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Abstract

Guaranteed performance is critical in real-time sys-
tems because correct operation requires tasks complete on
time. Meanwhile, as software complexity increases and
deadlines tighten, embedded processors inherit high-per-
formance techniques such as pipelining, caches, and
branch prediction. Guaranteeing the performance of com-
plex pipelines is difficult and worst-case analysis often
under-estimates the microarchitecture for correctness.
Ultimately, the designer must turn to clock frequency as a
reliable source of performance. The chosen processor has
a higher frequency than is needed most of the time, to com-
pensate for uncertain hardware enhancements — partly
defeating their intended purpose.

We propose using microarchitecture simulation to
produce accurate but not guaranteed-correct worst-case
performance bounds. The primary clock frequency is cho-
sen based on simulated-worst-case performance. Since
static analysis cannot confirm simulated-worst-case
bounds, the microarchitecture is also backed up by clock
frequency reserves. When running a task, the processor
periodically checks for interim microarchitecture perfor-
mance failures. These are expected to be rare, but fre-
quency reserves are available to guarantee the final
deadline is met in spite of interim failures.

Experiments demonstrate significant frequency
reductions, e.g., -100 MHz for a peak 300 MHz processor.
The more conservative worst-case analysis is, the larger
the frequency reduction. The shorter the deadline, the
larger the frequency reduction. And reserve frequency is
generally no worse than the high frequency produced by
conventional worst-case analysis, i.e., the system degrades
gracefully in the presence of transient performance faults.

1.  Introduction

Performance does not affect correctness for ordinary
general-purpose programs. On the other hand, a real-time
program must complete within a specified period of time,
i.e., performance does affect correctness in real-time sys-
tems. Therefore, an important criterion when selecting a

microprocessor for a real-time system isguaranteed per-
formance.

More tasks, more instructions per task, and tighter
real-time deadlines due to evolving specifications increase
the complexity of real-time systems and demand higher
performance. As a result, pipelining, caching, branch pre-
diction, and even out-of-order and multiple-instruction
issue are finding their way into embedded microproces-
sors.

Unfortunately, the performance of complex pipelines
is difficult to guarantee. For example, cache performance
is uncertain due to statically-unknown load and store
addresses. In general, the interaction between ambiguous
program information and history-sensitive hardware intro-
duces uncertainty. In real-time systems, uncertainty is han-
dled by designing for worst-case behavior [9]. At one
extreme, for example, the designer may have to assume a
particular load instruction always misses in the data cache.

The paradox is that pipelining, caches, and predictors
are added to enhance performance so that more aggressive
deadlines can be met, but their combined performance is
underestimated to guarantee correct operation. Ultimately,
the system designer must resort to clock frequency as a
predictable and reliable source of performance. Conserva-
tism is tantamount to not fully exploiting microarchitec-
tural performance and compensating with abundant clock
frequency. So,redundant performanceis built into the sys-
tem, i.e., the design has both a high performance microar-
chitecture and a high clock frequency.

Redundant performance is certainly required if static
analysis cannot confirm that the microarchitecture will
perform reliablyall of the time. But, over-compensating
with clock frequency, which we callover-design, has two
serious problems.
• It is inefficient to over-compensate with clock fre-

quency all of the time — especially when the microar-
chitecture is expected to perform well most of the time,
and in spite of not being able to guarantee it with abso-
lute certainty. In practice, the predictor, caches, and
pipeline are carefully selected to perform well most or
all of the time, for a specific embedded application that
is unlikely to change over the lifetime of the system.



• The guaranteed-correct worst-case bound predicted by
static analysis may be highly exaggerated compared to
worst-case performance that occurs in practice. In this
case, the over-designed frequency is highly inflated.

This paper proposes a new way of hedging microar-
chitecture performance in real-time systems. Clock fre-
quency is chosen based on accurate estimates of worst-
case microarchitecture performance, produced by simula-
tion. The estimated worst-case bounds are not provably
correct. So, the microarchitecture is backed up by extra
clock frequencyreservesthat are only used if the microar-
chitecture fails.

Missing a task deadline is the only way to know for
certain that the microarchitecture failed, but that defeats
our purpose. The next best thing is to periodically assess
the possibility of missing the deadline. Mossé, Aydin,
Childers, and Melhem [17] proposed dividing a task into
multiple smaller sub-tasks, which introduces periodic
points for managing the processor (in their case,dynamic
power management). Using sub-tasks enables us to set up
artificial interim deadlines, called checkpoints, that can be
used to detect interim microarchitecture failures. An
interim microarchitecture failure does not necessarily
mean the final deadline will be missed. However, we con-
servatively assume that an interim failure will lead to an
overall failure.Transient performance faultsare expected
to be rare, similar to transient hardware faults.

