

Assertion-Based Microarchitecture Design for
Improved Fault Tolerance

Vimal K. Reddy Ahmed S. Al-Zawawi Eric Rotenberg
Department of Electrical and Computer Engineering

North Carolina State University
{vkreddy, aalzawa, ericro}@ece.ncsu.edu

Abstract—Protection against transient faults is an important

constraint in high-performance processor design. One strategy
for achieving efficient reliability is to apply targeted fault
checking/masking techniques to different units within an overall
reliability regimen. In this spirit, we propose a novel class of
targeted fault checks that verify the functioning of the
microarchitecture itself, as opposed to the broader challenge of
verifying overall architectural correctness of a running program.
That is, the checks focus on verifying the mechanics of executing
the program. Long term, discriminating between machinery and
state may lead to highly efficient reliability solutions with high
coverage.

The key idea is to identify and exploit opportunities to assert
microarchitectural "truths". We explore two examples, Register
Name Authentication (RNA) for the rename unit and
Timestamp-Based Assertion Checking (TAC) for the issue unit of
a contemporary out-of-order superscalar processor. Thousands
of fault injection experiments show that RNA and TAC
microarchitectural assertions detect most unmasked faults for
which they are designed.

I. INTRODUCTION

Reliability is an important concern in modern
microprocessor design. Efficient solutions to reliability are
equally important, so that power and performance overheads
do not counteract benefits of high-performance processors.

One strategy to keep reliability overheads contained is to
focus on key vulnerable areas of the pipeline and apply a
regimen of diverse targeted fault detection techniques. We
propose a new methodology that adds to the suite of fault
detection techniques available to designers of reliable high-
performance processors.

The idea is to insert microarchitectural assertion checks into
the processor pipeline. The checks verify microarchitectural
“truths” to confirm correct functioning of the machinery.
When a fault causes an inconsistency in a microarchitecture
mechanism, an assertion check associated with that
mechanism fails. Depending on the check and mechanism
involved, safe recovery may be possible by rolling back to the
architectural state or using more extensive checkpointing
schemes. In this paper, we only focus on error detection
capabilities of assertion checks.

A program can be viewed as a specification to the
microarchitecture. Mechanisms within the microarchitecture
work towards the plan laid out in the specification. A transient
error in either the specification (i.e., instructions and data) or

the microarchitecture machinery can cause unplanned
deviations. High-level reliability solutions like redundant
multithreading [7, 8, 9, 10, 11, 13, 14] detect deviations from
the plan proposed by the specification. In this way, errors in
either the specification or the machinery can be detected. The
cost is that of reproducing the original plan.

Our class of solutions is geared towards detecting faults in
the microarchitecture machinery and not the specification that
drives it. Microarchitectural assertion checks can lead to very
low overhead fault-tolerant solutions, since a few key
assertion checks can provide broad fault coverage of a
particular microarchitectural unit and possibly other collateral
microarchitectural units.

Since coverage is limited to the microarchitecture
machinery, faults that directly instill errors into a program are
not detected by microarchitectural assertions. For example, to
the microarchitecture, a fault that flips a bit in the source value
of an instruction is indistinguishable from a logical bug in the
program, i.e., a program value does not present a
microarchitectural truth that can be verified. Nonetheless,
assertion-checks can be integrated with other solutions aimed
at providing coverage over program state. In an overall
framework of targeted fault-tolerant solutions, assertion
checks can provide coverage over the most diverse part of the
architecture, namely the microarchitecture.

The basic approach in assertion-based design is to identify
opportunities for making assertions that can detect anomalies
in the functioning of a microarchitectural unit. For the issue
unit, for example, a microarchitectural assertion can check if
dependent instructions issued in sequential order. While there
may not be assertion opportunities for all the functionality
within a microarchitectural unit, even a few key assertions can
provide good coverage of a unit.

As examples of assertion-based design, assertion checks are
proposed for two major units of a superscalar processor –
Timestamp-based Assertion Checking (TAC) for the issue unit
and Register Name Authentication (RNA) for the rename unit.
Their fault detection capabilities are evaluated using targeted,
random fault injection experiments on a detailed timing
simulator.

In particular, the main contributions of this paper are as
follows:

• A new fault detection methodology is proposed, based on
the idea of microarchitectural assertion checks to detect
faults in the microarchitecture machinery. This may lead to
very low-overhead, high-coverage fault-tolerant solutions.

• Microarchitectural assertion checks are proposed for the
rename unit and issue unit of a contemporary out-of-order
superscalar processor. RNA indirectly checks for problems
with the destination register mapping of an instruction,
based on expected states of physical registers and the
correspondence between the rename map table and
architectural map table. TAC checks for sequential order
among instructions in a data dependence chain, by
assigning timestamps to instructions when they issue and
comparing consumer timestamps to producer timestamps at
retirement.

