NC STATE UNIVERSITY

A Study of Slipstream Processors

Zach Purser
Karthik Sundaramoorthy, Eric Rotenberg

Dept. of Electrical and Computer Engineering
North Carolina State University
www.tinker.ncsu.edu/ericro/slipstream
{ zrpurser,ksundar,ericro} @ece.ncsu.edu

NC STATE UNIVERSITY

NASCAR and Computers

o “Slipstreaming”
— Two cars race nose-to-tail to speed up both cars

Jeff Gordon

Dale Earnhardt

Zach Purser © 2000 A Study of Slipstream Processors

NC STATE UNIVERSITY

Stream

Reducing the Program

e Processors execute full instruction stream to
oroduce final output

 |s it possible to construct a shorter instruction

with the same effect?

Zach Purser © 2000

Original dynamic instruction stream
Equivalent, shorter instruction stream

|dentical

A Study of Slipstream Processor s

NC STATE UNIVERSITY

Reducing the Program (cont.)

* |deal experiment
— Run full program
— Then pick out instructions that (in retrospect) were
unnecessary
e What were unnecessary for correct forward
progress?
— Non-modifying writes
— Unreferenced writes
— Correctly-predicted branches
— ...and their dependence chains

Zach Purser © 2000 A Study of Slipstream Processors

NC STATE UNIVERSITY

Reducing the Program (cont.)

100%
90%

80%
70%

60%
50%

40%

30%

20%

10% I
0%

perl m88k postgres

correct output

% of dynamic instructions needed for

Zach Purser © 2000 A Study of Slipstream Processors

NC STATE UNIVERSITY

Catch-22

 Only need a small part of program to make full,
correct, forward progress

e The catch

— Skipping instructions is speculative...
— ...AND lose ability to verify instructions were skippable

e Answer: run both programs! (redundant execution)
— Check results of short program against full program

Zach Purser © 2000 A Study of Slipstream Processors 6

Slipstream Paradigm

e Operating system creates two redundant processes

— Programs run concurrently on single-chip
multiprocessor (CMP) or simultaneous multithreading
processor (SMT)

— One program always runs slightly ahead of other
» Advanced stream (A-strean) leads
* Redundant stream (R-strean) trails

Zach Purser © 2000 A Study of Slipstream Processors 7

NC STATE UNIVERSITY

Slipstream Paradigm

o Step 1: reduce the A-stream
— Monitor R-stream to detect past-removable computation
— Use knowledge to speculatively reduce A-stream in future
— A-stream fetches/executes fewer instructions

o Step 2: check the A-stream

— A-stream passes control/data outcomes to R-stream

— R-stream checks outcomes: if A-stream deviates, It's context is
recovered from R-stream

o Step 3: speedup R-stream while it checks

— R-stream uses A-stream outcomes as predictions
» Leverage existing speculation mechanisms to do checks

* Both programs finish sooner (roughly same time)

Zach Purser © 2000 A Study of Slipstream Processors 8

NC STATE UNIVERSITY

Slipstream Microarchitecture

R-stream

|-cache

€

Zach Purser © 2000

L -

vy

Branch
Pred.

Execute
Core

Reorder
uffer

<>

D-cache

v

to IR-predictor

A-stream from | R-detector

BF';rag(;:_h — | |-cache |« | R-predictor

YvY |
E)ée()(:r%te C T TTTTTTT]
D-cachef<—> Delay Buffer
Hes i r||||||||"i
»| RECOVErY | o
Cont;oller
IR = Instruction-removal |/R-detector

A Study of Slipstream Processor s

Where’s the speedup?
o A-stream’s perspective: It is a shorter program

— A-stream runs faster
— R-stream is a fast checker (doesn’t slow A-stream down)

e R-stream’s perspective: It has accuategram-based

prediction

- - - - """"""">"¥">/"¥/"¥/W"/"\"/"/"/"7/"7/ /7= 1

| confident unverified| |

| _ predictions |

i Predictor unco_nfjdeﬁt A-stream veriied > ! » R-stream
| predictions |

— Related work
* [Roth, Moshovos & Sohi] - Prefetching linked data structures
* [Roth & Sohi] - Speculative data-driven multithreading
» [Zilles & Sohi] - Backward slices of performance-degrading instr.
» [Farcy, Temam, Espasa & Juan] - Early branch resolution
o [Chappell, Stark, Kim, Reinhardt, Patt] - SSMT

Zach Purser © 2000 A Study of Slipstream Processors 10

NC STATE UNIVERSITY

Contributions

e More effective instruction removal

— Previous trace-based approach was conservative
* |nsufficient removal
» Qverall confidence reflects least-confident instructions in trace

— New instruction-based approach ezsjority of
benchmarks reduced by half

Zach Purser © 2000 A Study of Slipstream Processors 11

NC STATE UNIVERSITY

Breakdown of Instruction Removal
100% :
B prop writes/branches

o 90% 1 Oprop writes
S .., | Owrites
5 80% 7 mprop branches
2 g0, I O branches
z
E 60%
E &no
5 50% — — — —
5 40%
B 50
= 30% I
=
= 20% i I I
: = n
= 10%

Do}fﬂ I I I m I I I I

comp gcc go ipeg | m88k perl wvortex

Zach Purser © 2000 A Study of Slipstream Processors 12

NC STATE UNIVERSITY

Contributions (cont.)

