
 

Assertion-Based Microarchitecture Design for 
Improved Fault Tolerance 

Vimal K. Reddy Ahmed S. Al-Zawawi Eric Rotenberg 
Department of Electrical and Computer Engineering 

North Carolina State University 
{vkreddy, aalzawa, ericro}@ece.ncsu.edu 

 
Abstract—Protection against transient faults is an important 

constraint in high-performance processor design. One strategy 
for achieving efficient reliability is to apply targeted fault 
checking/masking techniques to different units within an overall 
reliability regimen. In this spirit, we propose a novel class of 
targeted fault checks that verify the functioning of the 
microarchitecture itself, as opposed to the broader challenge of 
verifying overall architectural correctness of a running program.  
That is, the checks focus on verifying the mechanics of executing 
the program. Long term, discriminating between machinery and 
state may lead to highly efficient reliability solutions with high 
coverage. 

The key idea is to identify and exploit opportunities to assert 
microarchitectural "truths". We explore two examples, Register 
Name Authentication (RNA) for the rename unit and 
Timestamp-Based Assertion Checking (TAC) for the issue unit of 
a contemporary out-of-order superscalar processor. Thousands 
of fault injection experiments show that RNA and TAC 
microarchitectural assertions detect most unmasked faults for 
which they are designed. 

I. INTRODUCTION 

Reliability is an important concern in modern 
microprocessor design. Efficient solutions to reliability are 
equally important, so that power and performance overheads 
do not counteract benefits of high-performance processors.  

One strategy to keep reliability overheads contained is to 
focus on key vulnerable areas of the pipeline and apply a 
regimen of diverse targeted fault detection techniques. We 
propose a new methodology that adds to the suite of fault 
detection techniques available to designers of reliable high-
performance processors. 

The idea is to insert microarchitectural assertion checks into 
the processor pipeline. The checks verify microarchitectural 
“truths” to confirm correct functioning of the machinery. 
When a fault causes an inconsistency in a microarchitecture 
mechanism, an assertion check associated with that 
mechanism fails. Depending on the check and mechanism 
involved, safe recovery may be possible by rolling back to the 
architectural state or using more extensive checkpointing 
schemes. In this paper, we only focus on error detection 
capabilities of assertion checks. 

A program can be viewed as a specification to the 
microarchitecture. Mechanisms within the microarchitecture 
work towards the plan laid out in the specification. A transient 
error in either the specification (i.e., instructions and data) or 

the microarchitecture machinery can cause unplanned 
deviations. High-level reliability solutions like redundant 
multithreading [7, 8, 9, 10, 11, 13, 14] detect deviations from 
the plan proposed by the specification. In this way, errors in 
either the specification or the machinery can be detected. The 
cost is that of reproducing the original plan. 

Our class of solutions is geared towards detecting faults in 
the microarchitecture machinery and not the specification that 
drives it. Microarchitectural assertion checks can lead to very 
low overhead fault-tolerant solutions, since a few key 
assertion checks can provide broad fault coverage of a 
particular microarchitectural unit and possibly other collateral 
microarchitectural units. 

Since coverage is limited to the microarchitecture 
machinery, faults that directly instill errors into a program are 
not detected by microarchitectural assertions. For example, to 
the microarchitecture, a fault that flips a bit in the source value 
of an instruction is indistinguishable from a logical bug in the 
program, i.e., a program value does not present a 
microarchitectural truth that can be verified. Nonetheless, 
assertion-checks can be integrated with other solutions aimed 
at providing coverage over program state. In an overall 
framework of targeted fault-tolerant solutions, assertion 
checks can provide coverage over the most diverse part of the 
architecture, namely the microarchitecture. 

The basic approach in assertion-based design is to identify 
opportunities for making assertions that can detect anomalies 
in the functioning of a microarchitectural unit. For the issue 
unit, for example, a microarchitectural assertion can check if 
dependent instructions issued in sequential order. While there 
may not be assertion opportunities for all the functionality 
within a microarchitectural unit, even a few key assertions can 
provide good coverage of a unit.  

