
Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream Processors
Revisited: Exploiting Branch

Sets
Vinesh Srinivasan

Dep’t of Elec. and Comp. Eng.
North Carolina State University

vsriniv3@ncsu.edu

Rangeen Basu Roy Chowdhury
Intel Corporation

rangeen.basu.roy.chowdhury@intel.c
om

Eric Rotenberg
Dep’t of Elec. and Comp. Eng.
North Carolina State University

ericro@ncsu.edu

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 1

Slipstream Processors Revisited: Exploiting Branch Sets

Single-Thread Performance Limiters
• Delinquent branches and loads limit single-thread performance
• Individually they are bad
• Even worse when they coincide
• Cache-missed load that feeds a mispredicted branch
• Large-window processor loses latency tolerance in this case
• Squash many instructions after the cache-missed load

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 2

Peak IPC=4 for this 
4-wide fetch/retire core.

Slipstream Processors Revisited: Exploiting Branch Sets

Pre-execution via Helper Threads
• Resolve hard-to-predict branches and initiate delinquent loads before

these instructions are fetched by the main thread
• Two classes of pre-execution
• Per-dynamic-instance helper threads: Each helper thread is the backward

slice of instructions leading to a single dynamic instance of a branch or load.
• Two redundant threads in a leader-follower arrangement: Leader thread is

speculatively reduced by pruning instructions.

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 3

Slipstream Processors Revisited: Exploiting Branch Sets

Objective
Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 4

Avoid tricky issues of per-dynamic-instance helper threads:
• Timing of forking, accounting for live-in values of helper thread
• Lining up pre-executed branch outcomes with corresponding instances in the

main thread

Slipstream Processors Revisited: Exploiting Branch Sets

Objective
Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 5

• Not opposed to compiler support. S/w and h/w co-dependency introduces
risk.

Slipstream Processors Revisited: Exploiting Branch Sets

Objective
Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 6

• Unified solution for performance-degrading instructions

Slipstream Processors Revisited: Exploiting Branch Sets

Objective
Design a new pre-execution microarchitecture that meets four criteria:
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 7

• Overcome performance limitations of other leader-follower
microarchitectures

Slipstream Processors Revisited: Exploiting Branch Sets

No Prior Work Meets All Four Criteria

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 8

Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream Processor

• Remove backward slices of confident branches in the A-stream to  
pre-execute unconfident branches
• Ineffective for phases dominated by hard-to-predict branches,  

when branch pre-execution is most needed
• W.r.t. loads: Backward slice removal does not stop short at delinquent

loads, failing to convert removed loads into non-binding prefetches
47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 9

R-stream A-stream

L2 $

branch & value outcomes

L1 D$ L1 D$IR-detector
IR-

predictor

A-stream pruning h/w

Leading ThreadTrailing Thread

delay buffer

Slipstream Processors Revisited: Exploiting Branch Sets

Dual Core Execution (DCE)

• Convert cache-missed loads that block A-stream’s retire stage to non-
binding prefetches, and silence execution of their dependent instructions
• Very good at tolerating cache-missed loads, except when their dependent

branches are mispredicted

• W.r.t. branches: No A-stream pruning per se, so no branch pre-execution

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 10

R-stream A-stream

L2 $

branch outcomes  
(detect wayward A-stream)

L1 D$ L1 D$

Leading ThreadTrailing Thread

Load converted to non-binding prefetch  
if blocks retire stage, silence execution  
of dependent instructions.

delay buffer

Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream Processor 2.0
• Remove forward control-flow slices of delinquent branches and loads
• Overcomes performance limitations of Slipstream and DCE
• Two firsts:

• Leader-follower-style branch pre-execution without relying on confident instr. removal
• Tolerate cache-missed loads that feed mispredicted branches

• Meets all four criteria
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted (improves upon Slipstream and DCE)

• Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 11

Slipstream Processors Revisited: Exploiting Branch Sets

Delinquent Branch Pre-execution (DBP)
• Forward control-flow slice of a delinquent branch
• Control-dependent (CD) region of the delinquent branch
• Other branches that are control-independent data-dependent (CIDD) with

respect to the delinquent branch, and their CD regions

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 12

Slipstream Processors Revisited: Exploiting Branch Sets47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 13

• A-stream
• Delinquent branch converted to unconditional “branch-to-reconvergent-point”
• Resolves delinquent branch’s predicate
• Not slowed by would-be mispredictions of delinquent branch

• R-stream
• Receives accurate prediction for delinquent branch from A-stream
• Locally predicts and resolves any branches nested within skipped CD region: 

A-stream is insulated from any R-stream-local mispredictions within the CD region

beqz r1 delinquent branch

control-dependent (CD)  
region

reconvergent point

a

b c

d

beqz r1

R-streambeqz r1

A-stream
a

a

b

d

d

DBP 
(cont.)

Slipstream Processors Revisited: Exploiting Branch Sets47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 14

beqz r1 delinquent branch

control-dependent (CD)  
region

reconvergent point

a

b c

d

beqz r1

R-streambeqz r1

A-stream

beqz r1

beqz r1

a

a

b

d

d

a’

d’

a’

d’

c’

DBP 
(cont.)

