

The State of ZettaRAM

Eric Rotenberg and Ravi K. Venkatesan*

Center for Embedded Systems Research (CESR)

Department of Electrical and Computer Engineering

North Carolina State University

www.tinker.ncsu.edu/ericro

* Now at Intel Bangalore

Goal of Talk

- ➤ High level (casual) talk about ZettaRAM
- ➤ Consolidate papers and patents
 - Core technology
 - Three different embodiments
 - Key novel properties
 - Implications

Core Technology

- ➤ New memory from ZettaCore
 - Genesis in DARPA Moletronics
 - Molecule stores 1 charge (0, +1)
 - Some molecule types store multiple charges (0, +1, +2)

- ➤ Long term
 - 1 molecule = 1 bit
- > Near term
 - Use molecules in aggregate
 - Molecular capacitor

ZettaRAM Molecular Capacitor

Molecular Capacitor

Linker & Electrolyte

- ➤ Neither conduct electrons
- > Electrons tunnel across linker
- ➤ Electrolyte ions form aligned dipoles
 - Electrically interface counter electrode to molecules, yet charged molecules isolated
 - Also provide critical charge shielding, prevent huge electric field across short linkers
- Intrinsic retention times of 10s of seconds to minutes

Three Embodiments

- **>**Transistor-free **Crossbar**
- ➤ Two hybrid molecule/silicon devices
 - Flash-like MoleFET
 - 1T-1C DRAM cell with molecular capacitor

Crossbar

Crossbar Features

- ➤No explicit patterning of cells
 - Cell forms implicitly between electrodes
 - Density only limited by wire pitch
 - Easy path to minimum DRAM density
- >Silicon free
 - Easy 3D stacking (no silicon growth)
 - Deposit on arbitrary surfaces? Flexible memory?

Crossbar Fate

- ➤ Crossbar earliest embodiment
- >2x2 in the lab
- ➤ Repeatability issues?
 - Disturbs due to floating electrode voltages
 - Better control with transistor switches at intersections
- ➤ Meanwhile
 - Moletronics 2nd phase brought transistor fab engineers
 - Shift towards hybrid molecules/silicon
 - Leverage predominance of silicon fabrication

Conventional Flash Memory

MoleFET Flash Memory

MoleFET Features

- > Fixed charge provides discreteness
 - Remarkable accuracy compared to "continuous" floating gate
 - Robust, work within tighter noise margins
 - Path to smaller devices
- ➤ Discreteness especially benefits multi-bit storage
 - Multi-bit successful in Flash domain
 - Molecules with multiple discrete charge states makes multi-bit much easier

$$V_{prog} > V_{ox3}$$

 $V_{prog} > V_{ox2}$
 $V_{prog} > V_{ox1}$

MoleFET Issues

> Striving for larger V_t shift

Conventional 1T-1C DRAM Cell

Eric Rotenberg NANONET 09/14/2006

1T-1C DRAM Derivative

DRAM Voltage Scaling Limits

ZettaRAM's Power Scaling Advantage

- ➤ Q_{crit} nearly constant due to noise sources
 - Sense amp margins
 - Bitline imbalances
 - Leakage
 - Radiation
- ➤ Conventional DRAM
 - Charge-voltage coupling, Q = CV
 - Charge constrains voltage
- >ZettaRAM derivative
 - Charge-voltage decoupling
 - Fixed charge independent of voltage
 - Charge does not constrain voltage

DRAM Voltage Scaling Limits

- Hard to increase C
- Even harder when reducing 2D area
- Engineer new molecules with lower thresholds

Key Properties

- ➤ Flexibility and Precision
- ➤ Self-Assembly
- ➤ Charge-Voltage Decoupling
- ➤ Speed/Energy Tradeoff
- ➤ Multiple Discrete States
- >> Admixtures

Flexibility and Precision

- > Hundreds of molecules synthesized
- > Significant flexibility in customizing molecular attributes
 - Design of organic molecules
 - Design of attachment groups
 - Influence surface concentration (density), threshold voltage (power), electron transfer rate (speed, retention time)
- > Semiconductors also flexible
 - But attributes (e.g., threshold voltage) depend on bulk properties
 - Sophisticated "recipes" required
 - High cost to achieve precision
 - Contrast bulk properties with intrinsic chemical properties of molecules

Self-Assembly

- > Auto arrangement of molecules in single, uniform, dense monolayer
 - Autonomous and parallel
 - Efficient fabrication
- Reconsider possibilities thought impractical with conventional tech.
- Mixed logic/DRAM chips (DRAM embodiment)
 - Conventional logic and DRAM processes too different due to stacked capacitors
 - Self-assembled monolayers yield high charge density without elaborate stacked capacitor structures
 - Apply thin oxide concept of MoleFET to reduce leakage (speed tradeoff)
- > 3D stacking (crossbar embodiment)
 - Molecules self-assemble on any compatible surface
 - Easy path to 3D memory stacking

Charge-Voltage Decoupling

- > Fixed charge independent of voltage
- ➤ Charge does not constrain voltage
- ➤ Power-scalable DRAM derivative extends roadmap of this important memory technology

Eric Rotenberg NANONET 09/14/2006

Speed/Energy Tradeoff

- ➤ Voltage padded with respect to V_{ox}
 - Molecule speed slower as voltage approaches V_{ox}
 - Pad write voltage for competitive latency
- ➤ Opportunity for architectural management
- Apply "fast voltage" for critical requests and "slow voltage" for non-critical requests

NANONET 09/14/2006

Intelligent Management

Time

25

Multiple Discrete States

- ➤ Easier multi-bit storage due to discrete states
- ➤ Discreteness reduces variability

Eric Rotenberg NANONET 09/14/2006

Admixtures

- > Different molecules can be mixed in same chip
- ➤ Although hybrid technologies not new:
 - Nanotechnology offers new twist
 - Different molecules can occupy same physical space

Dual Molecules

primary storage molecule

E. Rotenberg and J. Lindsey. Variable-Persistence Molecular Memory Devices and Methods of Operation Thereof. US Patent #6,944,047.

primary storage molecule

secondary storage molecule

Possibilities

- ➤ Unusual memory hierarchy
 - Memories with different attributes (speed, power, volatility) cohabit same space
 - New challenges and opportunities for optimizing data "placement" for power and performance
- >Admixtures enable different business models
 - Ship product with multiple molecules but only one configured
 - Multiple virtual products in one physical product

The State of ZettaRAM

> Contribution

- Consolidated and distilled papers and patents
- Unified discussion of core technology, embodiments, key properties, and implications
- ZettaRAM has signs of disruptive technology
 - Cheap fabrication of high perf. memory (by all metrics)
 - Practical mixed logic/DRAM
 - Practical 3D memory
 - Exceeds DRAM power scaling limits
 - Intelligent power management
 - Efficient multi-bit storage
 - Memory hierarchies cohabiting same space
 - Multiple virtual products in one physical product

Eric Rotenberg NANONET 09/14/2006