
Zach Purser
Karthik Sundaramoorthy, Eric Rotenberg

Dept. of Electrical and Computer Engineering
North Carolina State University

www.tinker.ncsu.edu/ericro/slipstream
{zrpurser,ksundar,ericro}@ece.ncsu.edu

A Study of Slipstream Processors 2Zach Purser © 2000

• “Slipstreaming”
– Two cars race nose-to-tail to speed up both cars

Rusty Wallace

Jeff Gordon
Dale Earnhardt

A Study of Slipstream Processors 3Zach Purser © 2000

• Processors execute full instruction stream to
produce final output

• Is it possible to construct a shorter instruction
stream with the same effect?

Final Output

Identical

Final Output

Original dynamic instruction stream

Equivalent, shorter instruction stream

A Study of Slipstream Processors 4Zach Purser © 2000

• Ideal experiment
– Run full program

– Then pick out instructions that (in retrospect) were
unnecessary

• What were unnecessary for correct forward
progress?
– Non-modifying writes

– Unreferenced writes

– Correctly-predicted branches

– …and their dependence chains

A Study of Slipstream Processors 5Zach Purser © 2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gcc go jpeg perl m88k postgres

%
 o

f
dy

na
m

ic
 in

st
ru

ct
io

ns
 n

ee
de

d
fo

r
co

rr
ec

t o
ut

pu
t

A Study of Slipstream Processors 6Zach Purser © 2000

• Only need a small part of program to make full,
correct, forward progress

• The catch
– Skipping instructions is speculative…

– …AND lose ability to verify instructions were skippable

• Answer: run both programs! (redundant execution)
– Check results of short program against full program

A Study of Slipstream Processors 7Zach Purser © 2000

• Operating system creates two redundant processes
– Programs run concurrently on single-chip

multiprocessor (CMP) or simultaneous multithreading
processor (SMT)

– One program always runs slightly ahead of other

• Advanced stream (A-stream) leads

• Redundant stream (R-stream) trails

A Study of Slipstream Processors 8Zach Purser © 2000

• Step 1: reduce the A-stream
– Monitor R-stream to detect past-removable computation

– Use knowledge to speculatively reduce A-stream in future

– A-stream fetches/executes fewer instructions

• Step 2: check the A-stream
– A-stream passes control/data outcomes to R-stream

– R-stream checks outcomes: if A-stream deviates, it’s context is
recovered from R-stream

• Step 3: speedup R-stream while it checks
– R-stream uses A-stream outcomes as predictions

• Leverage existing speculation mechanisms to do checks

• R-stream fetches/executes more efficiently

• Both programs finish sooner (roughly same time)

A Study of Slipstream Processors 9Zach Purser © 2000

Branch
Pred.

I-cache

D-cache
Execute

Core
Reorder
Buffer

Branch
Pred.

I-cache

D-cache
Execute

Core
Reorder
Buffer

IR-predictor

Delay Buffer

Recovery
Controller

IR-detector

from IR-detectorA-stream R-stream

to IR-predictor

IR = Instruction-removal

A Study of Slipstream Processors 10Zach Purser © 2000

• A-stream’s perspective: It is a shorter program
– A-stream runs faster
– R-stream is a fast checker (doesn’t slow A-stream down)

• R-stream’s perspective: It has accurate program-based
prediction

– Related work
• [Roth, Moshovos & Sohi] - Prefetching linked data structures
• [Roth & Sohi] - Speculative data-driven multithreading
• [Zilles & Sohi] - Backward slices of performance-degrading instr.
• [Farcy, Temam, Espasa & Juan] - Early branch resolution
• [Chappell, Stark, Kim, Reinhardt, Patt] - SSMT

A-stream R-streamPredictor

confident
predictions

unconfident
predictions

verified

unverified

A Study of Slipstream Processors 11Zach Purser © 2000

• More effective instruction removal
– Previous trace-based approach was conservative

• Insufficient removal

• Overall confidence reflects least-confident instructions in trace

– New instruction-based approach => majority of
benchmarks reduced by half

A Study of Slipstream Processors 12Zach Purser © 2000

A Study of Slipstream Processors 13Zach Purser © 2000

• Performance (CMP)
– 12% average speedup using second free superscalar core

– Comparable to larger, more complex, inflexible
superscalar

• Bypassing instruction fetch
– Important to skip instructions before they are fetched

– Novel method for bypassing instruction fetch
• Simple modifications to conventional branch predictor

• Skip basic block if all instructions in block are predicted
removed

A Study of Slipstream Processors 14Zach Purser © 2000

• SS(64x4):Single 4-way superscalar proc with 64 ROB entries

• SS(128x8):Single 8-way superscalar proc with 128 ROB entries

• SS(256x16):Single 16-way superscalar proc with 256 ROB entries

• CMP(2x64x4): Slipstream on a CMP composed of two SS(64x4) cores

• CMP(2x64x4)/byp:Same as previous, but A-stream can bypass
instruction fetch

• CMP(2x128x8):Slipstream on a CMP composed of two SS(128x8)
cores

• CMP(2x128x8)/byp:Same as previous, but A-stream can bypass
instruction fetch

• SMT(128x8)/byp:Slipstream on SMT, where SMT is built on top of
SS(128x8)

A Study of Slipstream Processors 15Zach Purser © 2000

A Study of Slipstream Processors 16Zach Purser © 2000

A Study of Slipstream Processors 17Zach Purser © 2000

• SMT-based slipstream implementation
– SMT infeasible before due to insufficient A-stream

reduction

– 10-20% improvement for benchmarks with significant
removal

A Study of Slipstream Processors 18Zach Purser © 2000

A Study of Slipstream Processors 19Zach Purser © 2000

• Quantify program-based prediction
– Some benchmarks benefit from resolving branch mispredictions

ahead of time

– Others benefit from value predictions, not always reproducible by
conventional value predictor

A Study of Slipstream Processors 20Zach Purser © 2000

A Study of Slipstream Processors 21Zach Purser © 2000

• Results
– 12% average improvement harnessing otherwise unused PE

– Slipstreaming on 2 small cores has comparable IPC to 1 large
core, but with faster clock and more flexible architecture

– Bypassing instruction fetch is important

– Majority of benchmarks show significant A-stream
reduction (50%); Slipstreaming on 8-way SMT improves
their performance 10%-20%

– Quantified program-based prediction: resolving branch
mispredictions in advance + quality value prediction

• Slipstream Processors: novel method for harnessing
CMP/SMT to speed up single programs

A Study of Slipstream Processors 22Zach Purser © 2000

• Slipstream Processors
– Further understanding performance
– Microarchitectural design space
– Pipeline organization
– Fault tolerance
– System-level issues
– Adaptivity

• Fundamental variations of Slipstream Paradigm
– Streamlining R-stream
– Other A-stream shortening approaches
– Scaling to N threads
– Approximate A-streams

• Other novel CMP/SMT applications

