Transparent Control Independence (TCI)

Ahmed S. Al-Zawawi Vimal K. Reddy

Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC

{aalzawa, vkreddy, ericro}@ece.ncsu.edu

ABSTRACT

Superscalar architectures have been proposedxplatitecontrol
independence, reducing the performance penalty raindn
mispredictions by preserving the work of future pnegliction-
independent instructions. The essential goal ofoétipg control
independence is to completely decouple future radiption-
independent instructions from deferred mispredictiependent
instructions. Current implementations fall short thfis goal
because they explicity maintain program order agnon
misprediction-independent and misprediction-depahde
instructions. Explicit approaches sacrifice desgficiency and
ultimately performance.

We observe it is sufficient to emulate program ord®otential
misprediction-dependent instructions are singledeaopriori and
their unchanging source values are checkpointedesdh
instructions and values are set aside as a “regoweygram”.
Checkpointed source values break the data depeiedenith co-
mingled misprediction-independent instructions wrong since
gone from the pipeline — achieving the essentiatodpling
objective. When the mispredicted branch resolvespvery is
achieved by fetching the self-sufficient, condensedovery
program. Recovery is effectively transparent to ligeline, in
that speculative state is not rolled back and regoappears as a
jump to code. A coarse-grain retirement substraamjis the
relaxed order between the decoupled programs. paaast
control independence (TCI) yields a highly streaedi pipeline
that quickly recycles resources based on convealtigpeculation,
enabling a large window with small cycle-criticaspurces, and
prevents many mispredictions from disrupting thigé window.

TCI achieves speedups as high as 64% (16% aveaageB8%
(22% average) for 4-issue and 8-issue pipelinespedtively,
among 15 SPEC integer benchmarks. Factors that fin@
performance of explicitly ordered approaches aamntjfied.

Categories and Subject Descriptors

C.1.0 [Processor Architectures]: General
General Terms Performance, Design.

Keywor ds Branch prediction, control independence, selective
recovery, selective re-execution, checkpoints, gia¢ion.

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oremistribute to lists,

requires prior specific permission and/or a fee.

ISCA’07,June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.0

Eric Rotenberg Haitham H. Akkary*

*Digital Enterprise Group
Intel Corporation
Hillsboro, OR

haitham.h.akkary@intel.com

1. INTRODUCTION

The performance of contemporary superscalar pieglins
profoundly affected by branch prediction accuraByen with
modest issue widths of 3 to 6 instructions per eythe Intel
Pentium-4 and IBM POWERS5 processors form specwativ
instruction windows as deep as 126 and 200 instmst
respectively. A single branch misprediction mafiupwards of
100 in-flight instructions, causing extended retiemt stalls as the
pipeline gradually refills. Because of the large-pasprediction
penalty, branch misprediction rates of 5-10% cause
disproportionate performance loss. Using our dedadycle-level
simulator of a 4-issue superscalar processor wijilpeline depth
and memory hierarchy modeled after the Pentium-4tate-of-
the-art perceptron branch predictor [13] often aebs only half
the performance of perfect branch prediction folESPinteger
benchmarks.

The performance penalty of mispredictions can luced by
exploiting control independence [2][5][6][10][190%21][22],
depicted in Figure 1. The figure shows a branch iastfuctions
after it. Instructions between the branch anddt®nvergent point
arecontrol-dependentCD) on the branch, in that the outcome of
the branch affects which CD instructions are fetichastructions
after the reconvergent point acentrol-independentCl) of the
branch because they are fetched irrespective ofbtlaach’s
outcome. Nonetheless,control-independent data-dependent
(CIDD) instructions are influenced by the branchotigh data
dependences (either register or memory dependendes)
example, the consumer of R5 (after the reconvergmint)
depends on the first production of R5 (above thenth) if the
branch takes the left path or the second produaifoR5 if the
branch takes the right path. Therefore, the conswheR5 is
influenced by the outcome of the branch and is egusntly
CIDD with respect to the branch (similarly, contietlependent
loads may be influenced by a prior branch througtrol-
dependent stores). In the example, other instmstiafter the
reconvergent point are not influenced by the braincany way,
referred to ascontrol-independent data-independef€IDI)
instructions.

Conventional superscalar processors recover fronispredicted
branch by flushing all instructions after it andsteeting from
scratch at the branch. In contrast, superscalacepsors that
exploit control independence conceptually (i) siNety remove
only the incorrect CD instructions from the windothus

preserving the Cl instructions in the window, fii$ert the correct
CD instructions in their place, and, (iii) among i@btructions,
only the CIDD instructions are selectively re-execu Thus,
recovery is more selective and this reduces misgied

penalties. Specifically, the work of mispredictimiependent
instructions (CIDI) is saved.

R5<=

e branch

(]

©

c

(3]

@ (CD)

° (R5<=

°

<

(o]

© <— reconvergent point

control-independent i
data-independent <=R5 cog;g[égggﬁggﬂtent
(CIDI) (CIDD)

Figure 1. Example control-flow region.

The essential goal of selective recovery is to deraly decouple
the future misprediction-independent instructio8#) from the
deferred misprediction-dependent instructions (Cixl &C1DD).

Existing solutions fall short of this goal becauieey still

explicitly maintain program order among the mispcgdn-

independent and misprediction-dependent instrustidmey are
order-constrained for two reasons in particular:

m They evolved from reorder buffer (ROB) based desighich
require program order for fine-grained retiremeditimately
this means the late-fetched correct CD instructinesd to be
reordered with respect to the early-fetched Clrirgdtons.

m When CIDD instructions re-execute with changed ealfrom
the repaired CD region, they may also need to ference
unchangedralues from CIDI instructions. Ultimately this nmsa
dependence order needs to be maintained among nogedhi
CIDI instructions and CIDD instructions.

Explicit program-ordered approaches sacrifice degfficiency
and performance, because they fail to truly demupl
misprediction-independent instructions from misjcgdn-
dependent instructions.

We propose that it is sufficient to mimic the effef program
order between misprediction-independent and misgtied-
dependent instructions. The key innovation is tgl& out CIDD
instructions as they are fetched and checkpointr tkdDI-
supplied source values, breaking dependences wuith GIDI
instructions. The CIDD instructions plus checkpethtsource
values are set aside in a FIFO re-execution buyfetB) for
possible selective re-execution later. This isfttet proposal for
truly decoupling CIDI and CIDD instructions. Nowiné-grain

retirement via a reorder buffer is the only reason explicitly
maintaining order. To emulate in-order retiremeng propose
using a coarse-grain checkpoint-based retiremematesty
[3][9][12][18] which relaxes ordering constraintsetiveen
consecutive checkpoints.

When a branch is mispredicted, its incorrect COrutdions are
fetched followed by CI instructions. All instructis — correct and
incorrect — complete and speculatively release eeydtical

resources as they drain from the pipeline (issueuguentries,
physical registers, etc.). When the mispredicteghtin resolves,
recovery is achieved by fetching a self-sufficiesindensed
“recovery program”: the correct CD instructionst¢feed from the
instruction cache), the CIDD instructions (fetcliiin the RXB),

and all input values needed to launch the corréxta@d CIDD

instructions (the branch’s checkpoint and the chetked CIDI-

supplied source values of CIDD instructions). Rergvis

effectively transparent to the pipeline, in thaémgative state is
not rolled back and recovery appears as a jump dde.c
Transparent control independence (TCI) vyields a hlgig
streamlined pipeline that quickly recycles resosrémsed on
conventional speculation, enabling a large windouh vemall

cycle-critical resources, and prevents many midptiets from

disrupting this large window.

Figure 2 shows a high-level view of TCIl. Dynamistiuctions
are shown from left to right in the order in whittey are fetched
(fetch time). Correctly fetched and executed ingtamns are
shown in white and incorrectly fetched or execuitestructions
are shown in gray. Correctly fetched instructiores labeled with
their order in sequential program order (incori@Ex instructions
are labeled with x’s instead). A branch is mispeceetl at the
beginning of the fetch timeline. Thus, incorrect @i3tructions
are fetched first followed by CIDI and CIDD insttions. The
first correctly fetched instruction is instructidn Some time later,
after fetching instruction 14, the mispredictiorfirglly detected.
At this point the independent (thanks to input esldrom the
branch’s checkpoint and RXB) recovery program iglfed.

