
Center for Embedded Systems Research (CESR)
Department of Electrical & Computer Engineering
North Carolina State University
www.tinker.ncsu.edu/ericro

Eric Rotenberg

Using Variable-MHz Microprocessors to Efficiently 
Handle Uncertainty in Real-Time Systems



MICRO-34 2Rotenberg © 2001

Real-Time Embedded Processor Trends

• Need more performance for real-time tasks
– More instructions per task
– Tighter deadlines
– More tasks

• Inherit high-performance microarchitecture techniques
– Pipelining
– Branch prediction
– Caches
– Dynamic scheduling
– Multiple instruction issue (superscalar/VLIW)
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Worst-Case Timing Analysis

• Find upper bound on number of cycles for task
– Upper bound must be safe

• Predicted Cycle Count > Actual Cycle Count

• So that designer can guarantee deadline will never be missed

– Upper bound should be accurate

• Predicted Cycle Count ~ Actual Cycle Count

• So that perceived frequency requirement is close to actual 
frequency requirement

deadline

count cycle
frequency ≥
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Problem: Uncertainty

• Worst-case timing analysis of complex pipelines
– Ambiguous addresses Í ambiguous cache state

• Assume certain loads always miss

– Ambiguous control flow Í ambiguous predictor state

• Assume certain branches always mispredict

– Etc.

• Worst-case timing analysis underestimates
microarchitecture performance to be safe
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Symptom: Redundant Performance

• Designer must turn to clock frequency as a reliable source 
of performance

• Redundant performance
– High-performance microarchitecture

– Efficient source of performance

– Unreliable (unpredictable performance)

– High clock frequency

– Inefficient source of performance

– Reliable (predictable performance)

We want these…

…but get these.



MICRO-34 6Rotenberg © 2001

Fault Tolerance Angle

• Redundancy methods
– Spare always active

– Spare swapped in

• Efficient performance redundancy
– What is a “fault”?

• Transient microarchitecture performance fault

– What is the “spare”?

• Frequency reserves

– What is the “sparing method”?

• Swap in
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Efficiently Handling Uncertainty

• Simulated-worst-case (SWC)
– Get “typical” worst-case timing via detailed 

microarchitecture simulation

– Accurate but unsafe

– The basis for a low speculative frequency

• Worst-case (WC)
– State-of-the-art static worst-case timing analysis

– Less accurate but safe

– The basis for a high recovery frequency (“spare”)
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Transient Fault Detection/Recovery

• Straightforward detection method
– Miss deadline
– Cannot recover

• Conservative detection/recovery method
– Divide tasks into sub-tasks [Mosse et al.]
– Set up artificial interim deadlines for sub-tasks called 

checkpoints
– Fault detection

• Sub-task misses its checkpoint at the speculative frequency
• Microarchitecture performed worse than simulation, somewhere in 

between SWC and WC

– Fault recovery
• Run all remaining sub-tasks at recovery frequency
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Potential Benefits

• Power
– Favoring microarchitectural sources of performance is better 

in terms of power

• Relax need for sophisticated worst-case timing analysis
– Reliability: Simple analysis is less bug-prone than complex 

analysis (need reliability for the recovery frequency)

– Increasing programmer productivity and software complexity: 
Re-introduce previously discouraged programming practices
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Target Microprocessors

• Microprocessors with many frequency/voltage settings
– E.g., Transmeta, Intel, AMD

• Custom-fit processors
– Synthesize hardware specific for an embedded application 

(less flexible but highly optimized)

– Examples:
• Single pipeline, two frequency/voltage settings

• Dual pipelines, each with single frequency/voltage setting

• Novel microarchitectural support for variable frequency
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Statically Deriving Frequencies

• Static worst-case timing analysis produces:
– Ti,WC,f

– Worst-case execution times (ms) for all sub-tasks i at all 
supported frequencies f

• Microarchitecture simulation produces:
– Ti,SWC,f

– Simulated-worst-case execution times (ms) for all sub-tasks i
at all supported frequencies f
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Statically Deriving Frequencies (cont.)
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• There is one equation for each sub-task i
• Solving method

– Start with lowest fspec

– For each sub-task i, find minimum frec that satisfies its eqn.
– If a sub-task is reached where no frec can be found, start over 

with next higher fspec

– Output: minimized speculative and recovery frequencies
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Frequencies for Comparison

• Frequency recommended by worst-case timing analysis
– fwc

• “Optimal” speculative frequency
– What if we ideally know ahead of time that there won’t be a 

fault?

– fopt
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Experiments
• Processor

– 7-stage pipeline
– Single-issue with out-of-order execution
– 16-entry ROB
– 2K-entry bimodal predictor
– 8KB direct-mapped instruction and data caches
– 50 MHz – 300 MHz in 25 MHz increments
– Memory access time (in nanoseconds) is constant

• Task = 16 FFT sub-tasks
• Static worst-case timing analysis

– Currently, don’t have access to static timing analyzer
– Mimic WC analysis
– Over-estimate timing by injecting extra cache misses during simulation

• WC10: 10% extra
• WC30: 30% extra
• WC50: 50% extra
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Results (WC10)
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Results (WC30)
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Results (WC50)

WC50

50
75

100
125
150
175
200
225
250
275
300

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22

deadline (ms)

fr
eq

u
en

cy
 (

M
H

z)

f_rec
f_wc
f_spec
opt



MICRO-34 19Rotenberg © 2001

Trend #1

• More benefit with poorer timing analysis
– E.g., 40 ms deadline

• WC10: 25 MHz delta between speculative and worst-case freq.

• WC50: 100 MHz delta between speculative and worst-case freq.

– Reason
• Speculative frequency depends on actual behavior (constant)

• Worst-case frequency depends on quality of timing analysis
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Trend #2

• More benefit with tighter deadlines
– Tighter deadline requires more performance

– Frequency gives diminishing performance returns due to 
irreducible main memory component

– Need to increase frequency non-linearly to compensate for 
diminishing returns

– Effect is worse for WC than SWC due to larger memory 
latency component

– Worst-case frequency increases faster than speculative 
frequency
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Trend #3

• Positive frequency trends
– Speculative frequency

• Insensitive to worst-case pessimism – no change among 
WC10, WC30, WC50

• Closely tracks optimal speculative frequency

– Recovery frequency

• Sensitive to worst-case pessimism

• But closely tracks the frequency produced by traditional 
worst-case design: “graceful degradation”

• Effectively no downside to speculating
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Summary
• Performance redundancy

– High-perf. microarchitecture: efficient / unreliable
– High Frequency: inefficient / reliable
– Use frequency reserves (“swap-in-spare” approach): efficient / 

reliable

• Complementary timing approach
– SWC Í speculative frequency (efficient / unreliable)
– WC Í recovery frequency (inefficient / reliable)

• Significant frequency reduction, and:
– Benefit increases with poorer timing analysis
– Benefit increases with tighter deadlines
– Speculative frequency nearly optimal, recovery frequency 

demonstrates graceful degradation


