
NC STATE UNIVERSITY

!1

Assertion-Based Microarchitecture Design for
Improved Fault Tolerance

Vimal K. Reddy
Ahmed S. Al-Zawawi, Eric Rotenberg

Center for Embedded Systems Research (CESR)
Department of Electrical & Computer Engineering

North Carolina State University

NC STATE UNIVERSITY

!2

Motivation

• Technology scaling
– Smaller, faster transistors
– Transistors more susceptible to transient faults

• How to build reliable processors using unreliable
transistors?

NC STATE UNIVERSITY

!3

Motivation

Need efficient fault tolerance solutions

Technology Scaling

P
er

fo
rm

an
ce

No fault tolerance,
erroneous operation

Susceptible to
transient faults

Inefficient fault tolerance,
correct operation

No fault tolerance,
correct operation

Due to high overheads of
inefficient fault tolerance

NC STATE UNIVERSITY

!4

Redundant Multithreading (RMT)

• Duplicate a program and compare outcomes to
detect transient faults

• Positives
– Simple and straightforward
– General solution

– Complete fault coverage
• Negatives

– High overhead

NC STATE UNIVERSITY

!5

RMT using an extra processor

Processor Processor

==

Program

Power
Cost

NC STATE UNIVERSITY

!6

RMT using simultaneous multithreading

PROGRAM

Processor

====

Performance

Power

Pipeline
stages

NC STATE UNIVERSITY

!7

Alternate solution: Targeted fault checks

• Add regimen of fault checks
• Specific to logic block

• Arbitrary latches: Robust latch design
• Arbitrary gates: Self-checking logic
• FSM: Self-checking FSM designs
• ALU: Self-checking ALUs, RESO
• Storage and buses: Parity, ECC

• Positives
– No overhead of duplicating the program

• Negatives
– Not general, i.e., many types of checks needed

NC STATE UNIVERSITY

!8

Our contribution: Microarchitectural Assertions

• Novel class of fault checks

• Key Idea: Confirm µarch. “truths” within processor
pipeline

• Catch-all checks for microarchitecture
mechanisms

• Positives
– Broad coverage (catch-all checks)
– Very low-overhead solution (no redundant execution)

NC STATE UNIVERSITY

!9

Spectrum of fault checks

(RMT)

Architecture
Level

==

Processor

==

Processor

NC STATE UNIVERSITY

!10

Spectrum of fault checks

(RMT)

Architecture
Level

Processor

==

Processor

 parity/ECC

s0

s1

s2 self-check
FSM

==

==

==

Q

QSET

CLR

S

R

robust
flip-flop ==

self-check
ALU

== ==

==

====

==

==

==

== ==

==

==

==

==

==

==

==

==

====

==

==

==

==

==

==

== ==

==

==

==

==

==

==

==

====

==

Logic
Circuit
Level

NC STATE UNIVERSITY

!11

Spectrum of fault checks

(RMT)

Architecture
Level

==

Processor

Logic
Circuit
Level

Processor
==

== == ==

==

==

====

==

==

====

==

==

====

==

====

==

==
==

==

== ==

==

==

==

==

==

==

==

==

==

==

====

==

== ==

==

====

==

==

==

==

==

==

==

==

==

==

==

==

==

====

==

==

==

==

==

==

== ==

==

==

==

==

==

==

==

====

==

Processor

NC STATE UNIVERSITY

!12

Spectrum of fault checks

(RMT)

Architecture
Level

==

Processor

Logic
Circuit
Level

Processor
==

== == ==

==

==

====

==

==

====

==

==

====

==

====

==

==
==

==

== ==

==

==

==

==

==

==

==

==

==

==

====

==

Microarchitecture
Level

==

==

==

==

==

==

====

==

==

==

==

==

==

== ==

==

==

==

==

==

==

==

====

==

Processor

µarch
assert

==

µarch
assert

==

NC STATE UNIVERSITY

!13

Examples of Microarchitectural Assertions

• Register Name Authentication (RNA)
– Aims to detect faults in renaming unit
– Asserts consistencies in renaming unit

• Exploits inherent redundancy in renaming structures
• Asserts expected physical register states

• Timestamp-based Assertion Checking (TAC)
– Aims to detect faults in issue unit
– Asserts sequential order among data dependent

instructions
– Uses timestamps

NC STATE UNIVERSITY

!14

p1

Rename
Logic

p2p3p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

I1 (r1!)
Freelist

I1 (r1:p1!) old_r1:p5

Program

I2 (r1!)

