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Abstract—

Single-ISA heterogeneous multi-core processors have been
demonstrated to improve the performance and efficiency of
general-purpose workloads. However, these designs leave some
performance on the table due to the common assumption that
the cost of migrating a program from one core to another is high.
This high cost is due to the reliance on the operating system for
a migration via a context switch. Many programs exhibit very
fine-grained changes in behavior. A high-cost thread migration
requires infrequent migrations, as the migration penalty must be
amortized. In this paper, we investigate the impact that thread
migrations impose on single-ISA heterogeneous systems.

To realize these performance and efficiency gains, we consider
a design space of possible, realistic hardware thread migration
schemes. The schemes implement a system in which the operating
system is allowed to assign a thread at the granularity of pairs of
cores, but then a hardware mechanism can freely move the thread
between the cores at-will without operating system involvement.
The focus of this work is on migrating program register state. The
migration of register values is complicated by the physical register
file, which may store logical register values in non-contiguous
entries. Additionally, we assume that the participating core pairs
operate at independent clock frequencies, further complicating
the exchange of register values.

We identify three sources of overhead when implementing
hardware thread migration: the power consumed by the addi-
tional hardware even when no migration is being performed,
the latency of the actual migration, and the energy consumed
during a migration. We evaluate several hardware alternatives
in synthesizable Verilog, then use static timing analysis of the
synthesized netlist to accurately measure these overheads in a
45nm process technology. Depending on the implementation, the
power overhead is as low as 0.4% of the total core power. The
latency can be pushed to as little as 33 cycles with a migration
energy cost of less than 77nJ.

To further demonstrate the feasibility of low cost thread
migrations, we fabricated one of the hardware thread migration
schemes in a prototype processor. The processor consists of a
pair of heterogeneous out-of-order cores, with hardware thread
migration between the pair. We show that the design has a
migration latency of between 50 and 103 cycles, closely matching
our simulation results.

I. INTRODUCTION

As transistor scaling has slowed and we can no longer rely
on smaller transistors equating to lower power, we continue
to seek architectural innovations to improve the performance
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and energy efficiency of processors. One promising direction
is to specialize processor cores to programs by employing
multiple cores that implement the same instruction set, but
with different internal microarchitectures. These single-ISA
heterogeneous multi-core processors were proposed by Ku-
mar et al. [8] [10] and have proven effective at achieving
improvements in performance and efficiency by using the most
suitable core to execute a given program. Our work (as well
as others [14]) shows that additional benefit in heterogeneous
multi-core architectures can manifest if the program can move
between the cores as rapidly as possible. This recognizes the
fact that programs often change their behavior frequently, and
the program should move to the most suitable core to match
this frequency.

Prior work has shown the benefits of decreasing the penal-
ties associated with cache misses [2] [13] when migrating
from one core to another. This paper analyzes the impact
of migrating register values. Typically, a thread migration is
handled by the operating system via a context switch. This
involves saving the program register values with stores to a
process control block, then scheduling the program on another
core, using loads from the process control block to restore
the program register values on the new core. This process can
take on the order of thousands of cycles [7] [12]. Even if the
operating system skips the scheduling step, the store/load pairs
will likely cache miss, and thus still require hundreds of cycles
to migrate.

Similar to [15], our approach is to provide an abstracted
view of the cores to the operating system, where the operat-
ing system schedules programs to core pairs, but then once
assigned, programs can freely move between the constituent
cores. This allows us to streamline the movement of register
values to be as low-latency and energy-efficient as possible.

This work proposes register migration schemes that are part
of processor cores that implement an out-of-order execution
model using physical register files (PRFs) that contain both
committed and speculative register values. This style of archi-
tecture is regularly used in modern processors, and presents a
challenge to quickly accessing register values. Since the PRFs
hold both committed and speculative values, an intermediate
step is required to consolidate only the committed values for
migration to another core. While other styles of architectures
exist that may avoid the need for this consolidation, we focus
on these large PRF architectures specifically because they
are commonly used in modern processors. We also require
our migration hardware to allow migration between cores
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Fig. 1. Impact of interval size on benchmark efficiency.

that operate at different frequencies, since frequency is a key
differentiating factor in heterogeneous cores.

