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Objective
* Delinquent branches and loads limit single-thread performance

* Pre-execution via helper threads

* Resolve hard-to-predict branches and initiate delinquent loads before these
instructions are fetched by the main thread

e Two classes of pre-execution

* Per-dynamic-instance helper threads: Each helper thread is the backward slice of
instructions leading to a single dynamic instance of a branch or load.

 Two redundant threads in a leader-follower arrangement: Leader thread is
speculatively reduced by pruning instructions, and restarted on a wayward branch.

. Design a hew pre-execution microarchitecture that meets four criteria:
e S S " S
1. Leader-follower style pre-execution
2. Fully automated using only hardware yes yes no
3. Targets both branches and loads no (branches) no (loads) yes

4. Effective at that which is targeted no pre-exec. w/out conf. instr. removal can’t tolerate miss -> br. misp. see others



Limitations of Prior Work

* Slipstream

 Remove backward slices of confident branches in
A-stream to pre-execute unconfident branches

* Ineffective for phases dominated by hard-to-predict
branches, when branch pre-execution most needed

* DCE

e Convert cache-missed loads that block A-stream’s
retire stage to non-binding prefetches, and silence
execution of their dependent instructions

* Very good at tolerating cache-missed loads, except
when their dependent branches are mispredicted
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Slipstream Processor 2.0
* Remove forward control-flow slices of delinquent branches and loads

e Control-dependent (CD) region of the delinquent branch

e Other branches that are control-independent data-dependent (CIDD) with respect to the
delinquent branch or load (“branch set”), and their CD regions
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Deling. Branch Pre-execution (DBP)
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Deling. Load Prefetching (DLP)

2. Tolerate cache-missed loads that
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* Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and 12%
over baseline, Slipstream 1.0, and DCE
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