Thorough simulation is used to bound worst-case
performance of the microarchitecture, and the primary fre-
quency of the processor is based on this bound. Simulation
may not produce the worst possible scenario, therefore, the
primary frequency is speculative. The processor attempts
sub-tasks at thespeculative frequency. According to simu-
lation, sub-tasks are expected to meet their checkpoints at
the speculative frequency, but static analysis cannot con-
firm this. So, when a sub-task completes, the processor
checks to see if the sub-task’s checkpoint was missed. If it
was, the processor resorts to its clock frequency reserves.
Remaining sub-tasks are run at a higherrecovery fre-
quencythat guarantees the final deadline is met, in spite of
the interim microarchitecture failure. This paper develops
a method for statically deriving the speculative and recov-
ery frequencies.

1.1  Potential advantages

Although the new approach for hedging microarchi-
tecture performance still requires high frequency support,
using high frequency sparingly (or not at all) does have
potential benefits. By favoring microarchitectural sources
of performance (instruction-level parallelism) over clock
frequency, power consumption may be less for the same

deadline. Others have derived that running at a lower fre-
quency for an extended period consumes less power than
running full throttle for a short period and then idling, if
both voltage and frequency are scaled [5].

Hedging the microarchitecture with frequency
reserves may also relax the need for increasingly sophisti-
catedworst-case execution time(WCET) analysis. High-
performance microarchitectures pose difficult challenges
for tight WCET analysis [e.g., 1,3,9,10,13,14,16]. Using
accurate simulation to drive the design and hedging specu-
lation with high frequency removes some of the burden
from static WCET analysis. This reduces the burden on
compiler developers, in the case of automated WCET
analysis, and programmers, in the case of manual WCET
analysis.

Relaxing the need for tighter WCET analysis also
reduces the risk of bugs. Sophisticated WCET analysis is
more susceptible to bugs than simple WCET analysis.
Note that even our frequency speculation technique relies
on WCET analysis, because the deadline must be guaran-
teed.

Finally, a simulation-based approach to real-time
system design may promote programming styles that were
once discouraged because they make WCET analysis
more difficult. This in turn potentially increases program-
mer productivity and enables more complex real-time soft-
ware.

1.2  Target microprocessors

The frequency speculation technique will work with
general-purpose microprocessors that provide many dis-
tinct frequency/voltage settings, such as the Transmeta
Crusoe processors. Most dynamic power management
proposals target these flexible processors [e.g., 17].

Yet, because the speculative and recovery frequen-
cies are customized to the embedded system application, a
custom-fit processor[4] is a compelling alternative. There
are many possibilities, some of which are described below.

• Custom-fit processor with two frequency/voltage set-
tings. The processor supports two frequency/voltage set-
tings: the speculative frequency with low voltage and the
recovery frequency with high voltage. Designing and veri-
fying a pipeline with only two settings may be much sim-
pler than designing and verifying a pipeline with many
settings, at the expense of flexibility.

• Custom-fit processor with dual pipeline. The primary
pipeline is designed at the speculative frequency and low
voltage. A backup pipeline is designed at the recovery fre-
quency and high voltage. The recovery pipeline is
switched on as needed. The advantage of this approach is
that each pipeline is designed to operate at only one fre-



quency/voltage setting, simplifying design and verifica-
tion. Another advantage is the fast switch time between
frequencies. The challenge is determining how register
and memory state are managed among two separate pipe-
lines.

• Custom-fit processor with variable-depth pipeline. The
system has only a single voltage level, tailored to the spec-
ulative frequency (i.e., a low voltage). Therefore, we can-
not rely on increasing the voltage to support a higher
frequency. Instead, the number of pipeline stages can be
doubled. Additional pipeline latches are placed between
existing pipeline latches. The extra pipeline latches are
normally transparent but can be activated when the proces-
sor switches to the recovery frequency. There are two
advantages. First, using only a single voltage level makes
it easier to verify the design. Second, frequency can be
switched a lot faster than voltage, using high-performance
phase-locked loops. The challenge is getting good perfor-
mance out of the deep pipeline mode. The main concern is
dependent instructions. For example, intermediate 16-bit
results will need to be bypassed among dependent add
instructions for performance to scale well when the pipe-
line depth is doubled. Even more challenging is devising a
general strategy for bypassing intermediate results for all
instruction types that can. (It is certainly an intriguing
research topic and we are actively pursuing it.)