To show the potential of hardware thread migration and
to understand the impact that energy and latency overheads
have on program efficiency, we perform a series of exper-
iments. We augmented our detailed processor simulator to
report performance and energy statistics at regular instruction
intervals (details of the simulator appear in Section IV). This
way, performance for each interval can be compared across
different core configurations. This also allows statistics from
consecutive intervals to be aggregated to form larger intervals
and allows for adding arbitrary cycle and energy penalties to
reflect migrations.

Figure 1 shows the impact of changing the granularity of
interval. The coarsest granularity appears on the left of the
graph, and represents the baseline efficiency when assuming
a dual heterogeneous core pair wherein each benchmark is
pinned to the better of the two cores, determined a priori.
This data point is roughly 15% to 20% above the efficiency
of a single homogeneous core. Looking at the right side of
the graph, we can see that as we consider smaller interval
sizes, we gain more efficiency. The line labeled “max” plots the
efficiency of the benchmark that has the highest improvement
at that granularity. We circle the finest granularity data point
of this graph to signify that this data point is the most ideal in
our experiments and serves as a new baseline for the remaining
graphs in this section. We can see from this graph that we can
expect an average improvement of about 5% over that of coarse
grain heterogeneous (no migration) cores.

Splitting benchmarks into intervals allows us to add arbi-
trary cycle and energy penalties for performing a migration.
Figure 2 applies a range of cycle penalties for a migration
assuming the finest interval size and no migration energy
overhead. Likewise, Figure 3 shows the impact of adding
various migration energy penalties. Both of these graphs show
the efficiency relative to the ideal case with no migration
overheads (circled). For each interval of each benchmark, we
decide to migrate from the current core to the opposite core if
the efficiency of the interval on the opposite core plus the cost
of a migration is better than the efficiency of staying on the
current core. The curves labeled “min” show the efficiency of
the benchmark that was impacted the most. There is a knee in
the cycle penalty curve between a 10 and 100 cycle migration
penalty. A knee also exists in the energy penalty curve at
about 100nJ. If a particular hardware migration mechanism
is to retain as much benefit as possible, then the migration
penalties should stay within these bounds.

Prior work [8] [9] [10] [11] [21] has explored the benefits
of heterogeneous multi-core processors in depth. Thus, the
focus of this work is on evaluating hardware register consol-
idation and migration alternatives rather than an exhaustive
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Fig. 2. Impact of migration cycles on benchmark efficiency.
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Fig. 3. Impact of migration energy on benchmark efficiency.

evaluation of heterogeneous multi-cores. Section II highlights
the prior related work. We propose a design space of alternative
implementations in Section III. Our evaluation methodology is
detailed in Section IV, and results are reported in Section V.
Finally, the design alternative with highest overall benefit has
been fabricated in a prototype chip, and we report the results
of testing the migration hardware in Section VI.

II. RELATED WORK

Prior work has shown the benefits, and have explored ways
of reducing the penalties, of thread migrations. Constantinou
et al. [5] introduces the notion that migrations can induce
penalties such as cache misses that would not have occurred
if the migration had not taken place. They suggest that migra-
tions should be infrequent because of these migration-induced
overheads.

The Execution Migration Machine [13] project proposes a
many-core paradigm where programs migrate to a processor
node that holds the data on which the program will operate
instead of moving data needed by a program to the processor
node on which it is executing. The key insight is that program
register state is smaller than the cache working set so it is more
efficient to move the program than it is to move the data. They
recognize that moving register values is not an insignificant
overhead, and propose using a stack-based instruction set
to reduce the number of registers that must be transferred
between nodes. However, this impacts the implementation of
the cores, and limits the applicability of their approach for
register migration.

Composite Cores [14] identifies the importance of fast
program state migration for use in heterogeneous cores. Their
approach implements heterogeneity within a single core by
having two backends that share a single frontend. One backend
is an in-order execution model, and the other is out-of-order.
They do not suffer from migration penalties by virtue of the
shared frontend. We differ by retaining two distinct cores,
which have the advantage that both cores can be used simulta-
neously and both cores can operate at independent frequencies.