• Fault detection capabilities of RNA and TAC are
evaluated using targeted, random fault injection. Fault
injection is performed only on microarchitectural state
corresponding to the rename unit and the issue unit.
The rest of the paper is organized as follows. Section II

discusses the fault model assumed in this study. Section III
discusses fault coverage offered by assertion checks. Section
IV.A discusses Timestamp-based Assertion Checking (TAC)
and Section IV.B discusses Register Name Authentication
(RNA). Section V gives a proof-of-concept evaluation of TAC
and RNA using targeted, random fault injection. Section VI
discusses related work and Section VII concludes the paper.

II. FAULT MODEL

The fault model assumed in this study is a transient fault
that causes a single-bit error in a sequential element or an
arbitrary circuit node. The cause of a transient fault may be a
particle strike or other noise sources.

We assume there is only one fault in the system that needs
to be detected. Previous studies have indicated single-event
upsets are a reasonable model for reliability studies [1, 2, 4].

III. FAULT COVERAGE

An assertion check provides fault coverage for
combinational and sequential logic which, if afflicted with a
transient fault, will cause the assertion check to fire.

Microarchitectural assertions check operational aspects of
the microarchitecture. Thus, these assertions cannot check for
program correctness. For example, the correctness of a
program value cannot be checked. The only natural way to
check the value is by redoing the program and confirming the
value, as done by techniques like redundant multithreading
and N-modular redundancy. Thus, microarchitectural
assertion checks do not provide fault coverage for logic that
computes and stores program values.

IV. ASSERTION-BASED MICROARCHITECTURE DESIGN

In the following sections, we discuss targeted fault
detection solutions within the microarchitecture based on
assertion checks. Timestamp-based Assertion Checking
(TAC) is discussed in Section IV.A and Register Name
Authentication (RNA) is discussed in Section IV.B.

A. Timestamp-Based Assertion Checking

1) TAC Operation
Timestamp-based Assertion Checking (TAC) provides fault

coverage for the out-of-order issue unit in a superscalar
processor. TAC reasons that an instruction executes only after
all its producers have issued and executed. This time-
orderliness within a data dependence chain is captured by
assigning timestamps to instructions at issue. At retirement, an
instruction’s timestamp is compared with its producers’
timestamps and an inconsistency indicates a violation in
issuing order, and hence an error in the issue unit.

To illustrate how TAC works, consider the instruction
sequence (and the corresponding data-flow graph) shown in
Figure 1. Frames A to F in Figure 2 show how TAC checks
the issue logic by assigning timestamps to these instructions.

i1

i2 i3

i4

(3)

(1)

(1)

(1)

Dataflow graph

i1 (r1 <--)

i2 (r2 <-- , <-- r1)

i3 (r3 <--, <-- r1)

i4 (r4 <--, <-- r2, <-- r3)

Program order
Figure 1. Example data-flow graph with latencies.

Boxes in dark grey indicate new additions to the existing
microarchitecture to support TAC. The new additions are: 1) a
timestamp counter incremented each cycle and 2) fields in the
ROB and architecture map table to store timestamp and
execution latency information.

In frame A, all instructions have been fetched and renamed
into the ROB. For convenience, we assume the timestamp
counter is at 1 at this point. In frame B, we show that all
instructions have issued. The timestamps recorded at issue are
shown in their ROB entries. In frames C through F, the
instructions are committed. When a given instruction I
commits, the following main consistency check is performed
with its two producers S1 and S2 (the TAC-LAT check):

