
H3 (Heterogeneity in 3D): A Logic-on-logic
3D-stacked Heterogeneous Multi-core Processor

Vinesh Srinivasan∗, Rangeen Basu Roy Chowdhury†, Elliott Forbes‡, Randy Widialaksono†,
Zhenqain Zhang§, Joshua Schabel∗, Sungkwan Ku†, Steve Lipa∗, Eric Rotenberg∗, W. Rhett Davis∗, Paul D. Franzon∗

∗North Carolina State University
Raleigh, NC, USA

†Intel
Santa Clara, CA, USA

‡University of Wisconsin-La Crosse
La-Crosse, WI, USA

§Nvidia
Santa Clara, CA, USA

Email: {vsriniv3, jcledfo3, slipa, ericro, wdavis, paulf}@ncsu.edu, eforbes@uwlax.edu, zhenqianz@nvidia.com,
{rangeen.basu.roy.chowdhury, randy.widialaksono, sungkwan.ku}@intel.com

Abstract—A single-ISA heterogeneous multi-core
processor(HMP) [2], [7] is comprised of multiple core
types that all implement the same instruction-set ar-
chitecture (ISA) but have different microarchitectures.
Performance and energy is optimized by migrating a
thread’s execution among core types as its character-
istics change. Simulation-based studies with two core
types, one simple (low power) and the other complex
(high performance), has shown that being able to
switch cores as frequently as once every 1,000 instruc-
tions increases energy savings by 50% compared to
switching cores once every 10,000 instructions, for the
same target performance [10]. These promising results
rely on extremely low latencies for thread migration.
Here we present the H3 chip that uses 3D die stacking

and novel microarchitecture to implement a hetero-
geneous multi-core processor (HMP) with low-latency
fast thread migration capabilities. We discuss details
of the H3 design and present power and performance
results from running various benchmarks on the chip.
The H3 prototype can reduce power consumption of
benchmarks by up to 26%.

I. Introduction
Single-ISA heterogeneous multi-core processors [7], [2]

(HMP) have become commonplace in the last few years
as architects aim to improve performance-per-watt of pro-

Figure 1: The two core dies are stacked using micro-bumps.
Pads are connected to contacts using TSVs.

(a) Top Die (b) Bottom Die

Figure 2: Floorplan of the H3 Chip

cessors. In the past, computer architects have been able to
deliver significant improvements in CPU performance by
leveraging advances in process technology. But as speed
improvements from technology scaling slow down with the
end of Dennard scaling, processor architects are trying to
eke out as much performance as possible from microar-
chitectural techniques and architectural improvements.
Historically, architects have built a single processor design
that had overprovisioned resources to try and improve
performance for most applications. However this is not
energy efficient since the applications that do not benefit
from the overprovisioned logic, have to pay the energy tax.
Not only do different applications have different charac-
teristics, a single application can have distinct execution
phases that behave differently. Processor specialization
solves this energy efficiency wall by matching processor
designs to application behavior. An HMP contains a few
different cores with distinct designs. All core types can
execute the same programs, but they do so at different
performance and energy points. Each application phase is
run on the core that is most appropriate for it, migrat-
ing between cores as the application transitions between
phases. Although quite beneficial, the migration process
is subject to large overheads due to transfer of a large
amount of architectural state between the cores.

A. Benefits of Fast Thread Migration
Previous work in the area of HMPs have noted the

importance of reducing the thread migration latency in

Table I: Quantitative and qualitative comparison with the state of the art.
Design Thread migration

latency
Distinct (separate)
cores

Asynchronous
(GALS)

Register-based ISA Evaluation Method-
ology

ARM
big.LITTLE [6]

20,000 cycles Yes Yes Yes Real system

Composite cores [9] < 32 cycles No (shared frontend
and data cache)

No Yes C++ Simulator

Execution
Migration
Machine [8]

< 100 cycles Yes No No (stack-based
ISA)