ARM has developed an architecture referred to as
big.LITTLE [7] to demonstrate the viability of heterogeneous
multi-core processors. Their architecture consists of “big” out-
of-order cores and a “little” in-order core. When a program has
modest performance requirements, the little core can be used
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to save power and energy. They cite a thread migration penalty
of roughly 20 thousand cycles, which requires infrequent
migrations and long program phases to amortize the penalty.

With the In Kernel Switcher (IKS), Linero [15] takes
a similar approach to abstracting the visibility of cores to
the operating system. IKS presents a pair of big.LITTLE
heterogeneous cores to the OS as a single core. Frequency
scaling is then used to differentiate between cores – the big
core is used for the high frequency modes, and the little core
for the low frequency modes. This scheme requires that only
a single thread occupies the core pair.

Work by Sawalha et al. [17] has also proposed hardware
solutions to accelerate thread migrations. They allow for
hardware migrations between more than two cores by using a
crossbar to switch between cores and dedicated thread context
storage. It is unclear what the impact of their architecture might
have on overall performance and the overhead imposed by their
circuits as they do not report an evaluation of their architecture.

Brown et al. [2] have worked extensively on minimizing
the impact of cache misses when performing thread migrations.
They suggest that when a migration should occur, the program
working set should be identified, and only that working set
should move between cores instead of moving all cache state.
Their work assumes that register state will be stored to memory
before moving between cores.

Intel has explored hardware mechanisms that are intended
to improve the cost of a context switch by introducing the
Task State Segment (TSS) [1]. The TSS holds program context
information to be accessed by the operating system kernel.
However, the TSS still relies on storage in the memory
hierarchy, which will still incur significant overheads when
migrating threads between cores.

III. REGISTER MIGRATION ALTERNATIVES

Many possibilities exist for register consolidation and mi-
gration. We introduce a design space that categorizes several
of these alternatives. Figure 4 depicts this design space. The
design space has two dimensions, one for the method used
to consolidate register values, and the other for what type of
hardware is used to exchange register values from one core to
the other. When viewing Figure 4 in color, the green designs
are those which we evaluated in detail, and red indicates
designs whose results can likely be inferred from the other
designs, but full evaluation has been left for future work.

In our design space, register consolidation can either
be “demand” or “continuous”. Demand consolidation (DC)
implies that registers are only consolidated when newly in-
troduced instructions are executed via the normal execution
pipeline. Continuous consolidation (CC) keeps a consolidated
version of the register file up-to-date with respect to the
most recent committed results. The hardware mechanism
used to move register values between cores comprises the
other dimension, and can either be with a Teleport Register
File [16] [22] (TRF) or with an asynchronous FIFO (AFIFO)
plus an Architectural Register File (ARF). TRFs are always
used in pairs (one for each core) and allow for the single cycle
bulk copy of all bitcells of one TRF to be exchanged with
the corresponding bitcells of the other TRF. The alternative
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Fig. 4. Design space of hardware register migration alternatives used in this
work.

is to use an AFIFO plus ARF for each core, such that the
AFIFO corrects for asynchronous clock domain crossings, and
the ARF holds values until both cores are ready to exchange
instruction streams.

The following sections outline each of these designs,
including a baseline core pair with no migration hardware.

A. No Migration Hardware

Our work assumes a baseline heterogeneous core pair with
no migration hardware. Figure 5 shows a block diagram of
these baseline cores and the actions performed during a thread
migration (only a migration from Core0 to Core1 is shown).
The following events occur to complete a thread migration:

1) An interrupt signal is raised to both cores to indicate
a migration should occur.

2) The instruction at the head of the Active List is
examined, and if it is valid and completed, the next
PC is copied to the Exception PC (EPC) register.

3) The results of the instruction at the head of the Active
List are committed, and the remaining instructions in
the Active List are flushed.

4) Fetch is redirected to a “suspend” interrupt handler
that contains a sequence of store instructions, one for
each logical register.