Slipstream Processors Revisited: Exploiting Branch Sets

DBP (cont.)
• Forward control-flow slice of a delinquent branch
• Control-dependent (CD) region of the delinquent branch
• Other branches that are control-independent data-dependent (CIDD) with

respect to the delinquent branch, and their CD regions

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 15

Slipstream Processors Revisited: Exploiting Branch Sets47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 16

beqz r1 delinquent branch

r2 = …

beqz r2

r3 = …

beqz r3

CIDD branch

transitively CIDD branch

a

j

cb

d

e f

i

g

h

Branch encodings supplied 
by A-stream to R-stream:  

1x0: executed branch  
1x1: pre-executed branch
0-1: CIDD branch

executed (1) or not (0) by A-stream

outcome if executed (x=0 or 1)

CD region skipped (1) or not (0)

R-stream

beqz r1

A-stream

beqz r2

beqz r3

g

j

a

d beqz r1

beqz r2

beqz r3

a

j

b

d

e f

i

g

h

1x1

0-1

0-1

Slipstream Processors Revisited: Exploiting Branch Sets

Pre-executable vs. not pre-executable branches
• A delinquent branch is pre-executable only if it is not in its own forward

control-flow slice, i.e., not self-dependent

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 17

beqz r1
pre-executable  
delinquent branch

a

b c

d

beqz r1

a

d

beqz r1

a’

d’

A-stream

beqz r1

a’’

d’’

r1 = …

beqz r1
NOT pre-executable  
delinquent branch

a

b c

d

beqz r1

a

d

beqz r1

a’

d’

A-stream

beqz r1

a’’

d’’

1x1

0-11x1

1x1 0-1

1x1

Slipstream Processors Revisited: Exploiting Branch Sets

Branch Sets
• Branch set of a delinquent branch or load
• CIDD branches with respect to the branch or load

• Concept of branch sets is important for two reasons:
1. Branch set constitutes the forward control-flow slice to be removed (in

addition to the delinquent branch’s own CD region)
2. A delinquent branch is pre-executable (eligible for DBP) if it is not in its own

branch set

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 18

Slipstream Processors Revisited: Exploiting Branch Sets

Delinquent Load Prefetching (DLP)

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 19

• A-stream
• Delinquent load converted to non-binding prefetch
• Branches in its branch set are silenced and their CD regions skipped

• R-stream
• Delinquent load hits in L2$
• Locally predict and resolve any missing control-flow (branches in the load’s branch set, 

and branches nested in their CD regions): 
A-stream is insulated from any R-stream-local mispredictions in load’s forward control-flow slice

load r1
beqz r1! in load’s branch set

a

b c

d

delinquent load R-stream

A-stream

b

d

d

prefetch
beqz r1

a

c

load r1
beqz r1

a

0-1 L2 hit
L2 miss

Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream 2.0 Microarchitecture

• Follows Slipstream template, but components implemented differently
• Delay Buffer: 3-bit branch encodings
• IR-predictor: entries for DBP branches (“1x1”), DLP loads, and CIDD branches

(“0-1”)
• Instruction-Removal Detector (IR-detector): delinquent load/branch classifier,

reconvergent PC detector, and branch set analysis
47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 20

R-stream A-stream

L2 $

branch outcomes

L1 D$ L1 D$IR-detector
IR-

predictor

A-stream pruning h/w

Leading ThreadTrailing Thread

delay buffer

4.2 KB

Slipstream Processors Revisited: Exploiting Branch Sets

Slipstream 2.0’s IR-detector

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 21

Slipstream Processors Revisited: Exploiting Branch Sets

Results: DBP vs. Slipstream 1.0

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 22

Slipstream 2.0, DBP only

Slipstream 2.0, DLP
only

Slipstream 2.0,
DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

Results: DBP vs. Slipstream 1.0 (cont.)

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 23

Slipstream 2.0, DBP only

Slipstream 2.0, DLP
only

Slipstream 2.0,
DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

Results: DLP vs. DCE

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 24

Slipstream 2.0, DBP only

Slipstream 2.0, DLP
only

Slipstream 2.0,
DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

Results: DBP+DLP

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 25

Slipstream 2.0, DBP only

Slipstream 2.0, DLP
only

Slipstream 2.0,
DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

Results: summary

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 26

• Slipstream 2.0 (DBP+DLP) gives geomean speedups of 67%, 60%, and
12% over baseline, Slipstream 1.0, and DCE

Slipstream 2.0, DBP only

Slipstream 2.0, DLP
only

Slipstream 2.0,
DBP+DLP

Slipstream Processors Revisited: Exploiting Branch Sets

Summary: Slipstream Processor 2.0
• Remove forward control-flow slices of delinquent branches and loads
• Overcomes performance limitations of Slipstream and DCE
• Two firsts:

• Leader-follower-style branch pre-execution without relying on confident instr. removal
• Tolerate cache-missed loads that feed mispredicted branches

• Meets all four criteria
1. Leader-follower style pre-execution
2. Fully automated using only hardware
3. Targets both branches and loads
4. Effective at that which is targeted (improves upon Slipstream and DCE)

• Microarch. turbo-boost: Auto-enable/disable A-stream based on profitability

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 27

Slipstream Processors Revisited: Exploiting Branch Sets

Future Work
• Need solutions for non-pre-executable delinquent branches

1. Self-dependent delinquent branches are very serializing
2. Delinquent branches that are individually pre-executable, but not actually  

pre-executed due to being in the forward control-flow slice of another
delinquent branch

47th Int'l Symp. on Comp. Arch. (May 30-June 3,
2020) 28