RTL

Our approach,
FRM in H3

< 10 cycles Yes Yes Yes Chip and RTL

order to improve performance and energy efficiency of
HMPs [10], [3]. The rationale behind occasionally running
the workloads on a low-power, low-performance core is
to reduce energy consumption with a negligible or no
performance loss compared to always running on the high-
performance core. The utilization of the low-power core
increases significantly when the thread migration interval
is small. This is due to the ability to exploit short phases
that do not benefit from the high-performance core. Such
fine-grained thread migrations are more sensitive to mi-
gration overheads as the opportunity to exploit the short
phases is lost if the overhead is high. Current HMP designs
rely solely on system software for thread migration, incur-
ring kernel overheads and large time penalties of moving
register values through the deep hierarchy of caches. The
architectural state of a thread comprises of register state
and memory state. Migration overheads mainly come from
the following two sources:

• Transferring architectural register state: Architec-
tural register state includes the data registers, control
registers, performance counters, etc. In the tradi-
tional save-restore mechanism, these registers are
saved to the main memory before migrating the
thread to another core, where these registers are re-
stored from the main memory. This is very expensive
both in terms of time and energy.

• Migration induced misses and mispredictions: After
migration, if the core misses a cache block that
existed in the previous cache but not in the current
cache, it is called a migration-induced miss. This
problem is exacerbated when multiple threads are
active on the processor. Other microarchitectural
structures like the branch predictor, take time to
get trained as well, leading to bad speculation and
slowdown of program execution.

B. Reducing Thread Migration Cost by 3D-Stacking
We investigate microarchitectural techniques to reduce

the thread migration latency in HMPs. We leverage 3D-
die stacking for reducing thread migration cost by using
two key features:

• Fast Register Migration (FRM): This feature allows
instantaneous swap of architectural register state
(data registers, control registers, performance coun-
ters, etc.) between the two stacked cores. Every stor-

age cell of every architectural register is directly con-
nected to its counterpart in the other core through
a face-to-face via (Figure 4), allowing instantaneous
swap of cell contents.

• Cache-Core Decoupling (CCD): This feature allows
one CPU core to directly access the L1 caches from
the other core, a remote cache access (Figure 5), thus
avoiding cache flushes and eliminating migration-
induced misses. This relies on the low latency of the
inter-die connectivity to achieve the strict latency
requirements of L1 cache accesses.

The H3 chip makes two very important contributions.
Firstly, it demonstrates the feasibility of logic-on-logic die
stacked processor designs. Designing for 3D die stacking
is challenging but we effectively solve these challenges to
create this prototype chip. Secondly, it explores microar-
chitectural techniques to utilize the massive amount of
inter-die connectivity provided by 3D stacking, to improve
performance and efficiency of processors. Section III pro-
vides some key details of these techniques.

The key contributions made by this paper are:
• Explain in detail the microarchitecture of a 3D-
stacked HMP.

• Measure the performance and power of various mi-
crobenchmarks on the chip.

• Discuss potential use-cases of a processor with fast
thread migration capabilities.

The rest of the paper is organized as follows. We dis-
cuss related work in Section II. Section III describes the
microarchitecture of the H3 prototype chip. Section IV
describes our validation methodology and presents various
power and performance measurements from the chip. Sec-
tion V discusses some potential use-cases of H3. Finally,
we conclude the paper in Section VI.

II. Related Work
Table I compares latency and features of competing

approaches. ARM big.LITTLE is too slow for fine-grain
adaptation. The other three approaches are all sub-100-
cycle. Composite cores does not use truly distinct cores,
uses one clock domain, and is demonstrated with C++
simulation. Execution Migration Machine impressively
features a 110-core chip, but uses a stack-based ISA to
streamline the amount of state transferred and migration

Figure 3: A block diagram of the H3 chip showing the two
dies, cores, various interfaces, and the FPGA testbench.

latency depends on network-on-chip congestion. Reported
results do not appear to be from the chip itself, yet.
This paper, and the chip measurements contained herein,
are the culmination of the H3 project, the evolution of
which is chronicled in a series of works. The rationale
for H3 is discussed at length in Rotenberg et al. [10].
That paper also describes a 2D version of H3, a dry run
without 3D stacking to flush out the microarchitecture and
physical design flow. The 2D prototype is described after
tapeout but prior to receiving silicon. Measurements and
lessons from the 2D prototype are presented in Forbes et
al. [4] [5]. Alternative strategies for FRM, independent
of 2D versus 3D considerations yet cognizant of GALS
HMPs, are explored in Forbes et al. [3]. In his MS thesis,
Srinivasan [11] discusses at length the microarchitecture,
RTL design, and RTL/gate-level verification of H3 Phase
II (the 3D version presented herein) after tapeout and
before silicon. The physical design effort of the 3D chip
are described in Widialaksono et al. [12]. To the best of
our knowledge, the H3 chip is the first prototype of a 3D-
stacked HMP in academia.