1.3  Related work

There has been much research in the area of dynamic
voltage/frequency scaling to minimize power consumption
in general-purpose computers [e.g., 5,6,15,18,20]. The
general theme is to predict future processor utilization and
adjust frequency to reduce power while maintaining per-
formance.

Likewise, a large body of work exists for scheduling
real-time tasks on variable frequency/voltage processors to
minimize power consumption [e.g., 7,8,11,12]. As pointed
out by Mossé et. al. [17], most techniques are based on
worst-case estimates of task execution times and work
within those constraints (although some techniques exploit
variations in task execution times [e.g., 19]).

The closest related work we are aware of is that by
Mossé, Aydin, Childers, and Melhem [17]. Like this paper,
their work directly addresses the inefficiency of designing
real-time systems based solely onworst-case execution
time(WCET). A task is divided into sub-tasks, which pro-
vide periodic power management points. As sub-tasks
complete, frequency/voltage are adjusted for remaining
sub-tasks based on how much time hasactuallyelapsed up
to this point. The key is using thecurrent timeas a basis

for frequency selection, which is a summary of actual
behavior rather than worst-case behavior.

The main difference is our method, like traditional
WCET-based design and unlike the method of Mossé et.
al., is not dynamic. The novel contribution is augmenting
static analysis with simulation. That is, we use a static
design approach based on both the worst-case scenario
(for the recovery frequency) and thesimulated-worst-case
scenario (for the speculative frequency). We do not moni-
tor the current time to dynamically re-compute the fre-
quency (it is only monitored to detect mispredictions).
Instead, we propose a static approximation of actual
elapsed execution time — simulated-worst-case execution
time (this is the first summation term in EQ 3, described in
Section 2.1).

A dynamic approach is certainly more flexible and
can precisely track small changes in the frequency
demands of an application. Our approach targets the “low-
hanging fruit” — the large gap between guaranteed-cor-
rect worst-case bounds and worst-case behavior that
occurs in practice. The difference in philosophies is illus-
trated in Figure 1. We view clock frequency as aredun-
dant performance precautionand draw an analogy
between transient hardware faults and transient perfor-
mance faults.

FIGURE 1. Precise tracking (top) vs. our
approach (bottom).

There are other differences with prior work as well.
• By targeting the design for the simulated-worst-case,

instead of precisely tracking frequency demands, there
is less reliance on very fast frequency/voltage switch-
ing support. As described in Section 2.1, the frequency
is switched at most twice because only a single mispre-
diction is allowed in a task. Furthermore, our experi-
ments include overhead for frequency switching, and
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the conclusion is that the perceived deadline is short-
ened by the amount of overhead.

• Run-time overhead is further reduced by not dynami-
cally re-computing frequencies as the task progresses.
Code snippets inserted at the end of sub-tasks simply
check for mispredictions.

• The equations and methods for statically deriving the
speculative and recovery frequencies are based on dis-
crete frequencies, unlike prior work that uses continu-
ous speed settings.

• Our methods do not assume performance scales lin-
early with frequency. Memory latency is a classic
example of an irreducible component of execution
time. Our experiments illustrate the importance of
modeling non-linear behavior. For example, the result
that shorter deadlines result in larger frequency reduc-
tions is attributed in part to the irreducible cache miss
component.

2.  Real-time system design using variable
frequency

The proposed method requires static (compile-time
or programming-time) and dynamic (run-time) support.
The speculative and recovery frequencies are derived via
static analysis and simulation. For static analysis, this
paper contributes simple intuitive equations that build
upon whatever traditional worst-case real-time program
analysis is already available (which ranges from naive
conservative estimation, to programmer-involved estima-
tion, to intelligent automated estimation). Run-time sup-
port consists of a hardware cycle counter and short code
snippets inserted at the beginning and end of each sub-task
to check for transient performance faults.

2.1  Statically deriving frequencies

A real-time task is initiated by an interrupt, a real-
time scheduler that manages a task queue, or a number of
other methods. In any case, once initiated, it must com-
plete before a prescribed deadline, as shown in Figure 2.

FIGURE 2. Timeline of a task.