5) After all registers are saved to the memory hierarchy,
a barrier (a trap) instruction is executed to signal that
the core has finished writing all register values and
is waiting for the opposite core to do the same.

6) Once both cores have reached their barriers, the
values of the EPCs are exchanged.

7) An interrupt is sent to both cores.
8) Fetch is redirected to a “resume” interrupt handler

consisting of a sequence of load instructions, one for
each register.

9) After setting each register value with a load in-
struction, the resume handler executes an Exception
Return instruction that reads from the EPC.

10) The user program now continues on the opposite core.

This design has several interesting implications. First, the
policy that requires the instruction to not only be valid, but also
completed corrects for a corner case in which the instruction at
the head of the Active List happens to be a branch instruction
that has mispredicted. If that branch had not completed, then
it would be possible for the EPC to be written with a predicted
next PC that is incorrect. Second, that the remaining contents
of the Active List will be discarded may mean that good results
will be lost and re-executed on the opposite core. Finally, if
the instruction at the head of the Active List is not valid or
completed, then processing the suspend interrupt is deferred.
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Fig. 5. Block diagram of baseline core pair with no migration hardware.

All of these policy decisions simplified the implementation, at
the expense of possibly increasing migration latency.

Another performance consideration is that storing register
values in the suspend handler on one core will guarantee that
the corresponding load in the resume handler on the opposite
core will cache miss due to a coherence invalidation (if it
wouldn’t have otherwise been a cold miss).

By using store instructions in the suspend handler, the
problem of register consolidation is solved by virtue of the
normal renaming mechanism. The store will have its source
register renamed no matter where the current register value
resides in the PRF.

One final note is that the PISA instruction set [3], imple-
mented by the FabScalar toolchain, does not support all of the
necessary features required by this migration mechanism. This
necessitated adding hardware that would not have otherwise
existed if PISA defined operating system-level support. This
was the case for the EPC exchange hardware (shown in a
cloud in Figure 5), as well as for the barrier and exception
return instructions. Of the results reported in Section V,
performance results (number of cycles) include this hardware,
but physical design results (clock period, power, and energy)
do not. Evaluating this way gives the performance benefit to
the baseline without any of the physical design penalties.

B. Demand Consolidation – TRF

The Demand Consolidation – TRF (DC-T) alternative
behaves similarly to the baseline core pair on a migration, but
removes the costly copies through the memory hierarchy. In
this alternative, the stores in the suspend handler are replaced
with new move-to instructions. Likewise the loads in the
resume handler are replaced with new move-from instructions.
Since this design uses a TRF pair to exchange register values,
the new instructions are referred to as move-to TRF (MTTRF)
and move-from TRF (MFTRF), respectively. The exchange of
register values is through two TRFs, one for each core. Both
TRFs are the same size as the number of logical registers
(including EPC). Figure 6 shows a simplified block diagram
of the DC-T alternative.

The MTTRF and MFTRF instructions flow through the
normal execution pipeline. The MTTRF has a single source
register operand. That operand is renamed with the usual
register renaming hardware. The PRF is read during the
Register Read Stage as usual, but during the Execute Stage,
the value is written to the TRF entry that corresponds to the
source operand logical register identifier. Using the normal
register renamer solves the consolidation problem. The MFTRF
has a single destination operand, also renamed using the usual
renaming hardware. During the Execute Stage, the TRF entry
that corresponds to the destination operand logical register
identifier is read. The value is then written to the PRF during

Core0 Core1
TRF TRF
PC PCexchange

ReturnInterrupt

Regs RegsMTTRF MFTRF

Fig. 6. Block diagram of hardware migration using demand consolidation
and a TRF for core-to-core value transfer (DC-T).

the Writeback Stage as usual. The EPC location of the TRF
is written when the migration interrupt is processed.

The TRF pair provides a single cycle exchange of register
values. TRFs were carefully designed to allow the exchange
to safely occur between different clock domains. During a
migration, the cores independently write their respective TRFs
using their own core clocks. Once both cores have finished
writing all of their values, they signal to the TRFs that the
exchange can occur. The TRFs will then switch to a third
clock that is common to both TRFs, exchange values, then
switch the clocks of the TRFs back to the core clocks.

