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NASCAR and Computers

o “Slipstreaming”
— Two cars race nose-to-tail to speed up both cars

Jeff Gordon

Dale Earnhardt
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Stream

Reducing the Program

e Processors execute full instruction stream to
oroduce final output

 |s it possible to construct a shorter instruction

with the same effect?
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Reducing the Program (cont.)

* |deal experiment
— Run full program
— Then pick out instructions that (in retrospect) were
unnecessary
e What were unnecessary for correct forward
progress?
— Non-modifying writes
— Unreferenced writes
— Correctly-predicted branches
— ...and their dependence chains
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Reducing the Program (cont.)
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Catch-22

 Only need a small part of program to make full,
correct, forward progress

e The catch

— Skipping instructions is speculative...
— ...AND lose ability to verify instructions were skippable

e Answer: run both programs! (redundant execution)
— Check results of short program against full program

Zach Purser © 2000 A Study of Slipstream Processors 6



Slipstream Paradigm

e Operating system creates two redundant processes

— Programs run concurrently on single-chip
multiprocessor (CMP) or simultaneous multithreading
processor (SMT)

— One program always runs slightly ahead of other
» Advanced stream (A-strean) leads
* Redundant stream (R-strean) trails
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Slipstream Paradigm

o Step 1: reduce the A-stream
— Monitor R-stream to detect past-removable computation
— Use knowledge to speculatively reduce A-stream in future
— A-stream fetches/executes fewer instructions

o Step 2: check the A-stream

— A-stream passes control/data outcomes to R-stream

— R-stream checks outcomes: if A-stream deviates, It's context is
recovered from R-stream

o Step 3: speedup R-stream while it checks

— R-stream uses A-stream outcomes as predictions
» Leverage existing speculation mechanisms to do checks

* Both programs finish sooner (roughly same time)
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Slipstream Microarchitecture
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Where’s the speedup?
o A-stream’s perspective: It is a shorter program

— A-stream runs faster
— R-stream is a fast checker (doesn’t slow A-stream down)

e R-stream’s perspective: It has accuategram-based

prediction

- - - - """"""">"¥">/"¥/"¥/W"/"\"/"/"/"7/"7/ /7= 1

| confident unverified| |

| _ predictions |

i Predictor unco_nfjdeﬁt A-stream veriied > ! » R-stream
| predictions |

— Related work
* [Roth, Moshovos & Sohi] - Prefetching linked data structures
* [Roth & Sohi] - Speculative data-driven multithreading
» [Zilles & Sohi] - Backward slices of performance-degrading instr.
» [Farcy, Temam, Espasa & Juan] - Early branch resolution
o [Chappell, Stark, Kim, Reinhardt, Patt] - SSMT
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Contributions

e More effective instruction removal

— Previous trace-based approach was conservative
* |nsufficient removal
» Qverall confidence reflects least-confident instructions in trace

— New instruction-based approach ezsjority of
benchmarks reduced by half
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Breakdown of Instruction Removal
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Contributions (cont.)

* Performance (CMP)

— 12% average speedup using second free superscalar core
— Comparable to larger, more complex, inflexible
superscalar
e Bypassing instruction fetch
— Important to skip instructiorisefore they are fetched

— Novel method for bypassing instruction fetch
« Simple modifications to conventional branch predictor

» Skip basic block if all instructions in block are predicted
removed
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Models

 SS(64x4)Single 4-way superscalar proc with 64 ROB entries

o SS5(128x8)Single 8-way superscalar proc with 128 ROB entries

o SS5(256x16)Single 16-way superscalar proc with 256 ROB entries

« CMP(2x64x4):Slipstream on a CMP composed of two SS(64x4) cores

« CMP(2x64x4)/bypSame as previous, but A-stream can bypass
Instruction fetch

« CMP(2x128x8)Slipstream on a CMP composed of two SS(128x8)
cores

« CMP(2x128x8)/bypSame as previous, but A-stream can bypass
instruction fetch

« SMT(128x8)/bypSlipstream on SMT, where SMT is built on top of
SS(128x8)
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Slipstream Performance (CMP)
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Slipstream on 2 cores VS. 1 large core
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Contributions (cont.)

« SMT-based slipstream implementation

— SMT Infeasible before due to insufficient A-stream
reduction

— 10-20% improvement for benchmarks with significant
removal
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Slipstream Performance (SMT)
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Contributions (cont.)

« Quantify program-based prediction
— Some benchmarks benefit from resolving branch mispredictions

ahead of time
— Others benefit from value predictions, not always reproducible by
conventional value predictor
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Program-Based Prediction

O SS(64x4) + context-based value prediction
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Summary

e Results
— 12% average improvement harnessing otherwise unused PE

— Slipstreaming on 2 small cores has comparable IPC to 1 large
core, but with faster clock and more flexible architecture

— Bypassing instruction fetch is important

— Majority of benchmarks show significant A-stream
reduction (50%); Slipstreaming on 8-way SMT improves
their performance 10%-20%

— Quantified program-based prediction: resolving branch
mispredictions in advance + quality value prediction
e Slipstream Processors: novel method for harnessing
CMP/SMT to speed up single programs
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Future Work

o Slipstream Processors
— Further understanding performance
— Microarchitectural design space
— Pipeline organization
— Fault tolerance
— System-level issues
— Adaptivity

 Fundamental variations of Slipstream Paradigm

— Streamlining R-stream

— Other A-stream shortening approaches
— Scaling to N threads

— Approximate A-streams

e Other novel CMP/SMT applications
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