III. H3 Chip: An experimental 3D-stacked HMP
The H3 processor is a logic-on-logic 3D stacked single-

ISA heterogeneous multicore architecture. Our prototype
contains two OOO cores with varying capabilities, “Two-
wide” core and “One-wide” core, named based on their
peak instruction fetch rates. The cores are stacked on top
of each other using micro-bump based face-to-face (F2F)
die stacking technology (Figure 1), from Ziptronics™. The

Table II: Physical design metrics of the 3D processor stack.
Parameter Top Die Bottom Die
Die Dimensions (sq mm) 3.92 x 3.92 3.92 x 3.92
Standard Cells 886,361 678,854
Memory macros 17 17
Nets 482,479 328,535
Inter-tier F2F signal nets 6,077
Inter-tier power vias 30,796

floorplan of the top and bottom dies are shown in Figure 2.
An overview of the H3 architecture is shown in Figure 3.
The chip was designed using Global Foundries 130nm
process and targets a maximum operating frequency of
65 MHz. Although the older process is not ideal for
performance, this is the only 3D process we could get
access to. Table II shows that various physical design
metrics of the H3 chip.

The H3 cores were designed using the FabScalar [2]
toolset and uses the PISA instruction set architecture
(ISA) [1]. The two-wide core, on the top die, is a high
performance core that has bigger OOO structure sizes,
to extract as much ILP as possible from the instruction
stream. The bottom die has the one-wide core, a low power
core with smaller structure sizes more suitable for phases
that have low ILP and hard-to-predict branches, which
typically don’t benefit much from aggressive speculation.
Table III lists the various microarchitecture details of the
two cores.

Table III: Core types in the 3D processor stack.
Parameter High-Performance

(Top Die)
Low-Power
(Bottom Die)

Frontend Width 2 1
Issue Width 3 3
Pipeline Depth 9 9
Issue Queue Size 32 16
Phy Reg. File Size 96 64
Ld/Ste Queue Size 16/16 16/16
Reorder Buffer Size 64 32
L1 I-Cache private, 4 KB, 1-way, 8 B block, 1 cycle
L1 D-Cache private, 2 KB, 1-way, 16 B block, 1 cycle

Besides the cores, the chip also contains the Fast Reg-
ister Migration (FRM) controller logic. As shown in Fig-
ure 3, there are two types of interfaces in the H3 processor.

• The off-chip interfaces (I/O pads) that connect the
H3 processor to the FPGA-based test harness and are
used for interfacing with the L2 cache and memory
controller implemented in the FPGA. These inter-
faces include clock, reset, and other important con-
trol signals. Since the two dies are connected to each
other by stacking the top metal layers (Figure 1),
the H3 chip has pads only on the top-die. The pads
are custom designed to use rectangles in the first
metal layer (M1), which are connected to bondpoints
through TSVs.

• The F2F interfaces that connect the tiers. The bot-
tom tier has all of its off-chip buses and control sig-
nals routed to pads on the top tier via the F2F-Pads
interface. The two FRM units use the F2F-FRM
interface for swapping register contents. The F2F-
CCD interface is used for the inter-cache connectivity
for implementing Cache-Core Decoupling (CCD).

