Slipstream Processors
Revisited: Exploiting Branch
Sets

Vinesh Srinivasan Rangeen Basu Roy Chowdhury Eric Rotenberg
Dep’t of Elec. and Comp. Eng. Intel Corporation Dep’t of Elec. and Comp. Eng.
North Carolina State University rangeen.basu.roy.chowdhury@intel.c North Carolina State University
vsriniv3@ncsu.edu om ericro@ncsu.edu

Single-Thread Performance Limiters

* Delinquent branches and loads limit single-thread performance
* Individually they are bad

* Even worse when they coincide
« Cache-missed load that feeds a mispredicted branch
» Large-window processor loses latency tolerance in this case
» Squash many instructions after the cache-missed load

2 <+ Peak IPC=4 for this
35 4-wide fetch/retire core.

3
5 2.5

2

15
w
£ 1
0

hmmer libqunatum Ibm omnetpp asta waves

tructions Per Cycle

eeeeee Perfect Branch and Data Cache

%%)Intl Symp. on Comp. Arch. (May 30-June 3, Slipstream Processors Revisited: Exploiting Branch Sets

Pre-execution via Helper Threads

* Resolve hard-to-predict branches and initiate delinquent loads before
these instructions are fetched by the main thread

 Two classes of pre-execution

« Per-dynamic-instance helper threads: Each helper thread is the backward
slice of instructions leading to a single dynamic instance of a branch or load.

» Two redundant threads in a leader-follower arrangement: Leader thread is
speculatively reduced by pruning instructions.

Objective

Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-executieR——
2. Fully automated using only hardware

3. Targets both branches and loads

4. Effective at that which is targeted

Avoid tricky issues of per-dynamic-instance helper threads:
« Timing of forking, accounting for live-in values of helper thread
 Lining up pre-executed branch outcomes with corresponding instances in the

main thread

Objective

Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution

2. Fully automated using only hardware——
3. Targets both branches and loads

4. Effective at that which is targeted

* Not opposed to compiler support. S/w and h/w co-dependency introduces
risk.

Objective

Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution

2. Fully automated using only hardware
3. Targets both branches and loads

4. Effective at that which is targeted

v

» Unified solution for performance-degrading instructions

Objective

Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution

2. Fully automated using only hardware
3. Targets both branches and loads

4. Effective at that which is targeted

v

* Overcome performance limitations of other leader-follower
microarchitectures

NO

Prior Work Meets All

—our Criteria

Prior work

Criterion 1:

Criterion 2:

Criterion 3:

Criterion 4:

Decoupled look ahead (DLA) |
15), [16

leader- fully targets both | etfective
follower automated branches and
in hardware | loads
Slice processor [6] no yes no yes
Speculative precomputation [7] (loads only)
Continuous runahead [8]
DDMT [9] no no yes yes
Speculative slices [10] (manual
SSMT [11], [12 or compiler
Slipstream processor |3|, [13], [14] | ves yes no no
(branches only) | (limited branch pre-execution)

Dual core execution (DCE) [4] yves yes no ves, with caveat

loads only
yes

load -> misp.

branches: no

(limited branch pre-execution)
loads: yes, with caveat

(load -> misp. br.)

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020)

Table I: Related work analysis.

Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream Processor

Trailing Thread Leading Thread

branch & value outcomes
delay buffer€

R-stream

A-stream pruning h/w

IR-
IR-detector

* Remove backward slices of confident branches in the A-stream to
pre-execute unconfident branches

 Ineffective for phases dominated by hard-to-predict branches,
when branch pre-execution is most needed

« W.r.t. loads: Backward slice removal does not stop short at delinquent
loads, failing to convert removed loads into non-binding prefetches

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets 9

Dual Core Execution (DCE)

o branch outcomes .
Trailing Thread (detect wayward A-stream) Leading Thread

delay buffer€

Load converted to non-binding prefet
if blocks retire stage, silence executic
of dependent instructions.