I_ts >= S1_ts + S1_lat
AND
I_ts >= S2_ts + S2_lat

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 1

p 3
p 4

r1
r2
r3
r4

p 2
0

0
0

0
0
0
0

0

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

i1 i2 i3 i4
O O O issu e

F U 1 F U 2 F U 3 F U 4

1

T S C o u n te r

d is p a tc h

T S L A T

com m it

i1 0 3
i2 0 1
i3 0 1
i4 0 1

H

T

R O B

Issu e
Q u e u e

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 1

p 3
p 4

r1
r2
r3
r4

p 2
0

0
0

0
0
0
0

0

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

O O O issu e

F U 1 F U 2 F U 3 F U 4

8
T S C o u n te r

d isp a tch

T S L A T

co m m it

i1 1 3
i2 6 1
i3 4 1
i4 7 1

H

T

R O B

Issu e
Q u e u e

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 5

p 3
p 4

r1
r2
r3
r4

p 2
3

0
0

1
0
0
0

0

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

O O O issu e

F U 1 F U 2 F U 3 F U 4

9
T S C o u n te r

d isp a tc h

T S L A T

com m it

i1 1 3
i2 6 1
i3 4 1
i4 7 1

H

T

R O B

Issu e
Q u e u e

T S ch e ck : 1 > 0 … . O K
L A T c h e c k : 1 > = (0 + 0) … .. O K

i1 co m m its

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 5

p 7
p 4

r1
r2
r3
r4

p 6
3

1
0

1
6
4
0

1

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

O O O issu e

F U 1 F U 2 F U 3 F U 4

1 1
T S C o u n te r

d isp a tch

T S L A T

co m m it

i1 1 3
i2 6 1
i3 4 1
i4 7 1H

T

R O B

Issu e
Q u e u e

T S c h e ck : 4 > 1 … . O K
L A T c h e c k : 4 > = (1 + 3) … .. O K

i3 co m m its

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 5

p 3
p 4

r1
r2
r3
r4

p 6
3

0
0

1
6
0
0

1

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

O O O issu e

F U 1 F U 2 F U 3 F U 4

1 0
T S C o u n te r

d isp a tch

T S L A T

co m m it

i1 1 3
i2 6 1
i3 4 1
i4 7 1

H

T

R O B

Issu e
Q u e u e

T S c h e c k : 6 > 1 … . O K
L A T ch e c k : 6 > = (1 + 3) … .. O K

i2 co m m its

p 5

p 7
p 8

r1
r2
r3
r4

p 6
p 5

p 7
p 8

r1
r2
r3
r4

p 6
3

1
1

1
6
4
7

1

T S L A T

A rch .
M a p
T a b le

R e n a m e
M a p
T a b le

O O O issu e

F U 1 F U 2 F U 3 F U 4

1 2
T S C o u n te r

d isp a tch

T S L A T

co m m it

i1 1 3
i2 6 1
i3 4 1
i4 7 1

H
T

R O B

Issu e
Q u e u e

T S c h e ck : 7 > 6 a n d 7 > 4 … . O K
L A T c h e c k : 7 > = (6 + 1) a n d 7 > = (4 + 1) … .. O K

i4 co m m its

A

B

C

D

E

F
Figure 2. Illustration of TAC checks.

Here, I_ts is the timestamp of instruction I and I_lat is its
latency (same for S1 and S2).

A slightly less rigorous check is possible at a lower
implementation cost (the TAC-TS check):

I_ts > S1_ts AND I_ts > S2_ts
This consistency check determines whether or not the issue

order of instruction I was correct with respect to its producers.
However, it is less rigorous, because even if the issue order of
instruction I was correct with respect to its producers, it may
be that instruction I read its source operands before its
producers finished executing. The TAC-LAT check detects
even such premature issuing errors, and hence subsumes the
TAC-TS check.

In frame C, i1 commits and, as shown, both consistency
checks confirm it issued correctly. Frames D and E confirm
the same for i2 and i3, respectively. In frame F, since i4 has
two sources, consistency checks are performed with respect to
both of them, which also succeed.

If i4 had issued with a {timestamp, latency} of {5, 1}, then
in frame F, either of the TAC check would compare
timestamps and fail (specifically, 5 > 6 and 5 > (6+1)),
detecting an issue order violation (i4 issuing before i2).
Similarly, if i3 issued with a {timestamp, latency} of {3, 1},
then in frame E, the TAC-TS check would succeed (because
i3 issued after i1) but the TAC-LAT check would fail
(because 3 < (3 + 1)) and detect a premature issuing violation.

2) Handling Wraparound of Timestamp Counter
TAC uses a timestamp counter incremented each cycle.

When the counter wraps around, it may cause false error
alarms. Hence, the wraparound case needs special handling.

To deal with wraparounds, each new counter wraparound is
viewed as entering a new phase. If we assume the timestamp
counter is big enough that only one wraparound can occur
within the scope of the ROB, we can be assured each
committing instruction has a timestamp from either the current
phase or the previous phase (i.e., immediately before the
current phase). To identify the current phase, a toggling
current phase bit is maintained along with the timestamp
counter. A wraparound toggles the current phase bit. To
remember the phase that an instruction’s timestamp belongs
to, a phase bit is also appended to each ROB entry.

At commit, an instruction’s phase can be identified by
comparing its phase bit with the current phase bit: if equal, it
issued in the current phase, else it issued in the previous
phase.

To identify the phase of an instruction’s producer, two bits
are added to the architecture map table – a current-phase
production bit and a previous-phase production bit. When a
producer instruction commits, it sets either the current-phase
production bit or previous-phase production bit corresponding
to its logical destination register, depending on the phase of its
timestamp. At counter wraparound, current-phase production
bits are flash copied into the previous-phase production bits

(and then all current-phase production bits are reset). If both
bits are unset, it indicates a past-phase (i.e., neither current
phase nor previous phase) production.