A. Fast Register Migration (FRM)
Fast Register Migration (FRM) is a mechanism for low-

latency transfer of architectural register state between the

Figure 4: Microarchitecture of Fast Register Migration.

two stacked cores. It is made possible by using a dedicated
structure, called the Teleport Register File (TRF),
that is used to consolidate the architectural register state.
Face-to-face buses connect each bitcell of the TRF to the
other core’s TRF as shown in Figure 4. When a thread
migration is initiated, special instructions are used to
transfer the register state of the thread to the TRF, which
is followed by a bulk swap of the entire TRF. Our swap
mechanism is a globally-asynchronous locally-synchronous
(GALS) design. The cores and FRM control units operate
in different clock domains. This obviates the need for 3D
clock tree synthesis and allows the two heterogeneous cores
to have different frequencies, increasing diversity. Before a
swap can happen, the FRM control switches both TRFs
to use the FRM clock to avoid asynchrony during the
swap. This requires the clock network feeding the TRF
flops to be equipped with a clock mux to choose between
core clock and FRM clock. There is also an input mux
as TRFs are written by the core before a migrate and by
the other tier’s TRF during the transfer. The select lines
for these muxes come from the FRM control unit. Based
on our measurements, our chip can swap architectural
register state between the cores in less than 10 cycles, after
the cores have quiesced and architectural state has been
consolidated into the TRF.

As shown in Figure 3, both tiers have an FRM control
unit. There can be only one master control unit, however,
to select the clock and data inputs to TRF flops, as shown
in Figure 4. The top tier’s FRM control unit is the master.

A migration is initiated by either an external interrupt
or a migration instruction (more about these types are
discussed later). The external interrupt is received by
the master FRM control unit. A migration instruction
may execute in either core: if the top core, it signals the
master directly; if the bottom core, it signals the slave
FRM control unit which signals the master FRM control
unit. All signaling between cores and their adjacent FRM
control units, and between master and slave FRM control
units, is implemented with an asynchronous handshaking
protocol.

The steps to perform a migration are as follows, for the

case of an external interrupt. The master FRM control
unit receives the interrupt and handshakes with the slave
FRM control unit. Then, the FRM control units send
suspend interrupts to their respective cores. This invokes a
suspend interrupt service routine (ISR). The suspend ISR
is responsible for consolidating all architectural register
state into the TRF using special move-to-TRF (MTTRF)
instructions. The suspend ISR ends with a special barrier
instruction, which, when retired from the core, signals the
adjacent FRM control unit that the core is suspended
and the TRF is ready. Note that suspension of the cores
happens on both tiers in parallel and asynchronously.
Once both barrier signals have reached the master FRM
control unit (one by way of the slave FRM control unit),
the master switches the TRFs’ clocks to its own clock
and swaps the two TRFs in a single cycle via the wide
F2F-FRM interface. Then, the master FRM control unit
signals the slave FRM control unit to resume. Both master
and slave send resume interrupts to their respective cores,
which invokes the resume ISR on both cores. The resume
ISR uses special move-from-TRF (MFTRF) instructions
to copy the architectural register state to the core’s phys-
ical registers. The suspend and resume ISRs are shown in
Listing 1.

Listing 1: Suspend and Resume ISRs
Suspend ISR Resume ISR

Execution suspended mftrf $r1
in source core mftrf $r2
mttrf $r1 .
mttrf $r2 .
. mftrf $r31
. mftrf $r32
mttrf $r31 eret
mttrf $r32 Execution resumes
barrier in destination core

There are two scenarios that can occur in thread migra-
tion: (a) a single thread migrates from an active core to
an idle core, and (b) two threads swap cores. The master
FRM control unit can distinguish the first scenario and
suppress resuming operation on the newly idle core.

H3 supports two ways to initiate thread migrations that
enable a wide range of scheduling mechanisms:

• Hardware-triggered migrations (hard migrations)
These are caused by an external interrupt, and are
initiated by an external scheduler based on the in-
formation provided by performance monitors within
the cores. These migrations can occur between two
active cores or one inactive and other active core.
When two threads are running, a hard migration will
suspend both threads, swap the architectural states,
and simultaneously resume the threads on the new
cores.