While the MTTRF and MFTRF instructions obviate the need
for costly copies through the memory hierarchy, they do not
eliminate all of the migration latency. The MTTRF and MFTRF
instructions must traverse the pipeline as usual, incurring
the execution time needed to execute these instructions. One
design decision that is also a factor in this regard is that all
of these instructions traverse a single lane of the processor
backend (the Issue Stage onward). This serializes the execution
of any MTTRF or MFTRF instructions in the pipeline.

A final observation is that the DC-T alternative only reads
and writes the TRFs during a migration. When the user
program is running, the migration hardware is left idle. This
allows for a variant of DC-T where the inputs and clocks of
the TRFs and migration hardware are gated, to reduce spurious
switching activity. This variant is evaluated in Section V.
Power gating could also potentially be explored, however our
standard cell library does not include power gating cells.

C. Demand Consolidation – Asynchronous FIFO

The Demand Consolidation – Asynchronous FIFO (DC-
A) alternative also avoids register copies through the memory
hierarchy by introducing new move-to and move-from instruc-
tions, similar to the DC-T alternative. But instead of relying
on a TRF pair to exchange values, the exchange is done by
coupling an AFIFO with an ARF in each direction (a total of
two AFIFOs and two ARFs for a core pair). Thus, the new
instructions are referred to as move-to-AFIFO (MTFIFO) and
move-from-ARF (MFARF). Figure 7 shows a block diagram of
the DC-A alternative (only one direction shown, for clarity).

The steps to complete a thread migration are the same as
the DC-T alternative. The semantics of the MTFIFO are the
same as MTTRF, except that the register value (tagged with
the register identifier) is pushed to an AFIFO instead of a
TRF. Similarly, the MFARF instruction semantics match the
MFTRF instruction, except the register value is read from an
ARF instead of a TRF. The AFIFOs are written using the clock
of the core executing the MTFIFO instruction. A small state
machine monitors the “empty” bit of the AFIFO, and when
the FIFO is not empty, it pops the FIFO and writes the value
to the appropriate entry in the corresponding ARF. The state
machine and ARF are clocked using the receiving core’s clock.
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Fig. 7. Block diagram of hardware migration using demand consolidation
and an Asynchronous FIFO and ARF for core-to-core value transfer (DC-A).

This strategy handles crossing the asynchronous clock domains
of the cores.

The DC-A design has very similar migration latency im-
plications as the DC-T alternative. The DC-A alternative can
also have the same clock and input gated variant as DC-T.

D. Continuous Consolidation – TRF

The Continuous Consolidation – TRF (CC-T) alternative
differs from the DC-T design by always keeping the TRFs up-
to-date with the most recent committed register values without
the need for explicit move-to or move-from instructions. Thus,
the TRF is updated transparently from the instruction set
perspective. Figure 8 shows a simplified block diagram of the
CC-T alternative (only showing the Core0 to Core1 migration).
The CC-T alternative achieves a much lower thread migration
latency since the TRF exchange can occur very soon after a
migration interrupt because it does not need to wait for move-
to or move-from instructions to execute. However, this comes
at the expense of increased complexity in the TRFs and core
pipelines.

As instructions execute, their results must be written to
the TRF in addition to the PRF. Since the size of the TRF
is the same as the number of logical registers, it is best to
write only committed instruction values. This change requires
adding new write ports to the TRF when the commit width is
greater than one. However, in a typical out-of-order pipeline,
the result values of instructions are not available at commit
time – their values were long ago written to the PRF and
not buffered elsewhere. To fix this problem, we buffer the
instruction results in a separate RAM (an extension of the
Active List) until instructions commit. Also, it is possible that
more than one instruction commits the same logical register
in a given cycle. Thus, new write-after-write hazard checking
logic must also be included to write only the latest value of a
register to the TRF. These changes eliminate the need for any
move-to instructions, however the suspend interrupt handler
still contains a single instruction, the barrier.