« Convert cache-missed loads that block A-stream’s retire stage to non-
binding prefetches, and silence execution of their dependent instructions

« Very good at tolerating cache-missed loads, except when their dependent
branches are mispredicted

« W.r.t. branches: No A-stream pruning per se, so no branch pre-execution

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets 10

Slipstream Processor 2.0

« Remove forward control-flow slices of delinquent branches and loads
* Overcomes performance limitations of Slipstream and DCE

 Two firsts:
» Leader-follower-style branch pre-execution without relying on confident instr. removal
 Tolerate cache-missed loads that feed mispredicted branches

* Meets all four criteria
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted (improves upon Slipstream and DCE)

* Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets 11

Delinguent Branch Pre-execution (DBP)

* Forward control-flow slice of a delinquent branch
* Control-dependent (CD) region of the delinquent branch

N

A-stream
D 3 i .
CO n-t) delinquent branch \ Rstream
b i control-dependent (CD) . ‘ .
region o
B

reconvergent point C&

* A-stream
* Delinquent branch converted to unconditional “branch-to-reconvergent-point”
* Resolves delinquent branch’s predicate
* Not slowed by would-be mispredictions of delinquent branch
* R-stream
* Receives accurate prediction for delinquent branch from A-stream
* Locally predicts and resolves any branches nested within skipped CD region:
A-stream is insulated from any R-stream-local mispredictions within the CD regiol

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020)

Slipstream Processors Revisited: Exploiting Branch Sets 13

DBP
(cont.)

delinquent branch

control-dependent (CD)
region

reconvergent point

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020)

A-stream

o

AN

b

\

Y

4

R-stream

Slipstream Processors Revisited: Exploiting Branch Sets

14

DBP (cont.)

* Forward control-flow slice of a delinquent branch

« Other branches that are control-independent data-dependent (CIDD) with
respect to the delinquent branch, and their CD regions

A stream

R-stream
delinquent branch

r2=...

Branch encodings supplied

CIDD branch by A-stream to R-stream:

1x0: executed branch
1x1: pre-executed branch
0-1: CIDD branch

|

CD region skipped (1) or not

r3=..

transitively CIDD branch

outcome if executed (x=0 or 1)
h

e@
d@ executed (1) or not (0) by A-streal
N

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Expl 16

Pre-executable vs. not pre-executable branches

A delinquent branch is pre-executable only if it is not in its own forward
control-flow slice, i.e., not self-dependent

A-stream

pre-executable
delinquent branch

45

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020)

1x1

1x1

1x1

trefm Processors Revis

45

ited: Exploiting Branch Sets

NOT pre-executable
delinquent branch

r1i=..

A-stream

1x1

17

Branch Sets

* Branch set of a delinquent branch or load
» CIDD branches with respect to the branch or load

* Concept of branch sets is important for two reasons:

1. Branch set constitutes the forward control-flow slice to be removed (in
addition to the delinquent branch’s own CD region)

2. A delinquent branch is pre-executable (eligible for DBP) if it is not in its own
branch set

Delinquent Load Prefetching (DLP)

A-stream

R-stream

delinquent load
L2 miss
L2 hit

in load’s branch set
5] &7
b@ 45
N
e A-stream

* Delinquent load converted to non-binding prefetch
» Branches in its branch set are silenced and their CD regions skipped
e R-stream
« Delinquent load hits in L2S
» Locally predict and resolve any missing control-flow (branches in the load’s branch set,
and branches nested in their CD regions):

A-stream is insulated from any R-stream-local mispredictions in load’s forward control-flow slice

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020)

Slipstream Processors Revisited: Exploiting Branch Sets 19

Slipstream 2.0 Microarchitecture

delay buffer€

R-stream

A-stream pruning h/w

IR-
IR-detector

* Follows Slipstream template, but components implemented differently

» Delay Buffer: 3-bit branch encodings

 |R-predictor: entries for DBP branches (“1x1”), DLP loads, and CIDD branches
(“0_1 ”)

« Instruction-Removal Detector (IR-detector): delinquent load/branch classifier,

~ reconvergent PC detector, and branch set analysis

4.2 KB |

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream 2.0°s |

R-detector
IR-Detector

Identify Delinquent Branches/Loads
(reset counters at new epoch) 0.8 KB

Branch Load Classifier (128 entries x 49 bits)

PC Branch/Load Prediction State Misprediction/Miss Counter Active Active Below Active Active Above Active Conf. 1 . 1 KB
00: Profiling Branch PC Potential PC BP Potential PC AP
01: DBP
10: CIDD Reconvergence Predictor Table (64 entries x 132 bits)
11: DLP