• Software-triggered migrations (soft migrations) These

Figure 5: Microarchitecture of Cache Core Decoupling.

migrations are initiated by the thread itself using a
special migrate instruction. The suspend and resume
ISRs are not invoked by the hardware, rather they are
instructions inlined in the user-level program. Soft
migrations can only occur between one active and
inactive core. It offers more control to the execut-
ing program to migrate at specific phase transition
points, determined by the programmer or by the
compiler. It also allows the compiler to optimize
the suspend and resume instructions to move only
live registers, further reducing the thread migration
latency.

B. Cache-Core Decoupling (CCD)
Cache-Core Decoupling (CCD) reduces the overhead

caused by migration-induced cache misses. CCD enables
each core to access the other core’s L1 instruction and
data caches. Figure 5 shows the CCD logic located at the
instruction fetch and load-store units of the cores, that
connect each core to the other core’s instruction and data
caches, respectively. Two muxes, one for address and one
for data, at each core’s instruction and data caches, select
between local core access and F2F wires from the remote
core. CCD can be enabled or disabled with an external
CCD-enable pin. When disabled, only the local core has
access to the caches of a tier, so a thread experiences
migration-induced misses when it switches cores. When
enabled, both the local and remote cores have access to
the caches of a tier, but not at the same time: access to a
tier’s caches changes between the local and remote cores as
the thread, which is pinned to the tier’s caches, migrates.

If enabled, CCD allows the thread to access the same
cache before and after migration. This allows the threads
to freely migrate from one core to another without having
to switch caches. This feature is also supported when two
threads are running and migrating between the two cores.
The threads continue to access the same cache irrespective
of which core it is running on throughout its execution.

CCD also enables using the L1 cache best suited for the
program’s working set if the cores have different L1 cache
parameters. A thread can be mapped to the best core-
cache pair throughout its execution.

The benefit of CCD – mitigating migration-induced
misses – must be weighed against its potential drawback,
which is adding delays of two muxes (address and data)
in the hit path of the local core. Our analysis from H3
synthesis shows that the two sub-paths, (1) address to
D-cache and (2) D-cache data to pipeline, increase by
17% and 7%, respectively. While this increase does not
include the D-cache access itself, the hit path increase is
not trivial. In a commercial high-frequency design, CCD
would have to be evaluated with all the facts about the
division of logic among pipeline stages of the cache path,
opportunities to leverage existing muxes, cycle-stealing
opportunities, etc.

CCD also presents a timing challenge for a remote core
accessing the cache. The remote core is in a different
clock domain, hence, synchronizing queues are required
at both tier crossings: one for address received from the
remote core and one for data sent to the remote core. This
introduces three timing challenges. First, synchronizing
queues may add one or several cycles to the remote core’s
hit path. Second, now the core must have a reconfigurable
hit latency with respect to waking up dependents. Third,
the remote latency may vary owing to non-determinism of
synchronizing domain crossings. The last two challenges
may be addressed by always treating the remote cache
access as a “fast miss path” instead of as a “hit path”,
but the first challenge remains. In short, the extra cycles
experienced for every access by the remote core, must
be weighed against the migration-induced misses that are
avoided.

Note, in the H3 prototype, we did not implement syn-
chronizing queues for CCD. Instead, a precondition for
enabling H3’s CCD is that the same clock source must feed
both tiers’ clock pins, for synchronous operation only.

Without CCD, there are two types of migration-induced
misses. First, compulsory, capacity, and conflict misses
that occur in one tier’s cache, may recur in the other
tier’s cache, owing to applying the same working set
redundantly to two caches. Second, a write to a block
in one cache invalidates the copy of that block in the
other cache 1. If the thread migrates back and re-references
the invalidated block, it experiences a migration-induced
invalidation miss.

IV. H3 Validation and Results

Our chip is packaged in a 100-pin ceramic QFP package.
The packaged H3 chip is housed in a compatible 100-
pin socket on a custom-designed 4-layer PCB. The PCB
attaches to a Xilinx ML605 FPGA board via its FMC LPC
connector. Our FPGA testbench implements the L2-cache
controller, instruction and data memory and associated
logic. A RHEL-6 Linux PC acts as the user interface
for our test setup. A custom Command Line Interface
(CLI) client on the Linux machine, called the Console,
provides an interactive shell to the user. Since the block
RAMs in our FPGA are limited in capacity, we can only
fit microbenchmarks with small memory footprint in the
FPGA, hence microbenchmarks were used for performance
and power measurements on the H3 chip. Other results
presented in this section using SPEC 2000 integer bench-
marks were from RTL simulation of the chip along with
the test environment.