Notice the relaxed order: the recovery programssrirctions 1, 2,
3, 6, 10, and 12' come after the speculative paogs

instruction 14 in the timeline. The pipeline doex differentiate
between the speculative and recovery programshewrs The
speculative state is not rolled back. Instead rélcevery program
transparently repairs the speculative state.

mispredict detect
branch mispredict
FETCH TIME: -
ir|1co|rre(|:t——0———0—0—— ala
i alalale(e|elalelale|e ala
speculative program cD 161 BlIEE G E G EE Gl _ o
xIx|x|x]4]|5]6]7]s]o910]11]12]13|14 15[16 Streamlined Pipeline:]
No rollback, drain >
Undifferentiated
self-sufficient correct 8 8 8 _ allocate instruction stream free
recovery program CD |G|o|o w resources resources
1]2]3]6i0f12
A
F1f
branch checkpointed
checkpoint values

Figure 2. Transparent Control Independence (TClI).

This paper makes the following chief contributions:

m TCI concept and microarchitectureWe propose a new
approach that fully decouples misprediction-indejeam

instructions from misprediction-dependent instroies, yielding

a highly streamlined microarchitecture for explugti control

independence. The key insight is checkpointing &0pplied

source values of CIDD instructions. Another impottaspect is
using a relaxed, coarse-grain retirement substrate.

m Identifying CIDD instructions Novel mechanisms are
developed for assembling the CIDD instructions: toatrol-
flow stack (CFS) for detecting arbitrary and nestecbnvergent
points, predicting the influenced register set (IRoisoning
registers for identifying CIDD instructions, branséts for
identifying CIDD loads, etc.

m RXB reconstructionSince CIDD slices of multiple branches
are co-mingled within the RXB, servicing a branch
misprediction may require repairing CIDD slices ofher
branches and selectively removing CIDD instructiafsthe
resolved branch. A simple unified solution — idgntCIDD
instructions in the recovery program itself, as wase the first
time for the speculative program — enables arlyitaaljustments
to the RXB while preserving its simple FIFO policy.

m Renaming partial programsWe propose a novel technique
for renaming the recovery program despite its Gj&ys.

m Comparing resource and bandwidth overheads for irap®
CIDD instructions We analyze factors that reduce the
performance of explicit program-ordered approachesd
measure the impact of these factors. We show T€$ deswer
resources and less bandwidth for repairing CIDExirt$ions.

Section 2 provides a high-level overview of the gmsed TCI

microarchitecture. Section 3 discusses closelytedlavork and

identifies factors that reduce performance of presiapproaches.
Section 4 presents the TCI microarchitecture iraitleBection 5

covers the simulator and methodology. Results agsemted in
Section 6. Additional related work is discussedSaction 7.

Finally, the paper is summarized in Section 8.

2. HIGH-LEVEL OVERVIEW OF TCI
MICROARCHITECTURE

Figure 3 shows our transparent control independefical)

architecture. The shaded region highlights a ressstreamlined
pipeline that aggressively releases resources based
conventional speculation. Correct and incorrectrirctions alike

o predicted CD

flow through the pipeline as fast as they wouldhvdgbnventional
speculation, aggressively freeing issue queueemnsmd physical
registers [3][9][18][23] on the assumption thatrrh predictions
are correct. Instructions drain from the pipeliresaon as they
complete — there is no reorder buffer (ROB) andcipee
exceptions are achieved via checkpoints [3][9][18][23].

When a branch is encountered in the fetch unitprigglicted CD
instructions are fetched from the instruction cadheache),
highlighted in Figure 3 with Step-1. These are stalowed by
the branch’s CI instructions, corresponding to Stem the
figure. Both the predicted CD and CI instructions anamed
with the speculative rename map and sent downigfedipe. The
branch’'s CIDD instructions are identified in thesphtch stage
and duplicates of these instructions are set aside=IFO buffer,
the Selective Re-execution Buffer (RXB), as showWfhen these
instructions issue and read their source operamdm fthe
physical register file, copies of the source valaesalso set aside
with the corresponding instructions in the RXB. When the
branch executes, a misprediction is detected, cbnis
temporarily transferred to the correct target o€ thranch.
Corresponding to Step-3 in the figure, the brandvsect CD
instructions are fetched from the I-cache and rehomsing the
repair rename map, which is initialized from a esponding
branch checkpoint thus ensuring the correct CDructibns have
values in the physical register file to begin exesuwith. When
the reconvergent point is encountered again, cbistitoansferred
to the branch’s CIDD instructions in the RXB, capending to
Step-4 in the figure. These are also renamed usiegrepair
rename map to establish linkages with producerunsbns prior
to the reconvergent point. A key point is that bianch’s CIDD
instructions residing in the RXB do not tie up &critical
resources (issue queue entries and physical reg)isted are
allocated resources only when control is transetoethe RXB,
just like instructions that are dispatched from Heache. Another
key point is that CIDDs’ source operands that depen CIDI
instructions cannot be resolved by the repair renarap because
the CIDIs’ values were most likely freed from theypical register
file already and those that have not been freednacessible by
the repair rename map anyway; fortunately the souatues were
individually checkpointed previously and are in fR¥B with the
CIDD instructions.

Loads issue aggressively and are speculative witlwithout
branch mispredictions [7]. Store-load dependences aso
resolved correctly, as we explain in Section 4.5.

Cl
9 Spec. -
I-cache | Rename Issue > Phys. o
Map > YIE R drain
+ instructions
Check-
points
e to RXB to RXB
correct + (CIDD instructions) (CIDD source values)
cD -
P Repair
Selective Re-Execution Buffer Re'\;l‘:g‘e —
= (4]
re-execute
CIDD

Figure 3. Transparent control independence (TCI) architecture.

3. UNDERSTANDING RELATED WORK

3.1 Qualitative Comparisons

There have been a number of proposals for exppitiontrol
independence in superscalar [5][6][10][19][20][21]and
speculatively multithreaded processors [2][22]. IBikmg control
independence involves three key implementation essuand
different architectures address these issues fareift ways and
with various compromises.

¢ Insertion/removal of CD instructionghe key challenge with
regard to CD instructions is arbitrary insertionioval of CD
instructions in the middle of the window. The FIFérder buffer
(ROB) of conventional superscalar processors isicttrally
incompatible with removing incorrect CD instructsonand
inserting correct CD instructions (except the spletase in which
the two branch paths are equal in length), becthesdROB can
no longer be managed as a simple circular FIFO. @grieOB-
based implementations, the ROB can be managedimised-list
at the level of individual instructions [19], segme [19], or
processing elements [20][22], but at the cost afnificant
complexity. Instruction reuse (or squash reuse) 2l a related
dual ROB implementation [6] avoid this complexity be-
fetching/re-dispatching all instructions after tmeispredicted
branch, emulating the simple control-flow repair dab of full
flushing, but this yields a significantly weakeniathlementation
that only saves on re-execution bandwidth of Clidtiuctions.
Two more recent ROB-based implementations (SkipperExact

Convergence) either pre-pad the ROB to make room fo

expansion [5], potentially underutilizing the ROBT o0
overdesigning the ROB, or exploit control indeperaeonly for
the special case in which the correct branch taigethe
reconvergent point itself (thus not requiring iriger of any CD
instructions) [10]. The expandable/contractable deim of
speculative multithreading implementations [2][22]are
structurally compatible with arbitrary insertiomreval of CD
instructions, but this is achieved as a byproddicteparting from
the familiar superscalar paradigm, moreover, miipt®ns cause
full flushing within threads thus not exploiting hétrary
reconvergent points.

« Selectively re-renaming CIDD instructiang\fter repairing the
CD region of the mispredicted branch, CIDD instimts with
stale source names have to be identified and @wed to
establish linkages with their correct producersy.(ethe R5
consumer in Figure 1). Some implementations resempithrough
all ClI instructions to locate CIDD instructions th@quire re-
renaming [2][19][20], expending time on scanningotigh all
instructions whether or not their source namesiredixing. As
mentioned, instruction reuse [21] and the dual
implementation [6] flush and re-fetch/re-dispatdhirstructions
after the mispredicted branch, thus needlesslyememing all
instructions. Skipper [5] and Exact Convergencq [tj&ct proxy
move instructions at the reconvergent point foridaggregisters
influenced by the branch (e.g., R5 in Figure 13ulating CIDD
instructions from source name changes. Re-renaisitagralized
to proxy instructions, at the cost of increasedsptal register
pressure, issue queue pressure, and ROB pressutieefproxy
instructions of each protected branch.

