

Tapping ZettaRAM[™] for Low-Power Memory Systems

Ravi K. Venkatesan, Ahmed S. AL-Zawawi, Eric Rotenberg

Center for Embedded Systems Research (CESR) Department of Electrical & Computer Engineering North Carolina State University

Ravi Venkatesan © 2005

ZettaRAM

- > New memory from ZettaCore™
 - Genesis in DARPA Moletronics
 - Molecule stores 1 charge
- ≻ Long-term
 - 1 molecule = 1 bit

≻ Near-Term

- Use molecules in aggregate
- Replace DRAM capacitor

ZettaRAM Molecular Capacitor

NC STATE UNIVERSITY

Benefits

➤Manufacturing

- Self-assembly
- High charge density
- Precise control of molecules' attributes

cost-effectively scale DRAM density

flexibly control density, performance, energy

≻Other unusual properties?

≻Architectural opportunities?

JCESR

Ravi Venkatesan © 2005

HPCA-11 02/14/2005

5

Speed-energy tradeoff

Ravi Venkatesan © 2005

SPICE Results

SPICE model based on Butler-Volmer equation

Ravi Venkatesan © 2005

ZettaRAM : Performance-Energy Tradeoff

Bitline energy w.r.t. DRAM

Execution time w.r.t. DRAM

ZettaRAM offers novel performance-energy tradeoff

DRAM inflexible

>Architectural techniques to manage main memory

- Tap the energy-savings potential
- Minimize performance degradation

Source of Bitline Activity

Ravi Venkatesan © 2005

NC STATE UNIVERSITY

Row Buffer Miss Rates

L2 writebacks account for 80% of bitline activity
Most of energy consumption

Ideal Combination of Factors

Target writebacks

- Most of energy savings potential
- Not performance-critical

Hybrid Policy

Hybrid Policy

Bitline energy w.r.t. DRAM

Execution time w.r.t. DRAM

Eliminating Residual Slowdown

- ➤Residual 10% slowdown
 - Delayed writebacks occupy queues in memory controller
 - Eventually stalls processor (indirectly)
- ➤Tolerating delayed writebacks
 - Large buffers with access reordering
 - L2-cache eager writeback [Lee et al., MICRO33, 2000]

NC STATE UNIVERSITY

JCESR

Large Buffers with Access Reordering

- > Enlarging queue increases
 - Cost: each entry contains cache block
 - Complexity: fetches that bypass writebacks must first search queue for read-after-write hazards

L2 Cache Eager Writeback

JCESR

De-clustering L2 writeback requests

Hybrid policy with 4 queue entries

Hybrid policy with 4 queue entries in conjunction with eager writeback NC STATE UNIVERSITY

Hybrid Policy + Eager Writeback in L2 cache

Bitline energy w.r.t. DRAM

Execution time w.r.t. DRAM

Conclusions

- Molecular capacitor unique
 - Functional with arbitrarily small voltage swings
 - Speed is voltage dependent
- > Intelligently managing ZettaRAM
 - Hybrid policy
 - Eager writeback synergistic with ZettaRAM
- ➤ Results
 - 34% energy savings (out of 41% with uniformly slow writes)
 - Less than 1% performance degradation

Thank You

Questions ?!?

- o The ZettaRAM[™] mark is a trademark of ZettaCore Inc
- o The ZettaCore[™] mark is a trademark of ZettaCore Inc

Ravi Venkatesan © 2005