We use frequency and voltage independent metrics for
reporting power and performance since the prototype is
built using an older process and runs at a relatively
low frequency. We use Instructions Per Cycle (IPC) for
performance and Dynamic Capacitance (Cdyn) for power.
The H3 cores have basic performance counters in them,
that can be read from the FPGA testbench. We used these
performance counters to measure IPC of benchmarks. In
order to measure the power consumed by a benchmark,
we used a Data Acquisition System to sample the current
supplied to the H3 chip while the benchmark is running.
We then calculate an average current across the entire
benchmark run. We use the measured average current, the
supply voltage, and operating frequency to calculate the
Dynamic Capacitance (Cdyn) for each benchmark using
the formula:

Cdyn = Current/(V oltage ∗ Frequency)

Cdyn is a voltage and frequency independent metric and
measures the inherent switching capacitance of the core for
a benchmark.

1H3 implements write-through L1 caches to a shared L2 cache in
the FPGA testbench. The L2 cache tracks blocks residing in the L1
caches, and a write-through to an L1 cache causes the L2 to invalidate
the copy in the other L1 cache.

A. Fast Register Migration Latency
This experiment shows the variation in fast register

migration latency with different number of architectural
registers transferred during migration. We used a mi-
crobenchmark that repeatedly migrates the thread be-
tween the cores. The microbenchmark consists of only a
soft migrate loop which uses suspend ISR for consol-
idation of architectural state, a migrate instruction to
migrate the thread after consolidation, and resume ISR
to resume the thread. Thus this test measures just the
FRM latency, which includes execution latencies of the
suspend and resume ISRs. For this study, the FRM latency
for 1 migration is identified by taking an average over
100 migrations. The number of registers to be transferred
during each migration is varied manually from 1 to 34
(architectural registers in PISA ISA) and the test repeated
until we have all the data points.

Figure 6: Register migration latencies for different number
of architectural registers transferred.

As seen in Figure 6, maximum latency for moving all
34 integer registers is around 160 cycles. On an average it
takes around 100 cycles for transfer of architectural state
from source to destination core. The latency mainly comes
from startup delay for filling the pipeline stages after a
migrate, and executing the suspend and resume ISRs.
The swap takes less than 10 cycles, which includes clock
switching and register swap, irrespective of the number
of registers moved. This experiment was also successfully
done with the cores running at different clock frequencies
thus validating the GALS design of FRM.

B. Cache-Core Decoupling
This section measures the impact of CCD on cache miss

rates when there are migrations. The SPEC benchmarks
used in this study were run for 10M instructions with
an external migration interrupt every 16K cycles. Thus,
the migrations are at arbitrary points in the program
execution instead of being phase-driven. The cache miss
rate with CCD, normalized to that without CCD, is shown
in Figure 7.

As the results show, the overall miss rate for both
instruction and data cache goes down significantly with
CCD enabled when compared with baseline where CCD is
disabled. This comes from the benefit of accessing the same
cache throughout the program execution. Apart from the

(a) Data cache miss rates

(b) Instruction cache miss rates

Figure 7: Cache miss rates for SPEC2K INT simpoints
with CCD enabled.

misses caused by limits of our cache capacity, there are no
additional migration induced misses when CCD is enabled.
The reduced I-cache miss rate with CCD is particularly
crucial as in the absence of CCD, the cold I-cache misses
after migration usually erode the performance/power ben-
efits of a migration. The D-cache miss rate is high when
CCD is disabled. This is attributed to cold cache misses
during the initial few migrations and misses caused by
invalidations as a result of stores to the cache block when
the program is running on the other core. CCD eliminates
both these causes showing significant reduction in data
cache miss rate. The I-cache miss rate with CCD disabled
is not as bad as D-cache miss rate. This is because of the
absence of invalidation triggered misses in case of I-cache,
and also since these programs tend to execute the same
loop body, they tend to hit in I-cache even when regularly
migrating between cores. This can be seen in case of bzip
and gzip, as CCD disabled performs almost as same as
CCD enabled. On the other hand, mcf and vortex benefits
from CCD as it eliminates initial cold cache misses and
also migration induced misses.