To eliminate the need for move-from instructions after
a migration has occured necessitates several changes to the
register rename logic and rename map table (RMT) to allow
registers to be renamed to either the PRF or the TRF. This
requires adding a bit to each entry of the RMT, used to
distinguish whether a logical register value can be found in the
PRF or in the TRF. After a migration, all register values are in
the TRF, so all of these new bits in the RMT will be set to point
to the TRF. As instructions write new values, the corresponding
bits in the RMT must be cleared to indicate that the register
value can now be found in the PRF. At any given time, the
RMT could have some entries point to registers in the PRF
and others point to registers in the TRF. This means that the
Architectural Map Table (AMT) must also be extended with
these new bits because the AMT is used to repair entries in the
RMT in the event of a pipeline recovery. These changes allow

Core0 Core1
TRF TRF
PC PCexchange

ReturnInterrupt

Regs RegsAll rdst All rsrc
PRF ROB

PRF

Fig. 8. Block diagram of hardware migration using continuous consolidation
and a TRF for core-to-core value transfer (CC-T).

the resume interrupt handler to also only consist of a single
instruction, this time a single Exception Return instruction.

One final observation with the CC-T alternative is that the
TRFs must always be kept up-to-date, which implies that the
TRFs and associated migration logic cannot be safely clock
or input gated to save power, as was the case with DC-T and
DC-A.

E. Continuous Consolidation – Asynchronous FIFO

Continuous Consolidation – Asynchronous FIFO (CC-A) is
identical to the CC-T alternative, with the exception that the
TRFs are replaced with asynchronous FIFO and ARF pairs
just like the changes from DC-T to DC-A. While we do not
fully evaluate the CC-A alternative, it is reasonable to assume
that any trends when comparing DC-T to DC-A can also be
applied to comparing CC-T to CC-A.

IV. METHODOLOGY

This section details the methods and tools used to evaluate
the hardware thread migration alternatives. The two main com-
ponents of our evaluation infrastructure are 1) instantiations of
full cores written in Verilog RTL that were generated by Fab-
Scalar [4], and 2) an in-house C++ performance simulator. The
Verilog RTL was augmented with synthesizable implementa-
tions for each of the migration alternatives, allowing for full
netlist simulation to verify correctness and for detailed timing
and power analysis. The C++ simulator overcomes some of the
limitations of RTL simulation while retaining the timing and
power statistics derived from the RTL implementations. These
tools are described in Section IV-A and IV-B, respectively. The
workloads and metrics used in this work are briefly described
in Section IV-C.

A. RTL Model

Evaluating the impact of register value consolidation and
thread migration demands carefully considering the power and
timing overheads with the highest possible fidelity. To meet
this need, we turn to a Verilog RTL model of our proposed
migration alternatives. These alternatives can then be carried
through industry-standard electronic design automation (EDA)
tools to derive highly accurate estimates for area, power, and
timing.

The FabScalar [4] toolchain provides synthesizable RTL
for the core pipeline for a wide variety of configurations.
This serves as a starting point for our dual heterogeneous
core model. We generated two “reference cores”, whose core
parameters are shown in Table II in Section VI. FabScalar
cores do not include caches or off-chip I/O, so the reference
cores include in-house developed L1 instruction and data
caches as well as DesignWare SERDES for off-chip I/O.
The unified L2 cache is assumed to be off-chip. With these
modifications, the top-level module is pin-accurate for a dual
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TABLE I. EDA TOOLS USED IN THIS WORK.

Name and Version
Cadence NC-Verilog, vers. 09.20-s019
Synopsys Design Compiler, vers. H-2013.03-SP2
Synopsys PrimeTime, vers. H-2013.06-SP1
Cadence SoC Encounter, vers. 9.1
FreePDK 45nm process technology library [20], vers. 1.3

heterogeneous multi-core processor and serves as the baseline
processor with no register consolidation or migration hardware.