At commit, a current-phase instruction is compared only
with its current-phase producers, i.e., comparisons with
previous-phase or past-phase producers are skipped to avoid
false alarms. Moreover, skipping previous-phase and past-
phase timestamp comparisons is safe, because the fact that
previous-phase and past-phase producers are identified
confirms that the current-phase consumer instruction issued
after these producers (implicitly implements the TAC-TS
check without timestamp comparisons). There is a slight
residual vulnerability since the latencies of previous-phase
and past-phase producers are not accounted for (no implicit
TAC-LAT check).

Similarly, at commit, a previous-phase instruction is
compared only with previous-phase producers, i.e.,
comparisons with past-phase producers are skipped using the
same reasoning as before. Moreover, the previous-phase
instruction is in issue order violation if it has any current-
phase producers.

A sufficiently large timestamp counter enables handling
counter wraparounds elegantly and prevents false alarms, as
discussed above. For a 64-entry ROB and a L2-miss latency
of 100 cycles, a 13-bit counter is sufficient to ensure at most
one wraparound within the scope of the ROB, in the worst
case of chained L2 misses.

B. Register Name Authentication (RNA)

Register Name Authentication aims to detect faults in the
destination register renaming logic and various renaming
structures used in a contemporary superscalar processor [21],
i.e., rename map table, architecture map table, shadow map
tables (branch checkpoints), active list, and free list. We
present some low-overhead assertion checks that can be
introduced into the pipeline to detect errors in destination
register mappings, caused by faults in the rename logic and
structures. The RNA checks presented in this paper are not
intended to detect all possible faults. Rather, the intention is to
highlight that low-overhead microarchitectural assertion
checks have significant potential for fault detection.

1) Previous mapping check
When an instruction’s logical destination register is

renamed, the rename map table is updated with the new
mapping. However, before updating the mapping, the
previous mapping can be recorded in the instruction’s entry in
the active list. Thus, the instruction’s entry in the active list
has both the current and previous mappings of its logical
destination register. Some superscalar processors already
record the previous mapping in the active list, to facilitate
freeing the previous mapping at retirement [21]. At retirement,
before committing the instruction’s current mapping to the
architecture map table, the instruction’s previous mapping can
be confirmed to be the same as the corresponding mapping in

the architecture map table.
This first RNA check can detect many faults that affect

mappings in the rename map table, architecture map table,
shadow map tables, and active list.
1. A fault that changes a mapping in the rename map table

will be detected by the next instruction to update the
mapping. The previous mapping recorded with this
instruction (incorrect) will differ from the corresponding
mapping in the architecture map table (correct).
Detecting this fault is valuable for a couple of reasons,
specifically, the fault may cause the wrong mapping to
be freed and may cause consumers to receive a wrong
source mapping.

2. A fault that changes a mapping in the architecture map
table will be detected by the next instruction to update
the mapping at retirement. This instruction’s previous
mapping (correct) will not match the corresponding
mapping in the architecture map table (incorrect). If
there is an exception before the instruction commits, the
fault will not be detected and may have consequences
for precise state. Otherwise the fault is detected and is
not distinguishable from a fault in the rename map table.

3. A fault that changes a mapping in a shadow map
survives if the shadow map is copied to the rename map
table during a branch misprediction recovery. This
scenario is then similar to a fault in the rename map
table.

4. A fault that changes the previous mapping of an
instruction in the active list will be detected when the
instruction reaches retirement. Its previous mapping
(incorrect) will not match the corresponding mapping in
the architecture map table (correct). Detecting this fault
is valuable because it causes the wrong mapping to be
freed.

5. A fault that changes the current mapping of an
instruction X in the active list will be detected by the
next instruction Y with the same logical destination
register. X will commit the wrong mapping to the
architecture map table. When Y commits, its previous
mapping (correct) will not match the corresponding
mapping in the architecture map table (incorrect). This
scenario is basically the same as a fault in the
architecture map table and is also vulnerable to the
intervening exception case.

Summing up, there is inherent redundancy among the
rename structures, and the first RNA check exploits this fact
to detect inconsistencies in redundant destination register
mappings that point to underlying faults.

The first fault scenario (a fault changes a mapping in the
rename map table) is illustrated in Figure 3. Various events
are indicated by numbers, indicating the order of events in
time. Events 1 through 7 are for instruction I1 and events 8
through 12 are for instruction I2. At time 4, a fault causes the

mapping r4 – p4 to change to r4 – p5, in the rename map
table. When a later instruction I2 with logical destination
register r4 is renamed, it records p5 as the old mapping of r4,
instead of p4. At retirement of I2, the RNA check fails to
match I2’s previous mapping of r4 (p5) to the mapping of r4
in the architecture map table (p4), hence detecting the fault.
Again, catching this fault is valuable because the fault in the
rename map table may have caused consumers of I1 to obtain
a wrong source mapping (p5 instead of p4) and also causes I2
to free p5 instead of p4.