« Selectively re-executing CIDD instruction&fter repairing the
CD region and fixing stale source names of CIDDOringions, all
CIDD instructions must be selectively re-execufBite drawback
of the above superscalar based implementationsatsselective

ROB

re-execution of CIDD instructions (or deferred ax@mn of CIDD
instructions in the case of Skipper [5]) increagesssure on
cycle-critical resources. Issue queue entries aodrce and
destination physical registers cannot be releasedcdmpleted
CIDD instructions because they may need to selkdgtive-
execute. Release is delayed until correspondingcbes resolve.
This is inefficient compared to conventional spatioh, which
releases resources aggressively (issue queue atats even
physical registers in some designs [3][9][18][23Bince
misprediction recovery involves rolling back to thespredicted
branch anyway.

TCl compares favorably with previous control indegence
architectures. The choice of a checkpoint-based,BR€e
superscalar substrate with counter-based physiegister
allocation/deallocation is meaningful, as this dtdie is
structurally compatible with arbitrary insertionfieval of
instructions in an order-agnostic way as long asdpcer-
consumer dependences are respected. Thus, TCIl satbal
complexity of linked-list ROB management [19][20}the
performance degradation of full flushing [21], anthe
underutilization of ROB padding [5]. And unlike spdative
multithreading [2][22], TCIl maintains a familiar ujgerscalar)
execution model and exploits arbitrary reconvergmints. With
TCI, CIDD instructions are selectively re-renamesing the
compressed (CIDD instructions only) RXB, unlike
implementations that re-inspect all Cl instructidi2§{19][20].
Moreover, selective re-execution of CIDDs does cane at the
price of tying up precious cycle-critical resourcgh as issue
queue slots and physical registers. In contrasgvipus
superscalar implementations increase resource yseegven in
the case of correct speculation, potentially impgdderformance
in the common case (either by degrading IPC fourdersized
resource or increasing cycle time for an oversiasdurce).

3.2 Resource and Bandwidth Overheads
Different methods for re-renaming and re-executi@ypD
instructions result in different resource and baidéhwoverheads,
influencing performance. In this section, we conapiie resource
and bandwidth overheads for repairing CIDD insiang, for
different generalized models on a common substrdiee
common substrate is a 4-issue ROB-free checkpoiptedessor
with aggressive register reclamation (describefention 5). Due
to a common high-performance flexible-window suditty we do
not capture the performance differences among rdifte CD
insertion/removal methods (for example, the penahy
reservation based approaches [5] is not captured).

Three generalized re-renaming models are consideredy uses
proxy move instructions to insulate Cl instructioinem source
name changes, and only the proxies are re-rena®ed. Cl
sequences through all ClI instructions to updatde stmurce
names.Seq CIDDre-renames only the CIDD instructions, like in
TCIl. Seq CIDD requires TClI's mechanisms (specifically,
poisoning) for distinguishing a CIDD instruction’source
operands as coming from either CIDI or CD/CIDD fostions —
only sources coming from CD or other CIDD instrang should
be re-renamed.

Two models are considered for selective re-exenutib CIDD
instructionsHold IQ is conservative, as it holds all instructions in
the issue queudrain 1Q is aggressive, as it drains instructions
from the issue queue when they issue. ForOhan IQ model,

selective re-execution is achieved differently Rnoxy, Seq C]
and Seq CIDD Proxy holds proxy and CIDD instructions in the
issue queue, signified d&3rain 1Q (partial). Seq Cluses a re-
execution buffer (RXB) containing all Cl instruati®. Seq CIDD
uses a compressed RXB containing only CIDD insionst

Table 1 compares the resource and bandwidth reqgeits for
repairing CIDD instructions, foBase (conventional recovery),
Proxy, Seq CJ andSeq CIDD on bothHold 1Q andDrain 1Q re-
execution substrateBBgse always drains). In addition, the last
column in Table 1 cites specific implementations tbese
approaches from the literature. Resources aredudivided into
registers, issue queue entries, and RXB entriesdBath is
further divided into re-renaming and re-executioandwidth.
Note that TCI Drain 1Q/Seq CIDD is qualitatively the best or
tied for best in every category. TCl may re-rendaveer or more
instructions thanProxy, depending on the number of proxy
instructions and CIDD instructions.

Table 1. Resource and bandwidth usage for repairing CIDD
instructions.

Hold resources until Cl resequencing
Model branch resolves bandwidth Related
Registers Issue RXB Re-_ Re-_ work
Queue renaming | execution
Base none none |none] CIDD + CIDI| CIDD + CIDI
CIDD +
o a
z Proxy all all none proxy proxy [5]3,[10]
o |Seq ClI all all none] CIDD + CIDI CIDD [19],[20]
T Seq CIDD all all none CIDD CIDD
o some CIDI + | CIDD + CIDD +
_E Proxy CIDD + proxy| proxy none proxy proxy
© |Seq CI none none all |CIDD + CIDI CIDD [2],[6]
o Seg CIDD none none |CIDD] CIDD CIDD TCI

aCited for the use of proxy inst., and not skipper style control independence.

Figure 4 shows the harmonic mean of IPCs for 14hef SPEC
integer benchmarks listed in Table 3, for the sewemdels.
Benchmark mcf has been excluded from the harmoréanm
because its extremely low IPC drowns out trendg. ifhue queue
size is varied to understand resource pressure. réheurce
inefficiency of theHold 1Q re-execution substrate is a major
bottleneck with small issue queues. In f&4seoutperforms all
Hold 1Q models, for issue queues with fewer than 256 esntri
This is because the issue queue limits the overgtow size
when all instructions are held in the issue queue.

25

O
Q20 A i
c
I
15
1S —8— Drain IQ/Seq CIDD (TCI)
g 10 —A— Drain IQ/Seq ClI
o &= —e— Drain IQ (Partial)/Proxy
g —o—Base
© 0.5 Hold 1Q/Seq CIDD
T —A—Hold 1Q/Seq CI

0.0 —o—Hold 1Q/Proxy

16 32 64 128 256

Issue Queue Size
Figure 4. Performance of different CIDD repair models.

Ideally, all instructions should free all cycletmal resources
speculatively, allowing for a bigger window, and DO

instructions should only be re-allocated resoumhen selective
re-execution is required after a branch misprealictDrain 1Q

strives for this goal. HoweveRroxy falls short of this ideal
scenario because proxy and CIDD instructions renmathe issue
queue for possible selective re-execution. Thedusdi issue

gqueue pressure is evident in Figure Rtpxy is unique in its
sensitivity to issue queue size compared to othedets with
Drain 1Q. In fact, for a 16-entry issue queulroxy has no
performance advantage over conventional recovBysq let
alone the other selective recovery approachesh®mther hand,
a 64-entry issue queue enabfsxyto overtakeSeq Cl Overall,
Seq CIDD(TCI) performs the best due to its combined badétwi
and resource efficiency. Figure 5 shows similandee for the
benchmarlgzip, individually.

3.0

5
25 — //'
2.0

—* Z &
"

O] IL\> 4L]

nls
- —&— Drain 1Q/Seq CIDD (TCl)
1.0 / —— Drain 1Q/Seq ClI
é’_‘/é/ —e— Drain IQ (Partial)/Proxy
—o—Base
0.5 Hold 1Q/Seq CIDD
—A—Hold 1Q/Seq CI
0.0 —o—Hold IQ/Proxy
16 32 64 128 256

Issue Queue Size
Figure 5. Performance of different CIDD repair models (gzp).

Figure 6 shows the performance sensitivityDo&in 1Q/Seq ClI
andDrain 1Q/Seq CIDDto the RXB sizeSeq Clis very sensitive
to RXB size: all instructions are inserted into fR¥B, therefore,
the RXB limits the overall window size (like a ROB}) contrast,
Seq CIDDis much less sensitive to the RXB size: only CIDD
instructions are inserted into the RXB, therefdhee RXB does
not limit the overall window size.

