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Single-Thread Performance Limiters
• Delinquent branches and loads limit single-thread performance 
• Individually they are bad 
• Even worse when they coincide 
• Cache-missed load that feeds a mispredicted branch 
• Large-window processor loses latency tolerance in this case 
• Squash many instructions after the cache-missed load
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Peak IPC=4 for this 
4-wide fetch/retire core.
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Pre-execution via Helper Threads
• Resolve hard-to-predict branches and initiate delinquent loads before 

these instructions are fetched by the main thread 
• Two classes of pre-execution 
• Per-dynamic-instance helper threads:  Each helper thread is the backward 

slice of instructions leading to a single dynamic instance of a branch or load. 
• Two redundant threads in a leader-follower arrangement:   Leader thread is 

speculatively reduced by pruning instructions.
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Objective
Design a new pre-execution microarchitecture that meets four criteria: 
1. Leader-follower style pre-execution 
2. Fully automated using only hardware 
3. Targets both branches and loads 
4. Effective at that which is targeted
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Avoid tricky issues of per-dynamic-instance helper threads: 
• Timing of forking, accounting for live-in values of helper thread 
• Lining up pre-executed branch outcomes with corresponding instances in the 

main thread
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• Not opposed to compiler support.  S/w and h/w co-dependency introduces 
risk.
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• Unified solution for performance-degrading instructions
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• Overcome performance limitations of other leader-follower 
microarchitectures
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No Prior Work Meets All Four Criteria
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Slipstream Processor

• Remove backward slices of confident branches in the A-stream to  
pre-execute unconfident branches 
• Ineffective for phases dominated by hard-to-predict branches,  

when branch pre-execution is most needed 
• W.r.t. loads: Backward slice removal does not stop short at delinquent 

loads, failing to convert removed loads into non-binding prefetches
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Dual Core Execution (DCE)

• Convert cache-missed loads that block A-stream’s retire stage to non-
binding prefetches, and silence execution of their dependent instructions 
• Very good at tolerating cache-missed loads, except when their dependent 

branches are mispredicted 

• W.r.t. branches: No A-stream pruning per se, so no branch pre-execution
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Slipstream Processor 2.0
• Remove forward control-flow slices of delinquent branches and loads 
• Overcomes performance limitations of Slipstream and DCE 
• Two firsts: 

• Leader-follower-style branch pre-execution without relying on confident instr. removal 
• Tolerate cache-missed loads that feed mispredicted branches 

• Meets all four criteria 
1. Leader-follower style pre-execution 
2. Fully automated using only hardware 
3. Targets both branches and loads 
4. Effective at that which is targeted (improves upon Slipstream and DCE) 

• Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability
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Delinquent Branch Pre-execution (DBP)
• Forward control-flow slice of a delinquent branch 
• Control-dependent (CD) region of the delinquent branch 
• Other branches that are control-independent data-dependent (CIDD) with 

respect to the delinquent branch, and their CD regions
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• A-stream 
• Delinquent branch converted to unconditional “branch-to-reconvergent-point” 
• Resolves delinquent branch’s predicate 
• Not slowed by would-be mispredictions of delinquent branch 

• R-stream 
• Receives accurate prediction for delinquent branch from A-stream 
• Locally predicts and resolves any branches nested within skipped CD region: 

A-stream is insulated from any R-stream-local mispredictions within the CD region
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DBP (cont.)
• Forward control-flow slice of a delinquent branch 
• Control-dependent (CD) region of the delinquent branch 
• Other branches that are control-independent data-dependent (CIDD) with 

respect to the delinquent branch, and their CD regions
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Pre-executable vs. not pre-executable branches
• A delinquent branch is pre-executable only if it is not in its own forward 

control-flow slice, i.e., not self-dependent
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Branch Sets
• Branch set of a delinquent branch or load 
• CIDD branches with respect to the branch or load 

• Concept of branch sets is important for two reasons: 
1. Branch set constitutes the forward control-flow slice to be removed (in 

addition to the delinquent branch’s own CD region) 
2. A delinquent branch is pre-executable (eligible for DBP) if it is not in its own 

branch set
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Delinquent Load Prefetching (DLP)
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• A-stream 
• Delinquent load converted to non-binding prefetch 
• Branches in its branch set are silenced and their CD regions skipped 

• R-stream 
• Delinquent load hits in L2$ 
• Locally predict and resolve any missing control-flow (branches in the load’s branch set, 

and branches nested in their CD regions): 
A-stream is insulated from any R-stream-local mispredictions in load’s forward control-flow slice
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Slipstream 2.0 Microarchitecture

• Follows Slipstream template, but components implemented differently 
• Delay Buffer: 3-bit branch encodings 
• IR-predictor: entries for DBP branches (“1x1”), DLP loads, and CIDD branches 

(“0-1”)  
• Instruction-Removal Detector (IR-detector): delinquent load/branch classifier, 

reconvergent PC detector, and branch set analysis
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Slipstream 2.0’s IR-detector
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Results: DBP vs. Slipstream 1.0
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Results: DBP vs. Slipstream 1.0 (cont.)
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Results: DLP vs. DCE
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Results: DBP+DLP
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Results: summary
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• Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and 
12% over baseline, Slipstream 1.0, and DCE

Slipstream 2.0, DBP only
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only

Slipstream 2.0, 
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Summary: Slipstream Processor 2.0
• Remove forward control-flow slices of delinquent branches and loads 
• Overcomes performance limitations of Slipstream and DCE 
• Two firsts: 

• Leader-follower-style branch pre-execution without relying on confident instr. removal 
• Tolerate cache-missed loads that feed mispredicted branches 

• Meets all four criteria 
1. Leader-follower style pre-execution 
2. Fully automated using only hardware 
3. Targets both branches and loads 
4. Effective at that which is targeted (improves upon Slipstream and DCE) 

• Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability
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Future Work
• Need solutions for non-pre-executable delinquent branches 

1. Self-dependent delinquent branches are very serializing 
2. Delinquent branches that are individually pre-executable, but not actually  

pre-executed due to being in the forward control-flow slice of another 
delinquent branch
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