Rename
Logic

p4 p5 p3 p1 p4 r4

I1 (r4 <-)

src1

src2

old dest
dest

I2 (r4 <-)

I1 (r4 = p4)
(pold = p1)

I2 (r4 = p3)
(pold = p5)

1

2

3

4

I1 (r4 = p4)
(pold = p1)

I2 (r4 = p3)
(pold = p5)

commit

5

7

Checks

p1 == (pold (p1))? OK

p4 == (pold (p5))? Not OK!

6

8

9

10

11

12

particle
strike

renameRename
Map
Table

Arch
Map
Table

Figure 3. Fault detection using RNA’s “previous mapping check”.

2) Writeback state check
RNA’s previous mapping check can detect faults that cause

inconsistencies between the architecture map table and other
structures. However, it cannot detect faults in the destination
renaming logic itself, i.e., the logic that presents a new
mapping to the rename map table. An erroneous mapping this
early is not distinguishable from a correct mapping. The
erroneous mapping will be consistent among all the structures
(rename map, architecture map, shadow maps, and active list).

To detect faults in the destination rename logic (including
the rename logic and free list), we exploit the insight that such
faults cause register conflicts. That is, an instruction may be
assigned a physical register that is in use by another active
instruction, or committed, or still free (in the middle of the
free list).

Fortunately, some superscalar designs already associate
ready and free bits with each physical register [21], which can
be leveraged to detect conflicts, hence, faults of the nature
described above. The ready bit of a physical register is set
when an instruction writes (or is about to write) to the
physical register and is cleared when the physical register is
added back to the free list. The free bit of a physical register is
set when it is added back to the free list and is cleared when it
is popped from the free list.

The RNA writeback state check confirms neither of the bits
is set before writing to a physical register. The intuition
behind the RNA writeback state check is as follows. Suppose
that the destination renaming logic produces a faulty physical
register tag. There are two possibilities regarding the faulty
tag1, (1) it is in the free list, or (2) it is already being used by

1 Faults can also cause invalid physical register tags, if the number of
physical registers is not a power of two. For example, for a 126-entry physical

another instruction or is part of the architectural state. A set
free bit at writeback detects the case of writing to a free
register and a set ready bit detects the case of writing to a
physical register that is already being used or part of the
architectural state. For the case where a register is assigned to
two instructions, the assertion check will fire when either the
correct instruction or the faulty instruction writes back,
depending on who writes last (the last writer observes a set
ready bit).

The RNA writeback state check is illustrated in Figure 4.
Again, various events are indicated by numbers in order of
occurrence. At time 3, a fault causes the destination renaming
logic to produce a wrong physical register tag p6 instead of
p5, for instruction I1. P6 was last used by an instruction that
finished and committed to the architectural state, and p6 is still
part of the architectural state (shown by r10 – p6 in the
architecture map table). Hence, p6 has {ready, free} of {1, 0}.
After I1 executes and before it writes to p6, the ready and free
bits of p6 are checked for consistency. At time 6, the check
fails because the ready bit of p6 appears to have been set
already. Hence, the fault is detected.

Rename
logic

p5

dest

old dest

src1

src2

pop

I1 (r4 <-)p5

I1 (r4 = p6)

particle
strike

I1
issue

FU

p6

execute

writeback

r4 p4 p6r4 p1

p6r10

p6

Rdy/Free
Bit Array

Arch
Map
Table

Rename
Map
Table

Physical
Reg. File

Checks

p6 Rdy (1) == 0? Not OK!

p6 Free (0) == 0? OK

Free
List

1
2

3

4

5

4

6

1 0

Rdy Free

Figure 4. Fault detection using RNA-writeback.

3) Source Register Renaming Faults
We have discussed faults in the rename unit that affect

destination registers. For faults that cause only source register
renaming errors, we are investigating low-overhead assertion
checks along the lines of current RNA checks. However, for
some faults a timeout mechanism, like a watchdog timer [6],
could be an effective assertion check. A watchdog timer can
detect some pure source renaming errors, if they cause a
timeout by blocking retirement, waiting for phantom
producers to issue. Examples are faulty source registers in the
free list that never get popped, faulty source registers in the
forward slice of the faulty instruction that cause a cyclic
dependency, etc.

register file, the tags 127 and 128 are invalid. Detecting faulty, invalid tags is
straightforward.