O 25

e A Z 2 A
c 20 1 k/':*/._/—o———'
<
g 15 "
g 1.0 —A&—Seq CIDD |—
g 05 —e— Seq CI I
3
T 00
32 64 128 256 512
RXB Size

Figure 6. Sensitivity to RXB size.
Figure 7 focuses on the re-rename bandwidtibin 1Q/Seq
CIDD. The RXB contains CIDD instructions for multiple
branches in program order. Thus, other branchedDDCI
instructions may increase the time to re-sequesarapared to re-
sequencing only the CIDD instructions of the misicted
branch. The latter model is labelBdain 1Q/Seq Br CIDDin the
graph. The graph shows little performance diffeeesbetween the
two models. Moreover, there is little performandffedence even
with Ideal, which re-sequences in 0 cycles.

351
3.0 —
25 A
0207
g5 OSeq Cl
1.0 7 B Seq CIDD
05 0O Seq Br CIDD |-
0.0 O Ideal
4-issue ‘ 8-issue 4-issue ‘ 8-issue
Harmonic mean Gzip

Figure 7. Seq CIDD bandwidth.

4. TClI MICROARCHITECTURE

4.1 ldentifying and Inserting CIDD

Instructionsinto RXB

This section explains how CIDD instructions areniifeed and
inserted into the RXB by the speculative rename,rimap process
called poisoning.

4.1.1 Reconvergent Point and Influenced Register

Set (IRS) Predictor

The compiler or a hardware predictor can be usedl¢atify

branches’ reconvergent points. In this paper, veethe dynamic
reconvergence predictor proposed by Collins et [8]. We

augment the predictor to provide additional infotioa for each
branch. First, the predictor keeps track of the imam path

length through a branch’s control-dependent (C@jore, among
paths that were traversed. This information is wisfefr guiding

when to apply control independence. We select armar CD

path length above which it is not worthwhile to kxpcontrol

independence due to the sheer number of incorrelbt

instructions. Second, we add a learning mechandsmoliect a
branch’s influenced register set (IRS). As the mted monitors
retired instructions for reconvergence, it keepkrof logical

registers written to after the branch and befommmgergence is
detected. The use of confidence ensures repetimihat enough
different paths are traversed through a branch’s réflon to

yield a representative IRS.

4.1.2 Control-Flow Stack (CFS)

When a branch is dispatched, we must detect itsnkezgent
point among later instructions as they are dismaichThe
reconvergent point marks the beginning of Cl ingians, so it is
at this point that we need to mark, or “poison”flianced
registers (indicated by the branch’s IRS) in thecspative rename
map.

A novel hardware mechanism called ttantrol-flow stackCFS)
detects reconvergent points in the dispatch staljen a
checkpointed branch is dispatched, its reconverde@t and
checkpoint tag (to identify the branch) are pusbetb the CFS
top-of-stack.

The next reconvergent point in the dynamic instaucstream is
detected by comparing the PCs of newly dispatchsttuctions
to the reconvergent PC at the top-of-stack. If ¢hisr a match,
then the branch corresponding to the current tegtatk has
reconverged. We know which branch this is via theckpoint tag
at the current top-of-stack. Since the beginning cohtrol-
independent instructions has been reached, thecligatRS is
used to poison influenced registers at this timeiséhing
registers is explained in the next section. Finatie CFS top-of-
stack is popped (removed), re-exposing the nexvmegrgent
point to search for.

The CFS can detect cases in which multiple brantize® the
same dynamic reconvergent point. If the reconverdgdd of a
newly dispatched branch matches the reconvergerat®@ CFS
top-of-stack, then the new branch and the branatesponding to
the CFS top-of-stack have the same dynamic recgamepoint:

! They do not have the same dynamic reconvergent jidghe call depths
of the two branches are different, e.g., due tangon. We make the

In this case, the new branch does not push a naw ento the
CFS, implicitly “merging” with the CFS top-of-stack

There are three cases in which a branch is foreedherit the
reconvergent point of its encompassing branch regib the
branch does not have a predicted reconvergentfRi@zre are no
free checkpoints, or if the branch is confidenthegicted. The
branch corresponding to the CFS top-of-stack is ¢hesest
encompassing branch. Thus, the new branch inhdhts
reconvergent point of its encompassing branch sinigyl not
pushing onto the CFS and instead merging as exqulabove.

The CFS only needs as many entries as there ackpfiats (16
entries in this paper). CFS entries of branchesrésolve before
they reconverge are collapsed away (since thegatrpopped).

4.1.3 Poison Vectors

After a branch’s CD region is fetched and its re@ygent point is
detected by the CFS, we are ready to use the bmaRS to
poison registers and thereby identify CIDD instimes. Each
influenced register specified in the IRS must bisqoed.

We provide a 16-bipoison vectomper entry in the speculative
rename map. A logical register is poisoned if onenore bits are
set in its poison vector. Moreover, which bits asd indicates
which branches a logical register is influencedAgheckpointed
branch is identified by its checkpoint tag. A ndreckpointed
branch is identified by the checkpoint tag of tharizh from
which it inherited its reconvergent point (discubksa Section
4.1.2). Since we use 16 checkpoints in this pap@ison vector
has 16 bits.

When a branch reconverges, the poison vector d¢f edlcienced

register, specified by the IRS, is updated in {iecslative rename
map. In particular, the poison bit correspondingfte branch’s
checkpoint tag is set.

CIDD instructions can now be identified during remiag. When
an instruction’s logical source registers are rezmmthe
corresponding poison vectors are ORed togethethdf ORed
vector has any bits set, the instruction is CIDEhwespect to one
or more branches. Also, the ORed vector overwiibespoison
vector of the logical destination register, in Hpeculative rename
map. This propagates poison status for identifyintfirect CIDD
instructions.

When a checkpoint is freed, the corresponding poibi is
cleared in all poison vectors. Given that all btees associated
with the checkpoint are now resolved, no futuretringions
should be considered CIDD with respect to thesadires.

Only the speculative rename map, repair rename nraag,
checkpoints have poison vectors. Poison vectorshén repair
rename map and checkpoints are discussed in Sekcfion

4.1.4 Inserting CIDD instructions into the RXB
CIDD instructions are inserted into the RXB in prag order at
the dispatch stage. When a CIDD instruction isauab reads its
source values from the physical register filegplaces its source
mappings in its entry in the RXB with the sourcéuea (a bit is

test definitive by tracking call depth in the diggastage and including
call depths in CFS entries. If the new branch’@neergent PC and call
depth match the CFS top-of-stack, then the brantiaee the same
dynamic reconvergent point.

set within its entry in the RXB to signify that soe values have
replaced source mappings).

4.2 Misprediction Recovery

When a misprediction is detected, the fetch unibperarily
redirects fetching to the correct target of thepraslicted branch.
Correct CD instructions are fetched from the ingion cache and
renamed using the repair rename map initializedmfra
checkpoint at the branch. The repair rename mdg the
speculative rename map, has its own CFS to deteet t
reconvergent point again that marks the end ofctreect CD
region (its CFS also identifies new nested bramedions). At this
point, the branch’s CIDD instructions are fetcheshf the RXB,
re-renamed using the repair rename map, and retéjento the
pipeline. Finally, the repair rename map is useditoup the
speculative rename map and checkpoints.

4.2.1 Reconstructing the RXB

The RXB contains CIDD instructions with respect &l
unresolved branches. This means the RXB must lenseticted
when recovering from a branch misprediction, akvad.

* Case A There may be instructions from the branch’s inecir
CD path in the RXB, that were thought to be CIDDhwiespect
to other prior branches. These have to be removea fthe
middle of the RXB.

e Case B New instructions from the correct CD path may be
CIDD with respect to other prior branches. Theseehto be
inserted into the middle of the RXB.

e Case C Instructions in the RXB that are only CIDD with
respect to the branch being serviced should bectsedy
removed from the RXB, since they will not be reté@di again.
Instructions in the RXB that are CIDD with respéot other
branches (whether or not they are also CIDD wilpeet to the
current branch) must remain in the RXB. Note thase two
types of instructions are co-mingled in the RXB.