* Performance (CMP)

— 12% average speedup using second free superscalar core
— Comparable to larger, more complex, inflexible
superscalar
e Bypassing instruction fetch
— Important to skip instructiorisefore they are fetched

— Novel method for bypassing instruction fetch
« Simple modifications to conventional branch predictor

» Skip basic block if all instructions in block are predicted
removed

Zach Purser © 2000 A Study of Slipstream Processors 13

NC STATE UNIVERSITY

Models

 SS(64x4)Single 4-way superscalar proc with 64 ROB entries

o SS5(128x8)Single 8-way superscalar proc with 128 ROB entries

o SS5(256x16)Single 16-way superscalar proc with 256 ROB entries

« CMP(2x64x4):Slipstream on a CMP composed of two SS(64x4) cores

« CMP(2x64x4)/bypSame as previous, but A-stream can bypass
Instruction fetch

« CMP(2x128x8)Slipstream on a CMP composed of two SS(128x8)
cores

« CMP(2x128x8)/bypSame as previous, but A-stream can bypass
instruction fetch

« SMT(128x8)/bypSlipstream on SMT, where SMT is built on top of
SS(128x8)

Zach Purser © 2000 A Study of Slipstream Processors 14

NC STATE UNIVERSITY

Slipstream Performance (CMP)
35%
OCMP (2x64x4) vs. =S5(6dxd)
30% - BCMP (2x64x4d) /byp wvs. =8 (64x4d)
OCMP (2x128x8) vs. S8 ({128x8)
059, OCMP (2x128x8) /byp vs. S8 (128x8)
& 20% T — 0
E
<D _
g 15% — u
o _
o
E10% = - N
O
o
52 5% — — —] -
n?‘fﬂ |_ILu I I I_I I I I I I I
comp gcc go ﬂ;(li m88k perl wvortex AVG
-5%
-10%
Zach Purser © 2000 A Study of Slipstream Processors 15

NC STATE UNIVERSITY

Slipstream on 2 cores VS. 1 large core

25%

OCMP (2x64x4) /byp wvs. Ss(128x8)
20%

BcMP (2x128x8) /byp vs. == (256x16)

15%

10%

5%

Da}fﬂ' T T T T T T I T
_5o; 10&1 gcc QE P li m88k perl vornex AVG

-10%

% IPC difference

-15%

-20%

-25%

-30% ||

-35%
Zach Purser © 2000 A Study of Slipstream Processors 16

NC STATE UNIVERSITY

Contributions (cont.)

« SMT-based slipstream implementation

— SMT Infeasible before due to insufficient A-stream
reduction

— 10-20% improvement for benchmarks with significant
removal

Zach Purser © 2000 A Study of Slipstream Processors 17

NC STATE UNIVERSITY

20%

Slipstream Performance (SMT)

D sT (128x8) /byp vs. SS(128x8)

15%

10%

%

j

-5%

uﬂf’ﬂ ! I I ! I
D gcc bﬂ.‘ [Pec li

m88k

perl

L
voriex

-10%

% IPC Improvement

-15%

-20%

-25%

-30%

Zach Purser © 2000

A Study of Slipstream Processor s

18

NC STATE UNIVERSITY

Contributions (cont.)

« Quantify program-based prediction
— Some benchmarks benefit from resolving branch mispredictions

ahead of time
— Others benefit from value predictions, not always reproducible by
conventional value predictor

Zach Purser © 2000 A Study of Slipstream Processors 19

NC STATE UNIVERSITY

Program-Based Prediction

O SS(64x4) + context-based value prediction

B CMP(2x84x4)/byp -- no value prediction

O CMP(2x64x4)/byp

—r
3
8

5%

% IPC improvement over SS(64x4)

0%

1l

1 m% ,
comp gcc go j li

m88k

per

vortex

-5%

Zach Purser © 2000

A Study of Slipstream Processor s

20

Summary

e Results
— 12% average improvement harnessing otherwise unused PE

— Slipstreaming on 2 small cores has comparable IPC to 1 large
core, but with faster clock and more flexible architecture

— Bypassing instruction fetch is important

— Majority of benchmarks show significant A-stream
reduction (50%); Slipstreaming on 8-way SMT improves
their performance 10%-20%

— Quantified program-based prediction: resolving branch
mispredictions in advance + quality value prediction
e Slipstream Processors: novel method for harnessing
CMP/SMT to speed up single programs

Zach Purser © 2000 A Study of Slipstream Processors 21

NC STATE UNIVERSITY

Future Work

o Slipstream Processors
— Further understanding performance
— Microarchitectural design space
— Pipeline organization
— Fault tolerance
— System-level issues
— Adaptivity

 Fundamental variations of Slipstream Paradigm

— Streamlining R-stream

— Other A-stream shortening approaches
— Scaling to N threads

— Approximate A-streams

e Other novel CMP/SMT applications

Zach Purser © 2000 A Study of Slipstream Processors

22