In traditional real-time system design, theworst-case
execution time(WCET) of the task is statically estimated,
either manually by the programmer or automatically using
a WCET estimation phase in the compiler [9]. The inputs
to WCET analysis are the microarchitecture specification
(pipeline details, cache and predictor parameters, etc.) and
the real-time program. WCET analysis produces an upper
bound on the number of cycles required by the task. Cor-
rect analysis never underestimates WCET (otherwise the
deadline could be missed), and good analysis also mini-
mizes overestimation of WCET. Once WCET is known, a
lower bound on the frequency of the processor can be
derived (frequency, along with other design consider-
ations, affects the choice of embedded microprocessor
used in the system). The amount of over-design implicit in
the frequency depends on how much WCET is overesti-
mated.

To enable the new method for hedging microarchi-
tecture performance, the task is partitioned into multiple
smaller sub-tasks, as shown in Figure 3. The number and
nature of the sub-tasks is arbitrary and entirely up to the
designer. For example, the sub-tasks may be different
instances of the same region of code, or different regions.
Or, the real-time application may already define multiple
tasks that run in a predictable sequence and, instead of
having individual deadlines, are subject to an overall dead-
line in combination. In this case, the already-defined group
of asymmetric tasks serve as a convenient starting point
for sub-task selection.

Before proceeding with the analysis, notation is
defined below.
• T: Execution time in seconds,not cycles. Using cycles

is confusing because frequency may affect the number
of cycles. Most notably, main memory access time in
nanoseconds is usually fixed, and the number of cycles
to access main memory increases as frequency
increases.

• s: The number of sub-tasks.

• i: Denotes sub-taski. (Likewise, j and k denote sub-
tasksj andk, respectively.)

• WC, SWC, AC: These denote different scenarios.WC
stands for worst-case scenario determined by WCET
analysis. SWC stands for simulated-worst-case sce-
nario observed in practice.AC stands for actual-case
scenario, i.e., this is what actually happens at run-time
for a particular instance of the sub-task. For example,
program analysis may show thatWC is: load #1 always
misses and load #2 always misses. Simulations for a
set of trials may show thatSWCis: load #1 always hit
and load #2 can miss. A particular dynamic instance of
the sub-task may revealAC is: load #1 hit and load #2

task

start
time

interrupt

deadline



hit (WC is pessimistic for both loads,SWCis pessimis-
tic for load #2).

• fwc : This is the minimum clock frequency needed to
meet the deadline, as determined by conventional
worst-case analysis (WC). I.e., fwc corresponds to con-
ventional over-design.

• fspec: This is the speculative frequency, less thanfwc.
Sub-tasks are expected to meet their checkpoints when
run atfspec, but are not guaranteed to.

• frec : This is the recovery frequency that guarantees
remaining sub-tasks complete before the final deadline,
in spite of the fact that the current sub-task missed its
checkpoint.

• Ti,WC,f : Execution time of sub-taski under worst-case
conditions (seeWCabove) and with the processor run-
ning at frequencyf.

• Ti,SWC,f: Execution time of sub-taski under simulated-
worst-case conditions (seeSWCabove) and with the
processor running at frequencyf.

• Ti,AC,f : Execution time of sub-taski under actual con-
ditions (seeAC above) and with the processor running
at frequencyf.

Note that all three derived frequencies —fwc , fspec,
andfrec — are global parameters, that is, they are the same
for all sub-tasks.

Inputs to the analysis are (1) the task deadline, (2)
sub-tasks, (3) a microarchitecture description, (4) frequen-
cies supported by the microprocessor, and (5) measured
worst-case execution times for all sub-tasks and all fre-
quencies (provided by simulation). In practice, a separate
microarchitecture description for each frequency is
required because main memory latency, in cycles, depends
on frequency. Possibly other aspects of the pipeline
depend on frequency, too.

The compiler, using state-of-the-art worst-case anal-

ysis to minimize pessimism, computes for all

sub-tasksi and supported frequenciesf. It uses items (1)-
(4), above, to perform the analysis. The fifth item (5),

above, directly provides for all sub-tasksi and

supported frequenciesf.
The first expression (EQ 1) computes the over-design

frequency,fwc. The new speculative technique does not
require fwc, however, it provides a basis for comparison.
EQ 1 satisfies the overall real-time constraint of the sys-
tem: the sum of the execution times of all sub-tasks under
worst-case conditions must meet the deadline.

FIGURE 3. Timing of sub-tasks.
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(EQ 1)

To solve forfwc, for all sub-tasks are sub-

stituted into EQ 1, starting with the lowest frequency and
increasing frequency until the inequality is satisfied. The
minimum frequency that satisfies the above expression
gives usfwc.

In Figure 3, checkpointi is the expected end time of
sub-taski and the expected start time of sub-taski+1. All
checkpoints are relative to the origin of the overall task.
For analysis, it is convenient to define the period of time
between adjacent checkpoints, called achecktime. Check-
timei is the time between checkpointi-1 and checkpointi, as
shown in Figure 3.