There is only one solution and it is simple, beeatigs analogous
to initial CIDD identification and insertion intoh¢ RXB
described in the previous section. The recovergnam for the
current branch is comprised of the correct CD irgtons from
the instruction cache and all instructions in théBRIogically
after the resolved branch’s reconvergent point.e(Tacovery
program is not as efficient as it could be becatdes CIDD
instructions of other branches that are not alddBCWith respect
to the current branchBoisoning of the recovery program via the
repair rename map can once again construct the R®Bents
As a preliminary step, the RXB tail pointer is mdveack to the
branch (even though the branch may not be in theBRX
physically, the branch knows its logical positian the RXB).
This naturally takes care of any incorrect CD instions in the
RXB since they will get overwritten by the adjusted pointer
(case A. Then, poisoning the recovery program using dymair
rename map will naturally (1) insert new CIDD insftions with
respect to prior branches from among the correctir@Buctions
(case B, and (2) insert old CIDD instructions only if thare
CIDD with respect to remaining unresolved brandcese G.

Since CIDD instructions are concurrently fetcheahfrthe RXB
(while fetching the recovery program) and inseiitédd the RXB
(while constructing a new recovery program), we dche
mechanism to prevent overwriting CIDD instructianghe RXB

before they are fetched. We set up a pre-read grointo the
RXB, that points to the first Cl instruction witlkespect to the
resolved branch. Since we moved the tail pointethto branch,
the pre-read pointer is logically after the taiirger. The pre-read
pointer is where fetching of CIDD instructions igpposed to
begin. If we wait until the correct CD path is fet¢cl, some of the
CIDD instructions beginning at the pre-read pointeuld get
clobbered by the advancing tail pointer. Therefoasgng the pre-
read pointer, we begin pre-reading CIDD instrudidrom the
RXB right away so that they cannot get clobbereleyr are
transferred to a Temp Buffer, from which fetchin§ @IDD
instructions will eventually begin (after the catre CD
instructions are fetched from the instruction cache

Figure 8 shows a detailed RXB reconstruction exampgth two
branches, B1 and B2, and respective reconvergentspl and
R2. Logical positions of B1/R1 and B2/R2 with respt® RXB
instructions are indicated with wide black arrowRXB
instructions are labeled with their position # imetdynamic
instruction stream. Noncontiguous numbers meralight that
CIDD instructions are noncontiguous. Instruction ix not
numbered because it is an incorrect CD instructioh
mispredicted branch B2. Furthermore, instructions wmarked
with either a rectangle or oval: rectangles are [TMuith respect
to B1, ovals are CIDD with respect to B2, rectarghal are
CIDD with respect to both B1 and B2. Below we stbmpugh
each of the frames (a)-(g).

(@) Frame (a) shows the initial state of the RXB. B% ha CD
instructions in the RXB since there are no brangéy to it.
B1 has four CIDD instructions after R1: 9, x, 16, B2 has one
(incorrect) CD instruction, X. Instruction x is niot the RXB
because of B2 but rather because it is CIDD witipeet to B1.
B2 has two CIDD instructions after R2: 18, 20.

(b) In frame (b), mispredicted branch B2 is detectedising the
RXB tail to rollback to just after B2 (instructiox), and the
RXB pre-read pointer to initiate at the first CIDBstruction
past B2's reconvergent point R2 (instruction 16).

(c) In frame (c), new instructions 11 and 12 — corr€®
instructions with respect to B2 — are fetched frahe
instruction cache (I1$) and dispatched for the fiiste to the
issue queue (To 1Q). Moreover, instruction 12 iseited into
the RXB because it is CIDD with respect to B1. fastion 12
is inserted at the RXB tail (which then advance®}reby
replacing instruction x. Note also that pre-readives begun:
instruction 16 is transferred to the Temp Buffertlsat it is not
clobbered by B2's incoming correct CD instructions.

(d) Similarly, in frame (d), we continue fetching andphtching
the remainder of B2's correct CD instructions (18 d44). Both
13 and 14 are dispatched to the issue queue byt Iahlis
inserted into the RXB, since 14 is CIDD with redpte B1.
Meanwhile we continue pre-reading instructions (k&) the
Temp Buffer.

(e) In frame (e), no more instructions are fetched frima I$
because B2'’s reconvergent point R2 has been redotracthe
correct CD path. We begin reinjecting and/or radating
CIDD instructions from the Temp Buffer. Frame (djows
instruction 16 leaving the Temp Buffer only to leeirculated
back to the RXB (CIDD on unresolved B1). It is meinjected
into the issue queue because it is not CIDD on B (
mispredicted branch).

2]
Tol —1s]
ﬁ D |le— “ Temp Buffer (TB)
] |
[(BIIR1 R2

T o mo@

RXB f Selective Re-execution Buffer RXBT

Head (RXB) Tail
o [b]
TZOIIJXB D l«— Temp Buffer (TB) ‘
1t Rrxs
(BR i Pre-read
o] [16] @ |
RXB 4 RXBT
Head Tail
t 4120 “
[12] ToRxg | D «— Temp Buffer (TB)
] = |
RXB
(BLR iz_ Pre-read
o1 [18 @ |
RXB 4 RXBT
Head Tail
13 (TolQ Ld]
14] ToRxg | D Temp Buffer (TB)
o4 1= _ |
RXB
BR iz_ Pre-read
o] (2] (4 |
RXB 4 RXBT
Head Tail
o Le]
T-(:OF:XB D l«— Temp Buffer (TB)
(6] <~ @ |
[(BIIR1 R2
2 2
O @@ 06 |
RXB 4 RXB
Head Tail
¢ TolQ IL
Torxg | D <— Temp Buffer (TB)

& i

[BI]R1 R2

i B E 3
(O 1 0- [O6) |
RXB 4 RXB
Head Tail
o]
TolQ
ToRrxg | ID [«— Temp Buffer (TB)
(0] |
(BIJR1
[I 04 [O6 (20 |
RXB 4 RXB
Head Tail

Figure 8 . RXB reconstruction example.

() However, instruction 18 in frame (f) is reinjectedo the
issue queue (CIDD on resolved B2) and not recitedl#dack to
the RXB since it is not CIDD on B1.

(g) Finally, in frame (g), instruction 20 is both reofed into the
issue queue and recirculated to the RXB from thmpr 8uffer,
because it is CIDD on both B1 and B2. Since the @ &uffer
is empty, we are done servicing B2.

4.2.2 Poisoning via Repair Rename Map

The repair rename map’s poison vectors are irdgdlifrom the
mispredicted branch’s checkpoint. While fetching torrect CD
instructions from the instruction cache and CIDDBtinctions
from the RXB, the poison vectors are managed theesaay as
described for the speculative rename map (SectibrB}¥ except
for a subtle modification. The poison vectors dfital registers
that would have been updated by CIDI instructicsis)ply are
not, because they are not observed by the repaame map.
These logical registers represent “holes” in thmaierename map
and their poison vectors cannot be referenced bipstruction’s
source registers. Fortunately, we know two thif{@$:the poison
vector generated by a CIDI instruction is all Oschuse it is not
CIDD with respect to any unresolved branch, and g2¢IDI
instruction is observedonce (and only once) in either the
speculative rename map (CIDI immediately) or repaiame map
(CIDI eventually). So, when a source register ofC&iDD
instruction references a CIDI production for thestfiand only
time (signaled by an all-0 poison vector in theame map), a
sticky bit (“CIDI_supplied”) associated with thewsoe register in
the RXB is set to indicate that the source regstaoison vector
is by definition all 0s. Once CIDI_supplied=1, intdire passes, an
all-0 poison vector is used instead of referenaingbsent poison
vector in the repair rename map.

The outcome of poisoning by the repair rename nmajicates
what to do with each instruction. For correct CBtinctions from
the instruction cache, the choices are: insertoonat insert into
the RXB. For CIDD instructions from the RXB, theoates are:
reinject only, insert (i.e., recirculate) only, nfgct and insert, or
discard. An instruction is inserted into the RXB pbisoning
indicates that it is CIDD with respect to any ummfesd branches.
An instruction is reinjected into the pipeline diponing indicates
that it is CIDD with respect to the mispredictecatch being
serviced.

4.2.3 Reinjecting CIDD Instructions

Only CIDD instructions from the RXB that are CIDDtlvrespect
to the branch being serviced are reinjected intgpipeline. These
are re-renamed to bind physical registers and bydiailitate re-
execution.

CIDI instructions are absent from re-renaming, astthey were
absent from poisoning. Now, additionally, CIDD insitions

from the RXB that are not reinjected are also ab$em re-

renaming. The latter instructions are CIDD withpest to other
branches but not with respect to the branch beéngeed. They
are tantamount to CIDI instructions with respectthe branch
being serviced (“implicit” CIDI instructions), amked not be re-
executed. As such, they are not re-allocated stoeagl do not
participate in re-renaming.