As examples of assertion-based design, assertion checks are 
proposed for two major units of a superscalar processor – 
Timestamp-based Assertion Checking (TAC) for the issue unit 
and Register Name Authentication (RNA) for the rename unit. 
Their fault detection capabilities are evaluated using targeted, 
random fault injection experiments on a detailed timing 
simulator.  

 
 



 

In particular, the main contributions of this paper are as 
follows: 

• A new fault detection methodology is proposed, based on 
the idea of microarchitectural assertion checks to detect 
faults in the microarchitecture machinery.  This may lead to 
very low-overhead, high-coverage fault-tolerant solutions. 

• Microarchitectural assertion checks are proposed for the 
rename unit and issue unit of a contemporary out-of-order 
superscalar processor. RNA indirectly checks for problems 
with the destination register mapping of an instruction, 
based on expected states of physical registers and the 
correspondence between the rename map table and 
architectural map table. TAC checks for sequential order 
among instructions in a data dependence chain, by 
assigning timestamps to instructions when they issue and 
comparing consumer timestamps to producer timestamps at 
retirement. 

• Fault detection capabilities of RNA and TAC are 
evaluated using targeted, random fault injection. Fault 
injection is performed only on microarchitectural state 
corresponding to the rename unit and the issue unit. 
The rest of the paper is organized as follows. Section II 

discusses the fault model assumed in this study. Section III 
discusses fault coverage offered by assertion checks. Section 
IV.A discusses Timestamp-based Assertion Checking (TAC) 
and Section IV.B discusses Register Name Authentication 
(RNA). Section V gives a proof-of-concept evaluation of TAC 
and RNA using targeted, random fault injection. Section VI 
discusses related work and Section VII concludes the paper. 

II. FAULT MODEL 

The fault model assumed in this study is a transient fault 
that causes a single-bit error in a sequential element or an 
arbitrary circuit node. The cause of a transient fault may be a 
particle strike or other noise sources. 

We assume there is only one fault in the system that needs 
to be detected.  Previous studies have indicated single-event 
upsets are a reasonable model for reliability studies [1, 2, 4]. 

III. FAULT COVERAGE 

An assertion check provides fault coverage for 
combinational and sequential logic which, if afflicted with a 
transient fault, will cause the assertion check to fire. 

Microarchitectural assertions check operational aspects of 
the microarchitecture. Thus, these assertions cannot check for 
program correctness. For example, the correctness of a 
program value cannot be checked. The only natural way to 
check the value is by redoing the program and confirming the 
value, as done by techniques like redundant multithreading 
and N-modular redundancy. Thus, microarchitectural 
assertion checks do not provide fault coverage for logic that 
computes and stores program values. 

IV. ASSERTION-BASED MICROARCHITECTURE DESIGN 

In the following sections, we discuss targeted fault 
detection solutions within the microarchitecture based on 
assertion checks. Timestamp-based Assertion Checking 
(TAC) is discussed in Section IV.A and Register Name 
Authentication (RNA) is discussed in Section IV.B. 

A. Timestamp-Based Assertion Checking 

1) TAC Operation 
Timestamp-based Assertion Checking (TAC) provides fault 

coverage for the out-of-order issue unit in a superscalar 
processor. TAC reasons that an instruction executes only after 
all its producers have issued and executed. This time-
orderliness within a data dependence chain is captured by 
assigning timestamps to instructions at issue. At retirement, an 
instruction’s timestamp is compared with its producers’ 
timestamps and an inconsistency indicates a violation in 
issuing order, and hence an error in the issue unit. 