The second expression below (EQ 2) simply sets the
checktime of a sub-task equal to its simulated-worst-case
execution time at the speculative frequencyfspec. This
means the sub-task ispredictedto not overrun its check-
point if the microprocessor uses frequencyfspec, and the
basis for this prediction is simulation.

(EQ 2)

Of course, the simulated-worst-case (SWC) is not
provably the true worst-case, and it is possible for the sub-
task’s actual execution time at the speculative frequency to
exceed its checktime (if theAC scenario lies somewhere
between theSWC andWC scenarios).

The actual execution time of speculative sub-taski is

, which is unknown until run-time, and is

either less thanchecktimei for correct speculation or
greater thanchecktimei for misspeculation. This is shown
in Figure 3 for sub-taski.

In the worst case, misspeculation results in an execu-

tion time of , which is always greater than

checktimei = becauseWC is worse than

SWC. (Refer again to Figure 3, sub-taski.)
The simplest approach to guarantee that this timing

error does not propagate all the way to the end of the task
is to not speculate any remaining sub-tasks. Remaining
sub-tasks are clocked at the higher recovery frequencyfrec.
We assume there is a fixed overhead to switch clock fre-
quencies, as shown in Figure 3. An interesting aspect of
our approach is that frequency changes at most two times
for a task (fromfspecto frec when there is a misprediction,

and then back tofspecat the end of the task to prepare for
the next task), which minimizes overhead. The implication
is the microprocessor does not necessarily need to provide
very fast frequency switching.

To ensure correct recovery, we have to assume that
(1) speculative sub-taski started no earlier than check-
pointi-1, (an interesting corollary is that we know sub-taski

startedno later than checkpointi-1, because no prior sub-
task misspeculated), (2) speculative sub-taski misses its
checkpoint by the largest margin possible (execution time

is ), and (3) the worst-case scenario (WC)

occurs for all remaining sub-tasks. The following expres-
sion (EQ 3) ensures that the deadline is met in spite of a
single interim microarchitecture failure (there can be at
most only one failure in the task), and is also depicted at
the bottom of Figure 3.

(EQ 3)

The first expression in the lefthand side of EQ 3
accounts for the maximum possible time consumed by
prior, correctly speculated sub-tasks (it is the sum of prior
checktimes). The second expression in the lefthand side of
EQ 3 accounts for the maximum possible time consumed
by the misspeculated sub-taski. The third expression in
the lefthand side of EQ 3 accounts for the frequency
switching overhead (two switches, as described earlier).
Finally, the fourth expression in the lefthand side of EQ 3
accounts for the execution time of remaining sub-tasks at
the recovery frequency, and assuming the worst-case sce-
nario for each sub-task. The sum of all these expressions
must be less than the deadline.

EQ 3 is solved as follows. We choose a value for
fspec, starting at the lowest possible frequency and working
upward until a solution is found. For a givenfspecattempt,
we try to find the minimumfrec that simultaneously satis-
fies s inequalities — there is actually a distinct EQ 3 for
each sub-taski. If we reach a sub-taski for which no frec

satisfies its inequality, then we try the next higherfspecand
begin again. Ultimately, the procedure produces a single
{ fspec, frec} pair, and both frequencies are minimized as
much as possible.
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2.2 Run-time hardware and software support for
detecting and recovering from mispredictions

Hardware provides a cycle counter that can be reset
to zero and read by software. The counter is automatically
incremented by the microprocessor every clock tick. Also,
we assume a control register for switching the clock fre-
quency and querying the current frequency setting.

A code snippet is inserted at the beginning and end of
each sub-task, called the prologue and epilogue, respec-
tively. The prologue initializes the cycle counter to 0, in
order to measure the number of cycles consumed by the
sub-task. The prologue of only the first sub-task initializes
to 0 a global variable containing accumulated time in sec-
onds, which is read and updated by each epilogue as
described below. Also, the prologue of only the first sub-
task sets the processor frequency tofspec, which it usually
is anyway (unless the previous task had to recover).

Embedded in each sub-task is its checkpoint time rel-
ative to the start time of the task (which was derived by
static analysis in Section 2.1). The epilogue checks
whether the checkpoint time was met or exceeded, and
either does nothing or initiates recovery by switching the
processor frequency tofrec.

The execution time of the sub-task is computed by
reading the cycle counter and the frequency control regis-
ter, and dividing the cycle count by the frequency. The
result is added to the global variable containing the accu-
mulated time of the task, producing the current time in
seconds relative to the start time of the task.