Figure 8 shows IPC results for the same migration
experiment. The first and second bars are IPCs when
running the benchmark only on the 2-wide core or only
on the 1-wide core (no migrations), respectively. The next
two bars show IPC with migrations, for two different
cache configurations: CCD enabled, CCD disabled. As
seen from the Figure 8, the performance for CCD enabled
is close to running on the cores without migration. The
CCD disabled configuration shows performance degrada-

tion because of migration-induced cache misses during
migrations.

Figure 8: IPC for different H3 configurations.

C. Performance and Power of H3
We used a several microbenchmarks to measure the

power and performance of the H3 chip. Table IV shows
the IPC, Cdyn and Power of the various microbenchmarks
on the two cores in the H3 chip.

As a general trend, the Cdyn of the one-wide core is
30% lower than that of the two-wide core for almost all
benchmarks. However, the IPC for most benchmarks is
within 10% of the two-wide core. Some benchmarks such
as binary search (IPC difference of only 3%) have very
similar performance on both cores. These benchmarks
have many data-dependent branches and loads and tend
to not gain much performance from aggressive speculation.
Such benchmarks are poster children for heterogeneous
multi-core processors such as H3. A real workload will
typically use many of the kernels together and will have
distinct phases, thus benefiting heavily from H3-style ar-
chitectures. H3 will save close to 40% power with negligible
performance loss for such workloads.

To demonstrate the benefit of fast thread migration
in a heterogeneous multi-core processor, we craft a mini
workload that combines two kernels, load-accumulate and
conditional array reduction. The load-accumulate kernel
continuously loads from the same location and does an
arithmetic operation on the value. This behaves similar
to an application that is polling a memory location and
doing some operation on it. The second kernel condition-
ally reduces an array to a single value. It calculates the
difference between the sum of odd values and the sum
of even values in an array. The condition to determine

Table IV: IPC, Cdyn, and Power (at frequency of 10MHz)
for various microbenchmarks

IPC Cdyn (nF) Power (mW)
Benchmark 2W 1W 2W 1W 2W 1W
Bubble Sort 0.97 0.87 1.04 0.72 16.25 11.25
Binary Search 0.63 0.61 0.96 0.64 15.00 10.00
LFSR 1.04 1.00 1.12 0.80 17.50 12.50
Prime Numbers 0.97 0.87 1.20 0.80 18.75 12.50
Reduce an array 1.27 0.97 1.20 0.88 18.75 13.75

odd or even, is dependent on the actual value contained in
the array location and nearly impossible to predict. Both
kernels retire nearly equal number of instructions.

Figure 9 plots the IPC and Cdyn of the mini workload
in three scenarios: Running on two-wide core only, one-
wide core only, and running in heterogeneous mode. In
the heterogeneous mode, we execute the first kernel on
the two-wide core, migrate, and execute the second kernel
on the one-wide core. The first kernel has higher IPC
hence can benefit from the two-wide core’s higher fetch
rate. The second kernel has unpredictable data-dependent
branches and lots of cache accesses, leading to low IPC.
Two-wide core has slightly higher IPC than one-wide in
this phase, but very high Cdyn. Hence the one-wide is
more suitable for the second kernel. As seen from the
figure, the workload exhibits 26% lower Cdyn and loses
16% IPC when running in heterogeneous mode compared
to always running on two-wide core. The Cdyn observed is
around 8% greater than always running on one-wide core
but shows 20% higher performance.

Figure 9: IPC and Cdyn of mini workload in one-wide,
two-wide, and heterogeneous modes.

V. Future Work
H3 provides an low-latency fast thread migration ca-

pability that can be used for various techniques which
were not possible before. One such use case would be
to use FTM for fast phase detection using a couple of
techniques. In one technique, a thread can be spawned on
both cores to identify the best core for a discrete quantum
of time. The slower running thread can then be stopped
and later the procedure is repeated for next quantum. The
latency for forking threads is greatly minimized by FTM in
H3. Alternatively, one can choose not to fork threads but
instead migrate threads and sample performance on the
two cores, then schedule phases in future based on sampled
data. Using FTM as a fast sampling, forking methodology
will be explored in a future work.

