Slipstream Processors Revisited:
Exploiting Branch Sets

Vinesh Srinivasan Rangeen Basu Roy Chowdhury Eric Rotenberg
Dep’t of Elec. and Comp. Eng. Intel Corporation Dep’t of Elec. and Comp. Eng.
North Carolina State University rangeen.basu.roy.chowdhury@intel.com North Carolina State University
vsriniv3@ncsu.edu ericro@ncsu.edu

This work was funded by the NSF/Intel Partnership on Foundational Microarchitecture Research (FOMR)
(NSF grant no. CCF-1823517 and matching Intel grant) and other Intel grants.



Objective
* Delinquent branches and loads limit single-thread performance

* Pre-execution via helper threads

* Resolve hard-to-predict branches and initiate delinquent loads before these
instructions are fetched by the main thread

e Two classes of pre-execution

* Per-dynamic-instance helper threads: Each helper thread is the backward slice of
instructions leading to a single dynamic instance of a branch or load.

 Two redundant threads in a leader-follower arrangement: Leader thread is
speculatively reduced by pruning instructions, and restarted on a wayward branch.

. Design a hew pre-execution microarchitecture that meets four criteria:
e S S " S
1. Leader-follower style pre-execution
2. Fully automated using only hardware yes yes no
3. Targets both branches and loads no (branches) no (loads) yes

4. Effective at that which is targeted no pre-exec. w/out conf. instr. removal can’t tolerate miss -> br. misp. see others



Limitations of Prior Work

* Slipstream

 Remove backward slices of confident branches in
A-stream to pre-execute unconfident branches

* Ineffective for phases dominated by hard-to-predict
branches, when branch pre-execution most needed

* DCE

e Convert cache-missed loads that block A-stream’s
retire stage to non-binding prefetches, and silence
execution of their dependent instructions

* Very good at tolerating cache-missed loads, except
when their dependent branches are mispredicted

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020)

Slipstream Processors Revisited: Exploiting Branch Sets

Trailing Thread Leading Thread

branch & value outcomes
delay buffer

A-stream

L1 DS

R-stream

L1 DS

A-stream pruning h/w

IR-predictor

IR-detector

branch outcomes
(detect wayward A-stream)
delay buffer

Trailing Thread

Leading Thread

A-stream

L1 DS

Load converted to non-binding prefetch
if blocks retire stage, silence execution
of dependent instructions. 3



Slipstream Processor 2.0
* Remove forward control-flow slices of delinquent branches and loads

e Control-dependent (CD) region of the delinquent branch

e Other branches that are control-independent data-dependent (CIDD) with respect to the
delinquent branch or load (“branch set”), and their CD regions

1 de“nquent branch

k@ (@ control-dependent (CD)
]

region

i reconvergent point
\

Deling. Branch Pre-execution (DBP)

1. Leader-follower-style branch
pre-execution without relying
on confident instr. removal

A-stream

48 48

delinquentload
< in load’s branch set

A-stream

L2 miss
— 0_1

—
—
-

R-stream

Deling. Load Prefetching (DLP)

2. Tolerate cache-missed loads that

visited: Exploiting Branch Sets

feed mispredicted branches




IPC normalized to baseline

Results

N

aves Geomean

o = !
Ok N w

hmmer astar libquantum

mSlipstream 1.0 mDBP mDCE mDLP mDBP+DLP

omnetpp

Slipstream 2.0, DBP only '

Slipstream 2.0, DLP only
Slipstream 2.0, DBP+DLP

* Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and 12%
over baseline, Slipstream 1.0, and DCE

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets



	Slipstream Processors Revisited: Exploiting Branch Sets
	Objective
	Limitations of Prior Work
	Slipstream Processor 2.0
	Results