The current time is compared to the sub-task’s check-
point time. If the current time is less, then there is no tim-
ing error and the next sub-task may be speculated — the
frequency remainsfspec. If the current time is greater than
the checkpoint time, then this sub-task misspeculated and
recovery is initiated — the frequency is set tofrec. Once
recovery is initiated, remaining epilogue checks are cir-
cumvented.

3.  Methodology

3.1  Benchmark (real-time task and sub-tasks)

Standard embedded real-time system benchmarks are
not as readily available as SPEC (PCs, workstations, and
servers) and TPC (database servers) workloads. However,
several universities with research programs in compiler-
based WCET estimation have an on-going, organized
effort to collect embedded real-time benchmarks [22]. The
benchmarks are simple, e.g., sorting, matrix multiplica-
tion, fast-fourier transform (FFT), cyclic redundancy
check (CRC), etc. Though it is difficult to find standard

suites, this variety of benchmark is found in practically all
of the WCET papers in the last several years from the
Real-Time Systems Symposium. Furthermore, similar
benchmark descriptions can be found among the Embed-
ded Microprocessor Benchmark Consortium (EEMBC)
testcases [21], although the source code is unfortunately
not publicly available.

We use the FFT benchmark downloaded from the C-
Lab web site [22] (the FFT version contributed by the
Real-Time Research Group at Seoul National University).
The FFT benchmark, modified to operate on 1,024 ele-
ments, is used as a single sub-task. The real-time task is
composed of 16 FFT sub-tasks. The input data for each
FFT sub-task differs and is randomly generated, although
input data does not significantly impact sub-task execution
time because there is no data-dependent control flow.

3.2  Microarchitecture description

The processor has a 7-stage pipeline for ALU and
branch instructions — fetch, dispatch (decode and
rename), issue, register read, execute, writeback, retire.
Instruction execution latencies are similar to those of the
MIPS R10K processor. For load and store instructions, the
execute stage is expanded into an address generation stage
and two stages to disambiguate addresses and access the
data cache (therefore, after the address is computed, a data
cache hit is two cycles). Instruction issue is out-of-order
with a 16-entry reorder buffer. Only 1 instruction is issued
per cycle (i.e., not superscalar). The level-1 instruction and
data caches, both 8KB direct mapped with 16B lines, are
backed directly by main memory. Branch prediction is
performed by a 2K-entry bi-modal branch predictor and a
2K-entry branch target buffer.

Main memory latency is always 50 ns, independent
of the core’s frequency. Supported frequencies and the
corresponding memory latency in clock cycles is shown in
Table 1 (memory latency in cycles is the ceiling of 50 ns
times frequency). There are 11 supported frequencies,
from 50MHz to 300MHz, in 25MHz increments.

TABLE 1. Supported frequencies.

frequency (MHz) main memory latency (cycles)
50 3
75 4
100 5
125 7
150 8
175 9
200 10
225 12
250 13
275 14
300 15



3.3  Generating worst-case execution times

Inputs to the experiments are a deadline, frequencies,

simulated-worst-case execution times for all

sub-tasks and frequencies, and worst-case execution times

 for all sub-tasks and frequencies.

Simulated-worst-case execution times are measured
by running the FFT sub-task on a detailed microarchitec-
ture simulator. Twenty trials of the sub-task were run for
each frequency (with the caches warmed). The longest
execution time among the trials of a given frequency pro-

vides .

Worst-case execution times are normally

generated manually or by a phase of the compiler. Manual
analysis is time-consuming for complex pipelines. And,
unfortunately, we are not aware of any released WCET
estimation tools, and creating one is beyond the scope of
this paper (we leave this for future work).

To expedite experiments, a pragmatic simulation-

based approach is used to generate . To avoid any

misinterpretation, carefully note that the method is artifi-
cial and does not generate a guaranteed-correct bound for
WCET, because it is based on a finite number of simula-
tion trials. The method is only devised to work around not
having a compiler with WCET capability.

To mimic uncertainty in the compiler, execution time
is over-estimated by randomly injecting a controlled num-
ber of additional data cache misses during the simulation
trials. Data cache misses are used only as a typical source
of uncertainty (other sources include data-dependent con-
trol flow, branch prediction, etc.). A miss is injected by
converting a cache hit to a cache miss, with some probabil-
ity. Three probabilities are experimented with — 10%,
30%, and 50% — resulting in over-estimated worst-case

execution times called , , and

, respectively. If no artificial cache misses are

injected (i.e., 0% probability), we simply get the simu-

lated-worst-case execution time  as before.