To illustrate how TAC works, consider the instruction 
sequence (and the corresponding data-flow graph) shown in 
Figure 1. Frames A to F in Figure 2 show how TAC checks 
the issue logic by assigning timestamps to these instructions.  

i1
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i4

(3)

(1)

(1)

(1)

Dataflow graph

i1 ( r1 <-- )

i2 ( r2 <-- ,  <-- r1)

i3 ( r3 <--,  <-- r1)

i4 ( r4 <--, <-- r2, <-- r3)

Program order  
Figure 1. Example data-flow graph with latencies. 

Boxes in dark grey indicate new additions to the existing 
microarchitecture to support TAC. The new additions are: 1) a 
timestamp counter incremented each cycle and 2) fields in the 
ROB and architecture map table to store timestamp and 
execution latency information. 

In frame A, all instructions have been fetched and renamed 
into the ROB. For convenience, we assume the timestamp 
counter is at 1 at this point. In frame B, we show that all 
instructions have issued. The timestamps recorded at issue are 
shown in their ROB entries. In frames C through F, the 
instructions are committed. When a given instruction I 
commits, the following main consistency check is performed 
with its two producers S1 and S2 (the TAC-LAT check): 

I_ts >= S1_ts + S1_lat 
AND 
I_ts >= S2_ts + S2_lat 
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Figure 2. Illustration of TAC checks. 

Here, I_ts is the timestamp of instruction I and I_lat is its 
latency (same for S1 and S2). 

A slightly less rigorous check is possible at a lower 
implementation cost (the TAC-TS check): 

I_ts > S1_ts  AND I_ts > S2_ts 
This consistency check determines whether or not the issue 

order of instruction I was correct with respect to its producers. 
However, it is less rigorous, because even if the issue order of 
instruction I was correct with respect to its producers, it may 
be that instruction I read its source operands before its 
producers finished executing. The TAC-LAT check detects 
even such premature issuing errors, and hence subsumes the 
TAC-TS check. 

In frame C, i1 commits and, as shown, both consistency 
checks confirm it issued correctly. Frames D and E confirm 
the same for i2 and i3, respectively. In frame F, since i4 has 
two sources, consistency checks are performed with respect to 
both of them, which also succeed. 

If i4 had issued with a {timestamp, latency} of {5, 1}, then 
in frame F, either of the TAC check would compare 
timestamps and fail (specifically, 5 > 6 and 5 > (6+1)), 
detecting an issue order violation (i4 issuing before i2). 
Similarly, if i3 issued with a {timestamp, latency} of {3, 1}, 
then in frame E, the TAC-TS check would succeed (because 
i3 issued after i1) but the TAC-LAT check would fail 
(because 3 < (3 + 1)) and detect a premature issuing violation. 

2) Handling Wraparound of Timestamp Counter 
TAC uses a timestamp counter incremented each cycle. 

When the counter wraps around, it may cause false error 
alarms. Hence, the wraparound case needs special handling.  

To deal with wraparounds, each new counter wraparound is 
viewed as entering a new phase. If we assume the timestamp 
counter is big enough that only one wraparound can occur 
within the scope of the ROB, we can be assured each 
committing instruction has a timestamp from either the current 
phase or the previous phase (i.e., immediately before the 
current phase). To identify the current phase, a toggling 
current phase bit is maintained along with the timestamp 
counter. A wraparound toggles the current phase bit. To 
remember the phase that an instruction’s timestamp belongs 
to, a phase bit is also appended to each ROB entry. 

At commit, an instruction’s phase can be identified by 
comparing its phase bit with the current phase bit: if equal, it 
issued in the current phase, else it issued in the previous 
phase. 

To identify the phase of an instruction’s producer, two bits 
are added to the architecture map table – a current-phase 
production bit and a previous-phase production bit. When a 
producer instruction commits, it sets either the current-phase 
production bit or previous-phase production bit corresponding 
to its logical destination register, depending on the phase of its 
timestamp. At counter wraparound, current-phase production 
bits are flash copied into the previous-phase production bits 



 

(and then all current-phase production bits are reset). If both 
bits are unset, it indicates a past-phase (i.e., neither current 
phase nor previous phase) production. 