I3 (r1!)

I1 (r1!) p1

I1 (r1:p1!)

I1 (r1:p1!) old_r1:p5 p1p5
p6
p7

p5
p6
p7

r1
r2
r3

Rename
Map
Table

p1
I1 retires

p2p3p4

NC STATE UNIVERSITY

!15

Rename
Logic

p2p3p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

FreelistProgram

I2 (r1!)

I3 (r1!)

I2 (r1!)

I2 (r1:p2!)

I2 (r1:p2!) old_r1:p1 p1p5
p6
p7

p6
p7

p2

p2

I2 (r1:p2!) old_r1:p1

r1
r2
r3

Rename
Map
Table

p5

p1

NC STATE UNIVERSITY

!16

Rename
Logic

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

FreelistProgram

I3 (r1!)

p1p5
p6
p7

p1
p6
p7

p2

I2 (r1:p2!) old_r1:p1Observation
r1’s old == r1’s arch
mapping mapping

Rename
Map
Table

r1
r2
r3

p3p4p5

NC STATE UNIVERSITY

!17

Rename
Logic

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

Freelist

r1
r2
r3

Rename
Map
Table

Program

I3 (r1!)

p1p5
p6
p7

p6
p7

p2

I2 (r1:p2!) old_r1:p1
RNA prev mapping check

old_r1 == arch_r1?
p1 == p1?

p6

p1

p3p4p5

NC STATE UNIVERSITY

!18

Rename
Logic

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

FreelistProgram

I3 (r1!)

p1
p6
p7

I2 (r1:p2!) old_r1:p1

p3

r1
r2
r3

Rename
Map
Table

p1p5
p6
p7

p6

I3 (r1:p3!)

I3 (r1:p3!) old_r1:p6 p3

I3 (r1:p3!) old_r1:p6

p4p5

NC STATE UNIVERSITY

!19

Rename
Logic

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

FreelistProgram

p1
p6
p7

I2 (r1:p2!) old_r1:p1
RNA prev mapping check

old_r1 == arch_r1?
p1 == p1?

r1
r2
r3

Rename
Map
Table

p1p5
p6
p7

p6 p3

I3 (r1:p3!) old_r1:p6

p4p5

p2

p4p5

I2 retires

NC STATE UNIVERSITY

!20

Rename
Logic

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

FreelistProgram

p6
p7

RNA prev mapping check
old_r1 == arch_r1?

p6 == p2?

r1
r2
r3

Rename
Map
Table

p1p5
p6
p7

p6 p3

I3 (r1:p3!) old_r1:p6

p5p1

p2

FAULT DETECTED

p4

At I3 retirement

NC STATE UNIVERSITY

!21

p1p2p3

Rename
Logic

p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

Freelist

r1
r2
r3

Rename
Map
Table

Program
I1 (r1!)

I2 (r1!)
I1 (r1!) p1

I1 (r1:p6!)

I1 (r1:p6! old_r1:p5)
p6
p7

p5
p6
p7

p5 p6

I1 (r1:p6!) old_r1:p5

NC STATE UNIVERSITY

!22

p2p3

Rename
Logic

p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

Freelist

r1
r2
r3

Rename
Map
Table

Program

I2 (r1!)
I2 (r1!) p2

I2 (r1:p2!)

I2 (r1:p2! old_r1:p6)
p6
p7

p5
p6
p7

p5 p6

I1 (r1:p6!) old_r1:p5

p2

I2 (r1:p2!) old_r1:p6

NC STATE UNIVERSITY

!23

Rename
Logic

p3p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

Freelist

r1
r2
r3

Rename
Map
Table

Program

p6
p7

p5
p6
p7

p5 p6

I1 (r1:p6!) old_r1:p5

p2

I2 (r1:p2!) old_r1:p6

p3p4

I1 retires

p6

RNA prev mapping check
old_r1 == arch_r1?

p5 == p5?

