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• “Slipstreaming”
– Two cars race nose-to-tail to speed up both cars

Rusty Wallace

Jeff Gordon
Dale Earnhardt
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• Processors execute full instruction stream to 
produce final output

• Is it possible to construct a shorter instruction 
stream with the same effect?

Final Output

Identical

Final Output

Original dynamic instruction stream

Equivalent, shorter instruction stream
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• Ideal experiment
– Run full program 

– Then pick out instructions that (in retrospect) were 
unnecessary

• What were unnecessary for correct forward 
progress?
– Non-modifying writes

– Unreferenced writes

– Correctly-predicted branches

– …and their dependence chains
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• Only need a small part of program to make full, 
correct, forward progress

• The catch
– Skipping instructions is speculative…

– …AND lose ability to verify instructions were skippable

• Answer: run both programs! (redundant execution)
– Check results of short program against full program
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• Operating system creates two redundant processes
– Programs run concurrently on single-chip 

multiprocessor (CMP) or simultaneous multithreading 
processor (SMT)

– One program always runs slightly ahead of other

• Advanced stream (A-stream) leads

• Redundant stream (R-stream) trails
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• Step 1: reduce the A-stream
– Monitor R-stream to detect past-removable computation

– Use knowledge to speculatively reduce A-stream in future

– A-stream fetches/executes fewer instructions

• Step 2: check the A-stream
– A-stream passes control/data outcomes to R-stream

– R-stream checks outcomes: if A-stream deviates, it’s context is 
recovered from R-stream

• Step 3: speedup R-stream while it checks
– R-stream uses A-stream outcomes as predictions

• Leverage existing speculation mechanisms to do checks

• R-stream fetches/executes more efficiently

• Both programs finish sooner (roughly same time)
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• A-stream’s perspective: It is a shorter program
– A-stream runs faster
– R-stream is a fast checker (doesn’t slow A-stream down)

• R-stream’s perspective: It has accurate program-based 
prediction

– Related work
• [Roth, Moshovos & Sohi] - Prefetching linked data structures
• [Roth & Sohi] - Speculative data-driven multithreading
• [Zilles & Sohi] - Backward slices of performance-degrading instr.
• [Farcy, Temam, Espasa & Juan] - Early branch resolution
• [Chappell, Stark, Kim, Reinhardt, Patt] - SSMT

A-stream R-streamPredictor

confident
predictions

unconfident
predictions

verified

unverified
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• More effective instruction removal
– Previous trace-based approach was conservative

• Insufficient removal

• Overall confidence reflects least-confident instructions in trace

– New instruction-based approach => majority of 
benchmarks reduced by half
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• Performance (CMP)
– 12% average speedup using second free superscalar core 

– Comparable to larger, more complex, inflexible 
superscalar

• Bypassing instruction fetch
– Important to skip instructions before they are fetched

– Novel method for bypassing instruction fetch
• Simple modifications to conventional branch predictor

• Skip basic block if all instructions in block are predicted 
removed
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• SS(64x4):Single 4-way superscalar proc with 64 ROB entries

• SS(128x8):Single 8-way superscalar proc with 128 ROB entries

• SS(256x16):Single 16-way superscalar proc with 256 ROB entries

• CMP(2x64x4): Slipstream on a CMP composed of two SS(64x4) cores

• CMP(2x64x4)/byp:Same as previous, but A-stream can bypass 
instruction fetch

• CMP(2x128x8):Slipstream on a CMP composed of two SS(128x8) 
cores

• CMP(2x128x8)/byp:Same as previous, but A-stream can bypass 
instruction fetch

• SMT(128x8)/byp:Slipstream on SMT, where SMT is built on top of 
SS(128x8)
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• SMT-based slipstream implementation
– SMT infeasible before due to insufficient A-stream 

reduction

– 10-20% improvement for benchmarks with significant 
removal
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• Quantify program-based prediction
– Some benchmarks benefit from resolving branch mispredictions

ahead of time

– Others benefit from value predictions, not always reproducible by 
conventional value predictor
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• Results
– 12% average improvement harnessing otherwise unused PE

– Slipstreaming on 2 small cores has comparable IPC to 1 large 
core, but with faster clock and more flexible architecture

– Bypassing instruction fetch is important

– Majority of benchmarks  show significant A-stream 
reduction (50%); Slipstreaming on 8-way SMT improves 
their performance 10%-20%

– Quantified program-based prediction: resolving branch
mispredictions in advance + quality value prediction

• Slipstream Processors: novel method for harnessing 
CMP/SMT to speed up single programs
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• Slipstream Processors
– Further understanding performance
– Microarchitectural design space
– Pipeline organization
– Fault tolerance
– System-level issues
– Adaptivity

• Fundamental variations of Slipstream Paradigm
– Streamlining R-stream
– Other A-stream shortening approaches
– Scaling to N threads
– Approximate A-streams

• Other novel CMP/SMT applications


