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Motivation

• Technology scaling 
– Smaller, faster transistors 
– Transistors more susceptible to transient faults 

• How to build reliable processors using unreliable 
transistors?
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Redundant Multithreading (RMT)

• Duplicate a program and compare outcomes to 
detect transient faults 

• Positives 
– Simple and straightforward 
– General solution 

– Complete fault coverage 
• Negatives 

– High overhead
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RMT using an extra processor
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RMT using simultaneous multithreading
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Alternate solution: Targeted fault checks

• Add regimen of fault checks 
• Specific to logic block 

• Arbitrary latches: Robust latch design 
• Arbitrary gates: Self-checking logic 
• FSM: Self-checking FSM designs 
• ALU: Self-checking ALUs, RESO 
• Storage and buses: Parity, ECC 

• Positives 
– No overhead of duplicating the program 

• Negatives 
– Not general, i.e., many types of checks needed
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Our contribution: Microarchitectural Assertions

• Novel class of fault checks 

• Key Idea: Confirm µarch. “truths” within processor 
pipeline 

• Catch-all checks for microarchitecture 
mechanisms 

• Positives 
– Broad coverage (catch-all checks) 
– Very low-overhead solution (no redundant execution)
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Spectrum of fault checks
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Spectrum of fault checks

(RMT)

Architecture 
Level

Processor

==

Processor

 parity/ECC

s0

s1

s2 self-check 
FSM

==

==

==

Q

QSET

CLR

S

R

robust 
flip-flop ==

self-check 
ALU

== ==

==

====

==

==

==

== ==

==

==

==

==

==

==

==

==

====

==

==

==

==

==

==

== ==

==

==

==

==

==

==

==

====

==

Logic 
Circuit 
Level



NC STATE UNIVERSITY

!11

Spectrum of fault checks
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Spectrum of fault checks
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Examples of Microarchitectural Assertions

• Register Name Authentication (RNA) 
– Aims to detect faults in renaming unit 
– Asserts consistencies in renaming unit 

• Exploits inherent redundancy in renaming structures 
• Asserts expected physical register states 

• Timestamp-based Assertion Checking (TAC) 
– Aims to detect faults in issue unit 
– Asserts sequential order among data dependent 

instructions 
– Uses timestamps
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RNA summary
• RNA previous mapping check 

– Detects faults in renaming structures 
• Rename map table, Architecture map table 
• Branch checkpoint tables 
• Active list (renaming state) 

• RNA writeback state check 
– Detects faults in renaming logic and freelist
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Source renaming

• Pure source renaming faults undetected 
– E.g., fault in source renaming logic 
– Researching solutions similar to RNA 

• However, faults causing deadlock are detectable 
– Faulty source name causing cyclic dependency 
– Faulty source name points to unpopped freelist entry 
– Other faults that cause phantom producers 

• Use watchdog timer to detect deadlocks
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Timestamp-based Assertion Checking (TAC)

• Confirm data dependent instructions issued 
sequentially 
– Assign timestamps to instructions at issue 
– At retirement, confirm instruction timestamp greater than 

producers’ timestamps 
• TAC check 

Instruction timestamp >= Producer’s timestamp + latency 
• Faults on checking logic can only cause false 

alarms
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Experiments

• Randomly injected faults in timing simulator 
– 1000 faults per benchmark 
– Faults target issue and rename state 
– Simulation ends 1 million cycles following fault injection 

• Observations 
– Fault detected by an assert (Assert) or not (Undet) 
– Fault corrupts architectural state (SDC) or not (Masked) 

• Possible outcomes 
– Assert+SDC 
– Undet+SDC 
– Assert+Masked 
– Undet+Masked
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TAC - Fault Injection Experiments
• Type of faults injected 

– Ready bits prematurely set 
– Speculatively issued cache-missing load dependents not 

reissued
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TAC - Fault Injection Experiments
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RNA - Fault Injection Experiments

• Faults injected 
– Flip bits of an entry in architecture map table 
– Flip bits of an entry in rename map table 
– Flip bits of an entry in freelist 
– Flip destination register bits at dispatch 

• Watchdog timer included to detect deadlocks 
• Additional possible outcomes 

– Assert+Wdog : RNA detected a future deadlock 
– Undet+Wdog : Deadlock undetected by RNA (possibly 

would have been caught by RNA in future)
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RNA - Fault Injection Experiments
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Conclusions
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