
Center for Embedded Systems Research (CESR)
* Electrical & Computer Eng. / † Computer Science
North Carolina State University
www.tinker.ncsu.edu/ericro
ericro@ece.ncsu.edu

Aravindh Anantaraman*, Kiran Seth*, Kaustubh Patil†, 
Eric Rotenberg*, Frank Mueller†

Virtual Simple Architecture (VISA):Virtual Simple Architecture (VISA):
Exceeding the Complexity Limit inExceeding the Complexity Limit in

Safe RealSafe Real--Time SystemsTime Systems



ISCA-30 2Rotenberg © 2003

Safe Planning in RealSafe Planning in Real--Time SystemsTime Systems

• Need worst-case execution time (WCET) of tasks
– Guarantee hard deadlines

– Schedulability analysis (will all tasks fit in schedule?)

• Static worst-case timing analysis
– Derive WCETs of tasks independent of input data and

considering cycle-accurate microarchitecture timing



ISCA-30 3Rotenberg © 2003

Complexity LimitComplexity Limit

• Capabilities of static timing analysis
– In-order scalar pipeline with static branch prediction and split

I/D caches

• Contemporary processors
– Out-of-order, multiple issue, dynamic branch prediction,

caches, deep speculation, etc.

• Analyzability fundamental to design of safe systems
– Need for analyzability excludes contemporary

microarchitecture techniques from many embedded systems
– Long-term implications for extending scope of embedded

systems



ISCA-30 4Rotenberg © 2003

VISA FrameworkVISA Framework

• Virtual Simple Architecture (VISA)
– Pipeline timing specification of hypothetical simple processor

– Within capabilities of static worst-case timing analysis

• WCET derived assuming the VISA

• Speculatively attempt task on complex processor
– Continuously gauge progress to confirm complex processor is

as timely as hypothetical simple processor

– If not as timely, reconfigure pipeline to simple mode of
operation that directly implements the VISA

• E.g., disable OOO execution, revert to static branch prediction, etc.



ISCA-30 5Rotenberg © 2003

Gauging ProgressGauging Progress

• Divide task into multiple sub-tasks
– Each sub-task assigned soft deadline (checkpoint)

– Checkpoint based on latest allowable completion
time of sub-task on hypothetical simple processor

• Monitor checkpoints
– Continued safe progress confirmed for as long as

checkpoints are met

– If a checkpoint is missed, fall back to simple mode to
explicitly bound execution time



ISCA-30 6Rotenberg © 2003

Exploiting Higher PerformanceExploiting Higher Performance

• Complex processor typically much faster
– Task finishes very early
– Finishing early unimportant from safety standpoint
– Benefit comes from significant slack in schedule

• Exploit newly-created slack
– Dynamic voltage scaling

• Complex processor can meet checkpoints at lower frequency

– Conventional concurrency
• Schedule more soft- and non-real-time tasks

– Simultaneous multithreading
• Execute soft- and non-real-time tasks at same time as critical tasks



ISCA-30 7Rotenberg © 2003

Key ContributionKey Contribution

• Eliminate need to do explicit WCET analysis of
complex processor, by dynamically confirming
its execution time is bounded by simple proxy
– Enables unrestricted use of arbitrarily complex

processors in safe real-time systems



ISCA-30 8Rotenberg © 2003

Previous AlternativesPrevious Alternatives

• Bar complexity altogether
– VISA relaxes this restriction

• Allow complexity, but disable at onset of hard
real-time task
– VISA defers disabling until actually necessary

• Continue research in aggressive WCET analysis
– VISA fully leverages this body of work, and benefits

from continued advances (tighten WCET of proxy)



ISCA-30 9Rotenberg © 2003

OutlineOutline

ÿVISA contribution
• General methodology for safe operation
• System (co-)design

– VISA specification
– VISA-compliant complex pipeline
– Static worst-case timing analysis tool

• Exploiting slack for power savings
– Frequency speculation on VISA framework

• Results
• Summary and Future Work



ISCA-30 10Rotenberg © 2003

Setting CheckpointsSetting Checkpoints

• Missed checkpoint called a misprediction

• Need enough time between checkpoint and deadline to
recover from misprediction
– Pipeline switching overhead

– Remaining time of unfinished sub-task
• Cannot know how much of mispredicted sub-task got done

• Assume none of mispredicted sub-task got done

– WCETs of remaining sub-tasks

ÿ
=

=
s

ik
fk,i WCET-overhead-deadlinecheckpoint



ISCA-30 11Rotenberg © 2003

Enforcing CheckpointsEnforcing Checkpoints

• Watchdog cycle counter
– Initialized by code snippet at start of first sub-task

• checkpoint1*f

– Counter value augmented by each new sub-task i
• (checkpointi – checkpointi-1)*f

• Advances the checkpoint enforced by watchdog

– Decremented by one each cycle

– Missed-checkpoint exception raised if reaches 0
before next sub-task has chance to advance it



ISCA-30 12Rotenberg © 2003

OutlineOutline

ÿVISA contribution
ÿGeneral methodology for safe operation
• System (co-)design

– VISA specification
– VISA-compliant complex pipeline
– Static worst-case timing analysis tool

• Exploiting slack for power savings
– Frequency speculation on VISA framework

• Results
• Summary and Future Work



ISCA-30 13Rotenberg © 2003

VISA SpecificationVISA Specification

• Considerations
– What are capabilities of current timing analysis tools?

– How is simple mode likely to be accommodated in
contemporary pipeline?