When re-renaming a source register of a reinjec®@®D
instruction, we need to determine if it dependsaanexplicit or
implicit CIDI instruction (the two cases outlinebave) versus a

CD or reinjected CIDD instruction. If it depends an explicit or
implicit CIDI instruction, then the source valué &vailable) or
source mapping from the RXB is used in lieu of eeaming,
because the repair rename map has a stale nanmew@th the
correct mapping is obtained from the repair renaragp.

The source register depends on an explicit CIDirucsion if its

CIDI_supplied bit in the RXB is set. The sourceistgy depends
on an implicit CIDI instruction if its poison vegtin the repair
rename map does not have the current branch’sbilNete, it is
safe to reference the poison vector because alDGH3tructions
in the RXB undergo poisoning. It is only unsaferéference the
poison vector in the case of explicit CIDI instioats, which is
why the CIDI_supplied bit is checked first.

The reinjected CIDD instruction is allocated a nehysical
destination register and updates the repair renamep
accordingly.

If a CIDD instruction is both inserted (i.e., rexitated) into the
RXB and reinjected into the pipeline, its sourcgisters may be
updated in the RXB, analogous to what was descriibegkbction
4.1.4. Specifically, when it redispatches, a reamead source
register updates the corresponding source mappirthei RXB.
When it reissues, it reads values from the physagikter file for
source registers that did not reuse values fromRK8. These
new values replace corresponding source mappingeiRXB.

4.2.4 Merging Repair/Speculative Rename Maps
When RXB reconstruction is completed, the repaiamse map is
logically at the same point in the dynamic instiaectstream as
the speculative rename map. Some mappings in teeukgiive
rename map have to be repaired using the repaammermap.
Specifically, any speculative mapping whose poisentor has
the branch’s bit set may be incorrect (it may helvanged due to
the control-flow adjustment). We simply copy theresponding
mapping from the repair rename map to the spewelatname
map. All poison vectors in the repair rename mapcapied.

Checkpoint maps are repaired the same way, agfa rename
map resequences through the RXB and reaches clietkpfong
the way.

4.3 Conventional Recovery

If a branch misprediction is detected before thehfeunit has
reached the branch’s reconvergent point, then tisene need to
transfer control to the repair rename map and RXBthere are
no CI instructions with respect to the branch Jéiis scenario is
easily detected by checking if the mispredictechbinahas not yet
popped the CFS (not reconverged). In this casespleeulative
rename map is simply restored to the checkpoirmesponding to
the mispredicted branch as in conventional recovery

4.4 Servicing Multiple Branch Mispredictions

TCI supports servicing new mispredictions concutyewith the

one being serviced, if the new mispredictions aggchlly after
the repair rename map. A new misprediction williheggrvicing
when the repair rename map logically reaches itainatural
continuation of RXB reconstruction. After fetchirlge correct
CD instructions of the new misprediction, CIDD mstions of
both the initial and new mispredictions are reitgec
concurrently. If a new misprediction is logicallgfore the repair
rename map, we wait until the initial RXB reconstion

completes before servicing the new mispredictioonéver, an

earlier misprediction that has not reconverged @vised
immediately via conventional recovery.

4.5 Store/lLoad Queuesand CIDD L oads

Loads issue speculatively and dependence violatoagletected
by comparing completed stores against the load ejudiso,

stores commit in order. A key issue is that loadd stores may
need to be inserted and removed from the middteeofoad/store
queues as mispredicted branches alternate CD athbat loads
and stores remain ordered. Rather than do thisllye we apply
the same technique that we used to adjust the 4B pointers

are moved back, and control independent loadsstamepre-read
and recirculated into shifted positions. Note tiwd is equivalent
to what a conventional superscalar does, only fietches the
control independent loads and stores from theungtn cache
instead of recirculating them from the load/storeieues
themselves.

Exploiting control independence increases loadatiohs, due to
mispredicted branches that fetch incorrect CD stoffalse
memory dependences) or delay correct CD stores (tremory
dependences). We define CIDD loads — these areo@dsl
influenced by stores within prior branches’ CD mw. CIDD

loads are predicted at dispatch by accessing tie-set predictor
(indexed by load PC). Predicted CIDD loads are ttmpied into
the RXB like normal CIDD instructions. Accordinglg, CIDD

load and its poisoned CIDD descendants will benjeeted from
the RXB when a branch misprediction is detectedh@ CIDD

load depends on it), eliminating an exception i€ thranch
misprediction removes or inserts an influencingesto

A conventional store-set predictor works for stocesrently in
the window, but stores fetched late have no wagatavey their
influence to the CIDD loads. To improve the accyra€ the
store-set predictor, we augment it with branch @m®xfor
potential stores (called branch-sets). Hence, theified store-set
predictor will predict if the window contains anyotgntially
violating stores, both current stores and potefsial stores.

4.6 Reconvergence Predictor Misinformation
The reconvergence predictor may provide a flawedmeergent
PC, incomplete IRS, or misleading CD path lengtha&dranch.
Inaccuracies are detected when fetching CD instmstof the
branch. If inaccurate information is detected dyrhe first pass
through the CD region, it can be amended. If deteduring the
second pass (repairing mispredicted branch), ibhdadled by
forgoing control independence. We call the lattdowngrades”
(downgrade to conventional recovery). The frequenaly
downgrades is reported in results.

5. SSIMULATION METHODOLOGY

We implemented the TCI microarchitecture on a tedacycle-
level simulator. Table 2 shows microarchitectureapseters. A
functional simulator is run concurrently with amdiependently of
the timing simulator, to confirm correctness. Fomparison, the
baseline is TCl with the dynamic reconvergence ipted
disabled, which ensures conventional (full) recg\fer all branch
mispredictions. Thus, the baseline is a checkpoased
superscalar processor with aggressive registeametion [3].

We use 11 SPEC2K integer benchmarks and 4 SPEG&8§em
benchmarks compiled with the Simplescalar gcc ctanpd] for

the PISA ISA with -O3 optimization. Reference inpare used.

