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• Goal: issue many instructions per cycle, and keep cycle
times fast

• What we have now: dynamically scheduled, modest
superscalar processors

• Problem: is conventional superscalar a good candidate for
very wide-issue machines?

- Complexity issues

i.e. cycle time related

efficiently exploiting instruction-level parallelism

- Architectural issues

exposing instruction-level parallelism

Introduct ion
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• A trace is a dynamic sequence of instructions captured and
stored by hardware

- Traces are built as the program executes

- Stored in a trace cache

What is a Trace?

Instruction Cache Trace Cache
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• A trace can contain any number and type of control
transfer instructions, i.e. any number of implicit control
predictions

- Unit of control prediction should be a trace, not individual
branches

- Suggests a next-trace predictor

Trace proper ty 1:  control  h ierarchy
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• A trace uses and produces values that are either live-
on-entry, entirely local, or live-on-exit

terms: live-ins , locals , and live-outs  respectively

- Suggests a hierarchical register file: a local register file
per trace for local values, a single global file for values
live between traces. Pre-rename local values.

- Local (intra-trace) dependences and global (inter-trace)
dependences suggest distributing instruction window
based on trace boundaries

[Vajapeyam,Mitra] and [Franklin,Sohi]

Trace proper ty 2:  data hierarchy
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• Instruction fetch: trace cache and next-trace predictor take
care of instruction fetch bottleneck

• Instruction dispatch: only global values are renamed, and
no dependence checking

• Instruction issue: distributed wakeup and select logic

• Result bypassing: full bypassing within a PE, delayed
bypassing between PEs

• Register file: global register file can be smaller, fewer ports

• Instruction retirement: the dual of dispatch

Hierarchy: overcoming complexi ty
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• Control dependences

- next-trace prediction can yield better overall branch
prediction accuracy than many aggressive single-branch
predictors

• Data dependences

- value prediction and speculation

- structured value prediction: predict only live-ins

• Memory dependences

- predict all load and store addresses

- loads issue speculatively as if no prior stores

Speculat ion:  exposing ILP
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1. An instruction reissues when it detects any type of
mispredict: value, address, memory dependence, and
control (register dependence)

- Paper proposes a collection of mechanisms for detecting
all kinds of mispredictions

2. Selective reissuing of dependent instructions

- Occurs naturally via the existing issue mechanism, i.e.
the receipt of new values, and is independent of the
mispredict origin

End result: a dynamic instruction can issue any number of
times between dispatch and retirement.

Handl ing misspeculat ion
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• Multiscalar processors - Franklin, Vijaykumar, Breach, Sohi

• Trace window organization - Vajapeyam, Mitra

• Dependence-based clustering - Palacharla, Jouppi, Smith

• Fill unit - Melvin, Shebanow, Patt

• Data prediction - Lipasti,Shen / Sazeides,Smith

Companion work:

• Context-based value prediction - Sazeides, Smith

• Next-trace prediction - Jacobson, Rotenberg, Smith

• Trace cache - Peleg,Weiser / Rotenberg,Bennett,Smith /
Patel,Friendly,Patt

Related Work
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• Trace selection

- algorithm used to delineate traces
- interesting tradeoffs to optimize for: trace length, PE

utilization and load balance, trace cache hit rate, trace
prediction accuracy, control independence, ...

• Some heuristics
- stop at or embed various types of control instructions
- stop at loop edges, ensure stopping at basic block boundaries,

remember past start-points
- don’t stop at call direct if it’s a unique call site, embed leaf functions
- reconvergent control flow

• Default trace selection

- stop at a maximum of 16 instructions, or

- stop at any call indirect, jump indirect, return

Trace Select ion
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• compress: fits entirely in 16KB direct mapped trace cache

• jpeg, xlisp: 4% miss rates for 32KB direct mapped trace cache

• avg trace lengths: gcc {13.9, 10.9}, go {14.8, 11.8}
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• Trace prediction

- correlated predictor that uses the path history of previous
traces

- outputs next trace and one alternate prediction for fast
recovery

- Hear Quinn’s talk

• Value prediction

- context-based: learns values that follow a particular
sequence of previous values

- outputs 32-bit value and indicates confident or not

- Hear Yanos’s talk

Next-Trace and Value Predictors



Trace Processors Slide
15

Eric Rotenberg

• Three sets of experiments:

1. Primary performance results: both superscalar and trace
processors, no value prediction and uses conventional
control flow model

2. A trace processor with structured value prediction

3. A trace processor with aggressive control flow model

Exper iments
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• single configuration: “T-128 (1) 4-way issue per PE”

Adding Value Predict ion

Value Prediction Performance Results
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• With selective control mispredict recovery:

- compress: 13% IPC improvement

- jpeg: 9% IPC improvement

• Where is the benefit coming from?

- frequent, small loops with simple reconvergent control
flow

- loops with few and fixed number of iterations

• Trace selection and more flexible PE allocation can improve
exposure of control independence

Aggressive Control  Flow
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• Trace processors exploit characteristics of traces

- Control hierarchy: trace is unit of control prediction

- Data hierarchy: trace is unit of work

• Value prediction applied to inter-trace dependences

- potential performance is significant

- value prediction is in its infancy, needs work

• Interesting misspeculation model

- selective reissuing is natural

- attempt to treat all types uniformly

• Aggressive control flow model shows potential

Summary
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• Trace selection

- trace length

- trace prediction accuracy

- trace cache performance

- enhance control independence

- overall live-in prediction accuracy

• Compare with multiscalar

- identify key differences (tasks vs. traces)

- quantify advantages/disadvantages

Future Work

trace processors multiscalar