• Hypothetical simple processor
– Six-stage, scalar, in-order pipeline

• Fetch, decode, register read, execute, memory, writeback

• Single unpipelined universal function unit

– Static branch prediction: BT/FNT heuristic

– L1 I-cache & D-cache: 64KB 4-way, 64B block, 1-cycle

– Execution latencies: MIPS R10K latencies



ISCA-30 14Rotenberg © 2003

VISAVISA--Compliant Complex PipelineCompliant Complex Pipeline
• Complex pipeline

– Seven-stage, 4-way superscalar, out-of-order pipeline
• Fetch, dispatch, issue, register read, execute or agen/memory,

writeback, retire
• 4 pipelined universal function units

– Dynamic branch prediction: gshare
– Same memory hierarchy configuration and execution

latencies as VISA

• Coarse-grain reconfiguration technique
– Override dynamic predictor with FT/BNT
– Pipestages throttle instruction delivery to 1 instr./cycle
– Bypass the issue queue, load/store queue
– May optionally disable physical register file management

(active list, freelist, maps, etc.) although not strictly needed



ISCA-30 15Rotenberg © 2003

Static WorstStatic Worst--Case Timing Analysis ToolCase Timing Analysis Tool

• Tool derived from FSU / NCSU framework

• Ported to VISA pipeline model and SimpleScalar ISA

Source

Files

Control
Flow &
I/D refs

Gcc (PISA)
Compiler

Static
Cache

Simulator

Caching
Categorizations

WCET
prediction

VISA
spec.

Timing
Analyzer



ISCA-30 16Rotenberg © 2003

OutlineOutline

ÿVISA contribution
ÿGeneral methodology for safe operation
ÿSystem (co-)design

– VISA specification
– VISA-compliant complex pipeline
– Static worst-case timing analysis tool

• Exploiting slack for power savings
– Frequency speculation on VISA framework

• Experiments
• Summary and Future Work



ISCA-30 17Rotenberg © 2003

speculative frequency
(based on PETs)

recovery frequency
(based on WCETs)

frequency requirement

time (ms)

fr
eq

ue
n

cy
(M

H
z)

Frequency SpeculationFrequency Speculation
[Rotenberg, MICRO[Rotenberg, MICRO--34]34]



ISCA-30 18Rotenberg © 2003

Frequency Speculation on VISAFrequency Speculation on VISA

• Frequency speculation uses same gauging mechanism
(sub-tasks & checkpoints)

deadlineWCETWCETovhdPETPET
s

1ik
fk,fi,fi,

1i

1j
fj, recrecspecspec

≤++++ ÿÿ
+=

−

=

sub-task i misses
checkpoint

Conventional frequency speculation:

•Switch to recovery frequency

Frequency speculation on VISA:

•Switch to recovery frequency

•Switch to simple mode



ISCA-30 19Rotenberg © 2003

Experimental MethodExperimental Method
• Cycle-accurate simulator with two processor models

– complex: VISA-compliant complex processor
– simple-fixed: Explicitly-safe simple processor

• Literal implementation of VISA specification
• More power-efficient than simple mode ofcomplex

• Power modeling
– Integrated Wattch models, modified for contemporaryÿarch
– Added DVS support with 37 frequency/voltage settings
– Minimum frequency setting (100 MHz) during idle time

• 6 tasks from C-lab real-time benchmarks
– Straightforward manual sub-task selection
– Run single task 200 times (periodic hard-real-time task)
– Consider both tight and loose deadlines



ISCA-30 20Rotenberg © 2003

ResultsResults

0%

10%

20%

30%

40%

50%

60%

70%

80%

T L T L T L T L T L T L

%
po

w
er

sa
vi

ng
s

w
.r

.t.
si

m
pl

e-
fix

ed

perfect clock gating

perfect clock gating with standby T - tight deadline
L - loose deadline

CNT LMSADPCM FFT MM SRT



ISCA-30 21Rotenberg © 2003

Results (cont.)Results (cont.)
• Assume simple-fixed can operate at 1.5x frequency for same voltage

0%

10%

20%

30%

40%

50%

60%

70%

80%

ADPCM CNT FFT LMS MM SRT

%
po

w
er

sa
vi

ng
s

w
.r

.t.
si

m
pl

e-
fix

ed

perfect clock gating

perfect clock gating with standby



ISCA-30 22Rotenberg © 2003

Results (cont.)Results (cont.)
• Induce certain percentage of missed checkpoints

– Set fspeclower than recommended

0%

10%

20%

30%

40%

50%

60%

70%

80%

CNT LMS SRT

%
po

w
er

sa
vi

ng
s

w
.r

.t.
si

m
pl

e-
fix

ed

0% mispredictions
10% mispredictions
20% mispredictions
30% mispredictions



ISCA-30 23Rotenberg © 2003

SummarySummary

• VISA shields worst-case timing analysis from
underlying microarchitecture
– Expedites introduction of contemporary processors

in safe real-time systems

• Higher performance creates slack
– Power/energy savings via DVS
– Higher concurrency in mixed-task systems
– Arbitrarily complex SMT processors feasible

• 43-61% less power than explicitly-safe simple
processor



ISCA-30 24Rotenberg © 2003

Summary (cont.)Summary (cont.)

Simple Processor

Worst-Case
Timing Analysis

EDF scheduler,
DVS scheduling, etc.

WCET

Simple Processor

Worst-Case
Timing Analysis

EDF scheduler,
DVS scheduling, etc.

WCET abstraction

Virtual Simple Architecture

Complex Processor
with Simple Mode

Worst-Case
Timing Analysis

EDF scheduler,
DVS scheduling, etc.

WCET abstraction