Table 2. Microar chitecture. Table 3. Benchmarks.
L1l & D caches 64K B, 4-way, 64B line, SimPoint L2 load Branch misp. Base | PC Perfect %1 PC improvement
LRU,L1hit=1 Cv_cle Benchmarks 3.2 miss/1k inst /1K inst 4-issue 8-issue 4-issue 8-issue
B 2MB, 8-way, 648 line, (100m) | Base[TCI [Base [TCI | 1Q32[1Q64 | 1Q32] 1Q64 | 1Q32] 1064 | 1Q32] 1Q64
L2 unified cache LRU, L2hit = 10 cycles, |[bzipz-program-ref 206 | 2.73| 2.74] 12.74 124 167 1b0 183 o1 1]5% 1p4% 168% P08%
i L2miss=200cycles |[oompressosbigtesref | 374 | 0.31] 0.31] 100] 994 160 1b2 1Jso_ 189 8% 1po% 119% 171%
Branch predictor perceptron (128KB) |lcratty-ref 1466 | 0.06] 006 561 6.1f 2pt 243 311 333 b5% p1% [81% J0s%
Memo”ége?.mdmoe storelbranch sets | |gap-ref 1619 | 0.99] 104 214 22f 2B6 2|95 362 3.96 bo% Ppa% [26% |33%
o or l'c on—— > gCc-exprref 89 | o011] 0.12] 499 564 246 2B8 302 313 46% $0% p6% [81%
éﬁc‘%g'st‘—e“ = 0095-5one2L-ref 138 | 0.02| 0.02| 20.6% 212k 1.p1_ 1p1 1|32 133 1$6% 2P5% 454% p42%
e‘élﬁ’so'” S oo zip-graphic-ref 774 | 0.73]| 0.73] 1044 105p 1.3 1p4 1|89 4.94 102% 1l3% 128% [78%
T o8 | peg95-specmun-ref 84 | 0.63] 0.63] 464 483 251 264 337 459 42% h4% 6% |76%
Fpipeine Sages 0 li95-ref 329 | 0.00] 0.00] 524 64 2h2 2K5 305 422 $2% b9% [19% |96%
=T ueu-g—e o 6 mcf-ref 441 |128.14 128.8f 504 4.7p o0fo o0J10 10 411 [1% [2% [1% | 1%
Sue guer parser-ref 2803 | 0.04] 0.04] 7.69 7.6 115 1B5 1]99 A0 3% {1% pi% [90%
L oad/store queue 512 - -]
(LSO) per Ibmk-diffmail-r f 117 | 0.04| 0.04] 234 2.4 297 3po 4p1 445 Jo% $8% Bs% 6%
Re-execution buffer - twolf-ref 1075 | 0.0z | 0.0c | 13.42] 165¢] 1.3¢ 1.41 1.4q 1.5¢] 869 116%| 101%] 149%
(RXB) Vortex-two-ref 207 | 0.97] 0.99] 0.2d 03p 354 3l63 5118 466 [3% [3% [4% | 5%
Temp buffer (TB) 128 \vpr-route-ref 528 5.48| 6.91] 9.98 9.64 1.18 1.p4 1]32 Y44 H3% 5% 3% [97%
o 90%
§ 80% O Drain 1Q32
70% i
5 - Drain 1Q64
S 60% T =
= 50% T T
g 40% T I
g 30% -+ — 4+
o 20% T |
£ oo | aliliniin i
o 0% S A S S RS ‘ L = el SN
£ 10% + u N
<
S 20%
oo |xlolo| |xolo| |x|olo| |x|o|o| |xlolo| |x|olo| |x|o|lo| |xlo|o| |k[olo] |xlolo| |xolo| |Xolo| |x|O|o| |x\0|o
Olo|m Olo|F Ol Ol o+ Ol |+ Ol |k Ol ol 9|k Olo|m Ok Ol Qo+ Ol |+ Ol | Ol ol
] Sl Sl elé] elé] elé]]) &3] elé &R
bzip ompres crafty gap gcc go gzip ijpeg li mcf parser perl twolf vortex vpr
Figure 9. Performance improvement for 4-issue pipeline.
o 90% T
8 80% 4 ;
© 0 O Drain 1Q32
2 0% ,
] 60% — Drain 1Q64 T
> () 1
o
= 50% -
é 40% ™
S 30% 1l = = [
g 20% —
: o i T : |
P = N N i e - L] I
g o M m]
8 Fa S
20%
2c|c| |®|o|o| |xlolo| |xolo| |x/C|o 2c|o| (xlolo] |xclo| |x|C|o 2o|o| |®lolo] |®Clo 20|o| |®lo|lo| |®|C|C
Olo-| [CloF| [2|oF Ok |8|lg|F Olg|- Qg OlogF| |8lgtF Ol Olg-| [8lgF CloF| [ClglF| [2|gF
)]] elé &lé &ld eld &li b b) b b L)
bzip ompres| crafty gap gce go gzip ijpeg li mcf parser perl twolf vortex vpr

6. RESULTS

Figure 10. Performance improvement for 8-issue pipeline.

For all benchmarks, a single simulation point of0 1@illion
instructions was selected using the SimPoint 373 f@olkit. In
addition, predictors and caches are warmed up €omillion
instructions prior to starting the simulation poifiable 3 shows
benchmarks, inputs, and selected simulation points.

We present performance results for five moddisise (the
baseline described in Section Byoxy, Seq C| TCI, andPerfect
(the baseline with perfect branch predictidRjoxy, Seq CJ and

TClI leverage thé®rain IQ re-execution substrate (see Section 3).

Table 3 shows the IPCs f@asefor 4-issue and 8-issue pipelines
with 32-entry and 64-entry issue queues. IPC impnmnt of
PerfectoverBaseis also shown in Table 3.

6.1 Performanceand Analysis

Figure 9 shows the performance improvement of thgous
models overBase for 4-issue pipelines with 32-entry and 64-
entry issue queues. The 64-entry issue queue semaltshown as
error bars with respect to the 32-entry baiGI improves IPC by
up to 61% (64%) oveBase with a 32-entry (64-entry) issue
gueue. The average IPC improvement 6 overBaseg across all
benchmarks, is 16% for both issue queue sizes.

Figure 10 shows corresponding IPC improvements Besefor
8-issue pipelines. The maximum improvemenfT@i over Base
increases to 78% (88%) for a 32-entry (64-entrgligsqueue, as
the opportunity cost of mispredictions is higher fbe wider
pipeline. On averagd,Cl achieves 20% (22%) IPC improvement
overBasefor a 32-entry (64-entry) issue queue.

TCI consistently and significantly outperforn®q C] making
clear that resequencing all Cl instructions aftemiaprediction
does not fully capitalize on control independenggartunity.
Furthermore, as a consequence of limiting the winttothe size

of the RXB, Seq Cldegrades performance on some benchmarks

with respect to the ROB-frégase

Proxyis not resource efficient. As seen in Figure 9 Rigaire 10,
for the 32-entry issue queud,Cl outperformsProxy in all
benchmarks. In some benchmarks (e.g., li, viprixxy degrades

about 7.6 mispredictions uncovered per 1000 instms. For
bzip, compress, and vpr, Cl coverage is moderad&o(354%
and 40%) leading to moderate speedups: 7%, 11%]4%dfor
4-issue, and 7%, 14%, and 19% for 8-issue.

m Group B (crafty, gcc, ijpeg, li, and parser): Moater
misprediction frequency (4 to 8/1K inst.). For tyafycc, ijpeg,
and parser, Cl coverage is medium to high (55%-88%)ding
modest speedups: 11%, 10%, 28%, and 11% on 4-issuk,
17%, 12%, 45% and 12% on 8-issue. Li shows lowdpee (1-

with respect tBaseas a result of issue queue pressure caused by 3%) due to its low ClI coverage (37%). In li, mostrch

proxy and CIDD instructions. The average gain Pooxy drops
from 11% to 6% on a 4-issue pipeline when the ispusue size
is reduced from 64 to 32. In contra3iCl and Seq Clare less
sensitive to the issue queue size.

To understand the performance improvemenfs§Qif we refer to
measurements in Table 3 (L2 load misses per 10§tuittions,
branch mispredictions per 1000 instructions) arglfé 11. The
latter provides a breakdown of branch mispredicio®ome
mispredictions are not covered because they hawaxanum CD
path length that exceeds our chosen threshold ®{/®6n-CI Br)
or they resolve before reconverging. For some radiptions,
control independence is attempted (Cl Br) but itsfalue to
downgrade scenarios, two of which are (i) incompl®S (IRS
downgrade) and (ii) exceed temp buffer (TB downgjatiereby
preventing RXB expansion. Control independence chrire
exploited in these cases. Due to this, in some traatks where
branch misprediction rates are fairly higherfect shows great

promise butTCl cannot exploit enough control independence

resulting in more modest performance gains (e.igp. f@mpress).

2100% O CI Br successful
2 8ou OcCIBr+TBdowngrade || | | [[| [} || [l [| |
L ’ B CI Br + IRS downgrade |
D 60% O Non-CI Br EEENENERENE EEE
Fa0 T HHHHYHHH HHHF
E e
c20%H H HHHHHHHHHHHHHLTF
Qo L =
B O%\ T T T T T T T T T T T T T T 1
Q Q u 8] o Q O = %5 = = = x =
= FEEEEEEETEERSLC
a [3) = < g
£ Q
o
o

Figure 11. Breakdown of branch mispredictions.

To not artificially favor misprediction-toleranceye chose the
high quality perceptron predictor [13]. Notice imble 3 branch
misprediction rates fofCl are typically higher than foBase

This is mainly due to gaps in global history (btaes in

mispredicted CD regions are omitted from globatdrigused by
future branches). We found the perceptron predidtorbe

relatively more resilient to history gaps than gsh&urther,TCI

can tolerate some extra mispredictions.