V. RESULTS AND EVALUATION

A. Methodology

We implemented the TAC and RNA checks in a cycle-level
simulator to evaluate their fault detection capability. Faults are
randomly injected into the microarchitectural state of the
simulator pertaining to the rename and issue units.

The modeled microarchitecture is similar to the MIPS
R10000 [21]. The microarchitecture configuration is shown in
Table 1.

TABLE 1. MICROARCHITECTURE CONFIGURATION.

L1 I & D
Caches

64KB, 4-way, 64B line, LRU, L1hit = 1
cycle, L1miss/L2hit = 10 cycles

L2 Unified
Cache

1MB, 8-way, 64B line, LRU,
L1miss/L2miss = 100 cycles

Branch
Predictor

gshare, 16-bit history, 220 entries

Superscalar
Core

reorder buffer (ROB): 64
dispatch/issue/retire bandwidth: 4 per
cycle

A separate, “golden” (fault-free) simulator is run in-sync
with the faulty simulator. When an instruction is committed to
the architectural state in the faulty simulator, it is compared
with its golden counterpart to determine whether or not the
architectural state is being corrupted. Any fault that leads to
corruption of architectural state is classified as a potential
silent data corruption (SDC) fault. Likewise, if no corruption
of architectural state is observed for a set period of time after a
fault is injected (the observation window), it is classified as a
masked fault. In this study, we use an observation window of
one million cycles. Results are similar for a five million cycle
observation window.

As a preliminary test of TAC and RNA, the simulator is
first run without fault injection. None of the assertion checks
fire, indicating that there are no false alarms during correct
operation.

We conduct two fault injection campaigns, targeting TAC
and RNA separately. Each campaign consists of 1,000 faults.
Moreover, the two campaigns are repeated for nine SPEC2K
benchmarks. The benchmarks are compiled with the
Simplescalar gcc compiler [19] for the PISA ISA.

A fault may lead to one of four possible outcomes,
depending on (1) whether the fault is detected by an assert
(“Assert”) or not (“Undet”) and (2) whether the fault corrupts
architectural state (“SDC”) or not (“Masked”). Thus, the four
possible outcomes of a fault are Assert+SDC, Assert+Masked,
Undet+SDC, and Undet+Masked.

The combination of an assertion check and a SDC
(Assert+SDC) occurring in the same observation window is
interesting, because it indicates that the assertion check was
able to detect a potential silent data corruption. We are not
concerned with the order of occurrence of the two events

(Assert before SDC vs. SDC before Assert), as our focus is on
fault detection. For RNA, either order may occur. In contrast,
TAC always fires an assertion check before the detected fault
can cause a SDC, permitting safe recovery from the
architectural state.

An assertion check may also detect a fault that is ultimately
masked (Assert+Masked). For example, if a faulty register
mapping in the rename map table is overwritten before being
consumed by any instruction, the fault is detected by RNA but
is masked. Similarly, TAC will detect a prematurely issued
instruction, even if the instruction still produces the correct
outcome (for example, a branch may produce the correct
taken/not-taken direction despite consuming wrong values).

As a final note about methodology, we run perfect branch
prediction in order to minimize masking due to speculative
state. This way, the chance that a fault surfaces as an error is
increased, thus testing the fault detection capabilities of TAC
and RNA better.

B. TAC Evaluation

To test TAC, we randomly inject faults that cause
instructions to issue prematurely. In particular, (1) ready bits
of physical registers are prematurely set and (2) speculatively
issued dependents of cache-missing loads are not reissued.
The TAC-LAT check discussed in Section IV.A.1 is used to
detect faults. Results are shown in Figure 5.

0

10

20

30

40

50

60

70

80

90

100

bz
ip ga

p
gc

c
gz

ip
pa

rse
r

pe
rl

tw
olf

vo
rte

x vp
r

Avg

%
 o

f t
ot

al
 fa

ul
ts

 in
je

ct
ed

Undet+SDC
Undet+Masked
Assert+Masked
Assert+SDC

Figure 5. Breakdown of outcomes of TAC fault injection campaign.

As seen in Figure 5, on average, 80% of the faults are
detected by TAC, that would otherwise cause a SDC
(Assert+SDC). Another 17% of the faults are detected by
TAC, that are masked (a prematurely issued instruction
produces the correct outcome even with wrong operands). The
remaining 3% of the faults are undetected and masked,
because the faults did not cause instructions to issue
prematurely (e.g., select logic may stall issuing the
instructions long enough). Notice that none of the faults were
allowed to cause a SDC (no Undet+SDC). This is expected
because TAC detects violations before wrongly issued
instructions commit to the architectural state.