At commit, a current-phase instruction is compared only 
with its current-phase producers, i.e., comparisons with 
previous-phase or past-phase producers are skipped to avoid 
false alarms. Moreover, skipping previous-phase and past-
phase timestamp comparisons is safe, because the fact that 
previous-phase and past-phase producers are identified 
confirms that the current-phase consumer instruction issued 
after these producers (implicitly implements the TAC-TS 
check without timestamp comparisons). There is a slight 
residual vulnerability since the latencies of previous-phase 
and past-phase producers are not accounted for (no implicit 
TAC-LAT check). 

Similarly, at commit, a previous-phase instruction is 
compared only with previous-phase producers, i.e., 
comparisons with past-phase producers are skipped using the 
same reasoning as before. Moreover, the previous-phase 
instruction is in issue order violation if it has any current-
phase producers. 

A sufficiently large timestamp counter enables handling 
counter wraparounds elegantly and prevents false alarms, as 
discussed above. For a 64-entry ROB and a L2-miss latency 
of 100 cycles, a 13-bit counter is sufficient to ensure at most 
one wraparound within the scope of the ROB, in the worst 
case of chained L2 misses. 

B. Register Name Authentication (RNA) 

Register Name Authentication aims to detect faults in the 
destination register renaming logic and various renaming 
structures used in a contemporary superscalar processor [21], 
i.e., rename map table, architecture map table, shadow map 
tables (branch checkpoints), active list, and free list. We 
present some low-overhead assertion checks that can be 
introduced into the pipeline to detect errors in destination 
register mappings, caused by faults in the rename logic and 
structures. The RNA checks presented in this paper are not 
intended to detect all possible faults. Rather, the intention is to 
highlight that low-overhead microarchitectural assertion 
checks have significant potential for fault detection. 

1) Previous mapping check 
When an instruction’s logical destination register is 

renamed, the rename map table is updated with the new 
mapping. However, before updating the mapping, the 
previous mapping can be recorded in the instruction’s entry in 
the active list. Thus, the instruction’s entry in the active list 
has both the current and previous mappings of its logical 
destination register. Some superscalar processors already 
record the previous mapping in the active list, to facilitate 
freeing the previous mapping at retirement [21]. At retirement, 
before committing the instruction’s current mapping to the 
architecture map table, the instruction’s previous mapping can 
be confirmed to be the same as the corresponding mapping in 

the architecture map table.  
This first RNA check can detect many faults that affect 

mappings in the rename map table, architecture map table, 
shadow map tables, and active list.  
1. A fault that changes a mapping in the rename map table 

will be detected by the next instruction to update the 
mapping. The previous mapping recorded with this 
instruction (incorrect) will differ from the corresponding 
mapping in the architecture map table (correct). 
Detecting this fault is valuable for a couple of reasons, 
specifically, the fault may cause the wrong mapping to 
be freed and may cause consumers to receive a wrong 
source mapping. 

2. A fault that changes a mapping in the architecture map 
table will be detected by the next instruction to update 
the mapping at retirement. This instruction’s previous 
mapping (correct) will not match the corresponding 
mapping in the architecture map table (incorrect). If 
there is an exception before the instruction commits, the 
fault will not be detected and may have consequences 
for precise state. Otherwise the fault is detected and is 
not distinguishable from a fault in the rename map table. 

3. A fault that changes a mapping in a shadow map 
survives if the shadow map is copied to the rename map 
table during a branch misprediction recovery. This 
scenario is then similar to a fault in the rename map 
table. 

4. A fault that changes the previous mapping of an 
instruction in the active list will be detected when the 
instruction reaches retirement. Its previous mapping 
(incorrect) will not match the corresponding mapping in 
the architecture map table (correct). Detecting this fault 
is valuable because it causes the wrong mapping to be 
freed. 