We analyze the 64-entry issue queue results by pgigu
benchmarks based on branch misprediction rateslgTaband
control independence coverage (Cl coverage) (Figliye

m Group A (bzip, compress, go, gzip, twolf, and vprigh
misprediction frequency (9 to 21/1K inst.). Gzipdamvolf post
significant speedups due to high ClI coverage (92 &3%):

64% and 52% on 4-issue, and 88% and 64% on 8-issae.

posts a medium speedup: 30% for 4-issue and 35%-fesue.
Though it has the highest branch misprediction Uesgy,
benefits are limited by medium Cl coverage (64%ving

mispredictions resolve before fetching their re@gent points.

m Group C (gap, perl, and vortex): Low mispredictfoequency
(less than 3/1K inst.). Group C does not benafinfT Cl due to
excellent accuracy in the simulated regions, yiedi
performance close t@erfect

m Group D (mcf): Moderate misprediction frequencyt bary
high L2 miss rate. For mcf, the simulated regiodasninated by
a high frequency of serialized L2 misses, as showthe third
column of Table 3. Despite high Cl coverage (8191, penalty
of branch mispredictions is masked since they odouthe
shadow of L2 misses. This is confirmed by the mgiglé gains
for Perfect

6.2 Instruction Breakdown

Figure 12 characterizes retired instructions in tomtext of
branch mispredictions. SBM (“shadow of branch mésition”)

refers to control independent instructions thatlaggcally in the

window when a prior misprediction is detected. T2l these are
preserved whereaBase squashes and re-fetches them.)

contrast, instructions before mispredictions otrindions fetched
after a misprediction has initiated servicing, ao¢ considered to
be in the shadow of a branch misprediction (Non-$BSBM

instructions represent control independence oppitytu Non-

SBM do not.

100% == = I:l
80% - = H ﬂ» =
60% - = H

@ SBM + CIDI
40% - B || & SBM + CIDD no-reinject
20% - || | || @ SBM + CIDD reinject
0% CT 1T T ; C T T T ; CT T T

% of instructions

ONon-SBM

bzip
compress

Figure 12 . Breakdown of all instructions.

SBM instructions are broken down further into thalsat were
inserted into the RXB (CIDD) and those that weré (@IDI).

Among those that were inserted into the RXB, wedaig if they
had to be reinjected (CIDD reinject) or not (CIDD-reinject).
SBM+CIDD reinject occurs when the instruction isDOI with

respect to the mispredicted branch (must re-exec8BM+CIDD

no-reinject occurs when the instruction is not Cliaidh respect
to the mispredicted branch, but rather a differeotrectly
predicted branch. Thus, SBM+CIDD no-reinject istaamount to
SBM+CIDI with respect to the misprediction.

Summing up, the top two classes in Figure 12 (SBNDECno-
reinject, SBM+CIDI) represent savings compareddoventional
(full) recovery. Benchmarks in Group A and Grouph8ve the

In

largest percentages of these misprediction-indegp@nd
instructions (7%-33% for Group A and 4%-11% for GvoB).
Their speedups in Figure 9 and Figure 10 corretalewith their
percentages of saved instructions.

7. ADDITIONAL RELATED WORK

We already compared and contrasted TCIl with théoahg

control independence architectures in Section 3, dandthe

interest of space, that discussion is not repela¢ed: speculative
multithreading architectures such as Multiscala2] [and DMT

[2], trace processors [20], and superscalar basptementations
including instruction reuse [21], dual ROBs [6], i®er [5],

exact convergence [10], and a generic implememt4tie].

ReSlice [24] uses slice re-execution to selectivelyover from
data misspeculation. Correct repair is guarantgechiecking for
sufficient slice conditions. In general, ReSlicalésigned for any
data misspeculation handling including control-flomfluenced
data misspeculation, but it was studied only foredd-level
speculation (TLS). ReSlice aborts slice re-executfothere are
branches (whether in the slice or not) that chatige slice’s
instructions. As we illustrated with the exampleSaction 4.2.1
of two co-mingled CIDD slices, RXB reconstructidiows slices
to change, moreover, the co-mingled slices carmguesece in any
order, with correct results.

The continual flow pipeline (CFP) [23] is relateml dur work in
that CFP takes an analogous approach for releassuurces of
L2 miss dependent instructions. However, CFP dad¢serploit
control independence.

Multipath execution [1][11][14][25][26] reduces miwdiction
penalties, but also decreases performance andasesepower
consumption when both paths of a correctly preditteanch are
fetched/executed. Predication (e.g., [15][17]) hte same
drawback of consuming excess resources by fetameglting
multiple paths, and also delays forwarding of ccirigpeculative
values outside of predicated blocks.

8. SUMMARY

For misprediction-inflicted workloads running on egpe
superscalar pipelines, exploiting control indepermde is an
effective means for reducing the performance pgnaitbranch
mispredictions.

The essential goal of exploiting control indepercderis to
completely decouple future
instructions from deferred misprediction-dependstructions.
Previous implementations fall short of complete ailgting

because they still explicitly maintain order amafiginstructions.
TCIl is successful because it enforces order inthjreloy breaking
dependences between co-mingled misprediction-intgre and
misprediction-dependent instructions. TCI facié&t truly

selective recovery in terms of burning a minimunoant of extra
resources and bandwidth on a condensed recoveeanstr
yielding higher performance than all previous apples and
presenting a qualitatively compelling streamlinegidn.

9. ACKNOWLEDGMENTS

This research was supported by NSF grant No. CCR&43,
NSF CAREER grant No. CCR-0092832, and generousirignd
and equipment donations from Intel. Any opinionsdings, and
conclusions or recommendations expressed hereithase of the
authors and do not necessarily reflect the viewh@NSF.

misprediction-independen

10. REFERENCES

[1] P. Ahuja, K. Skadron, M. Martonosi, D. Clark. Mplith
Execution: Opportunities and LimitkCS, 1998.

[2] H. Akkary and M. Driscoll. A Dynamic Multithreading
ProcessorMICRO-31, 1998.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint
Processing and Recovery: Towards Scalable Large
Instruction Window Processos1ICRO-36 2003.

[4] D.Burger, T. Austin, S. Bennett. Evaluating Future
Microprocessors: The Simplescalar Toolset. July6199

[5] C-Y. Cher,T. Vijaykumar. Skipper: A Microarchitecéufor
Exploiting Control-flow Independenc®ICRO-342001

[6] Y. Chou et al. Reducing Branch Misprediction Pdaslvia
Dynamic Control Independence Detectit@S 1999.

[7] G. Chrysos and J. Emer. Memory Dependence Predictio
Using Store Set$SCA-25,1998.

[8] J.D. Collins et al. Control Flow Optimizations Mig/namic
Reconvergence Predictiokll CRO-37 2004.

[9] A. Cristal, D. Ortega, J. Llosa, and M. Valero. @€{Order
Commit Processor$iPCA-1Q 2004.

[10] A. Gandhi et al. Reducing Branch Misprediction Hignda
Selective Branch RecoverddPCA-10,2004.

[11] T. Heil and J. Smith. Selective Dual Path Executitech.
Report, ECE Department, UW-Madison, 1996.

[12] W.-M. Hwu and Y. N. Patt. Checkpoint repair for it
order execution machineiEEE Transactions on
Computers36(12):1496-1514, Dec. 1987.

[13] D. A. Jimenez and C. Lin. Dynamic Branch Predictidgth
PerceptronddPCA-7, 2001.

[14] A. Klauser, A. Paithankar, D. Grunwald. SelectisgEr
Execution on the Polypath Architectut&CA-25 1998.

[15] A. Klauser et al. Dynamic Hammock Predication famN
predicated Instruction Set Architectur®ACT, 1998.

[16] A. R. Lebeck et al. A Large, Fast Instruction Windfor
Tolerating Cache MissekESCA-29,2002.

[17] S. Mahlke et al. A Comparison of Full and Partieg¢dicated
Execution Support for ILP ProcessdiSCA-22,1995.

[18] M. Moudgill et al. Register Renaming and Dynamic
Speculation: an Alternative Approaddll CRO-26 1993.

[19] E. Rotenberg, Q. Jacobson, J. Smith. A Study ofti©bn
Independence in Superscalar Proces$dBCA-5 1999.

[20] E. Rotenberg and J. Smith. Control Independendedne
ProcessordViICR0O-32,1999.

[21] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse
ISCA-24 1997.

[22] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Muiisr
ProcessordSCA-22,1995.

[23] S. T. Srinivasan et al. Continual Flow PipelindaSPLOS-
XI, 2004.

[24] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhoaske:
Selective Re-execution of Long-Retired Misspeculate
Instructions Using Forward Slicin/|CR0O-38,2005.

[25] S. Wallace, B. Calder, and D. Tullsen. Threadedtidiel
Path ExecutionlSCA-25 1998.

[26] S. Wallace, D. Tullsen, B. Calder. Instruction Rdiryg on a
Multiple-Path Processor. HPCA, 1999

[27] T. Sherwood et al. Automatically CharacterizingdeaScale
Program BehaviotASPLOS-X2002.