C. RNA Evaluation

To test RNA, we inject faults that cause renaming
anomalies similar to those discussed in Section IV.B. In
particular, four types of faults are injected, 1) bits of a random
entry in the architectural map table are flipped (arch_map), 2)
bits of a random entry in the rename map table are flipped
(rename_map), 3) bits of a random entry in the physical
register freelist are flipped (freelist) and 4) bits of the
destination physical register tag of an instruction are flipped at
dispatch, to emulate a destination renaming logic error (dest).

For the dest fault, only the instruction’s tag is affected by
the fault, i.e., the rename map table and future consumers get
the correct tag. This creates a disconnect between the faulty
producer and its consumers, potentially causing deadlock. To
detect deadlocks that phantom producers can cause, we
include a watchdog timer check (wdog) aside from the two
primary RNA checks discussed in Section IV.B, i.e., the
previous mapping check (prevmapping) and the writeback
state check (writeback). We discuss faults in relation to the
checks that detect them (prevmapping, writeback, wdog), later
in this section.

A breakdown of fault outcomes is shown in Figure 6.
Corresponding to the watchdog timer, two new outcomes
appear in Figure 6. Assert+Wdog represents faults that are
detected by RNA assertion checks, which would have later
resulted in a deadlock had they not been detected.
Undet+Wdog represent faults that escape RNA assertion
checks and cause a deadlock, and hence will only be detected
by a watchdog timer.

0

10

20

30

40

50

60

70

80

90

100

bz
ip ga

p
gc

c
gz

ip
pa

rse
r

pe
rl

tw
olf

vo
rte

x vp
r

Avg

%
 o

f t
ot

al
 fa

ul
ts

 in
je

ct
ed

Undet+SDC
Undet+Masked
Undet+Wdog
Assert+Masked
Assert+Wdog
Assert+SDC

Figure 6. Breakdown of outcomes of RNA fault injection campaign.

As shown in Figure 6, on average, 60% of the faults are
detected by RNA assertion checks alone, that would otherwise
cause a SDC (Assert+SDC). Another 6% of the faults are
detected by RNA assertion checks, that would have caused
deadlocks had there not been the earlier RNA checks
(Assert+Wdog). Finally, another 2% of the faults are detected
by RNA assertion checks, that are also masked
(Assert+Masked).

About 18% of the faults escape RNA checks and cause a
deadlock, requiring the watchdog timer to detect the faults

(Undet+Wdog). About 8% of the faults lead to SDC and are
not detected by the two RNA checks (Undet+SDC).

Hence, we find that the two RNA checks proposed in this
paper provide reasonable fault detection – 67% of the injected
faults are detected on average. Considering the low overheads
of RNA, this is a very promising result.

To further understand the fault detection capability of RNA,
and possibly enhance it, we investigate the relationship
between different fault types and the corresponding outcomes
they produce. Figure 7 shows the four fault types used in the
RNA fault injection campaign on the x-axis (arch_map,
rename_map, freelist, and dest) and the distribution of all
possible outcomes due to a fault on the y-axis.

0

20

40

60

80

100

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

bzip gap gcc gzip parser perl Avg

fa
ul

t o
ut

co
m

e
di

st
rib

ut
io

n

Assert+SDC Assert+Wdog Assert+Mask Undet+Wdog Undet+Mask Undet+SDC

Figure 7. Relation of faults to outcomes.

We notice that some faults get very good detection
coverage. For instance, faults on freelist entries are detectable
90% of the time, on average. On the other hand, faults on
destination renaming logic get poor coverage from RNA
checks, but good coverage from the watchdog timer. A good
result is that faults on the architectural map get detected more
than 70% of the time, on average. At the same time, a majority
of SDC also occurs due to faults on the architectural map,
motivating further schemes to protect the committed state.

We next investigate the relation between fault types and
different RNA assertion checks that detect them. This may
enable understanding which schemes are more suitable for
particular types of faults. Figure 8 shows the four fault types
on the x-axis and their coverage by various assertion checks
on the y-axis.

As expected, the prevmapping check is most suitable for
faults on map table entries. For faults on the freelist, the
writeback check provides most of the fault coverage. The
prevmapping check fails since faults in the freelist are
consistent in all tables. Writeback checks provide limited
coverage of destination renaming logic faults, which are
mainly covered by watchdog timer checks.

0

20

40

60

80

100

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

ar
ch

_m
ap

re
na

m
e_

m
ap

fre
el

is
t

de
st

bzip gap gcc gzip parser perl Avg

di
st

rib
ut

io
n

of
 a

ss
er

tio
n

ch
ec

ks

prevmapping writeback wdog undet
Figure 8. Relation of faults to assertion checks.

VI. RELATED WORK

Recent studies [1, 2, 3, 4] have shown hardware reliability
will be a serious concern in the coming generation of high-
performance microprocessors. Our work targets transient
errors in a very low cost manner and is very relevant in this
context.