NC STATE UNIVERSITY

!24

Rename
Logic

p3p4

Reorder
Buffer

r1
r2
r3

Architecture
Map
Table

Freelist

r1
r2
r3

Rename
Map
Table

Program

p6
p7

p6
p7

p5 p6 p2

I2 (r1:p2!) old_r1:p6

p3p4

At I2 retirement

p6

RNA prev mapping check
old_r1 == arch_r1?

p6 == p6?
FAULT NOT DETECTED

NC STATE UNIVERSITY

!25

p1

Rename
Logic

p2p3p4

Rdy/Free
Bit Array

Register
File

Freelist

I2 (r2 !)

r1
r2
r3

Rename
Map
Table

p1

I1 (r1 !)

FU FU FU FU

p1
p2
p3
p4

Rdy Free p1
p2
p3
p4

Issue Queue

issue

writeback

1
1
1
10

0
0
0 0

Free bit unset

I3 (r1 !)

Program
I1 (r1 !) p1

I1(r1:p1 !)

I1(r1:p1 !)

I1(r1:p1 !)

NC STATE UNIVERSITY

!26

p2

Rename
Logic

p3p4

Rdy/Free
Bit Array

Register
File

r1
r2
r3

Rename
Map
Table

p2

I2 (r2 !)

FU FU FU FU

p1
p2
p3
p4

Rdy Free p1
p2
p3
p4

Issue Queue

issue

writeback

1
1
10

0
0
0

0

I3 (r1 !)

Program
I2 (r2 !) p2

I2(r2:p2 !)

I2(r2:p2 !)

I1(r1:p1 !) I2(r2:p2 !)

p1

0

Freelist

NC STATE UNIVERSITY

!27

Rename
Logic

p3p4

Rdy/Free
Bit Array

Register
File

Freelist

r1
r2
r3

Rename
Map
Table

p1

FU FU FU FU

p1
p2
p3
p4

Rdy Free p1
p2
p3
p4

Issue Queue

issue

writeback

0
0
1
10

0
0
01

XXX

Ready bit set

Program

I1(r1:p1 !) I2(r2:p2 !)

Observation

Ready bit == 0 (not executed)

Free bit == 0 (not in freelist)

1

p2

XXX

I3 (r1 !)

NC STATE UNIVERSITY

!28

Rename
Logic

p3p4

Rdy/Free
Bit Array

Register
File

Freelist

r1
r2
r3

Rename
Map
Table

p1

FU FU FU FU

p1
p2
p3
p4

Rdy Free p1
p2
p3
p4

Issue Queue

issue

writeback

0
0
1
10

0
1
1

XXX

I3 (r1 !)

Program

p2

I3 (r1 !) p3

I3(r1:p2 !)

I3(r1:p2 !) p2

I3(r1:p2 !)

0

Ready of p2 == 0?

FAULT DETECTED

Free of p2 == 0?

RNA writeback check

XXX

NC STATE UNIVERSITY

!29

RNA summary
• RNA previous mapping check

– Detects faults in renaming structures
• Rename map table, Architecture map table
• Branch checkpoint tables
• Active list (renaming state)

• RNA writeback state check
– Detects faults in renaming logic and freelist

NC STATE UNIVERSITY

!30

Source renaming

• Pure source renaming faults undetected
– E.g., fault in source renaming logic
– Researching solutions similar to RNA

• However, faults causing deadlock are detectable
– Faulty source name causing cyclic dependency
– Faulty source name points to unpopped freelist entry
– Other faults that cause phantom producers

• Use watchdog timer to detect deadlocks

NC STATE UNIVERSITY

!31

Timestamp-based Assertion Checking (TAC)

• Confirm data dependent instructions issued
sequentially
– Assign timestamps to instructions at issue
– At retirement, confirm instruction timestamp greater than

producers’ timestamps
• TAC check

Instruction timestamp >= Producer’s timestamp + latency
• Faults on checking logic can only cause false

alarms

NC STATE UNIVERSITY

!32

Scheduler

FU FU

HT

I1 (r1!)

I3 (r1!, !r1)

I4 (r1!, !r1)

I2 (r3!)

I5 (r3!, !r3)

I6 (r3!, !r3)
I1I2I3I4I5I6

issue

writeback

Dataflow

r1

r2

r3

Reorder
Buffer

Issue
Queue

retire

I1I2I3I4I5I6

Timestamp
Counter

1

0 14325
1 11111 Lat.

TS

234560

TS Lat.

TAC check
Instr TS >= Prod TS + Prod Lat

Architectural
State

0 0

00

0 0

NC STATE UNIVERSITY

!33

Scheduler

FU FU

HT

I1 (r1!)

