
Slipstream Processors Revisited:
Exploiting Branch Sets

Vinesh Srinivasan
Dep’t of Elec. and Comp. Eng.

North Carolina State University
vsriniv3@ncsu.edu

Rangeen Basu Roy Chowdhury
Intel Corporation

rangeen.basu.roy.chowdhury@intel.com

Eric Rotenberg
Dep’t of Elec. and Comp. Eng.

North Carolina State University
ericro@ncsu.edu

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets 1

This work was funded by the NSF/Intel Partnership on Foundational Microarchitecture Research (FoMR)
(NSF grant no. CCF-1823517 and matching Intel grant) and other Intel grants.

Objective
• Delinquent branches and loads limit single-thread performance
• Pre-execution via helper threads

• Resolve hard-to-predict branches and initiate delinquent loads before these
instructions are fetched by the main thread

• Two classes of pre-execution
• Per-dynamic-instance helper threads: Each helper thread is the backward slice of

instructions leading to a single dynamic instance of a branch or load.
• Two redundant threads in a leader-follower arrangement: Leader thread is

speculatively reduced by pruning instructions, and restarted on a wayward branch.

• Design a new pre-execution microarchitecture that meets four criteria:

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets 2

Criterion Slipstream DCE DLA

1. Leader-follower style pre-execution yes yes yes

2. Fully automated using only hardware yes yes no

3. Targets both branches and loads no (branches) no (loads) yes

4. Effective at that which is targeted no pre-exec. w/out conf. instr. removal can’t tolerate miss -> br. misp. see others

Limitations of Prior Work
• Slipstream

• Remove backward slices of confident branches in
A-stream to pre-execute unconfident branches

• Ineffective for phases dominated by hard-to-predict
branches, when branch pre-execution most needed

• DCE
• Convert cache-missed loads that block A-stream’s

retire stage to non-binding prefetches, and silence
execution of their dependent instructions

• Very good at tolerating cache-missed loads, except
when their dependent branches are mispredicted

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets 3

Load converted to non-binding prefetch
if blocks retire stage, silence execution
of dependent instructions.

Slipstream Processor 2.0
• Remove forward control-flow slices of delinquent branches and loads

• Control-dependent (CD) region of the delinquent branch
• Other branches that are control-independent data-dependent (CIDD) with respect to the

delinquent branch or load (“branch set”), and their CD regions

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets 4

1. Leader-follower-style branch
pre-execution without relying
on confident instr. removal

2. Tolerate cache-missed loads that
feed mispredicted branches

Delinq. Branch Pre-execution (DBP) Delinq. Load Prefetching (DLP)

Results

47th Int'l Symp. on Comp. Arch. (May 30-June 3, 2020) Slipstream Processors Revisited: Exploiting Branch Sets 5

Slipstream 2.0, DBP only

Slipstream 2.0, DLP only

Slipstream 2.0, DBP+DLP

• Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and 12%
over baseline, Slipstream 1.0, and DCE

	Slipstream Processors Revisited: Exploiting Branch Sets
	Objective
	Limitations of Prior Work
	Slipstream Processor 2.0
	Results