There have been many proposals for hardware reliability
solutions at various levels. In N-Modular Redundancy (e.g.,
[20]), N processors run in lock-step and compare results at an
external chip interface. It has very high cost due to processor
redundancy. Redundant Multithreading solutions (e.g., [7, 8,
9, 10, 11, 13, 14]) provide a cheaper alternative where SMT
threads are used for redundancy. But RMT has considerable
slowdown and high power consumption. Compared to
redundant execution, our targeted solution has relatively low
performance and power overheads. All redundant execution
based solutions transcend checking to an architecture level by
comparing values and hence, perform architectural correctness
checks. This allows detection of any transient error in the
pipeline. Our solution only does microarchitecture correctness
checks.

DIVA [6] uses a simple core at retirement to check results
of an out-of-order core. In contrast, our solution applies low
cost assertion checks inside the microarchitecture. Several
other proposals modify an existing superscalar core by adding
redundant pipelines or instruction replication to provide
coverage of transient faults [5, 12, 15]. Assertion checks do
not require such radical modifications to an existing core.
More localized checking solutions have also been proposed
(e.g., [17, 18]). Our solution provides much broader coverage
of the pipeline.

VII. CONCLUSION

This paper introduces the notion of microarchitecture
assertion checks for detecting errors in a high-performance
processor pipeline. Assertion checking is a compressed means
of detecting several microarchitectural anomalies collectively
with a few key “truth” checks, and hence, it can provide broad

fault coverage of the microarchitecture at a very low cost. We
presented two examples of low-overhead assertion-based
checks, TAC and RNA, and showed that they provide good
fault detection coverage for the issue unit and the rename unit,
respectively.

We believe assertion-based microarchitecture design is an
attractive solution for increasing reliability of a processor at a
very low cost. In the grand scheme of targeted fault tolerance
solutions, checking microarchitecture machinery separately
from actual program state might open up new directions for
low cost, efficient reliability solutions.

ACKNOWLEDGMENTS

This research was supported by NSF CAREER grant No.
CCR-0092832, and generous funding and equipment
donations from Intel. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] G. Saggese et al. An Experimental Study of Soft Errors in

Microprocessors. IEEE Micro, Nov 2005.
[2] P. Shivakumar et al. Modeling the Effect of Technology Trends on the

Soft Error Rate of Combinational Logic. ICCD 2002.
[3] S. Borkar et al. Parameter variations and impact on circuits and

microarchitecture. DAC 2003.
[4] N. Wang et al. Characterizing the Effects of Transient Faults on a High-

Performance Processor Pipeline. DSN 2004.
[5] S. Kim et al. SSD: An Affordable Fault Tolerant Architecture for

Superscalar Processors. PRDC 2001.
[6] T. M. Austin. Diva: a reliable substrate for deep submicron

microarchitecture design. MICRO 1999.
[7] M. Gomaa et al. Transient-fault recovery for chip multiprocessors. ISCA

2003.
[8] M. Gomaa et al. Opportunistic transient-fault detection. ISCA 2005.
[9] S. S. Mukherjee et al. Detailed design and evaluation of redundant

multithreading alternatives. ISCA 2002.
[10] S. S. Mukherjee et al. A systematic methodology to compute the

architectural vulnerability factors for a high-performance
microprocessor. MICRO 2003.

[11] Z. Purser et al. A study of slipstream processors. MICRO 2000.
[12] J. Ray et al. Dual use of superscalar datapath for transient-fault detection

and recovery. MICRO 2001.
[13] S. K. Reinhardt et al. Transient fault detection via simultaneous

multithreading. ISCA 2000.
[14] E. Rotenberg. AR-SMT: A microarchitectural approach to fault

tolerance in microprocessors. FTCS 1999.
[15] J. C. Smolens et al. Efficient Resource Sharing in Concurrent Error

Detecting Superscalar Microarchitectures. MICRO 2004.
[16] N. J. Wang et al. ReStore: Symptom based soft error detection in

microprocessors. DSN 2005.
[17] M. Nicolaidis. Efficient Implementations of Self-Checking Adders and

ALUs. FTCS 1993.
[18] J.H. Patel et al. Concurrent Error Detection in ALUs by Recomputing

with Shifted Operands. IEEE Transactions on Computers. July 1982.
[19] D. Burger et al. The Simplescalar Toolset, Version 2. Tech. Report CS-

TR-1997-1342, CS Department, University of Wisconsin-Madison, July
1997.

[20] D. McEvoy. The Architecture of Tandem’s nonstop system. ACM/CSC-
ER 1981.

[21] K. C. Yeager. The MIPS R10000 Superscalar Processor. IEEE Micro,
April 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