I3 (r1!, !r1)

I4 (r1!, !r1)

I2 (r3!)

I5 (r3!, !r3)

I6 (r3!, !r3)
I1I2I3I4I5I6

issue

writeback

Dataflow

Reorder
Buffer

Issue
Queue

HHHHHH retire

25 0
1

1
1

4
1

3
111 Lat.

TS

r1

r2

r3

TS Lat.
1 1

0 1

4 1

TAC check

I1: 1 >= 0 + 0
I2: 0 >= 0 + 0
I3: 4 >= 1 + 1
I4: 3 >= 4 + 1
FAULT DETECTED

Architectural
State00

0 0

0 0

NC STATE UNIVERSITY

!34

Experiments

• Randomly injected faults in timing simulator
– 1000 faults per benchmark
– Faults target issue and rename state
– Simulation ends 1 million cycles following fault injection

• Observations
– Fault detected by an assert (Assert) or not (Undet)
– Fault corrupts architectural state (SDC) or not (Masked)

• Possible outcomes
– Assert+SDC
– Undet+SDC
– Assert+Masked
– Undet+Masked

NC STATE UNIVERSITY

!35

TAC - Fault Injection Experiments
• Type of faults injected

– Ready bits prematurely set
– Speculatively issued cache-missing load dependents not

reissued

NC STATE UNIVERSITY

!36

TAC - Fault Injection Experiments

80% of faults
cause SDC
20% of faults are
masked

All SDC faults are
detected

Zero undetected
SDC faults

0
10
20
30
40
50
60
70
80
90

100

bzip gap gcc gzip parser perl twolf vortex vpr

Undet+SDC
Undet+Masked
Assert+Masked
Assert+SDC%

 o
f t

ot
al

 in
je

ct
ed

 fa
ul

ts

SPEC2K Integer Benchmarks
AVG

NC STATE UNIVERSITY

!37

RNA - Fault Injection Experiments

• Faults injected
– Flip bits of an entry in architecture map table
– Flip bits of an entry in rename map table
– Flip bits of an entry in freelist
– Flip destination register bits at dispatch

• Watchdog timer included to detect deadlocks
• Additional possible outcomes

– Assert+Wdog : RNA detected a future deadlock
– Undet+Wdog : Deadlock undetected by RNA (possibly

would have been caught by RNA in future)

NC STATE UNIVERSITY

!38

RNA - Fault Injection Experiments

68% SDC faults
24% deadlocks
8% masked faults

0
10
20
30
40
50
60
70
80
90

100

bzip gap gcc gzip parser perl twolf vortex vpr

%
 o

f t
ot

al
 fa

ul
ts

 in
je

ct
ed

Undet+SDC
Undet+Masked
Undet+Wdog
Assert+Masked
Assert+Wdog
Assert+SDC

SPEC2K Integer Benchmarks
AVG

88% of SDC faults
detected by RNA

12% of SDC faults
undetected

75% of deadlocks
not detected by RNA
(but detected by
watchdog)

25% of deadlocks
detected by RNA
beforehand

NC STATE UNIVERSITY

!39

0

20

40

60

80

100

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

ar
ch
_m
ap

re
na
m
e_
m
ap

fre
el
is
t

de
st

bzip gap gcc gzip parser perl

fa
ul

t o
ut

co
m

e
di

st
ri

bu
tio

n

Assert+SDC Assert+Wdog Assert+Mask
Undet+Wdog Undet+Mask Undet+SDC

AVG

A
rc
h_
M
ap

R
en
_M
ap

fre
el
is
t

de
st

RNA - Fault outcome distribution

“dest” faults cause
deadlocks because
of phantom producers

Deadlock blocks
retirement
Thus, RNA check
can’t complete

“arch_map” faults
cause most
undetected SDC

Long live register
range

System trap before
RNA check can
complete

NC STATE UNIVERSITY

!40

Conclusions

(RMT)

Architecture
Level

==

Processor

Logic
Circuit
Level

Processor
==

== == ==

==

==

====

==

==

====

==

==

====

==

====

==

==
==

==

== ==

==

==

==

==

==

==

==

==

==

==

====

==

Microarchitecture
Level

==

==

==

==

==

==

====

==

==

==

==

==

==

== ==

==

==

==

==

==

==

==

====

==

Processor

µarch
assert

==

µarch
assert

==