The RTL for these reference cores is then replicated and
each copy is augmented with the register consolidation and
migration hardware according to the alternatives described in
Section III. The designs include hand-written TRF implemen-
tations and DesignWare asynchronous FIFOs, where applica-
ble. These designs are then synthesized to obtain gate-level
netlists. The netlists are then simulated using several hand-
written microbenchmarks as well as a few SPEC CPU2000
benchmark regions. These simulations are performed to gain
confidence that the implementations are functionally correct
and also to collect the gate-level switching activity. The
switching activity is then used for accurate power analysis.
The EDA tools used for this flow are listed in Table I.

B. Performance Simulator

While the RTL models provide highly accurate area, timing
and power estimates, they are somewhat inconvenient for use
in performance estimation. The C++ simulator developed for
this work is a cycle-level, execute-at-execute model. To model
power, the simulator is augmented with a database of char-
acterization data of individual pipeline structures taken from
FabScalar modules. The RTL model in the previous section
assumes that caches are synthesized to D flip-flops. To estimate
caches with full custom memories, we populate the database
with characterization data derived from CACTI [19] whose
technology files have been modified to support our FreePDK45
process technology. This database is queried during simulation
to retrieve energy data for each pipeline stage and structure.

This simulation infrastructure allows for a very large design
space of out-of-order cores. To pare down the number of
cores to evaluate, we limit the design space by selecting 18
representative cores, similar to the G21 strategy used in [4]. In
this paper, the designs were selected to span pipeline widths of
1-wide through 6-wide, with three cycle time targets each. This
allows for small, medium and large relative structure sizes.
With these core configurations, we ran an exhaustive design
space exploration (DSE) to find the best single core and the
best core pair for both our performance and efficiency metrics.

C. Workload and Metrics

For our work, performance is measured in billions-of-
instructions-per-second (BIPS) to account for comparisons
across both cycles and frequency. The efficiency metric uses
both performance (in BIPS) and power (in Watts) for a
combined metric BIPS3/W.

We use benchmarks from both SPEC CPU2000 and
CPU2006 for our workload. We use gcc version 4.5.2 with
optimization level -O3 to compile as many of these bench-
marks as possible. We extract benchmark regions using the
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Fig. 9. Power overhead when including migration hardware. Note that the
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SimPoint [18] tool, configured to find 10 million instruction
regions with a maximum of ten regions per benchmark. This
results in a total of 179 program phases from 32 benchmarks.

V. RESULTS

The focus of this section is to evaluate the quality of the
different consolidation and migration schemes introduced in
Section III. We also determine which alternative is likely to
best meet the performance and efficiency needs when used in a
heterogeneous multi-core. Some alternatives in Section III can
have their migration hardware clock and input gated to save
power between migrations, the following results only plot these
variants when applicable.

The additional power used when including the migration
hardware, even when migrations are not occuring (i.e. power
overhead during user program execution), is shown in Figure 9.
This overhead should be kept as low as possible since it is a
tax imposed by including migration hardware. Notice from
this graph that clock and input gating for the DC-T and DC-A
alternatives is clearly beneficial. Also, the use of a TRF has
a benefit over using an asynchronous FIFO and ARF. This
is because the TRF and ARF are similarly sized RAMs (and
thus roughly equal in power), but the asynchronous FIFO adds
static power consumption relative to the TRF scheme, even
when clock and input gating. These estimates were derived
by running a microbenchmark with no migrations on the
synthesized netlist of each alternative and using power analysis
to capture the average power.

To estimate the migration latency and migration energy,
the netlists of each alternative was simulated while executing
a microbenchmark that repeatedly migrates from one core to
the other then back for thousands of migrations. The results are
shown in Figure 10 and Figure 11, respectively. For these ex-
periments, several data points are collected for each alternative,
varying the number registers transferred by altering the number
of instructions used to consolidate registers. The migration
latency of DC-T and DC-A are nearly identical, since the only
difference is in the register exchange mechanisms, which have
similar latencies. These latency results show that substantial
savings are realized no matter which alternative is employed,
although the CC-T has constant migration latency no matter
how many registers are transferred since the TRF is always
kept up-to-date. We can also see that migration energy is very
low for each migration alternative.