5. A fault that changes the current mapping of an 
instruction X in the active list will be detected by the 
next instruction Y with the same logical destination 
register. X will commit the wrong mapping to the 
architecture map table. When Y commits, its previous 
mapping (correct) will not match the corresponding 
mapping in the architecture map table (incorrect). This 
scenario is basically the same as a fault in the 
architecture map table and is also vulnerable to the 
intervening exception case. 

Summing up, there is inherent redundancy among the 
rename structures, and the first RNA check exploits this fact 
to detect inconsistencies in redundant destination register 
mappings that point to underlying faults. 

The first fault scenario (a fault changes a mapping in the 
rename map table) is illustrated in Figure 3. Various events 
are indicated by numbers, indicating the order of events in 
time. Events 1 through 7 are for instruction I1 and events 8 
through 12 are for instruction I2. At time 4, a fault causes the 



 

mapping r4 – p4 to change to r4 – p5, in the rename map 
table. When a later instruction I2 with logical destination 
register r4 is renamed, it records p5 as the old mapping of r4, 
instead of p4. At retirement of I2, the RNA check fails to 
match I2’s previous mapping of r4 (p5) to the mapping of r4 
in the architecture map table (p4), hence detecting the fault. 
Again, catching this fault is valuable because the fault in the 
rename map table may have caused consumers of I1 to obtain 
a wrong source mapping (p5 instead of p4) and also causes I2 
to free p5 instead of p4. 
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Figure 3. Fault detection using RNA’s “previous mapping check”. 

2) Writeback state check 
RNA’s previous mapping check can detect faults that cause 

inconsistencies between the architecture map table and other 
structures. However, it cannot detect faults in the destination 
renaming logic itself, i.e., the logic that presents a new 
mapping to the rename map table. An erroneous mapping this 
early is not distinguishable from a correct mapping. The 
erroneous mapping will be consistent among all the structures 
(rename map, architecture map, shadow maps, and active list). 

To detect faults in the destination rename logic (including 
the rename logic and free list), we exploit the insight that such 
faults cause register conflicts. That is, an instruction may be 
assigned a physical register that is in use by another active 
instruction, or committed, or still free (in the middle of the 
free list). 

Fortunately, some superscalar designs already associate 
ready and free bits with each physical register [21], which can 
be leveraged to detect conflicts, hence, faults of the nature 
described above. The ready bit of a physical register is set 
when an instruction writes (or is about to write) to the 
physical register and is cleared when the physical register is 
added back to the free list. The free bit of a physical register is 
set when it is added back to the free list and is cleared when it 
is popped from the free list. 

The RNA writeback state check confirms neither of the bits 
is set before writing to a physical register. The intuition 
behind the RNA writeback state check is as follows. Suppose 
that the destination renaming logic produces a faulty physical 
register tag. There are two possibilities regarding the faulty 
tag1, (1) it is in the free list, or (2) it is already being used by 
 

1 Faults can also cause invalid physical register tags, if the number of 
physical registers is not a power of two. For example, for a 126-entry physical 

another instruction or is part of the architectural state. A set 
free bit at writeback detects the case of writing to a free 
register and a set ready bit detects the case of writing to a 
physical register that is already being used or part of the 
architectural state. For the case where a register is assigned to 
two instructions, the assertion check will fire when either the 
correct instruction or the faulty instruction writes back, 
depending on who writes last (the last writer observes a set 
ready bit). 

The RNA writeback state check is illustrated in Figure 4. 
Again, various events are indicated by numbers in order of 
occurrence.  At time 3, a fault causes the destination renaming 
logic to produce a wrong physical register tag p6 instead of 
p5, for instruction I1. P6 was last used by an instruction that 
finished and committed to the architectural state, and p6 is still 
part of the architectural state (shown by r10 – p6 in the 
architecture map table). Hence, p6 has {ready, free} of {1, 0}. 
After I1 executes and before it writes to p6, the ready and free 
bits of p6 are checked for consistency. At time 6, the check 
fails because the ready bit of p6 appears to have been set 
already. Hence, the fault is detected. 
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Figure 4. Fault detection using RNA-writeback. 

