known 
WCET on complex. The last bar shows the AET (also the 
WCET) on an out-of-order 2-issue pipeline that uses phi-
predication (called complex w/ RECORDER). The key point 
to note is that the AET/WCET on complex w/ RECORDER 
remains constant for all 5 inputs, whereas the AETs on 
simple and complex vary with the program’s input.  
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Figure 1. Actual execution times and worst-case execution times 
for simple and complex with and without RECORDER.  

Notice that the AET/WCET on complex w/ 
RECORDER is slightly greater than the AET on complex. 
This is due to the overhead of phi-predication. Nonetheless, 
complex w/ RECORDER yields a 43% reduction in WCET 
w.r.t. WCET on simple. Thus, RECORDER guarantees a 
constant input-independent execution time on an out-of-
order pipeline that can be obtained via simulation, with 
arbitrary inputs, and this WCET is much smaller than the 
WCET on an in-order pipeline.   
5. Summary 

We proposed two complementary techniques that 
enable easy, tight, and safe WCET analysis of complex 
processors. With NUPA, program segments with a single 
path are analyzed on a complex pipeline via simulation, and 
program segments with multiple paths are analyzed on a 
simple pipeline via conventional static analysis. A 
reconfigurable processor with dual modes mirrors the hybrid 
analysis. RECORDER defines constraints that, if met, 
guarantee a single input-independent execution schedule on 
an out-of-order pipeline, allowing simulation-based timing 
analysis with arbitrary inputs even for program segments 
with variable control-flow. NUPA and RECORDER work 
hand-in-hand to capitalize on the performance of 
contemporary microarchitectures in hard-real-time systems.   
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