
Trace Cache: Low Latency, High Bandwidth
Instruct ion Fetching

Eric Rotenberg, Steve Bennett, Jim Smith

Eric:
Computer Science Dept.

Univ. of Wisconsin — Madison

Steve:
Intel Corporation

Jim:
Dept. of Elec. and Comp. Engr.
Univ. of Wisconsin — Madison

http://www.cs.wisc.edu/~ericro/ericro.html

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
2

(c) Eric Rotenberg

• Divide into instruction fetch and execution
• Superscalar trends:

- larger scheduling window

- wider dispatch/issue

- deeper speculation

- more functional units
• Implications for instruction fetch?

Superscalar Processors

Instruction
Fetch &
Decode

Instruction

Execution

branch outcomes/jump addresses

Scheduling
Window

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
3

(c) Eric Rotenberg

• Instruction fetch issues

• Trace cache

• Alternatives

• Simulation Results

• Conclusions

Overview

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
4

(c) Eric Rotenberg

• Branch Throughput

- predict more than one per cycle

• Noncontiguous instruction blocks

- fetch past taken branches

• Fetch unit latency

- can’t be ignored when solving others

• “Conventional” issues:

- instruction cache misses
- branch prediction accuracy
- NOT the focus of this study

Instruct ion Fetch Issues

Instruction Cache

not taken taken

A B

C

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
5

(c) Eric Rotenberg

• Fundamental problem:

- conventional instruction cache stores programs in their
static, compiled order

- the decoder wants to see the instruction stream in its
dynamic order

• Two classes of hardware solutions:

- deal with conventional cache, construct dynamic order
on the fly

- direct approach: cache instructions in dynamic order

• We propose the direct approach

Noncont iguous Instruct ions

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
6

(c) Eric Rotenberg

2nd basic block

1st basic block

A
t tt

DYNAMIC INSTRUCTION STREAM

trace: {A , taken , taken } trace: {A , taken , taken }
later...

TRACE CACHE TRACE CACHE

{A , t , t }

to DECODER

A
t

3rd basic block (still filling)

Fill new trace from instruction cache Access existing trace using A and predictions (t, t)

Trace Cache High Level

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
7

(c) Eric Rotenberg

Trace Cache Overview

line
Trace Cache

Core I-Fetch

(I-Cache)

hit

prediction
logic

fetch address

fill
 buffer

logic

mux instructions

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
8

(c) Eric Rotenberg

taken branch

A

A

BRANCH TARGET BUFFER
16-way Interleaved

A

not taken
branch 2-Way Interleaved

Instruction Cache

LOGIC
BTB

BRANCH

MULTIPLE

"01x"ADDRESS
RETURN

PREDICTOR
3

STACK

Line Size = 16 Instructions

valid instructions
bit vectors

address
fetch

1st: 0000000000111111
11111100000000002nd:

Line Size = 16 Instructions

address
target

INTERCHANGE, SHIFT, MASK

to decoder

Core Fetch Unit Detai l

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
9

(c) Eric Rotenberg

• Multiple correlating predictor (Yeh, Marr, Patt):

Predict ing Mult ip le Branches

b

b
13:2

b

13

b
11:0

b
0

b
1

12:1

b
0

b
0

p
0

p
0

p

b

p
0

p
2

p
1

1

1
214 2-bit counters

212()x 4 arrayarranged in

PATTERN HISTORY TABLE

GLOBAL HISTORY REGISTER

4:1 MUX

4:1 MUX

4:1 MUX

3 branch predictions

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
10

(c) Eric Rotenberg

• Parameters: n max instructions, m basic blocks

• In addition to tag and instructions, contains:

- Branch flags: m-1 branch outcomes

- Branch mask: number of branches

- Trace fall-thru: next address if last branch is not-taken

- Trace target: next address if last branch is taken

• Trace Cache may be small, we use:

- 64 lines

- direct mapped

- n = 16, m = 3

- total size: 712B (tag info) + 4KB (instr.)

