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(c) Eric Rotenberg

• Divide into instruction fetch and execution
• Superscalar trends:

- larger scheduling window

- wider dispatch/issue

- deeper speculation

- more functional units
• Implications for instruction fetch?

Superscalar Processors

Instruction
Fetch &
Decode

Instruction

Execution

branch outcomes/jump addresses

Scheduling
Window
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• Instruction fetch issues

• Trace cache

• Alternatives

• Simulation Results

• Conclusions

Overview
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• Branch Throughput

- predict more than one per cycle

• Noncontiguous instruction blocks

- fetch past taken branches

• Fetch unit latency

- can’t be ignored when solving others

• “Conventional” issues:

- instruction cache misses
- branch prediction accuracy
- NOT the focus of this study

Instruct ion Fetch Issues

Instruction Cache

not taken taken

A B

C
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• Fundamental problem:

- conventional instruction cache stores programs in their
static, compiled order

- the decoder wants to see the instruction stream in its
dynamic order

• Two classes of hardware solutions:

- deal with conventional cache, construct dynamic order
on the fly

- direct approach: cache instructions in dynamic order

• We propose the direct approach

Noncont iguous Instruct ions
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2nd basic block

1st basic block

A
t tt

DYNAMIC INSTRUCTION STREAM

trace: {A , taken , taken } trace: {A , taken , taken }
later...

TRACE CACHE TRACE CACHE

{A , t , t }

to DECODER

A
t

3rd basic block (still filling)

Fill new trace from instruction cache Access existing trace using A and predictions (t, t)

Trace Cache High Level
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Trace Cache Overview

line
Trace Cache

Core I-Fetch

(I-Cache)

hit

prediction
logic

fetch address

fill
 buffer
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taken branch

A

A

BRANCH TARGET BUFFER
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A
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• Multiple correlating predictor (Yeh, Marr, Patt):

Predict ing Mult ip le Branches
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3 branch predictions
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• Parameters: n max instructions, m basic blocks

• In addition to tag and instructions, contains:

- Branch flags: m-1 branch outcomes

- Branch mask: number of branches

- Trace fall-thru: next address if last branch is not-taken

- Trace target: next address if last branch is taken

• Trace Cache may be small, we use:

- 64 lines

- direct mapped

- n = 16, m = 3

- total size: 712B (tag info) + 4KB (instr.)

Trace Cache Contents
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n instructions

2:1 MUX

to
TC

to DECODER

INSTRUCTION LATCH
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target
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• Branch Address Cache (Yeh,Marr,Patt)

• Collapsing Buffer (Conte,Menezes,Mills,Patel)

• Subgraph Predictor (Dutta,Franklin)

• Two-Block Ahead Predictor
(Seznec,Jourdan,Sainrat,Michaud)

Al ternat ives
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• General idea behind alternatives:

1. Generate multiple addresses pointing to several, possibly
noncontiguous basic blocks.

2. Apply the multiple addresses to an interleaved or multiported
instruction cache.

3. Properly order and merge only desired instructions into the
predicted dynamic sequence.

=> complex and serial, long latency

• Trace cache: cache long instruction sequences in the order
they are likely to be needed

=> moves complexity off critical path, short latency

Weakness of  Al ternat ives
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1st branch

2nd branch

3rd branch
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T
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NT

Branch Address Cache
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• BTB design can detect intraline branches

• Two passes through BTB allow up to one interline branch

• Collapsing Buffer uses control info from both BTB passes to
align instructions into dynamic sequence

Col lapsing Buffer

Instruction Cache
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• Superscalar model as in introduction

• Maximum demand from execution engine:

- Execution engine limited only by true data dependences
- Oracle memory address disambiguation
- Data cache always hits

• Instruction window: 2048

• Max dispatch/issue bandwidth: 16

• Workload: SPEC (sparc) and IBS (mips)

• Trace driven (wrong speculations not followed)

Simulat ion Study
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Compare various fetch mechanisms

• Two base fetch models for comparison:

- can fetch only sequential code

- SEQ.1 : limited to 1 branch prediction per cycle

- SEQ.3 : limited to 3 branch predictions per cycle

• Three models for high bandwidth instruction fetching:

- TC : trace cache

- BAC : branch address cache

- CB : collapsing buffer

• Model with 1, 2, and 3 cycle latencies for CB and BAC

Simulat ion Study
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IPC for the Various Fetch Mechanisms, Single-Cycle Latency
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IPC for the Various Fetch Mechanisms, Single-Cycle Latency
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Performance Improvement over SEQ.3, Single-Cycle Latency
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Performance Improvement over SEQ.3, Non-unit Latency
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Comparing Trace Cache to Ideal
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• Fetching past multiple not-taken branches improves
performance by >10%

• A small trace cache gets an additional 10% or more by
going past multiple taken branches

• Trace cache is consistently better than other proposed
methods with similar goals assuming unit latency, much
better with realistic latencies

• Trace cache is a natural trend towards reducing superscalar
front-end complexity

Conclusions