3) Source Register Renaming Faults 
We have discussed faults in the rename unit that affect 

destination registers. For faults that cause only source register 
renaming errors, we are investigating low-overhead assertion 
checks along the lines of current RNA checks. However, for 
some faults a timeout mechanism, like a watchdog timer [6], 
could be an effective assertion check. A watchdog timer can 
detect some pure source renaming errors, if they cause a 
timeout by blocking retirement, waiting for phantom 
producers to issue. Examples are faulty source registers in the 
free list that never get popped, faulty source registers in the 
forward slice of the faulty instruction that cause a cyclic 
dependency, etc. 

 

                                                                                                     
register file, the tags 127 and 128 are invalid. Detecting faulty, invalid tags is 
straightforward. 



 

V. RESULTS AND EVALUATION 

A. Methodology 

We implemented the TAC and RNA checks in a cycle-level 
simulator to evaluate their fault detection capability. Faults are 
randomly injected into the microarchitectural state of the 
simulator pertaining to the rename and issue units. 

The modeled microarchitecture is similar to the MIPS 
R10000 [21]. The microarchitecture configuration is shown in 
Table 1. 

TABLE 1. MICROARCHITECTURE CONFIGURATION. 

L1 I & D 
Caches 

64KB, 4-way, 64B line, LRU, L1hit = 1 
cycle, L1miss/L2hit = 10 cycles 

L2 Unified 
Cache 

1MB, 8-way, 64B line, LRU, 
L1miss/L2miss = 100 cycles 

Branch 
Predictor 

gshare, 16-bit history, 220 entries 

Superscalar 
Core 

reorder buffer (ROB): 64 
dispatch/issue/retire bandwidth: 4 per 
cycle 

A separate, “golden” (fault-free) simulator is run in-sync 
with the faulty simulator. When an instruction is committed to 
the architectural state in the faulty simulator, it is compared 
with its golden counterpart to determine whether or not the 
architectural state is being corrupted. Any fault that leads to 
corruption of architectural state is classified as a potential 
silent data corruption (SDC) fault. Likewise, if no corruption 
of architectural state is observed for a set period of time after a 
fault is injected (the observation window), it is classified as a 
masked fault. In this study, we use an observation window of 
one million cycles. Results are similar for a five million cycle 
observation window. 

As a preliminary test of TAC and RNA, the simulator is 
first run without fault injection. None of the assertion checks 
fire, indicating that there are no false alarms during correct 
operation. 

We conduct two fault injection campaigns, targeting TAC 
and RNA separately. Each campaign consists of 1,000 faults. 
Moreover, the two campaigns are repeated for nine SPEC2K 
benchmarks.  The benchmarks are compiled with the 
Simplescalar gcc compiler [19] for the PISA ISA. 

A fault may lead to one of four possible outcomes, 
depending on (1) whether the fault is detected by an assert 
(“Assert”) or not (“Undet”) and (2) whether the fault corrupts 
architectural state (“SDC”) or not (“Masked”). Thus, the four 
possible outcomes of a fault are Assert+SDC, Assert+Masked, 
Undet+SDC, and Undet+Masked. 

The combination of an assertion check and a SDC 
(Assert+SDC) occurring in the same observation window is 
interesting, because it indicates that the assertion check was 
able to detect a potential silent data corruption. We are not 
concerned with the order of occurrence of the two events 

(Assert before SDC vs. SDC before Assert), as our focus is on 
fault detection. For RNA, either order may occur. In contrast, 
TAC always fires an assertion check before the detected fault 
can cause a SDC, permitting safe recovery from the 
architectural state. 