Figure 12 shows the average performance and efficiency for
our benchmarks with respect to coarse-grain thread migrations,
repeating the simulation experiments from Section I. We allow
migrations at the smallest interval size. But for these estimates,
we use the measured power overhead, migration latency, and
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migration energy to appropriately penalize the benchmark for
including migration hardware and for performing migrations.
We can see from these estimates that the benefit of adding
migration hardware does not always overcome their overheads.
This is especially true for efficiency evidenced by the negative
improvement for many alternatives.

The best alternative for performance is CC-T. This is
because CC-T does not need to wait for register copying
instructions to execute – the suspension, register exchange, and
resumption can occur very quickly after a migration interrupt.
The DC-T with clock and input gating is the best alternative
for efficiency. This is because it has the best balance between
short migration latency (from Figure 10) while minimizing
the power overhead (Figure 9) and energy for each migration
(Figure 11).

Figure 12 shows an average of all programs, which can
hide the impact (both positively and negatively) of migration
hardware. Figure 13 shows the efficiency of the clock and input
gated DC-T alternative for each benchmark. This graph shows
that about 45% of benchmarks have improved efficiency, about
30% of benchmarks have no impact from migration hardware,
and the remaining benchmarks have slightly worse efficiency
due to the power overhead penalty.

As a final note, adding migration hardware also has the
potential to increase the pipeline clock period, as well as
consume additional die area. These characteristics for each
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Fig. 12. Average speed-up for hardware migration schemes compared to
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TABLE II. PROTOTYPE CHIP CORES.

Core0 Core1
Frontend Width 2 1
Issue Width 3 3
Depth 9 9
IQ Size 32 16
PRF Size 96 64
LQ/SQ Size 16/16 16/16
Active List Size 64 32
L1 I-Cache private, 4kB, 1-way, 8B blocks, 1 cycle, no prefetch
L1 D-Cache private, 8kB, 4-way, 16B blocks, 2 cycle, no prefetch

migration alternative were measured, but are not shown here
as neither were substantially impacted.

VI. PROTOTYPE

As a proof of concept of our hardware thread migration
architecture, we fabricated a prototype chip. The chip includes
a heterogeneous core pair of out-of-order cores – the “reference
cores” introduced in Section IV-A. The core parameters are
listed in Table II. These cores utilize the DC-T hardware
migration scheme. Thus, they implement the move-to and
move-from instructions for register consolidation and use a
TRF for transferring register values from one core to the other.
We used a 130nm process technology.

A photo of the die, wire-bonded to a test PCB, is shown in
Figure 14a. Figure 14b shows a fully packaged and assembled
PCB. This PCB has a mezzanine connector (on the back of
the PCB) that mates the PCB to a Xilinx ML-605 develop-
ment FPGA board. The FPGA serves to generate the signals
necessary to exercise the chip, the main tasks of which are to
generate the independent clocks for each core, as well as to
host the L2 caches and memory controller to service memory
requests. More details of this prototype appear in [6].

(a) Die. (b) Package and PCB.

Fig. 14. Photos of fabricated chip and test PCB.

Figure 15 shows the average latency of a thread migration,
taken from actual measurements of the prototype chip. Notice
that these measurements almost exactly match our simulation
results shown in Figure 10 in Section V. To obtain these
measurements, a simple test microbenchmark was written
which repeatedly migrates a thread between the cores, for one
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Fig. 15. Measured migration latency from prototype chip.

million migrations. The total number of cycles are recorded
to execute all migrations, then the total cycles is divided by
the number of migrations. This minimizes the impact of any
warm-up overheads.

To verify functionality, the cores were tested using many
different relative frequencies. However, for this experiment, the
cores are operated at the same frequency to ensure that cycles
can be directly compared. Also, when operating at the same
frequency, a mode is available where cache values are pinned
to a single cache, and a migrating thread can access the cached
values without incurring migration-induced cache misses. This
side-steps an early design decision that flushes caches on a
migration. Figure 15 shows the latency in both modes. Our
most recent version of this design introduces a cache coherence
policy to eliminate cache flushes on a migration, while still
allowing the cores to operate at independent frequencies. This
new version is currently being fabricated.
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