Trace Cache Contents

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
11

(c) Eric Rotenberg

n instructions

2:1 MUX

to
TC

to DECODER

INSTRUCTION LATCH

tag

branch
mask

flags
branch

fall-thru
address

target
address

A 1111,1 X Y

INSTRUCTION LATCHADDRESS
FETCH

LINE-FILL BUFFER

from

MERGE LOGIC

ADDRESS
FETCH

TRACE CACHE

INSTR CACHE

CORE FETCH UNIT

PRED

RAS

BTB

mask/interchange/shiftm

HIT LOGIC

to TC

PREDICTOR

m predictions

from

n instructions

n instructions

Trace Cache Detai l

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
12

(c) Eric Rotenberg

• Branch Address Cache (Yeh,Marr,Patt)

• Collapsing Buffer (Conte,Menezes,Mills,Patel)

• Subgraph Predictor (Dutta,Franklin)

• Two-Block Ahead Predictor
(Seznec,Jourdan,Sainrat,Michaud)

Al ternat ives

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
13

(c) Eric Rotenberg

• General idea behind alternatives:

1. Generate multiple addresses pointing to several, possibly
noncontiguous basic blocks.

2. Apply the multiple addresses to an interleaved or multiported
instruction cache.

3. Properly order and merge only desired instructions into the
predicted dynamic sequence.

=> complex and serial, long latency

• Trace cache: cache long instruction sequences in the order
they are likely to be needed

=> moves complexity off critical path, short latency

Weakness of Al ternat ives

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
14

(c) Eric Rotenberg

1st branch

2nd branch

3rd branch

A

F GED

B C

H I J K L M N O

T

T

T

NT

Branch Address Cache

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
15

(c) Eric Rotenberg

• BTB design can detect intraline branches

• Two passes through BTB allow up to one interline branch

• Collapsing Buffer uses control info from both BTB passes to
align instructions into dynamic sequence

Col lapsing Buffer

Instruction Cache

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
16

(c) Eric Rotenberg

• Superscalar model as in introduction

• Maximum demand from execution engine:

- Execution engine limited only by true data dependences
- Oracle memory address disambiguation
- Data cache always hits

• Instruction window: 2048

• Max dispatch/issue bandwidth: 16

• Workload: SPEC (sparc) and IBS (mips)

• Trace driven (wrong speculations not followed)

Simulat ion Study

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
17

(c) Eric Rotenberg

Compare various fetch mechanisms

• Two base fetch models for comparison:

- can fetch only sequential code

- SEQ.1 : limited to 1 branch prediction per cycle

- SEQ.3 : limited to 3 branch predictions per cycle

• Three models for high bandwidth instruction fetching:

- TC : trace cache

- BAC : branch address cache

- CB : collapsing buffer

• Model with 1, 2, and 3 cycle latencies for CB and BAC

Simulat ion Study

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
18

(c) Eric Rotenberg

IPC for the Various Fetch Mechanisms, Single-Cycle Latency

2

2.5

3

3.5

4

verilog groff gs mpeg jpeg nroff

IBS benchmark

IP
C

SEQ.1

SEQ.3

BAC

CB

TC

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
19

(c) Eric Rotenberg

IPC for the Various Fetch Mechanisms, Single-Cycle Latency

1.5

2

2.5

3

3.5

4

4.5

5

5.5

eqntott espresso xlisp gcc sc compress

SPEC92 benchmark

IP
C

SEQ.1

SEQ.3

BAC

CB

TC

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
20

(c) Eric Rotenberg

Performance Improvement over SEQ.3, Single-Cycle Latency

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%
eq

nt
ot

t

es
pr

es
so

xl
is

p

gc
c sc

co
m

pr
es

s

ve
ril

og

gr
of

f

gs

m
pe

g

jp
eg

nr
of

f

benchmark

%
 im

pr
ov

em
en

t i
n

IP
C

BAC

CB

TC

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
21

(c) Eric Rotenberg

Performance Improvement over SEQ.3, Non-unit Latency

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%
eq

nt
ot

t

es
pr

es
so

xl
is

p

gc
c sc

co
m

pr
es

s

ve
ril

og

gr
of

f

gs

m
pe

g

jp
eg

nr
of

f

benchmark

%
 im

pr
ov

em
en

t i
n

IP
C

BAC (L2)

BAC (L3)

CB (L2)

CB (L3)

TC

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
22

(c) Eric Rotenberg

Comparing Trace Cache to Ideal

2

2.5

3

3.5

4

4.5

5

verilog groff gs mpeg jpeg nroff

IBS benchmark

IP
C

TC (4KB)

TC (32KB)

ideal3

“Trace Cache: Low Latency, High Bandwidth Instruction Fetching” Slide
23

(c) Eric Rotenberg

• Fetching past multiple not-taken branches improves
performance by >10%

• A small trace cache gets an additional 10% or more by
going past multiple taken branches

• Trace cache is consistently better than other proposed
methods with similar goals assuming unit latency, much
better with realistic latencies

• Trace cache is a natural trend towards reducing superscalar
front-end complexity

Conclusions