An assertion check may also detect a fault that is ultimately 
masked (Assert+Masked). For example, if a faulty register 
mapping in the rename map table is overwritten before being 
consumed by any instruction, the fault is detected by RNA but 
is masked. Similarly, TAC will detect a prematurely issued 
instruction, even if the instruction still produces the correct 
outcome (for example, a branch may produce the correct 
taken/not-taken direction despite consuming wrong values). 

As a final note about methodology, we run perfect branch 
prediction in order to minimize masking due to speculative 
state. This way, the chance that a fault surfaces as an error is 
increased, thus testing the fault detection capabilities of TAC 
and RNA better. 

B. TAC Evaluation 

To test TAC, we randomly inject faults that cause 
instructions to issue prematurely. In particular, (1) ready bits 
of physical registers are prematurely set and (2) speculatively 
issued dependents of cache-missing loads are not reissued. 
The TAC-LAT check discussed in Section IV.A.1 is used to 
detect faults. Results are shown in Figure 5. 
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Figure 5. Breakdown of outcomes of TAC fault injection campaign. 

As seen in Figure 5, on average, 80% of the faults are 
detected by TAC, that would otherwise cause a SDC 
(Assert+SDC). Another 17% of the faults are detected by 
TAC, that are masked (a prematurely issued instruction 
produces the correct outcome even with wrong operands). The 
remaining 3% of the faults are undetected and masked, 
because the faults did not cause instructions to issue 
prematurely (e.g., select logic may stall issuing the 
instructions long enough). Notice that none of the faults were 
allowed to cause a SDC (no Undet+SDC). This is expected 
because TAC detects violations before wrongly issued 
instructions commit to the architectural state. 



 

C. RNA Evaluation 

To test RNA, we inject faults that cause renaming 
anomalies similar to those discussed in Section IV.B. In 
particular, four types of faults are injected, 1) bits of a random 
entry in the architectural map table are flipped (arch_map), 2) 
bits of a random entry in the rename map table are flipped 
(rename_map), 3) bits of a random entry in the physical 
register freelist are flipped (freelist) and 4) bits of the 
destination physical register tag of an instruction are flipped at 
dispatch, to emulate a destination renaming logic error (dest).  

For the dest fault, only the instruction’s tag is affected by 
the fault, i.e., the rename map table and future consumers get 
the correct tag. This creates a disconnect between the faulty 
producer and its consumers, potentially causing deadlock. To 
detect deadlocks that phantom producers can cause, we 
include a watchdog timer check (wdog) aside from the two 
primary RNA checks discussed in Section IV.B, i.e., the 
previous mapping check (prevmapping) and the writeback 
state check (writeback). We discuss faults in relation to the 
checks that detect them (prevmapping, writeback, wdog), later 
in this section. 

A breakdown of fault outcomes is shown in Figure 6. 
Corresponding to the watchdog timer, two new outcomes 
appear in Figure 6. Assert+Wdog represents faults that are 
detected by RNA assertion checks, which would have later 
resulted in a deadlock had they not been detected. 
Undet+Wdog represent faults that escape RNA assertion 
checks and cause a deadlock, and hence will only be detected 
by a watchdog timer. 
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Figure 6. Breakdown of outcomes of RNA fault injection campaign. 

As shown in Figure 6, on average, 60% of the faults are 
detected by RNA assertion checks alone, that would otherwise 
cause a SDC (Assert+SDC). Another 6% of the faults are 
detected by RNA assertion checks, that would have caused 
deadlocks had there not been the earlier RNA checks 
(Assert+Wdog). Finally, another 2% of the faults are detected 
by RNA assertion checks, that are also masked 
(Assert+Masked).  

About 18% of the faults escape RNA checks and cause a 
deadlock, requiring the watchdog timer to detect the faults 

(Undet+Wdog). About 8% of the faults lead to SDC and are 
not detected by the two RNA checks (Undet+SDC).  