VI. Conclusion
In this paper, we presented the H3 chip, a novel 3D logic-

on-logic stacked HMP. It uses novel microarchitectural
techniques, such as Fast Register Migration (FRM) and
Cache Core Decoupling (CCD), that utilize the inter-die
connectivity to improve performance. The performance
benefits from these techniques have been explored with

experiments using the prototype chip. FRM latency data
shows that architectural register state can be transferred
between cores in as low as 100 cycles. CCD has been shown
to reduce migration-induced misses significantly, enabling
frequent migrations to save power. H3 significantly bene-
fits benchmarks with distinct phases, decreasing power by
about 26%.

VII. Acknowledgements
The H3 project is supported by a grant from Intel.

References
[1] D. Burger, T. Austin, and S. Bennett, “Evaluating future micro-

processors: The simplescalar toolset,” University of Wisconsin-
Madison, Tech. Rep. CS-TR-1308, 1996.

[2] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh,
J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and
E. Rotenberg, “Fabscalar: Composing synthesizable rtl designs
of arbitrary cores within a canonical superscalar template,” in
Proceedings of the 38th Annual International Symposium on
Computer Architecture, ser. ISCA-38, June 2011.

[3] E. Forbes and E. Rotenberg, “Fast register consolidation and mi-
gration for heterogeneous multi-core processors,” in 2016 IEEE
34th International Conference on Computer Design (ICCD),
Oct 2016.

[4] E. Forbes, Z. Zhang, R. Widialaksono, B. Dwiel, R. B. R.
Chowdhury, V. Srinivasan, S. Lipa, E. Rotenberg, W. R. Davis,
and P. D. Franzon, “Under 100-cycle thread migration latency
in a single-isa heterogeneous multi-core processor,” in Poster
session of Hot Chips, 2015.

[5] E. Forbes, R. B. R. Chowdhury, B. Dwiel, A. Kannepalli,
V. Srinivasan, Z. Zhang, R. Widialaksono, T. Belanger, S. Lipa,
E. Rotenberg et al., “Experiences with two fabscalar-based
chips,” in 6th Workshop on Architectural Research Prototyping
(WARP-6), 2015.

[6] P. Greenhalgh, “big.little processing with arm
cortex-a15 & cortex-a7,” 2011. [Online]. Available:
https://web.archive.org/web/20131017064722/http://www.
arm.com/files/downloads/big_LITTLE_Final_Final.pdf

[7] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen, “Single-isa heterogeneous multi-core architec-
tures: the potential for processor power reduction,” in Mi-
croarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, 2003.

[8] M. Lis, K. S. Shim, B. Cho, I. Lebedev, and S. Devadas,
“Hardware-level thread migration in a 110-core shared-memory
multiprocessor,” in 2013 IEEE Hot Chips 25 Symposium (HCS),
Aug 2013.

[9] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dres-
linski, T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing
heterogeneity into a core,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO-45, 2012.

[10] E. Rotenberg, B. H. Dwiel, E. Forbes, Z. Zhang, R. Widialak-
sono, R. B. R. Chowdhury, N. Tshibangu, S. Lipa, W. R. Davis,
and P. D. Franzon, “Rationale for a 3d heterogeneous multi-
core processor,” in Computer Design (ICCD), 2013 IEEE 31st
International Conference on, 2013.

[11] V. Srinivasan, “Phase ii implementation and verification of the
h3 processor,” 2015. [Online]. Available: https://repository.lib.
ncsu.edu/handle/1840.16/10828

[12] R. Widialaksono, R. B. R. Chowdhury, Z. Zhang, J. Schabel,
S. Lipa, E. Rotenberg, W. R. Davis, and P. Franzon., “Physical
design of a 3d-stacked heterogeneous multi-core processor,” in
2016 IEEE International 3D Systems Integration Conference
(3DIC), Nov 2016.

