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Real-Time Embedded Processor Trends

 Need more performance for real-time tasks
— More instructions per task
— Tighter deadlines
— More tasks

 Inherit high-performance microarchitecture techniques
— Pipelining
— Branch prediction
— Caches
— Dynamic scheduling
— Multiple instruction issue (superscalar/VLIW)
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Worst-Case Timing Analysis

* Find upper bound on number of cycles for task
— Upper bound must be safe
* Predicted Cycle Count > Actual Cycle Count
* So that designer can guarantee deadline will never be misse
— Upper bound should be accurate
* Predicted Cycle Count ~ Actual Cycle Count

« S0 that percelved freguency requirement is close to actual
frequency requirement

cyclecount
deadline

frequency =
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Problem: Uncertainty

* Worst-case timing analysis of complex pipelines
— Ambiguous addresse® ambiguous cache state
« Assume certain loads always miss
— Ambiguous control flow® ambiguous predictor state
o Assume certain branches always mispredict
— Etc.

o Worst-case timing analysis underestimates
microarchitecture performance to be safe
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Symptom: Redundant Performance

* Designer must turn tdock frequency as a reliable source
of performance

 Redundant performance We want these...
— High-performance microarchitecture
— Efficient source of performan
— Unreliable (unpredictable performancge)
— High clock frequency
— Inefficient source of performance

/ — Reliable (predictable performance)

...but get these.
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Fault Tolerance Angle

 Redundancy methods
— Spare always active
— Spare swapped in

« Efficient performance redundancy
— What is a “fault™?
e Transient microarchitecture performance fault
— What is the “spare”?
* Frequency reserves
— What is the “sparing method”?
e Swap in
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Efficiently Handling Uncertainty

e Simulated-worst-case (SWC)

— Get “typical” worst-case timing via detailed
microarchitecture simulation

— Accurate but unsafe
— The basis for a low speculative frequency

 Worst-case (WC)
— State-of-the-art static worst-case timing analysis
— Less accurate but safe
— The basis for a high recovery frequency (“spare”)
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A recovery frequency
(based on WC)

S transient
= | || performance
= speculative frequency i fault
g;‘ (based on SWC) |
-]
g frequency requirement

time (ms)
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Transient Fault Detection/Recovery

o Straightforward detection method
— Miss deadline
— Cannot recover

e Conservative detection/recovery method
— Divide tasks into sub-tasks [Mosse et al.]

— Set up artificial interim deadlines for sub-tasks called
checkpoints
— Fault detection

« Sub-task misses its checkpoint at the speculative frequency

» Microarchitecture performed worse than simulation, somewherein
between SWC and WC

— Fault recovery
* Run all remaining sub-tasks at recovery frequency
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Potential Benefits

 Power
— Favoring microarchitectural sources of performance is better
In terms of power
 Relax need for sophisticated worst-case timing analysis

— Reliability: Simple analysis is less bug-prone than complex
analysis (need reliablility for the recovery frequency)

— Increasing programmer productivity and software complexity:
Re-introduce previously discouraged programming practices

Rotenberg © 2001 MICRO-34 10



Target Microprocessors

* Microprocessors with many frequency/voltage settings
— E.g., Transmeta, Intel, AMD

« Custom-fit processors

— Synthesize hardware specific for an embedded application
(less flexible but highly optimized)

— Examples:
» Single pipeline, two frequency/voltage settings
» Dual pipelines, each with single frequency/voltage setting
* Novel microarchitectural support for variable frequency
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Statically Deriving Frequencies

o Static worst-case timing analysis produces:

_ Ti,WC,f
— Worst-case execution times (ms) for all sub-tasksall
supported frequencids

« Microarchitecture simulation produces:

_ Ti,S\NC,f
— Simulated-worst-case execution times (ms) for all sub-tasks
at all supported frequenciés
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Statically Deriving Freguencies (cont.)

-1 S
ZTJ',SWC,quec * Tiwe, 1, TOverhead + ZTk,WC,frec < deadline
J=1 k=T+1

 There Is one equation for each sub-task

e Solving method
— Start with lowest,
— For each sub-taskfind minimumf, . that satisfies its eqn.

— If a sub-task is reached wherefppcan be found, start over
with next higheffg,

— Output: minimized speculative and recovery freguencies
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Frequencies for Comparison

* Frequency recommended by worst-case timing analysis

_ 1:wc

Z-ri,wc,fwc < deadline

e “Optimal” speculative frequency

— What if we ideally know ahead of time that there won't be a
fault?

_ 1:opt

Z'I'i,swc,fopt < deadline
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EXperiments
 Processor
— 7-stage pipeline
— Single-issue with out-of-order execution
— 16-entry ROB
— 2K-entry bimodal predictor
— 8KB direct-mapped instruction and data caches

— 50 MHz — 300 MHz in 25 MHz increments
— Memory access time (in nanoseconds) is constant

e Task =16 FFT sub-tasks

e Static worst-case timing analysis
— Currently, don’t have access to static timing analyzer
— Mimic WC analysis
— Over-estimate timing by injecting extra cache misses during simulation
« WC10: 10% extra

e WC30: 30% extra
« WCH50: 50% extra
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Results (WC30)
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Results (WC50)
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Trend #1

* More benefit with poorer timing analysis

— E.g., 40 ms deadline
« WC10: 25 MHz delta between speculative and worst-case freq.
« WC50: 100 MHz delta between speculative and worst-case freq.
— Reason

» Speculative frequency depends on actual behavior (constant)
» Worst-case frequency depends on quality of timing analysis
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Trend #2

« More benefit with tighter deadlines
— Tighter deadline requires more performance

— Frequency gives diminishing performance returns due to
irreducible main memory component

— Need to increase frequency non-linearly to compensate for
diminishing returns

— Effect isworse for WC than SWC due to larger memory
latency component

— Worst-case frequency increases faster than speculative
frequency
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Trend #3

e Positive frequency trends
— Speculative frequency

 Insensitive to worst-case pessimism — no change among
WC10, WC30, WC50

» Closely tracks optimal speculative frequency
— Recovery frequency
« Sensitive to worst-case pessimism

» But closely tracks the frequency produced by traditional
worst-case design: “graceful degradation”

 Effectively no downside to speculating
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Summary

e Performance redundancy
— High-perf. microarchitecture: efficient / unreliable
— High Frequency: inefficient / reliable

— Use frequency reserves (“swap-in-spare” approach): efficient /
reliable

 Complementary timing approach
— SWC=> speculative frequency (efficient / unreliable)
— WC = recovery frequency (inefficient / reliable)

 Significant frequency reduction, and:
— Benefit increases with poorer timing analysis
— Benefit increases with tighter deadlines

— Speculative frequency nearly optimal, recovery frequency
demonstrates graceful degradation
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