Hence, we find that the two RNA checks proposed in this 
paper provide reasonable fault detection – 67% of the injected 
faults are detected on average. Considering the low overheads 
of RNA, this is a very promising result.  

To further understand the fault detection capability of RNA, 
and possibly enhance it, we investigate the relationship 
between different fault types and the corresponding outcomes 
they produce. Figure 7 shows the four fault types used in the 
RNA fault injection campaign on the x-axis (arch_map, 
rename_map, freelist, and dest) and the distribution of all 
possible outcomes due to a fault on the y-axis. 
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Figure 7. Relation of faults to outcomes. 

We notice that some faults get very good detection 
coverage. For instance, faults on freelist entries are detectable 
90% of the time, on average. On the other hand, faults on 
destination renaming logic get poor coverage from RNA 
checks, but good coverage from the watchdog timer. A good 
result is that faults on the architectural map get detected more 
than 70% of the time, on average. At the same time, a majority 
of SDC also occurs due to faults on the architectural map, 
motivating further schemes to protect the committed state. 

We next investigate the relation between fault types and 
different RNA assertion checks that detect them. This may 
enable understanding which schemes are more suitable for 
particular types of faults. Figure 8 shows the four fault types 
on the x-axis and their coverage by various assertion checks 
on the y-axis. 

As expected, the prevmapping check is most suitable for 
faults on map table entries. For faults on the freelist, the 
writeback check provides most of the fault coverage. The 
prevmapping check fails since faults in the freelist are 
consistent in all tables. Writeback checks provide limited 
coverage of destination renaming logic faults, which are 
mainly covered by watchdog timer checks. 
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Figure 8. Relation of faults to assertion checks. 

VI. RELATED WORK 

Recent studies [1, 2, 3, 4] have shown hardware reliability 
will be a serious concern in the coming generation of high-
performance microprocessors. Our work targets transient 
errors in a very low cost manner and is very relevant in this 
context. 

There have been many proposals for hardware reliability 
solutions at various levels. In N-Modular Redundancy (e.g., 
[20]), N processors run in lock-step and compare results at an 
external chip interface. It has very high cost due to processor 
redundancy. Redundant Multithreading solutions (e.g., [7, 8, 
9, 10, 11, 13, 14]) provide a cheaper alternative where SMT 
threads are used for redundancy. But RMT has considerable 
slowdown and high power consumption. Compared to 
redundant execution, our targeted solution has relatively low 
performance and power overheads. All redundant execution 
based solutions transcend checking to an architecture level by 
comparing values and hence, perform architectural correctness 
checks. This allows detection of any transient error in the 
pipeline. Our solution only does microarchitecture correctness 
checks. 

DIVA [6] uses a simple core at retirement to check results 
of an out-of-order core. In contrast, our solution applies low 
cost assertion checks inside the microarchitecture. Several 
other proposals modify an existing superscalar core by adding 
redundant pipelines or instruction replication to provide 
coverage of transient faults [5, 12, 15]. Assertion checks do 
not require such radical modifications to an existing core. 
More localized checking solutions have also been proposed 
(e.g., [17, 18]). Our solution provides much broader coverage 
of the pipeline. 

VII. CONCLUSION 

This paper introduces the notion of microarchitecture 
assertion checks for detecting errors in a high-performance 
processor pipeline. Assertion checking is a compressed means 
of detecting several microarchitectural anomalies collectively 
with a few key “truth” checks, and hence, it can provide broad 

fault coverage of the microarchitecture at a very low cost. We 
presented two examples of low-overhead assertion-based 
checks, TAC and RNA, and showed that they provide good 
fault detection coverage for the issue unit and the rename unit, 
respectively.  

We believe assertion-based microarchitecture design is an 
attractive solution for increasing reliability of a processor at a 
very low cost. In the grand scheme of targeted fault tolerance 
solutions, checking microarchitecture machinery separately 
from actual program state might open up new directions for 
low cost, efficient reliability solutions. 
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