Branch Potential Conf. Potential Conf. Potential Conf.
. PC Reconvergent Reconvergent Reconvergent
BLC Max (8 entries x 23 bits|
Top8deinquent
BLC index Count loads/branches from previous

Identify Reconvergent Points (continuous)

Active Reconvergence Table (1 entry x 96 bits)

epoch

end of epoch (500K cycles)

v v

Branch Set Analysis

PC reconv_PC

Branch Set Buffer (1 entry x 1,025 bits) o

Train branch set of a single load/branch at a time
When confident, update IR-predictor with results of analysis

Delinquent Reconvergent CIDD PC1 CIbbpPC2 ... CIDD PC32 CIDI Branch Conf. . Move onto next top load/branch in the queue .

Branch/Load PC PC P / q to IR-Predictor
Data Dependence Tracker (64 entries x 1 bit) _>

RO R1 R2 R3 R63 0.1 KB when

poisoned poisoned poisoned poisoned poisoned confident

IPC normalized to baseline

Results: DBP vs. Slipstream 1.0

3

2.5

2

1.5

1

LR IR
0

astar libquantum omnetpp

m Slipstream 1.0 mDBP wmDCE mDLP mDBP+DLP

Slipstream 2.0, DBP only

Slipstream 2.0, DLP

only Slipstream 2.0,

DBP+DLP

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets

uillE ol il

bwaves Geomean

22

Results: DBP vs. Slipstream 1.0 (cont.)

= N
=N oW

ot
n

IPC normalized to baseline
o

bzip2 hmmer

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020)

gEEHE mEERE mdn jll

ﬂl" TN

astar libquantum lbm omnetpp

m Slipstream 1.0 mDBP wmDCE mDLP mDBP+DLP

Slipstream 2.0, DBP only

Slipstream 2.0, DLP

only Slipstream 2.0,

DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

bwaves

Geomean

23

IPC normalized to baseline

Results: DLP vs. DCE

= N
=N oW

ot
n

o

bzip2 hmmer

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020)

o vttt ol o

omnetpp

astar libquantum

m Slipstream 1.0 mDBP wmDCE mDLP mDBP+DLP

Slipstream 2.0, DBP only

Slipstream 2.0, DLP

only Slipstream 2.0,

DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

!*
m

JI il

bwaves Geomean

24

IPC normalized to baseline

Results: DBP+DLP

3
2.5
2
1.5 LA & ¢ * kK * o kk
1
< uild wend wlend mhld R memnd REN medR e
0
bzip2 hmmer astar libquantum omnetpp bwaves Geomean

m Slipstream 1.0 mDBP wmDCE mDLP mDBP+DLP

Slipstream 2.0, DBP only

Slipstream 2.0, DLP

onl :
y Slipstream 2.0,
DBP+DLP
47th Intl Symp. on Comp. Arch. (May 30-June 3, Slipstream Processors Revisited: Exploiting Branch Sets 25

2020)

Results: summary

3
2.5

N

15

bzip2 hmmer libquantum lbm omnetpp = mcf = bwaves @ Geomean

[

IPC normalized to baseline
o

m Slipstream 1.0 mDBP mDCE mDLP mDBP+ DLP

Slipstream 2.0, DBP only

Slipstream 2.0, DLP

only Slipstream 2.0,

DBP+DLP

o Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and
12% over baseline, Slipstream 1.0, and DCE

%%)Intl Symp. on Comp. Arch. (May 30-June 3, Slipstream Processors Revisited: Exploiting Branch Sets 26

Summary: Slipstream Processor 2.0

« Remove forward control-flow slices of delinquent branches and loads
* Overcomes performance limitations of Slipstream and DCE

 Two firsts:
» Leader-follower-style branch pre-execution without relying on confident instr. removal
 Tolerate cache-missed loads that feed mispredicted branches

* Meets all four criteria
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted (improves upon Slipstream and DCE)

* Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability

47th Int'l Symp. on Comp. Arch. (May 30-June 3,

2020) Slipstream Processors Revisited: Exploiting Branch Sets 27

—uture Work

* Need solutions for non-pre-executable delinquent branches
1. Self-dependent delinquent branches are very serializing

2. Delinquent branches that are individually pre-executable, but not actually
pre-executed due to being in the forward control-flow slice of another
delinquent branch