We feel injecting cache misses more accurately rep-
resents how estimation tools inflate execution time than
simply multiplying execution time by an inflation factor.
First, it is thescenariothat estimation tools inflate (e.g.,
static load #1 misses all the time). Second, memory
latency (in cycles) varies with frequency. We have found
that injecting additional cache misses has a different
impact at 50MHz than at 300MHz. The only way to model
such non-linear effects is by simulating the cache misses,

not multiplying execution time by a constant factor for all
frequencies.

The microarchitecture simulator and benchmark
binary are based on the Simplescalar toolset [2]. The Sim-
plescalar compiler is gcc-based and the ISA is MIPS-like.
The FFT sub-task is embedded in a benchmark wrapper,
which measures the number of cycles consumed by each
sub-task trial. This is done via new system calls for reset-
ting and querying the simulator cycle counter. A separate
simulation is performed for each frequency (because num-
ber of cycles to access main memory changes with fre-
quency, as shown in Table 1), and for each degree of over-
estimation (0%, 10%, 30%, and 50%). The resulting exe-

cution times (0%), (10%),

(30%), and (50%) are shown in

Figure 4, in units of milliseconds.

FIGURE 4. FFT sub-task execution time vs.
frequency, for various levels of over-estimation

3.4  Automated solver

A tool was developed that solves EQ 1 forfwc and
EQ 3 for {fspec, frec}, given (1) a deadline, (2) the number
of sub-tasks, (3) the number of frequency levels, (4)

for all sub-tasks and frequencies, and (5)

for all sub-tasks and frequencies. The latter

values ( , ) were generated in

Section 3.3 and are shown in Figure 4. In our benchmark,

all sub-tasksi are identical and have the same

and , but the tool supports sub-tasks that are not

identical. The solvers for EQ 1 and EQ 3 are 16 and 43
lines of code, respectively (includes comments).
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4.  Experiments

The graphs in Figure 5 plot four different frequencies
as a function of task deadline, for each of the three worst-
case estimation models (WC10, WC30, and WC50). The
over-designed frequency,fwc , was derived by solving
EQ 1. The speculative and recovery frequencies,fspecand
frec , respectively, were derived by solving EQ 3.

A fourth frequency,opt (short for optimum), is an
ideal lower bound forfspec. We know that none of thesim-

ulated sub-tasks miss their checkpoints because check-
points are based on the simulation trials. Knowing this
ahead of time, the misspeculation and recovery terms in
EQ 3 can be removed to produce a betterfspec(EQ 3 is left
with only the first term, in which every sub-task meets its
checkpoint). Of course,opt is based on information that is
not known ahead of time in a real system; it is only valid
as a measuring stick forfspec.

The first observation is that there is significant specu-
lation opportunity for all of the estimation models. That is,
there is a large reduction in frequency between the over-
designed frequencyfwc and the speculative frequencyfspec.
For example, for a deadline of 40 ms, there is a frequency
reduction of 25 MHz (150 MHz down to 125 MHz) for
WC10, 50 MHz (200 MHz down to 150 MHz) for WC30,
and 100 MHz (250 MHz down to 150 MHz) for WC50.

The second observation is that the frequency reduc-
tion is larger for worse estimation models. Notice the gap
between thefspec/opt curves and thefrec/fwc curves grows
progressively from WC10 to WC30 to WC50. At 40 ms,
the frequency reduction of WC50 is two times that of
WC30 and four times that of WC10. This makes sense —
the disparity between actual execution time (SWC) and
worst-case execution time (WC) increases with poorer
estimation models, and there is more opportunity for spec-
ulation.

Another trend is thatfspectracksoptvery closely (but
it is never belowopt, as expected). So, the method for
guaranteeing the speculative frequency is quite effective.

Likewise, frec tracksfwc very closely (but it is never
below fwc , as expected). This is also an important result,
because it implies thatguaranteeing correct recovery from
mispredictions is not much worse than conventional over-
design. The system degrades gracefully to a conventional
over-designed system.

Possibly the reason for graceful degradation is that
only a single failure is allowed within a task. This can be
explained by comparing EQ 1 and EQ 3, which are actu-
ally quite similar. The firsti-1 sub-tasks in EQ 3 consume
about the same amount of time as the firsti-1 sub-tasks in
EQ 1. The speculative EQ 3 sub-tasks run at a lower fre-

quency (fspecvs. fwc) but under more optimistic conditions
(SWC vs. WC), ultimately consuming about the same
amount of time as the non-speculative EQ 1 sub-tasks. The
single misspeculated sub-taski is the only problem, but it
is only one exception among many sub-tasks. It is not sur-
prising, then, that the recovery frequency for remaining
sub-tasks is close to the over-designed frequency. The last
s-i sub-tasks in both EQ 1 and EQ 3 run under pessimistic
conditions (WC) and have about the same amount of time
to execute before the deadline (the recovery sub-tasks in
EQ 3 have a little less time, because of misspeculated sub-
taski, but not too much less).

Notice that the speculative frequency is about the
same for all of the worst-case estimation models. The top-
most graph in Figure 6 showsfspecfor WC10, WC30, and
WC50. For the most part, the curves overlap. This is an
important result because it implies thatfspec is relatively
insensitive to how much the “compiler” exaggerates
worst-case execution time. That is, the degree of pessi-
mism does not limit our ability to guarantee a low specula-
tive frequency. It is actual execution time and not worst-
case execution time that dictatesfspec.

The exact opposite trend is observed for recovery fre-
quency, shown in the bottom-most graph in Figure 6.
Worse estimation models require a higher recovery fre-
quency. For example, for a 40 ms deadline,frec for WC50
(275 MHz) is nearly twice that of WC10 (150 MHz).
Recovery is the insurance policy that covers speculation,
and guarantees must be based on provably correct worst-
case bounds. So,frec is naturally sensitive to worst-case
execution time.

Finally, referring back to Figure 5, speculation
opportunity tends to increase with tighter deadlines. That
is, frequency reduction increases with tighter deadlines.
For example, the difference betweenfspecand fwc for the
best estimation model, WC10, is constant at about 25
MHz for most of the graph, but a change occurs at 28 ms.
The difference betweenfspecandfwc increases to 50 MHz
at 28 ms and 75 MHz at 26 ms.

The same trend is observed for the other models. For
WC50, the difference betweenfspecand fwc is 75 MHz at
50 ms and reaches as high as 150 MHz at 37 ms.

Frequency delivers diminishing performance returns
because one component of execution time, memory
latency, is not reduced with higher frequency. Tighter
deadlines require more performance. Meanwhile, fre-
quency is progressively less effective at generating perfor-
mance. So,fwc increases non-linearly to compensate for
diminishing performance returns, widening the gap
betweenfwc and fspec(fspec increases slower because it is
based on SWC, which has a smaller memory component).



FIGURE 5. Frequencies for each of the worst-case estimation models.
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FIGURE 6. Comparing the speculative frequencies (top-most graph) and recovery frequencies (bottom-
most graph) of different worst-case estimation models.

Frequency switching overhead was not accounted for
in the previous experiments. The graph in Figure 7 shows
the difference infspecwith and without a 1 ms switching
overhead, for the WC10 model. The curve with overhead
is identical to the one without, except it is shifted to the
left by 1 ms. Essentially, a 1 ms overhead reduces the per-
ceived deadline by that amount (e.g., a 40 ms deadline
looks like a 39 ms deadline), which is consistent with
EQ 3. The same result was observed for WC30 and
WC50.

FIGURE 7. Impact of switching overhead.
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5.  Summary and future work

High-performance microarchitecture techniques such
as pipelining, caching, and branch prediction are making
their way into embedded processors. Unfortunately, worst-
case analysis for real-time systems underestimates
microarchitecture contributions because it is difficult to
guarantee performance of complex pipelines. Ultimately,
the designer must turn to clock frequency as a redundant,
reliable source of performance. Over-designing clock fre-
quency apparently defeats the purpose of also adding hard-
ware enhancements.

We propose that simulation coupled with traditional
WCET analysis can resolve this paradox. Simulated-
worst-case bounds determine a speculative frequency and
guaranteed-correct worst-case bounds determine a recov-
ery frequency. A sub-task is expected to meet its check-
point at the speculative frequency. If it does not, a transient
performance fault is detected and the processor recovers
by running remaining sub-tasks at the recovery frequency.

Experiments demonstrate frequency reduction of up
to 100 MHz for a peak 300 MHz processor. Other key
results: benefits increase with more conservative WCET
analysis; benefits increase with tighter deadlines; and the
recovery frequency is close to the frequency produced by
conventional worst-case analysis, indicating graceful deg-
radation in the presence of faults.

Future work includes evaluating the technique for
more complex tasks, studying sub-task selection, integrat-
ing/developing WCET compilers to generate worst-case
execution times, and exploring custom-fit processors as a
platform.
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